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Ensemble-based data assimilation is rapidly proving itself as a computationally effi-
cient and skilful assimilation method for numerical weather prediction, which can
provide a viable alternative to more established variational assimilation techniques.
However, a fundamental shortcoming of ensemble techniques is that the resulting
analysis increments can only span a limited subspace of the state space, whose dimen-
sion is less than the ensemble size. This limits the amount of observational informa-
tion that can effectively constrain the analysis. In this paper, a data selection strategy
that aims to assimilate only the observational components that matter most and that
can be used with both stochastic and deterministic ensemble filters is presented. This
avoids unnecessary computations, reduces round-off errors and minimizes the risk
of importing observation bias in the analysis. When an ensemble-based assimilation
technique is used to assimilate high-density observations, the data selection proce-
dure allows the use of larger localization domains that may lead to a more balanced
analysis. Results from the use of this data selection technique with a two-dimensional
linear and a nonlinear advection model using both in situ and remote sounding
observations are discussed. Copyright c© 2013 Royal Meteorological Society
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1. Introduction

A necessary condition for an ideal assimilation is that the
true state should be statistically indistinguishable from any
analysis ensemble members that are randomly sampled from
the posterior (or analysis) probability density function (pdf)
resulting from data assimilation (see, for example, Anderson
and Anderson 1999, their section 4). A key shortcoming of
ensemble filtering, due to its representation of the posterior
pdf with a limited number of analysis ensemble members,
is that the mean analysis error covariance P̃a estimated by
means of a limited-size ensemble is negatively biased (Sacher
and Bartello, 2008). In the scalar case this is equivalent to
stating that the mean analysis error variance estimated
by means of a limited-size ensemble underestimates the
optimal analysis error variance estimated using an infinite
number of ensemble members. Another implication of
the use of a limited ensemble size is that the sample
covariance of forecast error P̃f is rank deficient when

K < n + 1 (see, for example, section 3), where K is the
number of ensemble members and n is the dimension of
the state space. This implies that the analysis increments
can only belong to the range of P̃f , i.e. the subspace
of the state space defined by the columns of P̃f (e.g.
Bannister, 2008, his section 3.3), with potentially adverse
effects on the reliability of the analysis ensemble. It follows
that ensemble filtering can lead to filter divergence (e.g.
Houtekamer and Mitchell, 1998; van Leeuwen, 1999),
where the magnitude of the true analysis error becomes
much larger than its estimate, as a result of the fact that
observations are progressively ignored by the filter. Sampling
error may also lead to a misrepresentation of forecast error
covariance values between two different locations, and this
can be particularly detrimental when long-range spatial
correlations are overestimated, leading to spurious analysis
increments (e.g. Hamill et al., 2001).

To minimize these shortcomings, ensemble filtering
usually makes use of procedures such as covariance inflation
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and covariance localization. The purpose of inflation
methods (Anderson and Anderson, 1999) is to enlarge the
spread of the forecast ensemble either by multiplying the
ensemble member perturbations from the mean by a factor
greater than one or by adding random perturbations to the
ensemble members (e.g. Whitaker et al., 2008; Houtekamer
et al., 2009). More recently, adaptive multiplicative inflation
schemes have also been introduced (Anderson, 2007a, 2009;
Li et al., 2009; Miyoshi, 2011). Localization techniques aim to
eliminate long-range correlations either via an element-wise
multiplication (or Schur product) of P̃f with a correlation
matrix with compactly supported correlation functions (see
Houtekamer and Mitchell, 1998, 2001; Janjić et al., 2011) or
by estimating the analysis on a local domain (e.g. Ott et al.,
2004; Hunt et al., 2007) using only observations within a
given radius of influence from each grid point. Adaptive
localization techniques have also been proposed (Anderson,
2007b; Bishop and Hodyss, 2009a, 2009b).

As noted by Lorenc (2003, his section 3b), another
consequence of using a rank-deficient estimate of the forecast
error covariance matrix is that at most K − 1 degrees of
freedom are available to ensemble-based data assimilation
schemes in order to fit the observations. This means that
observations that are sensitive to components of the state
vector that do not belong to the range of P̃f do not improve
the analysis estimate. Both distance-dependent or Schur
product localization procedures ease the rank deficiency
problem as the localized P̃f is only supposed to represent the
covariance of the local forecast error. However, the radius of
influence should be large enough not to disturb the balances
that act at given spatial scales and that are well represented
by the ensemble error covariance (e.g. Lorenc, 2003, his
section 3c). The radius of influence should also be large
enough to include sufficient observations to constrain the
analysis effectively. At the same time, a radius of influence
that is too large may not substantially reduce the number of
assimilated observations, particularly over data-dense areas.

In this paper, a data selection strategy based on the
information content of the measurements is proposed,
which ensures that only the observational components
that are able to constrain the analysis are assimilated
using ensemble filtering techniques. The paper is organized
as follows. In section 2 the relationship between the
measurements and the true state of the system is described.
Section 3 provides a detailed derivation of a square-root filter
and of its expression when the true forecast uncertainty is
approximated by using a given number of forecast ensemble
members. Section 4 discusses measures of observational
information content that can be used in the context of
ensemble-based data assimilation, while two versions of the
proposed data selection procedure are detailed in section 5.
Section 6 provides details of the numerical model used in
this work for the assimilation of both in situ and remote
sounding observations. Results of a number of ensemble
data assimilation experiments to test the proposed data
selection methodology are provided in section 7. Finally,
some conclusions are drawn in section 8.

2. Characterization of measurements for assimilation

The relationship between a measurement vector yo ∈ R
q

and the true state xt ∈ R
n of a system (e.g. the atmosphere)

can be expressed as

yo = H(xt) + εo, (1)

where H(xt) is the observation operator calculated in xt and
where εo ∈ R

q is the measurement error, assumed Gaussian,
unbiased and with covariance R ∈ R

q×q. When it is a linear
function of the state, the observation operator is represented
as the matrix H ∈ R

q×n and Eq. (1) becomes

yo = Hxt + εo. (2)

When instead it is a nonlinear function of the state, the
observation operator can be linearized about a given xi. In
this case, from Eq. (1) we can write

yo � H(xi) + H(i)(xt − xi) + εo, (3)

where H(i) ≡ (∂H/∂x)x=xi ∈ R
q×n is the Jacobian matrix of

H(x) calculated in x = xi. We can also define y(i) as (e.g.
Migliorini, 2012)

yo(i) ≡ yo − H(xi) + H(i)xi � H(i)xt + εo. (4)

A succession of linearized measurements yo(i) can be
used within the analysis update step of a locally iterated
extended Kalman filter (e.g. Cohn, 1997, his section 5.2) as
well as within an iterated ensemble Kalman smoother. To
simplify the notation, hereafter we will not provide explicit
indication of the iteration index when considering either a
linear measurement or a measurement linearized about a
given state.

The matrix R can be expressed in terms of its eigenvector
decomposition as R = L�LT , where L is a matrix whose
columns are its eigenvectors and � a diagonal matrix whose
diagonal elements are the corresponding eigenvalues. When
the number m of non-zero (or not too small) eigenvalues is
less than q, it is possible to define a truncated eigenvector
decomposition R � Lm�mLT

m where the columns of Lm are
the eigenvectors corresponding to the m largest eigenvalues
of R and where the elements of the diagonal of �m are the
m largest eigenvalues of R. For m ≤ q it is now possible to
define yo′ ∈ R

m as yo′ ≡ �−1/2
m LT

myo so that from Eq. (2) or
(4) we can write

yo′ = �−1/2
m LT

mHxt + �−1/2
m LT

mεo = H′xt + εo′, (5)

where H′ ∈ R
m×n is defined as H′ ≡ �−1/2

m LT
mH and where

the covariance of εo′ ≡ �−1/2
m LT

mεo is the unit matrix of
rank m, i.e. εo′ ∈ R

m is the result of the application of a
whitening filter to εo. Finally, an alternative definition of
yo′ that preserves the nonlinear relationship with xt (when
applicable) is given by

yo′ = �−1/2
m LT

mH(xt) + �−1/2
m LT

mεo = H′(xt) + εo′, (6)

where H′(xt) ≡ �−1/2
m LT

mH(xt) ∈ R
m.

3. Square root filters and their approximations

In this paper we will initially concentrate on the square root
formulation of the Kalman filter algorithm, as it guarantees
that error covariances remain positive definite (Maybeck,
1982, chapter 7), and on the ensemble square root filter,
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which avoids the need for perturbing the observations (e.g.
Whitaker and Hamill, 2002). In this way, it is possible to
provide the most accurate description of the observational
information content, as reviewed below and in the following
section.

The analysis error covariance Pa is related to the forecast
error covariance Pf according to the Kalman filter solution of
the cycling problem for a linear stochastic-dynamic system
and given by (e.g. Cohn, 1997, his section 4)

Pa = Pf − Pf H′T(H′Pf H′T + Im)−1H′Pf . (7)

If we now express Pf as Pf ≡ Xf XfT and S ≡ H′Xf ∈
R

m×n, it follows that Eq. (7) can be written as

Pa = Xf (In − ST(SST + Im)−1S)XfT . (8)

We can express S in terms of its singular value
decomposition as S = E�VT , where E ∈ R

m×m and V ∈
R

n×n are orthogonal matrices whose columns are the left
and right singular vectors of S, respectively, and where
� ∈ R

m×n. Note that the only non-zero elements of � have
the same row and column indexes and are equal to the
p ≤ min(m, n) positive non-dimensional singular values γi

of S. Let us now express � as

� =
(

�p 0p×(n−p)

0(m−p)×p 0(m−p)×(n−p)

)
(9)

and

Ym,p ≡ ��T =
(

�2
p 0p×(m−p)

0(m−p)×p 0m−p

)
, (10)

where �p and Ym,p are p × p and m × m diagonal matrices,
respectively, with p non-zero eigenvalues. In this way, by
substituting the quantities defined above, it is now possible
to write

ST(SST + Im)−1S = V�T(Ym,p + Im)−1�VT

= V

(
�p(�2

p + Ip)−1�p 0p×(n−p)

0(n−p)×p 0n−p

)
VT

= V

(
Ip − (�2

p + Ip)−1 0p×(n−p)

0(n−p)×p 0n−p

)
VT , (11)

given the commutative property of diagonal matrices of the
same dimensions. From Eqs (10) and (11) we can then write

In − ST(SST + Im)−1S

= V

(
(�2

p + Ip)−1 0p×(n−p)

0(n−p)×p In−p

)
VT

= V(Yn,p + In)−1VT . (12)

It follows that Eq. (8) can then be written as

Pa = Xf TTT XfT , (13)

where

T = V(Yn,p + In)−1/2C ∈ R
n×n, (14)

with CCT = In. By defining Pa = XaXaT , from Eq. (13) we
can write

Xa = Xf T ∈ R
n×n. (15)

Note that when C = VT the transform matrix T is
symmetric.

The ensemble transform Kalman filter (ETKF, Bishop
et al., 2001), which is the ensemble square root filter we will
concentrate on, provides an approximation of Xa by means
of the analysis perturbations matrix X′a, calculated as

X′a = X′f T̃ ∈ R
n×K , (16)

where

X′f = 1√
K − 1

(x
f
1 − xf , x

f
2 − xf , . . . , (17)

x
f
i − xf , . . . , x

f
K − xf ) ∈ R

n×K ,

with K being the number of ensemble forecast members

x
f
i with mean xf , and where T̃ ∈ R

K×K is a suitable
approximation of T. If we now define P̃f ≡ X′f X′fT and
P̃a ≡ X′aX′aT , from Eq. (16) we can write

P̃a = X′f T̃T̃T X′fT . (18)

Note that rank(P̃f ) = rank(X′f ) ≤ min(K − 1, n). The
reason for having K − 1 rather than K in the expression
constraining the rank of P̃f is that the sum of the columns
of X′f is, by definition, equal to zero. We now want
to determine an expression for T̃ in a way that is fully
consistent with the derivation in Bishop et al. (2001) and
instrumental to the implementation of the data selection
strategy discussed in section 5. To this end, S is approximated
by S̃ ≡ H′X′f ∈ R

m×K so that Eq. (8) can be written as

P̃a = X′f (IK − S̃T(S̃S̃T + Im)−1S̃)X′fT . (19)

It is worth noting that it is possible to avoid linearizing
the observation operator as in Eq. (4) if we define yo′ and
H′(xt) as in Eq. (6). In this case S̃ can be defined as

S̃ = 1√
K − 1

(H′(x
f
1) − H′(xf ), . . . , (20)

H′(x
f
j ) − H′(xf ), . . . , H′(x

f
K ) − H′(xf )),

where

H′(xf ) ≡ 1

K

K∑
j=1

H′(x
f
j ). (21)

Similarly to S, it is possible to express S̃ in terms
of its singular value decomposition as S̃ = Ẽ�̃ṼT , where
Ẽ ∈ R

m×m and Ṽ ∈ R
K×K are orthogonal matrices whose

columns are the left and right singular vectors of S̃,
respectively, and where the only non-zero elements of
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�̃ ∈ R
m×K have the same row and column indexes and

are equal to the p̃ positive non-dimensional singular values
γ̃i of S̃. In this way, Eq. (19) can be expressed as

P̃a = X′f Ṽ(ỸK,p̃ + IK)−1ṼT X′fT , (22)

where

�̃ =
(

�̃p̃ 0p̃×(K−p̃)

0(m−p̃)×p̃ 0(m−p̃)×(K−p̃)

)
(23)

and

ỸK,p̃ ≡
(

�̃
2
p̃ 0p̃×(K−p̃)

0(K−p̃)×p̃ 0K−p̃

)
, (24)

with p̃ = rank(S̃) ≤ min(m, K − 1). From Eqs (18) and (22)
it follows that T̃ can be written as

T̃ = Ṽ(ỸK,p̃ + IK )−1/2ṼT ∈ R
K×K , (25)

where we have chosen a symmetric form of the ensemble
transform matrix T̃ so as to ensure that X′a is unbiased (e.g.
Hunt et al., 2007; Livings et al., 2008; Sakov and Oke, 2008).
Note that the expression of T̃ in Eq. (25) is equivalent to
that given in Bishop et al.(2001, their equation 18b).

4. Information considerations

In the previous section, the expression for the analysis
error covariance as given by the Kalman filter when the
observation error covariance is given by the unit matrix was
compared to the estimate of the analysis error covariance
given by the ETKF when the observation error covariance
is also given by the unit matrix, for either a linearized or
nonlinear observation operator. It is now useful to introduce
in this present context some indicators that can be used
to quantify the extent of uncertainty reduction when the
analysis estimate rather than a forecast from a previous
analysis is considered. In particular, it is here useful to focus
on three indicators: the signal-to-noise ratio, the number of
degrees of freedom for signal and the information content
of the measurements, which are discussed below.

By definition, S is the product of the inverse of the square
root of the measurement error covariance and the square
root of the forecast error covariance multiplied on the left
by the observation operator. This means that when a single
direct observation of a given model variable at model grid
point i is considered, the ith element of sT – in this case the
matrix S becomes a row vector denoted as sT – is equal to
the ratio between the forecast error and the measurement
error standard deviation, which defines the signal-to-noise
ratio of the observation. It follows that the singular values
γi of S represent the signal-to-noise ratio values of the
components of the measurements along the corresponding
left singular vectors of S or columns of E. This means that
there are only p ≤ min(m, n) measurement components
with positive signal-to-noise ratio, along the left singular
vectors of S that correspond to the positive singular values
of S. Also, the r ≤ p left singular vectors of S corresponding
to singular values of S that are greater than about one define
the directions where measurements can detect variations in
the state that are larger than measurement noise. It is also

possible to show that the number of degrees of freedom for
signal ds is given by (e.g. Rodgers, 2000, his section 2.4.2)

ds = tr(ST(SST + Im)−1S) =
p∑

i=1

γ 2
i

1 + γ 2
i

. (26)

This means that only p out m measurement components
contribute – each for an amount given by γ 2

i /(1 + γ 2
i ) – to

the total number of degrees of freedom for signal. Finally,
the information content h of the measurements in the case
of Gaussian errors can be calculated as (e.g. Rodgers, 2000,
his section 2.5)

h = 1

2
log2 |SST + Im| = 1

2

p∑
i=1

log2(1 + γ 2
i ), (27)

where |SST + Im| denotes the determinant of SST + Im.
Again, only p out m measurement components contribute
– each for an amount given by 1 + γ 2

i – to the total
information content of the measurements.

As discussed in section 3, when the square root of the
forecast error covariance is approximated by means of an
ensemble of forecasts, the matrix S is approximated by S̃. In
this case there are only p̃ ≤ min(m, K − 1) measurements
that provide information, i.e. with γ̃i > 0, so that the effective
number of degrees of freedom for signal d̃s resulting from
the use of a reduced-rank forecast error covariance can be
written as (Rodgers, 2000; Zupanski et al., 2007b)

d̃s = tr(S̃T(S̃S̃T + Im)−1S̃) =
p̃∑

i=1

γ̃ 2
i

1 + γ̃ 2
i

. (28)

It follows that when the true forecast error covariance matrix
is approximated as the sample covariance matrix calculated
using a forecast ensemble of size K, there are at most K − 1
components of the measurement vector yo′ that can provide
information. Note that the above result is consistent with
the discussion provided in Lorenc (2003, his section 3b and
Appendix A), where the special case of a perfect observation
is considered. The importance of this consideration is that it
is now possible to define an appropriate threshold and decide
which observational components are worth assimilating. For
example, we may want to assimilate a given component only
if it provides: (a) a signal-to-noise ratio greater than about 1,
(b) an information content hi = 1

2 log2(1 + γ̃ 2
i ) greater than

about 0.5 or (c) more than about half a degree of freedom
for signal. Conditions (a), (b) and (c) are all equivalent. It
is also possible, however, to choose a more or less restrictive
threshold according to the circumstances. It follows that
when m � K, only the r < K leading singular values and
vectors of S̃ need to be determined, e.g. by using the Lanczos
method (e.g. Golub and van Loan, 1996, section 9.3.3).

5. Data selection strategy

We now illustrate a practical strategy to reduce the number of
observational components without significant information
loss. To this end, let us define yo′′ ∈ R

r as yo′′ ≡ ẼT
r yo′, where

Ẽr ∈ R
m×r is the matrix whose columns are the r left singular

vectors corresponding to the r positive singular values of S̃
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that are greater than a given threshold, with r ≤ p̃. From
Eq. (5) we can write

yo′′ = ẼT
r H′xt + ẼT

r εo′ = H′′xt + εo′′, (29)

while from Eq. (6) we can write

yo′′ = ET
r H′(xt) + ET

r εo′ = H′′(xt) + εo′′, (30)

where H′′ ∈ R
r×n and H′′(xt) ∈ R

r are defined as H′′ ≡
ẼT

r H′ and H′′(xt) ≡ ET
r H′(xt), respectively. Note that the

covariance of εo′′ ≡ ET
r εo′ ∈ R

r is Ir, the unit matrix of
rank r. We will now derive an expression for the analysis
ensemble that considers only informative measurements,
both in the ensemble square root and the ensemble Kalman
filter (EnKF) case.

5.1. Square root filter algorithm

From Eq. (19), the analysis error covariance can now be
written as

P̃a = X′f (IK − S̃′T(S̃′S̃′T + Ir)
−1S̃′)X′fT , (31)

where S̃′ ∈ R
r×K is defined as S̃′ ≡ ẼT

r S̃. Note that from
our definition it follows that S̃′ can be written either as
S̃′ = H′′X′f or as in Eqs (20) and (21) when all primed
quantities are replaced with double-primed ones, depending
on the relationship between yo′′ and xt . From the definition
of S̃ it follows that S̃′ = �̃rṼT

r so that Eq. (31) becomes

P̃a = X′f (IK − Ṽr�̃r(�̃
2
r + Ir)

−1�̃rṼT
r )X′fT (32)

= X′f (IK − ṼrG̃rṼT
r )X′fT

= X′f Ṽ(IK − G̃)ṼT X′fT

= X′f Ṽ(ỸK,r + IK)−1ṼT X′fT ,

with

G̃ ∈ R
K×K =

(
G̃r 0r×(K−r)

0(K−r)×r 0K−r

)
, (33)

where G̃r ∈ R
r×r ≡ �̃

2
r (�̃

2
r + Ir)−1 is a diagonal matrix with

diagonal elements equal to the degrees of freedom for signal
provided by each of the r components of yo′′ with γ̃i greater
than a given threshold. Note also that (ỸK,r + IK)−1 is a
diagonal matrix with diagonal elements equal to the degrees
of freedom for noise provided by each of the r components
of yo′′ (e.g. Rodgers 2000, his section 2.4.2). This can be
interpreted as follows: the more a measurement component
or degree of freedom is related to the signal, the more it
reduces the corresponding variance of the analysis error
in observation space (see also Wang and Bishop, 2003,
Appendix A) and the more it is worth assimilating.

From Eqs (16) and (32) it follows that the analysis
perturbation matrix can be written as

X′a = X′f Ṽ(ỸK,r + IK)−1/2ṼT , (34)

while the analysis ensemble mean can be calculated as (see
Evensen, 2004, his section 3)

xa = xf + X′f S̃′T(S̃′S̃′T + Ir)
−1d′′

= xf + X′f Ṽr�̃r(�̃
2
r + Ir)

−1d′′, (35)

where d′′ ∈ R
r is the innovation vector, defined either as

d′′ ≡ yo′′ − H′′xf or as d′′ ≡ yo′′ − H′′(xf ) (see Eq. (21) with
double-primed quantities) depending on the relationship
between yo′ and xt . From Eq. (35) we can then write

xa = xf + X′f Ṽrδ

= xf +
r∑

i=1

δiX
′f ṽi, (36)

where δ ≡ �̃r(�̃
2
r + Ir)−1d′′ ∈ R

r, δi ≡ γi(1 + γ 2
i )−1d′′

i is
the ith component of δ and ṽi ∈ R

K is the ith right singular
vector of S̃.

5.2. Ensemble Kalman filter algorithm

From Eq. (35), the analysis update equation for the jth
member of the forecast ensemble can be written as (Evensen,
2003, his equation 20)

xa
j = x

f
j + X′f S̃′T(S̃′S̃′T + Ir)

−1(yo′′
j − H′′xf

j ), (37)

or, when yo′′ is nonlinearly related to xt , as

xa
j = x

f
j + X′f S̃′T(S̃′S̃′T + Ir)

−1(yo′′
j − H′′(x

f
j )), (38)

where yo′′
j ∈ R

r is the jth member of an observation ensemble
with ensemble mean yo′′ and where the ensemble error
variance for each component of yo′′

j is equal to 1. Note that
in Eqs (37) and (38) we have assumed use of the full-rank
expression for the observation error covariance matrix rather
than its ensemble representation, given that it is simply given
by Ir. This also ensures that S̃′S̃′T + Ir is non-singular. Let

us now define Xa ≡ (xa
1, xa

2, . . . , xa
K ), Xf ≡ (x

f
1, x

f
2, . . . , x

f
K )

and D ≡ (d′′
1 , d′′

2 , . . . , d′′
K ) ∈ R

r×K , where the jth innovation

ensemble member d′′
j is defined either as d′′

j ≡ yo′′
j − H′′xf

j

or as d′′
j ≡ yo′′

j − H′′(x
f
j ) according to whether Eq. (37) or

Eq. (38) is used, respectively. From Eqs (37) and (38) we can
write

Xa = Xf + X′f S̃′T(S̃′S̃′T + Ir)
−1D, (39)

which is equivalent to (see Evensen, 2004, his section 2.3)

Xa = Xf (IK + S̃′T(S̃′S̃′T + Ir)
−1D). (40)

From Eq. (35) we can write

Xa = Xf (IK + Ṽr�̃r(�̃
2
r + Ir)

−1D)

= Xf (IK + Ṽr�), (41)

where � ≡ (δ1, δ2, . . . , δK ) ≡ �̃r(�̃
2
r + Ir)−1D ∈ R

r×K and
where the jth scaled-innovation ensemble member δj ∈ R

r

is defined as δj ≡ �̃r(�̃
2
r + Ir)−1d′′

j . From Eq. (41) it follows
that the jth analysis ensemble member xa

j can be written as

xa
j = x

f
j +

r∑
i=1

δi,jX
f ṽi, (42)

where δi,j is the i-th component of δj.
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5.3. Localization considerations

It is important to note that the data selection strategy
presented above is compatible with existing localization
procedure that may be used for ensemble data assimilation,
as localization is enforced prior to the use of the data
selection algorithms described in sections 5.1 and 5.2. For
example, it is possible first to select only observations within
a given distance from an analysis grid point or to multiply the
elements of the inverse of the measurement error covariance
matrix by a correlation function decreasing with distance
from a given analysis grid point (Hunt et al., 2007). The
algorithms in sections 5.1 and 5.2 can then be applied
without modification. When localization is used, the data
selection procedure will result in a further data reduction
over the local domain. In this way it is possible to use
localization procedures with a larger radius of influence or
correlation functions whose support spans a larger part
of their domain, while only assimilating a number of
measurement components – in general, not greater than
the rank of the forecast error covariance matrix used for
assimilation – whose signal-to-noise ratio, information
content or contribution to the number of degrees of freedom
for signal is below a chosen threshold. The problem of
choosing the appropriate dimension of the local domain
for the system under consideration then merely becomes
that of finding a trade-off between the need, on one side, of
reducing the rank deficiency of the forecast error covariance
matrix for a given ensemble size as well as the risk of the
occurrence of spurious covariances between distant parts
of the domain and, on the other side, of avoiding the risk
of shortening the natural correlation length scales of model
fields that may lead to unbalanced initial conditions (Cohn
et al., 1998; Mitchell et al., 2002; Lorenc, 2003; Kepert, 2009;
Greybush et al., 2011) as well as the need for constraining
the analysis with an adequate number of observations.

Finally, note that Zupanski et al. (2007a) discusses a
localization procedure also based on the information content
of the measurements, where the region of influence of the
observations is defined as the area of the domain where
the ratio between the forecast error and the analysis error
standard deviation is greater than an empirically chosen
cut-off value. Also, note that the data selection procedure
discussed in this paper is closely related to the efficient
subspace pseudo inversion method described in Evensen
(2004, his section 7.3) and Evensen (2009, his section 14.2),
but it avoids introducing any approximations in the case
of a non-diagonal observation error covariance matrix and
it determines the number of independent observational
components that is useful to assimilate based on their
information content.

6. Experimental set-up

In this section, the prognostic model and the assimilation
strategy used for a number of data assimilation experiments,
whose aim is to test the data selection strategy described in
this paper, are presented.

6.1. Description of the model

The model used in this study is an extension of that presented
in Evensen (2004) and given by the one-dimensional

Table 1. Model’s vertical levels and reference temperature. Model height
values correspond to those for an atmosphere in hydrostatic balance with

a 1013.25 hPa surface pressure and a 7.5 km scale height.

Level Pressure (hPa) Height (km) Temperature (K)

1 0.100 69.176 219.10
2 0.290 61.191 249.82
3 0.690 54.690 255.99
4 1.420 49.277 257.54
5 2.611 44.709 251.72
6 4.407 40.783 243.48
7 6.950 37.366 235.02
8 10.370 34.365 229.33
9 14.810 31.692 226.62
10 20.400 29.290 223.05
11 27.260 27.116 218.62
12 35.510 25.133 215.08
13 45.290 23.309 212.13
14 56.730 21.620 207.95
15 69.970 20.046 202.51
16 85.180 18.571 194.34
17 102.050 17.216 193.15
18 122.040 15.874 198.05
19 143.840 14.642 205.49
20 167.950 13.479 212.48
21 194.360 12.384 219.84
22 222.940 11.355 226.74
23 253.710 10.385 233.39
24 286.600 9.471 240.02
25 321.500 8.609 246.66
26 358.280 7.797 253.05
27 396.810 7.031 258.76
28 436.950 6.308 263.40
29 478.540 5.626 267.21
30 521.460 4.982 271.02
31 565.540 4.374 275.13
32 610.600 3.799 278.31
33 656.430 3.256 281.06
34 702.730 2.745 283.33
35 749.120 2.265 285.48
36 795.090 1.818 287.82
37 839.950 1.407 290.44
38 882.800 1.034 292.76
39 922.460 0.704 294.82
40 957.440 0.425 296.76
41 985.880 0.205 299.19
42 1005.430 0.058 300.97
43 1013.250 0.000 301.64

temperature advection equation

∂T(x, t)

∂t
+ u(x, t)

∂T(x, t)

∂x
= 0, (43)

with random initial condition T(x, 0) = T0(x), where
x = (x, y, p)T with x and y being the zonal and meridional
coordinates of a grid point at a given pressure p. The origin
of the y coordinate is chosen to correspond to a latitude of
45◦. The advection speed u(x, t) is first assumed constant
(linear advection equation case, u(x, t) = u0) and then to
be dependent on T(x, t) (nonlinear advection case). In the
latter case, we assume that u and T are related according to
the thermal wind equation, given by (e.g. Gill, 1982, p. 217)

f
∂u

∂p
= −ρ−2 ∂ρ

∂y
, (44)

where ρ is the atmospheric density and f = 10−4 s−1 is the
Coriolis parameter appropriate to 45◦ latitude. For a perfect
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Table 2. IASI channel selection for temperature retrieval (adapted from
Collard, 2007, his Appendix A).

Channel Wave number (cm−1) Noise SD (K)

72 662.75 0.37
87 666.50 0.37
89 667.00 0.33
92 667.75 0.31
95 668.50 0.32
97 669.00 0.33
99 669.50 0.33
125 676.00 0.33
135 678.50 0.34
138 679.25 0.33
141 680.00 0.34
148 681.75 0.34
154 683.25 0.34
167 686.50 0.34
199 694.50 0.33
205 696.00 0.32
243 705.50 0.29
249 707.00 0.29
252 707.75 0.29
254 708.25 0.29
260 709.75 0.29
262 710.25 0.29
265 711.00 0.28
267 711.50 0.28
269 712.00 0.28
275 713.50 0.29
282 715.25 0.27
294 718.25 0.29
296 718.75 0.30
303 720.50 0.29
306 721.25 0.28
323 725.50 0.26
327 726.50 0.26
329 727.00 0.27
335 728.50 0.27
345 731.00 0.26
347 731.50 0.28
350 732.25 0.25
354 733.25 0.26
356 733.75 0.25
360 734.75 0.26
366 736.25 0.27
371 737.50 0.27
373 738.00 0.25
375 738.50 0.25
377 739.00 0.27
379 739.50 0.26
381 740.00 0.26
383 740.50 0.28
386 741.25 0.28
389 742.00 0.27
398 744.25 0.25
401 745.00 0.26
404 745.75 0.24
407 746.50 0.26
410 747.25 0.24
414 748.25 0.26
416 748.75 0.24
426 751.25 0.25
428 751.75 0.24
432 752.75 0.25
434 753.25 0.24
439 754.50 0.25
445 756.00 0.24
457 759.00 0.24
2239 1204.50 0.22
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Figure 1. Temperature Jacobians for the 66 IASI channels shown in Table 2.

gas, Eq. (44) can also be written as

f
∂u

∂p
= R

p

(
∂T

∂y

)
p

, (45)

where R = 287.05 J kg−1 K−1 is the specific gas constant for
dry air.

Let us now express T(x, t) as T(x, t) = T(x, y =
0, p, t)�(φ(y), p)/�(45◦, p), where φ is the latitude and
�(φ(y), p) is the meridional temperature variation given by
(Stull and Ahrens, 2000, their chapter 11)

�(φ(y), p) = c1 + c2(p)

[
3

2

(
2

3
+ sin2 φ

)
cos3 φ

]
, (46)

where c1 = 261 K and

c2(p) = c3
H

zT
ln(p/pT), (47)

where c3 = 40 K, H = 7.5 km is the atmospheric scale
height, zT = 11 km is the average depth of the troposphere
and pT = 233.75 hPa is the average tropospheric pressure.
In this case, Eq. (45) can be written as

∂u

∂p
= − 15Rc2(p)

2afp�(45◦, p)
T(x, y = 0, p, t) sin3 φ cos2 φ, (48)

where a = 6371 × 103 m is the radius of the Earth. Hereafter
we will only consider the evolution of temperature on the
y = 0 domain, representing a section of the atmosphere
through a circle of latitude at 45◦, which is periodic (with
period L) in the zonal direction represented by the x-
axis. This means that from now on we will redefine T as
T ≡ T(x, y = 0, p, t) = T(x, t), with x = (x, p)T , and from
Eq. (48) we can write

∂u

∂p
= −Hu0 ln(p/pT)

zT�(45◦, p)

T

p
, (49)

where u0 ≡ 15
√

2Rc3/(16af ) � 23.9 ms−1. Note that
Eq. (49) is consistent with a meridional temperature gradient
that changes sign in the stratosphere, which accounts for the
fact that in the stratosphere the Tropics are colder than the
polar regions.
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Figure 2. True temperature field at t = 0 (top), t = 60�t (middle) and t = 120�t (bottom), with no assimilation. This figure is available in colour
online at wileyonlinelibrary.com/journal/qj

The zonal length of the domain considered for our
experiments is L = 1000�x, while there are 43 pressure
levels in the vertical between 0.1 hPa and 1013.25 hPa (see
Table 1). The advection equation (43) is discretized using
a forward-upstream finite difference scheme considering
different zonal grid lengths and time steps in the two
advection cases. In the linear advection case, �x = 1 (in
arbitrary length units), a time step �t = 1 (in arbitrary
time units) and a prescribed constant zonal-only advection
speed u = 1 (in the chosen length divided by time units) are
assumed. In this way, the distance travelled in one time step is
equal to the grid length and the Courant number C is equal
to one so that no damping or erroneous dispersion (e.g.
Pielke, 2002, chapter 10) are introduced. In the nonlinear
advection case the wind speed is calculated from Eq. (49)
using the Euler method with a constant value u = 0 m s−1

at lowest model level (no-slip condition). The zonal grid
length is in this case given by �x = 28.3 km, appropriate
for a 45◦ circle of latitude subdivided in 1000 grid cells. Also,
the time step �t is chosen to be equal to 60 s so as to ensure
that the Courant number is never greater than one for the
nonlinear advection experiments performed in this work, so
that the advection scheme is always linearly stable.

In the linear advection case the reference trajectory
describes the evolution of the true atmosphere over a
period of time slightly greater than that required for the
temperature field to be advected from one observation
location to the next. Longer time periods are considered
in the nonlinear advection case. The initial conditions for
the reference trajectory are represented by a realization of a
random field that is constructed as the following. First, a one-
dimensional Gaussian correlation function with standard
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Figure 3. As Figure 2 but for the case when all 43 × 8 = 344 in situ observations are assimilated every 5�t using a standard ensemble square root filter.
This figure is available in colour online at wileyonlinelibrary.com/journal/qj

deviation chosen equal to 10
√

2 is Fourier transformed and
the Fourier coefficients are square-rooted and multiplied by
exp(2π iφ), where i is the imaginary unit and φ is a realization
of a random number that is uniformly distributed between
0 and 1 (see Evensen, 2009, section 11.2). The resulting
random vector is then inverse-Fourier transformed after
imposing the conditions for the resulting field to have no
imaginary part, to determine w1(x), where x is the zonal
coordinate and subscript denotes a given model vertical
level, starting from the top. Then, we set ψ1(x) = w1(x) and
for j = 2, . . . , 43, we define

ψj(x) = ρj−1ψj−1(x) +
√

1 − ρ2
j−1wj(x), (50)

where ρj−1 = exp[−�zj−1/Hz], �zj−1 ≡ zj−1 − zj is the
thickness in kilometres of the jth model layer, given by
the hypsometric equation with a 7.5 km scale height, and

Hz = 50 km is the vertical de-correlation length. From the
first-order autoregressive model in Eq. (50) it follows that,
at a given x, ψj(x) and ψi(x) are vertically correlated, with
correlation exp[−|zj − zi|/Hz]. The true temperature field
Tj(x) at initial time at level j is determined from ψj(x) as

Tj(x) = Tref
j + σTjψj(x), (51)

where Tref
j is the reference temperature at level j as given

in Table 1 and σTj is chosen as 10% of Tref
j . The initial

conditions for the ‘background’ trajectory are defined as

Ta
j (x) = Tj(x) + σTjψ

′
j (x), (52)

where ψ ′
j (x) is another realization of the same random

field used to generate ψj(x). Finally, an ensemble of K
initial conditions is determined in a similar manner, and is
constrained to have Ta

j (x) as its ensemble mean.
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Ensemble mean difference with and without data selection at t = 120
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Ensemble mean difference with and without data selection at t = 5
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Figure 4. Difference between the ensemble mean temperature field at t = 5 (top), t = 60�t (middle) and t = 120�t (bottom) when only observations
with signal-to-noise ratio γ̃i > 1 are assimilated every 5�t using the data-selective square root filter and the ensemble mean temperature field shown
in Figure 3. The experiment made use of a 300-member forecast ensemble with no localization. Note that for 0 ≤ t < 5 the temperature difference is
identically zero by construction. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

6.2. Assimilation strategy

Each initial condition is propagated forward in time until
observation time, when an analysis scheme based either on
a standard mean-preserving ensemble square-root method
(see Evensen, 2009, section 13.1) or on one of the two
data-selective schemes described in section 5 generates a
new set of initial conditions. The relative performance of the
data-selective square root scheme, described in section 5.1,
and of data-selective EnKF, described in section 5.2, is also
investigated. The experiments described in this paper make
use of a 5�t observation frequency, and at each observation
time the observation vector is composed of 8 or 16 regularly
spaced vertical temperature profiles with 43 elements each
or of a set of satellite radiances emerging from eight regularly
spaced zonal locations. All observations are simulated from
the truth by using an appropriate observation operator,
which in the case of in situ observations amount to a

trivial vertical interpolation operator (as observation levels
are assumed to coincide with model levels), and additional
zero-mean random noise with standard deviation σ o

Tj
chosen

as 0.1% of Tref
j .

Satellite observations are assumed to represent radiances
measured by the Infrared Atmospheric Sounding Inter-
ferometer (IASI, Siméoni et al., 1997) over 66 spectral
channels that are suitable for atmospheric temperature pro-
file retrieval (Collard, 2007), which are specified in Table 2.
These are responsible for 62% of the total number of ds for
temperature calculated using all 8461 IASI channels, with
the exception of those excluded through pre-screening. Note
that a subset of 30 channels accounts for 55% of the total
number of ds for temperature. The observation operator
for IASI radiances sensitive to temperature was determined
using RTTOV version 8.7 (Saunders and Brunel, 2005), a
radiative transfer model that is suitable for use within an
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Figure 5. (a) Number of components r – relative to the total number m = 344 in situ observations – of yo′′ that have signal-to-noise ratio γ̃i > 1
(red solid line), γ̃i > 0.5 (green solid line) and γ̃i > 0.1 (blue solid line) for a 300-member ensemble size with no localization. For reference, the

highest achievable data selection ratio γ̃i = (K − 1)/m (black dashed line) is also shown; (b) number of degrees of freedom for signal d̃s considering
only observation components with γ̃i > 1 (red solid line), γ̃i > 0.5 (green solid line) and γ̃i > 0.1 (blue solid line); (c) as in (b), with quantities
scaled by the number of degrees of freedom for signal when all observation components are considered. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

operational data assimilation system. For the purpose of
this work, the observation operator for IASI temperature
channels is assumed to be nearly linear about Tref , so that
Eq. (4) needs to be calculated only once. The temperature
Jacobians, which are the rows of H corresponding to the 66
IASI channels described in Table 2, are shown in Figure 1.

A localization procedure has also been implemented,
which selects for each grid point a subset of observations
within a cylinder of a given radius l (Hunt et al., 2007).
The analysis at each grid point is then computed by
considering only the innovations, the measurement error
covariance matrix blocks and the rows of S̃ corresponding
to observations whose distance from the given grid point is
not greater then l. For ease of use with satellite observations,
the localization procedure has not been applied in the
vertical, i.e. the height of the cylinder is taken to be equal
to the depth of the atmosphere. Each analysis value at the
centre of the local domain has also been averaged with its
neighbouring values resulting from 2l′ + 1 local analysis

(Ott et al., 2004), with l′ < l. In our experiments we found
that this averaging contributes to a substantial reduction
of high-spatial-frequency noise in the analysis. Finally, note
that our assimilation experiments do not include the use
of any inflation algorithms. This is to facilitate the direct
comparison of the results of the experiments with and
without the use of the data selection procedure and to
prevent inconsistencies due to the possible occurrence of
different inflation factors in the two sets of experiments.
The absence of inflation also avoids increasing artificially
the information content of the observations and this gives
us the opportunity to assess the data selection procedure
when it can discard a significant amount of observational
components. Also note that our experiments, discussed in
section 7, do not show indications that the magnitude of
the ensemble-mean error gets progressively larger (see, for
example, Figure 6) or other signs of the detrimental filter
divergence effects arising from lack of inflation. This is
arguably due to the constraints provided by the observation
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Figure 6. Root mean square error (RMSE) calculated as the difference between the ensemble mean and the true temperature field for a 300-member
ensemble size with no localization, in the case when only observation components with γ̃i > 0.1 are assimilated every 5�t (left); evolution of the
difference between the RMSE values obtained when considering only selected observations – with γ̃i > 1 (red solid line), γ̃i > 0.5 (green solid line)
and γ̃i > 0.1 (blue solid line) – and the RMSE values obtained when all observations are assimilated (right). This figure is available in colour online at
wileyonlinelibrary.com/journal/qj
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Figure 7. Root mean square error (RMSE) calculated as the difference between the ensemble mean and the true temperature field for a 100-member
ensemble size and localization with a 200�x radius of influence, in the case when only observations with γ̃i > 0.1 are considered (left); evolution of the
difference between the RMSE values obtained when considering only observations with γ̃i > 0.1 and the RMSE values obtained when all observations
are considered (right). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

components assimilated in our experiments that have signal-
to-noise ratio greater than a given threshold (see, for
example, Figure 5).

7. Experiment results

In this section we discuss the results of a number of data
assimilation experiments, described in section 6.2, which
are carried out to assess whether we can safely discard
observational components with information content below
a given threshold and achieve comparable results as in the
case when all observational components are retained. The
effects of the use of localization procedures, remotely sensed
observations and stochastic filters (i.e. data-selective EnKF)
are also discussed. Unless stated otherwise, the experiments

discussed below consider only in situ observations for
assimilation.

Let us first consider the linear advection case. Figure 2
shows the true temperature field at times t = 0, t = 60�t
and t = 120�t, while Figure 3 shows the ensemble mean
temperature estimated at the same times using a standard
ensemble square root filter with a 300-member ensemble
size, no localization and where all 43 × 8 = 344 available
observations are assimilated every 5�t. The difference
between the ensemble mean temperature estimated using a
data-selective square root filter with a 300-member ensemble
size and no localization, when only observations with signal-
to-noise ratio γ̃i > 1 are assimilated every 5�t, and the
ensemble mean temperature estimated at the same times
using a standard ensemble square root filter is shown in
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Ensemble mean difference with and without data selection at t = 5
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Figure 8. Difference between the ensemble mean temperature field at t = 5 (top), t = 60�t (middle) and t = 120�t (bottom) when only observations
with signal-to-noise ratio γ̃i > 0.1 are assimilated every 5�t using the data-selective square root filter and the ensemble mean temperature field when
all 344 in situ observations are assimilated every 5�t. The data-selective experiment made use of a 100-member forecast ensemble and localization with
a 200-grid-point radius of influence. Note that for 0 ≤ t < 5 the temperature difference is identically zero by construction. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

Figure 4. The last considered time is 120�t, as this is
the last assimilation time in the data-selective experiment
that measurements components with γ̃i > 1 are available
for assimilation. From Figure 4 it is possible to see that
at the end of the two experiments most of the ensemble-
mean temperature differences – namely about 72% – have
a magnitude of less than 5 K, which is smaller than the
minimum root mean square error (RMSE) value of the
ensemble mean temperature field that is achieved when all
observations are assimilated (see Figure 6).

Experiments with different data selection thresholds were
also carried out. Figure 5(a) shows the evolution of the ratio
between the number r of components of yo′′ that have signal-
to-noise ratio γ̃i greater than a given threshold and the total
number m of available measurements with independent
errors. Also shown is the maximum value of the ratio

defined above, given by (K − 1)/m in the considered case
where m > K, as discussed in section 4. From Figure 5(a) it is
evident that the largest number of informative measurement
components, which is about 13% less than the total number
of available measurements, is achieved at the beginning of the
experiment, as expected, where forecast error uncertainty is
largest. Also, the time when r/m � 0.5 is reached relatively
quickly when the threshold is 1 and 0.5 (t ≈ 10�t and
t ≈ 15�t, respectively), while the same value is reached
much later in the 0.1-threshold experiment (t ≈ 65�t).
At the end of the experiments, when forecast uncertainty
has significantly reduced, only a minority of measurement
components have signal-to-noise ratio above the considered
threshold. But while for thresholds 1 and 0.5 there are no
or only about 4% of measurements with sufficient signal-
to-noise ratio, for threshold 0.1 there are still about 36%
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Figure 9. Number of components – relative to the total number of in situ
observations available at each assimilation time, for localization domains
(whose extents in grid-length units are provided in the key) that include
17 different observation configurations at each assimilation time – of
yo′′ that have signal-to-noise ratio greater than 0.1 for a 100-member
ensemble size and localization with a 200�x radius of influence, for a
125�x observation separation distance. The total number of observations
at a given assimilation time for each localization domain is either m1 = 129
(43 × 3) or m2 = 172 (43 × 4). The dashed lines denote the theoretical
maximum values (K − 1)/m1 and (K − 1)/m2, with K = 100, for the data
selection rate when considering either m1 or m2 observations. This figure
is available in colour online at wileyonlinelibrary.com/journal/qj

of measurements that can be assimilated using the data-
selective filter. Also, Figure 5(b) shows the number of degrees
of freedom for signal d̃s(rγ̃t ) (see Eq. (28)) as a function of
time for the measurement components with signal-to-noise
ratio above a given threshold γ̃t , with γ̃t = 0.1, 0.5, 1 while
Figure 5(c) shows the ratio d̃s(rγ̃t )/d̃s as a function of time.
From Figure 5 it follows that when a γt = 0.1 signal-to-
noise threshold is chosen, at the end of the data assimilation
experiment about 36% of the measurement components
that are above the threshold are responsible for about 97%
of the number of degrees of freedom for signal achieved
when all observation components are assimilated. In the
case, instead, when a γt = 0.5 signal-to-noise threshold is
considered, at the end of the data assimilation experiment
only about 4% of the measurement components are above
the threshold and represent only 26% of the total number
of degrees of freedom for signal. These results show that
γt = 0.1 is a convenient signal-to-noise-ratio threshold to
choose in this case and is the one adopted for the remaining
data-selective assimilation experiments described in this
paper.

In Figure 6 the evolution of the root mean square
difference between the ensemble mean and the true
temperature field in the case when only observations with
γ̃i > 0.1 are considered (left panel) and the evolution of the
difference between the root mean square values obtained
when only observations with γ̃i > 0.1, 0.5, 1 and the root
mean square values obtained when all observations are
considered (right panel) are shown. The results obtained
when the data selection procedure is used show that it is
possible to avoid assimilating a considerable number of
observational components (up to about 64% towards the
end of the γ̃i > 0.1 experiment, as discussed above) without
significantly affecting the accuracy of the assimilation results.

Let us now consider the case when only 100 ensemble
members are considered and a localization procedure is
used that at each grid point only includes for assimilation
the observations that are within a cylinder of 200�x radius
of influence. Note that each temperature analysis value at a
given grid point is averaged with those within a 5�x radius,
so as to damp higher horizontal frequencies. As discussed in
Ott et al.(2004, their section 6.4), this is found to be beneficial
for relatively small ensemble sizes. Figure 7 shows the RMSE
results when a data-selective square root filter is used with
the localization procedure discussed above and when only
observation components with γ̃i > 0.1 are assimilated using
a 100-member ensemble size. By comparing Figure 7 (left
panel) with Figure 6 (left panel) it is evident that at the
end of the experiments a lower accuracy is achieved when
using localization and a smaller ensemble size, i.e. when
less observational information is available for assimilation.
However, from Figures 7 (right panel) and 8 it follows that
the differences between the case where data selection is either
used or not used are relatively very small, also in the case
when localization and a 100-member ensemble size are used.
This is despite the considerable amount of observational
components discarded for each local domain, as can be
seen from Figure 9, which shows that at the end of the
experiment only about 40% of the observation components
provide sufficient information for the chosen threshold, a
data selection rate consistent with that achieved at the end of
the 300-member ensemble experiment with no localization
for the same data selection threshold. These findings confirm
that the data selection procedure is advantageous also when
used in conjunction with localization procedures.

It is also interesting to investigate the performance of
the data selection procedure with smaller ensemble sizes.
Three experiments using 50, 25 and 15 forecast ensemble
members with the same true temperature field trajectory as
that shown in Figure 2 were carried out with a 0.1 signal-
to-noise data selection threshold. Given the relatively small
ensemble sizes, for these experiments a 50�x localization
radius was used and 16 evenly spaced observation profiles
every 5�t were considered for assimilation. By comparing
Figure 10(a) with Figures 6 and 7 it follows that the RMSE
values achieved just after the time needed for the temperature
field at a given observation location to be advected to the
next observation location (i.e. for t > (L/16)/u = 62.5�t)
when using 50, 25 or 15 ensemble members are between the
RMSE values achieved at t > (L/8)/u = 125�t when using
a 300-member ensemble with no localization and those when
a 100-member ensemble with a 200�x localization radius
is considered, in the case when only eight observations are
considered for assimilation. Also, by comparing Figure 10(a)
with Figure 10(b) it follows that the larger the ensemble size
the more observation components with sufficient signal-
to-noise ratio and the lower the RMSE values at the end
of the experiment, as expected. This means that reasonably
accurate assimilation results can be attained even when using
a relatively small ensemble size and with correspondingly
high observation rejection rates, provided that the size
of the local domain is not significantly larger than the
ensemble size and that a sufficient number of observations
with enough signal-to-noise ratio are available in each
local domain. These results show that the use of the data
selection procedure can be beneficial also when limitations
in computational resources only allow the use of a relatively
small ensemble size.
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Figure 10. Root mean square error (RMSE) calculated as the difference between the ensemble mean, in the case when only observations with γ̃i > 0.1
are considered, and the true temperature field for a 50-member (blue solid line), 25-member (green solid line) and 15-member (red solid line) ensemble
size (left); number of components r – relative to the total number m = 86 in situ observations – of yo′′ that have signal-to-noise ratio γ̃i > 0.1 in the case
when K = 50 (blue solid line), K = 25 (green solid line) and K = 15 (red solid line) ensemble members are considered. For clarity, only data selection
rate results for localization regions that include two observation profiles located in the centre of the model’s domain are shown. For reference, the highest
achievable data selection ratio γ̃i = (K − 1)/m using a 50-member (blue dashed line), 25-member (green dashed line) and 15-member (red dashed line)
ensemble size are also shown (right). Note that the results in these experiments were obtained by considering 16 evenly spaced observation profiles for
assimilation every 5�t using a 50�x localization radius of influence. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 11. Root mean square error (RMSE) calculated as the difference between the ensemble mean and the true temperature field for a 300-member
ensemble size and no localization, in the case when only remotely sensed observations with γ̃i > 0.1 are considered (left); evolution of the difference
between the RMSE values obtained when considering only observations with γ̃i > 0.1 and the RMSE values obtained when all observations are considered
(right). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

We now want to compare the results obtained from data
assimilation experiments performed using either remote
sounding or in situ observations. Figure 11(left panel) shows
the RMSE values obtained when radiances from 66 IASI
channels, measured over eight uniformly spaced longitudes
and assimilated every 5�t, for a 300-member ensemble size
and when only observations with γ̃i > 0.1 are considered.
Note that in this case the RMSE values at the end of the
experiment are larger than those obtained when in situ
data are assimilated (see Figure 6, left panel), despite the
number of satellite observations considered for assimilation

being larger than that of in situ data. From Figure 12(c)
it is evident that this can be explained by the number
of degrees of freedom for signal of remote sounding data
being significantly smaller than that of in situ data during
the first part of the assimilation experiment. As shown in
Figure 11(right panel), however, from our results it follows
that, even with remote sounding data the data selection
procedure does not affect significantly the accuracy of the
assimilation. This is despite the considerable amount of data
that has been discarded during assimilation (see Figure 12(a)
and (b)), corresponding to a satellite data rejection rate of
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Figure 12. (a) Number of components r of yo′′ that have signal-to-noise ratio γ̃i > 0.1 for in situ (blue solid line) and for remotely sensed data (red
solid line) for a 300-member ensemble size with no localization; (b) as in (a), with quantities scaled either by the total number m = 344 (43 × 8) of in
situ observations (blue solid line) or by the total number m = 528 (66 × 8) of remotely sensed observations at each assimilation time (red solid line); (c)

number of degrees of freedom for signal d̃s considering either in situ observation components (blue solid line) or remotely sensed observations (red solid
line) with γ̃i > 0.1; (d) as in (c), with quantities scaled by the number of degrees of freedom for signal when all observation components are considered.
This figure is available in colour online at wileyonlinelibrary.com/journal/qj

about 88% at the end of the assimilation experiment. Also
note that Figure 12(d) shows that the number of degrees of
freedom for signal that are discarded by the data selection
procedure is less than about 1% of the total number of
available satellite data, implying that 0.1 is here a convenient
threshold also when remote sounding data are considered.
Similar results are obtained when a 100-member ensemble
size with a 200�x radius of influence is considered, both
in terms of RMSE values and differences (not shown) and
in terms of data selection rates for localization domains
including different observation locations, as can be seen
by comparing Figure 13(a) to Figure 12(b) (bottom solid
line).

Let us now investigate the performance of the data
selection procedure when using the EnKF, discussed in
section 5.2, rather than the square root filter introduced
in section 5.1 and used for all experiments discussed so
far. Figure 14 shows the RMSE results (left panel) obtained
when a 300-member ensemble data assimilation experiment
is performed and only observation components with signal-
to-noise ratio greater than 0.1 are assimilated using the
data-selective EnKF. The right panel of Figure 14 shows
instead the RMS differences between the data-selective EnKF
experiment with a 0.1 signal-to-noise threshold and the
EnKF experiment using all observation components. By
comparing Figures 6 and 14 it follows that the magnitude
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Figure 13. (a) Number of components – relative to the total number of remote sounding measurements available at each assimilation time, for
localization domains (whose extents in grid-length units are provided in the key) that include 17 different observation configurations at each assimilation
time – of yo′′ that have signal-to-noise ratio greater than 0.1 for a 100-member ensemble size and localization with a 200�x radius of influence, for a
125�x observation separation distance. The total number of observations at a given assimilation time for each localization domain is either m1 = 198 (3
× 66) or m2 = 264 (4 × 66). Note that the values of the theoretical maximum values (K − 1)/m1 and (K − 1)/m2, with K = 100, for the data selection
rate when considering either m1 or m2 observations are 0.5 and 0.375, respectively. (b) Number of degrees of freedom for signal when only remotely
sensed observations with γ̃i > 0.1 are considered over localization domains with different observation configurations. This figure is available in colour
online at wileyonlinelibrary.com/journal/qj
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Figure 14. Root mean square error (RMSE) calculated as the difference between the ensemble mean estimated using a data-selective EnKF and the
true temperature field for a 300-member ensemble size and no localization, in the case when only observations with γ̃i > 0.1 are assimilated every
5�t (left); evolution of the difference between the RMSE values obtained when considering only observations with γ̃i > 0.1 using the data-selective
EnKF and the RMSE values obtained when all observations are assimilated with the EnKF (right). This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

of the RMS differences achieved when the data selection
procedure is used with a stochastic filter with the same
initial ensemble, reference trajectory and observations as
those used in the deterministic (e.g. a square root filter)
experiment is still a small proportion (about 3% towards
the end of the experiment) of the respective RMSE value.
Note, however, that the data selection procedure used with
the square root filter achieves a substantially lower RMSE
than when it is used with the EnKF. This is consistent with
the higher data rejection ratio experienced in the EnKF
experiment for a 0.1 signal-to-noise threshold, as it can be
seen from Figures 5(a) (top solid line) and 15. This result
seems to indicate that the same set of observations provides

more information when assimilated with a deterministic
rather than a stochastic scheme. The robustness of this
result, however, will need to be investigated further.

Finally, let us consider the case when the evolution of
the state is determined by the nonlinear advection equation
(43), with advection speed given by integrating the thermal
wind equation (49) while assuming u = 0 at the lowermost
model level. Differently from the linear advection case, the
advection speed now depends on the state and benefits are
expected from longer assimilation experiments. Figure 16
(left panel) shows the RMSE results up to t = 1000�t for a
300-member ensemble experiment when only observation
components with signal-to-noise ratio greater than 0.1 in the
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Figure 15. Number of components r – relative to the total number
m = 344 in situ observations – of yo′′ that have signal-to-noise ratio γ̃i > 0.1
(blue solid line) for a 300-member ensemble size with no localization and
when the data-selective EnKF is used. For reference, the highest achievable
data selection ratio γ̃i = (K − 1)/m (black dashed line) is also shown. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

usual configuration are assimilated using the data-selective
square-root filter. As expected, the RMSE continues to
decrease for much longer than in the linear advection case,
as can be seen by comparing the results in Figures 6 and 16.
The temperature values at the beginning, in the middle
and at the end of the experiment for the true field are
shown in Figure 17, which clearly shows the presence
of zonal wind vertical gradient and of the midlatitude
tropospheric jet stream resulting from thermal wind balance.
Figures 18 and 16 (right panel) show, for the nonlinear
advection case, the difference and the RMSE difference,
respectively, between the ensemble mean temperature when

using the data-selective square root filter with a 0.1 signal-
to-noise threshold and the ensemble mean temperature
resulting when using a square root filter with all observation
components. Again, the accuracy of the data-selective
square root filter is comparable to that achieved when all
observations are assimilated, even in the nonlinear advection
case.

Results with the data-selective EnKF for the nonlinear
advection case are shown in Figure 19. Figures 16 and 19
indicate that the RMSE results of the data selective method
with the nonlinear advection model are consistent with those
obtained with the linear advection model, when using both
deterministic and stochastic filters. Note in particular that, in
agreement with the linear advection case, the lower accuracy
in the nonlinear advection case of the data-selective EnKF
compared to that of the data-selective square-root filter
can be explained by the higher data rejection rate of the
stochastic scheme, as can be seen from Figure 20.

8. Conclusions

In this paper, a procedure for assimilating only the
components of the observation vector that are able to
reduce the estimation uncertainty resulting from the use
of an ensemble filtering technique is discussed. Our results
show that most observation components end up being
discarded after an initial transient (or ‘spin-up’) period
without affecting significantly the assimilation results. This
data selection procedure can be used with remote sounding
measurements, achieving a rejection rate after the spin-
up period of about 88% in one of the experiments
performed in this work. Note, however, that the number
of observation components that are discarded depends on
the chosen rejection threshold and it is generally higher
when inflation procedures are not used, as in the case of
the experiments described in this paper. It is also important
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Figure 16. Root mean square error (RMSE) up to 1000�t, calculated as the difference between the ensemble mean and the true temperature field, for
the nonlinear advection case and a 300-member ensemble size with no localization, when all observations are assimilated with a square root filter (left,
blue solid line); evolution of the difference between the RMSE values obtained when assimilating only observations with γ̃i > 0.1 using a data-selective
square root filter and the RMSE values obtained when all observations are assimilated (right, red solid line). This figure is available in colour online at
wileyonlinelibrary.com/journal/qj
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Figure 17. True temperature field at t = 0 (top), t = 500�t (middle) and t = 1000�t (bottom) for the nonlinear advection case. This figure is available
in colour online at wileyonlinelibrary.com/journal/qj

to note that the data-selection method is compatible with
existing localization and inflation procedures commonly
used to ameliorate one of the fundamental and well-
known shortcomings of ensemble data assimilation – which
constrains its resulting analysis increments to span only a
limited portion of the state space – in the case of practical
importance when the size of the forecast ensemble is much
smaller than the dimension of the state space. In fact, this
method allows the use of a larger localization domain,
which may lead to a more balanced analysis (e.g. Greybush
et al., 2011) even in the presence of observations with
high spatial density. Note, however, that the data selection
method described in this paper does not replace but should
be used in addition to data-thinning and quality control
procedures that are commonly used to reduce the amount
of observations that are assimilated in NWP models (e.g.
Bauer et al., 2011). In fact, spatial data thinning avoids the

need to account for error correlations between neighbouring
observations (e.g. Dando et al., 2007), while data quality
control (e.g., Andersson and Järvinen, 1999) makes sure
that only those observations that are predicted by the model
with sufficient accuracy are assimilated.

Another benefit of the data selection strategy presented
in this paper is that it may considerably reduce the
amount of numerical computations that are required to
assimilate observations in an Earth system model. This
is particularly the case when a significant number of
observations have a relatively low information content
so that the required transformations to the observation
vector and observation operator, discussed in section 5,
represent a worthwhile investment. In this case, only r � m
observational components need to be considered when
computing the analysis ensemble mean using Eq. (36) or the
analysis ensemble using Eq. (42). Also, in this way, round-off
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Ensemble mean difference with and without data selection at t = 50
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Figure 18. Nonlinear advection case: difference between the ensemble mean temperature field at t = 50 (top), t = 500�t (middle) and t = 1000�t
(bottom) when only observations with signal-to-noise ratio γ̃i > 0.1 are assimilated every 5�t using the data-selective square root filter and the ensemble
mean temperature field when all 344 in situ observations are assimilated every 5�t. The experiment made use of a 300-member forecast ensemble with
no localization. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

errors arising from the representation of a given real number
as a floating point number (e.g. Golub and van Loan 1996,
section 2.4), are minimized.

Finally, use of the data selection technique reduces the risk
of contaminating the analysis estimate with observational
bias, as discussed in the following. Consider the case of
an observation that is deemed of sufficient quality to pass
existing screening procedures but that is actually affected by
some unknown bias. It is possible to show (e.g. Dee, 2005,
his section 2) that the analysis error also becomes biased as a
result of the assimilation of a biased observation. Let us now
assume that this observation provides negligible information
but that the observation bias is sufficiently large in magnitude

to generate a significant bias in the analysis. In this case,
the assimilation of this observation produces a detrimental
effect on the analysis. However, the use of the data selection
procedure discussed in this paper provides an effective way
to avoid this shortcoming. The use of this procedure is
likely to be most advantageous when satellite observations
are considered for assimilation, as they currently make up
95% of all observations that are assimilated at operational
meteorological centres (Bauer et al., 2011) and are a major
source of observational bias (e.g. Auligné et al., 2007; Dee
and Uppala, 2009), while having, according to our findings,
the most important data reduction potential.
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Figure 19. As Figure 16 with observations assimilated using a data-selective EnKF. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj
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Figure 20. Number of components r – relative to the total number
m = 344 of in situ observations available at each assimilation time – of
yo′′ that have signal-to-noise ratio γ̃i > 0.1 when either a data-selective
square root filter (blue solid line) or a data-selective ensemble Kalman
filter (red solid line) for a 300-member ensemble size with no localization
in the nonlinear advection case. For reference, the highest achievable data
selection ratio γ̃i = (K − 1)/m (black dashed line) is also shown. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj
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