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A UNIQUENESS RESULT FOR SCATTERING BY INFINITE
ROUGH SURFACES∗
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SIAM J. APPL. MATH. c© 1998 Society for Industrial and Applied Mathematics
Vol. 58, No. 6, pp. 1774–1790, December 1998 005

Abstract. Consider the Dirichlet boundary value problem for the Helmholtz equation in a non-
locally perturbed half-plane with an unbounded, piecewise Lyapunov boundary. This problem models
time-harmonic electromagnetic scattering in transverse magnetic polarization by one-dimensional
rough, perfectly conducting surfaces. A radiation condition is introduced for the problem, which is
a generalization of the usual one used in the study of diffraction by gratings when the solution is
quasi-periodic, and allows a variety of incident fields including an incident plane wave to be included
in the results obtained. We show in this paper that the boundary value problem for the scattered
field has at most one solution. For the case when the whole boundary is Lyapunov and is a small
perturbation of a flat boundary we also prove existence of solution and show a limiting absorption
principle.
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1. Introduction. In this paper we prove a uniqueness result for the two-dimen-
sional Dirichlet boundary value problem for the Helmholtz equation ∆u + k2u = 0
in a nonlocally perturbed half-plane with unbounded, piecewise Lyapunov boundary.
This boundary value problem arises in a study of time-harmonic acoustic scattering of
an incident field by a sound-soft, infinite rough surface where the total field vanishes;
the same boundary value problem (in R2) models two-dimensional electromagnetic
scattering by a perfectly conducting, infinite, rough surface in the transverse magnetic
polarization case (see [13], [18]).

The problem of scattering from a rough surface has aroused the interest of physi-
cists, engineers, and applied mathematicians for many years, because of its large
domain of application in optics, acoustics, radiowave propagation, and radar tech-
niques. Indeed, the study of the interaction of electromagnetic waves with thin coats
used in optics, the surface of the sea, or irregular terrains is the subject of numerous
technical applications. Therefore, the problem has been studied by many authors
using numerical or analytic methods (see, e.g., [2], [4], [16], [19] and the references
quoted therein). However, very few authors have undertaken a rigorous mathematical
study of the problem. Chandler-Wilde and Ross [9] established a uniqueness result for
the Dirichlet problem for the Helmholtz equation in an arbitrary, unbounded domain
in Rn (n ≥ 2) in the case when =k > 0. In [10] the same authors proved existence of a
solution for the boundary value problem in R2 in the case when the whole boundary
is both Lyapunov and a small perturbation of a flat boundary. They further showed,
for the case k > 0, that the solution constructed is the unique solution satisfying a
limiting absorption principle. In both [9] and [10] the function space specified for the
Dirichlet data is sufficiently large so that the case of plane wave incidence is included
in the results obtained.
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SCATTERING BY ROUGH SURFACES 1775

In this paper we consider the Dirichlet boundary value problem with arbitrary
bounded continuous data, so that, when k > 0, as in [9], [10], the scattering problem
with plane wave incidence is within the scope of the theory developed. Our assump-
tion that the boundary is piecewise Lyapunov includes most one-dimensional rough
surfaces of practical interest. The prime concern of the paper is to propose a radia-
tion condition for the problem and, using this radiation condition, to prove that the
boundary value problem has at most one solution. Additionally, for the case when
the whole boundary is Lyapunov and is a small perturbation of a flat boundary, we
prove, by applying the results in [10], that a solution satisfying the radiation condition
exists and, moreover, that the solution selected by the radiation condition satisfies a
limiting absorption principle.

The radiation condition proposed is a generalization of the radiation condition
used in the study of plane wave diffraction by one-dimensional periodic gratings [1],
[17], [18]. Indeed (see [6]), the radiation condition we impose reduces to the usual
one (based on an assumption of validity of a Rayleigh expansion above the grating),
and thus our boundary value problem reduces to the usual formulation, if our rough
surface is periodic and the solution is assumed quasi-periodic. Thus our uniqueness
proof contains the uniqueness result for the periodic grating case [17] as a special
case, but note that our uniqueness result for this case is obtained without any a priori
assumption of quasi-periodicity.

The uniqueness proof for the corresponding diffraction grating case [17] (and see
[3]) is one starting point for the proof in this paper; the proof also has ideas in com-
mon with recent uniqueness proofs for the impedance boundary value problem for the
Helmholtz equation in a half-plane [7] and for the problem of electromagnetic scat-
tering by an inhomogeneous conducting or dielectric layer on a perfectly conducting
plate [11].

The outline of this paper is as follows. In the next section the scattering problem
is introduced and the radiation condition discussed. Section 3 contains the uniqueness
result, and in section 4, the results of [10] are applied to obtain existence of solution
in certain cases. In the appendix we prove a lemma which enables, under certain
conditions, square integrability on the real line to be deduced from local square inte-
grability. This lemma plays a key role in proving the uniqueness result in section 3
and has been used similarly recently in the uniqueness proof in [11].

We conclude this section by introducing some notations. For h ∈ R, define
Γh = {x = (x1, x2) ∈ R2|x2 = h} and Uh = {x ∈ R2|x2 > h}. Given an open
set V ⊂ R2 and v ∈ L∞(V ), denote by ∂jv, j = 1, 2, the (distributional) derivative
∂v(x)/∂xj . For V ⊂ R2 denote by BC(V ) the Banach space of functions bounded
and continuous on V . Finally, for A > 0, x ∈ R2, let BA(x) = {y ∈ R2| |y − x| < A}.

2. The scattering problem and radiation condition. Given f ∈ C(R)
which satisfies, for some constants f+ > f− > 0,

f− ≤ f(x1) ≤ f+, x1 ∈ R,

define the two-dimensional region D by

D = {x = (x1, x2) ∈ R2|x2 > f(x1)}

so that the boundary Γ of D is

Γ ≡ ∂D = {(x1, f(x1))|x1 ∈ R}.
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1776 SIMON CHANDLER-WILDE AND BO ZHANG

We consider the scattering problem of a field ui, a solution of the Helmholtz equation
∆ui + k2ui = 0 in D, incident on the infinite boundary Γ. We assume that k is a
complex constant with =k ≥ 0, <k > 0 and restrict our attention to the case when
the total field vanishes on the boundary, so that the scattered field u, also a solution
of the Helmholtz equation in D, satisfies the Dirichlet boundary condition u = −ui

on Γ.
Throughout we assume that f is Lipschitz continuous, i.e., that, for some positive

constant L > 0,

|f(s)− f(t)| ≤ L|s− t|, s, t ∈ R.(2.1)

This assumption implies that f has a derivative in a weak sense and that f ′ ∈ L∞(R)
with ‖f ′‖∞ ≤ L. We assume further that f ′ is piecewise continuous, precisely that
there exists a set T = {tj |j ∈ Z}, with · · · < t−1 < t0 < t1 < · · · and with T
having no finite limit points, such that f ′ is Hölder continuous on [tj−1, tj ] for every
j ∈ Z. This assumption implies that Γ is piecewise Lyapunov and that the unit normal
vector n(x) = (n1(x), n2(x)), directed out of D, exists at every point x ∈ Γ\S, where
S = {(x1, f(x1))|x1 ∈ T} is the set of corners of Γ. From (2.1) we see that the corner
angle exterior to D at each point x ∈ S is ≥ θ, where

θ = 2 tan−1(1/L).(2.2)

In order for the problem to have a unique solution, a radiation condition as x2

tends to infinity has to be imposed on the scattered field u; that is, the scattered
field u should behave as an outgoing wave as x2 → +∞. We wish to include in our
consideration incident fields including the incident plane wave so that the standard
Sommerfeld radiation condition is not appropriate in this context as we cannot expect
that u will decay in the x1 direction. We will use the radiation condition proposed
in [7] and utilized recently in [11], which we will refer to as the upward propagating
radiation condition, and will usefully relate this condition to the Sommerfeld radiation
condition. To this end introduce the following definitions.

Definition 2.1. Given a domain G ⊂ R2, call v ∈ C2(G) ∩ L∞(G) a radiating
solution of the Helmholtz equation in G if ∆v + k2v = 0 in G and

v(x) = O(r−1/2),

∂v(x)

∂r
− ikv(x) = o(r−1/2)

as r = |x| → ∞, uniformly in x/|x|.
Let Φ(x, y) denote the free-space Green’s function for ∆ + k2, that is,

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), x, y ∈ R2, x 6= y,

where H
(1)
n is the Hankel function of the first kind of order n.

Definition 2.2. Given a domain G ⊂ R2, say that v : G → C satisfies the
upward propagating radiation condition (UPRC) in G if, for some h ∈ R and φ ∈
L∞(Γh), Uh ⊂ G and

v(x) = 2

∫
Γh

∂Φ(x, y)

∂y2
φ(y)ds(y), x ∈ Uh.(2.3)
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SCATTERING BY ROUGH SURFACES 1777

Note that the existence of the integral in (2.3) for arbitrary φ ∈ L∞(Γh) is assured
by the bound which follows from the asymptotic behavior of the Hankel function for
small and large argument,∣∣∣∣∂Φ(x, y)

∂y2

∣∣∣∣ ≤ C|x2 − y2|(|x− y|−2 + |x− y|−3/2), x, y ∈ R2, x 6= y,(2.4)

which holds for some constant C > 0 dependent only on k.
The following result states properties of the upward propagating radiation condi-

tion needed later and shows that any radiating solution satisfies the UPRC.
Lemma 2.1 (see [11, Theorem 2.1]). Given H ∈ R and v : UH → C, the

following statements are equivalent:
(i) v ∈ C2(UH), v ∈ L∞(UH \ Ua) for all a > H, ∆v + k2v = 0 in UH , and v

satisfies the UPRC in UH ;
(ii) there exists a sequence (vn) of radiating solutions such that vn(x) → v(x)

uniformly on compact subsets of UH and

sup
x∈UH\Ua, n∈N

|vn(x)| <∞(2.5)

for all a > H;
(iii) v satisfies (2.3) for h = H and some φ ∈ L∞(ΓH);
(iv) v ∈ L∞(UH \ Ua) for some a > H and v satisfies (2.3) for each h > H with

φ = v|Γh ;
(v) v ∈ C2(UH), v ∈ L∞(UH \ Ua) for all a > H, ∆v + k2v = 0 in UH , and, for

every h > H and radiating solution in UH , w, such that the restrictions of w and ∂2w
to Γh are in L1(Γh), it holds that∫

Γh

(
v
∂w

∂n
− w∂v

∂n

)
ds = 0.(2.6)

In that the above lemma shows that any radiating solution satisfies the UPRC,
this radiation condition is less restrictive than the Sommerfeld radiation condition.
Further, the UPRC generalizes the standard radiation condition for one-dimensional
periodic gratings. Precisely, it is shown in [6] that if v has the usual representation as
a Rayleigh expansion [1], [17], [18] in some half-plane UH , then it also satisfies (2.3)
for all h > H and so satisfies the UPRC. As a consequence, any upward propagating
homogeneous or inhomogeneous plane wave satisfies (2.3).

To further motivate the proposed radiation condition we point out that it can
be viewed as a rigorous formulation of a radiation condition often imposed in a non-
rigorous manner in treatments of rough surface scattering. It is common to require
(e.g., [12]) that, in some upper half-plane Uh with h > f+, the scattered field v
has a representation as a superposition of upward propagating homogeneous and
inhomogeneous plane waves, precisely that

v(x) =
1

2π

∫ +∞

−∞
exp(i[(x2 − h)

√
k2 − ξ2 + x1ξ])F̂ (ξ)dξ, x ∈ Uh,(2.7)

where
√
k2 − ξ2 = i

√
ξ2 − k2, |ξ| > k, and F̂ is the Fourier transform of F = u|Γh .

If F ∈ L2(R) (in which case F̂ ∈ L2(R)) it follows from standard results on Fourier
transforms of convolutions [7] that (2.3) and (2.7) are equivalent; the right-hand sides
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1778 SIMON CHANDLER-WILDE AND BO ZHANG

of (2.3) and (2.7) are identical if we set φ = F in (2.3). But it is common, as in [12],
to impose (2.7) also in cases when an incident plane wave is under consideration when
it is reasonable to suppose that F ∈ L∞(R) rather than F ∈ L2(R). In this case F̂
exists in general only as a tempered distribution so that the integral in (2.7) does not
have a meaning in a classical sense. Moreover, if k > 0, (2.7) is not defined either in
the generalized sense of the Fourier transform of a tempered distribution (the difficulty
being that the product of exp(i(x2 − h)

√
k2 − ·2) with a tempered distribution does

not have a standard definition unless =k > 0). Equation (2.3) can be viewed as giving
a meaning to (2.7) in this case.

The scattering problem of an incident field by an infinite rough surface can now
be formulated as the following boundary value problem for the scattered field u. The
function space specified for the Dirichlet data g includes, when k > 0, the usual
incident fields of interest including the incident plane wave.

Problem (P). Given g ∈ BC(Γ), determine u ∈ C2(D) ∩ C(D̄) such that
(i) u is a solution of the Helmholtz equation, i.e.,

∆u+ k2u = 0 in D;(2.8)

(ii) u = g on ∂D;
(iii) for some β ∈ R,

sup
x∈D

xβ2 |u(x)| <∞;(2.9)

(iv) u satisfies the upward propagating radiation condition (2.3).
It follows from [7, Theorem 3.1] that, if =k > 0, the radiation condition (iv) is

superfluous in that it follows from the other conditions assumed; and the uniqueness
result in [9] establishes that Problem (P) has at most one solution in this case. The
next section is concerned with establishing this uniqueness result for the case k > 0.
Conditions (i)–(iii) alone do not then guarantee uniqueness as is shown by the simple
example u(x) = sin(k(x2 − 1)), which satisfies Problem (P) in the case of the flat
boundary f ≡ 1, with g ≡ 0 and β = 0 in (2.9).

3. Uniqueness for the case k > 0. Suppose that u1 and u2 are solutions
of Problem (P). Then u = u1 − u2 satisfies Problem (P) with g = 0. Therefore, in
order to prove that Problem (P) has at most one solution, it is enough to show that
Problem (P) with g ≡ 0 has only the trivial solution. Throughout this section, set
g ≡ 0, k > 0, and we are concerned with showing that Problem (P) then has only
the trivial solution. Note that in this section we will abbreviate ∂u/∂n, the normal
derivative of u, as ∂nu.

3.1. A priori estimates. Suppose that u ∈ C2(D) ∩ C(D) satisfies conditions
(i)–(iii) of Problem (P) (with g ≡ 0, k > 0). Then, by standard elliptic regularity
estimates [14, section 8.11], u ∈ C1(D̄\S) with S being the set of corners of Γ, since
Γ is piecewise Lyapunov. In order to prove the uniqueness result it is necessary to
establish a priori estimates for u and its gradient up to the boundary. Our argument
uses ideas in [20], where bounds on the Dirichlet Green’s function for the operator ∆
in bounded regions with Lyapunov boundary are obtained.

Before going further we introduce some notations which are used in the remaining
part of the paper. For A,B ∈ R with A > B and subset V ⊂ R2, define V (B,A) =
{x ∈ V |B < x1 < A}, and write Γh(A) = Γh(−A,A), Γ(A) = Γ(−A,A). For h > f+,
define Dh = D\Ūh, and write Dh(A) = Dh(−A,A).
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SCATTERING BY ROUGH SURFACES 1779

In the proof of Theorem 3.1 below we use the following interior regularity estimate
[14, Theorem 3.9].

Lemma 3.1. If G ⊂ R2 is open and bounded, v ∈ C2(G) ∩C(Ḡ), f ∈ C(Ḡ), and
∆v = f in G, then

|∇v(x)| ≤ C̃(d(x))−1(||v||∞ + ||d2f ||∞), x ∈ G,
where C̃ is an absolute constant and d(x) = dist(x, ∂G).

Applying this lemma with G = Bη(x) and η some sufficiently small positive
constant dependent on the value of ε in the bound (3.1) below, we see immediately
that ∇u satisfies the same bound (2.9) as u in the interior of D, precisely

sup
x1∈R, x2>f(x1)+ε

xβ2 |∇u(x)| <∞(3.1)

for all ε > 0. The following result gives sharper bounds on u and∇u in a neighborhood
of the boundary of D. The angle θ is as defined in (2.2).

Theorem 3.1. If u ∈ C2(D) ∩C(D) satisfies conditions (i)–(iii) of Problem (P)
(with g ≡ 0, k > 0), then, for some positive constant C,

|u(x)| ≤ C[x2 − f(x1)]α,(3.2)

|∇u(x)| ≤ C[x2 − f(x1)]α−1(3.3)

for x ∈ DB, where B = f+ + 1 and 1/2 < α = π/(2π − θ) < 1.
Proof. Let E = 2 + f+ − f−, and let us define G by

G := {(x1, x2)| |x1| < E/L,−L|x1| < x2 < E}.
Define w ∈ C2(G) ∩ C(Ḡ) as satisfying ∆w = k2 in G and w = h on ∂G, where
h ∈ C(∂G) is chosen so that −1 ≤ h ≤ 0, h = −1 on ∂G1 = {x||x1| = E/L, 1− E ≤
x2 ≤ E} ∪ {x||x1| ≤ E/L, x2 = E}, h = 0 on ∂G2 = {x||x1| ≤ E/L, x2 = −L|x1|}.
Then, by the elliptic singularity theory (see, e.g., [15]), we obtain that, for some
K > 0,

|w(x)| ≤ K|x|α, x ∈ G.(3.4)

Further, by the maximum principle, w ≤ 0 in G.
Let b = f++E and C = supx∈Db |u(x)|. For x ∈ Γ let Gx = G+x = {y+x|y ∈ G},

and define wx ∈ C(Gx)∩C2(Gx) by wx(y) = Cw(y−x), y ∈ Gx. Let v denote either
the real or the imaginary part of u. Then, defining V = D ∩Gx, v ∈ C(V ) ∩ C2(V ),
|∆v| ≤ Ck2, |v| ≤ C in V , and v = 0 on Γ ∩ ∂V . Also, ∆wx = Ck2 in V , wx = −C
on ∂V ∩D, and wx ≤ 0 on Γ∩∂V . Let v± = ±v+wx. Then v± ≤ 0 on ∂V , ∆v± ≥ 0
in V , and so, by the maximum principle, v± ≤ 0 in V . Therefore |v| ≤ −wx in V and
thus, for 0 ≤ h ≤ E,

|v(x+ he2)| ≤ −wx(x+ he2) = −Cw(0, h) ≤ CKhα

by (3.4). Since this holds for all x ∈ Γ, it follows that, for some constant C1 > 0,

|u(x)| ≤ C1[x2 − f(x1)]α, x ∈ DB+1.(3.5)

For x ∈ DB , by Lemma 3.1,

|∇u(x)| ≤ C̃[η(x)]−1(1 + k2) sup
y∈Bη(x)(x)

|u(y)|,(3.6)
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1780 SIMON CHANDLER-WILDE AND BO ZHANG

where η(x) = min(1, d(x)/2) and d(x) = dist(x,Γ). Thus, in view of (3.5) and since

(1 + L2)−1/2 ≤ d(x)/(x2 − f(x1)) ≤ 1, x ∈ D,(3.7)

it follows that

|∇u(x)| ≤ C̃C1[η(x)]−1(1 + k2)[3(x2 − f(x1))/2]α ≤ C(x2 − f(x1))α−1,(3.8)

where C = C̃C1(1+k2)(3/2)α max(E−1, 2(1+L2)1/2). The proof is complete.

3.2. A basic inequality. As in section 3.1, suppose that u ∈ C2(D) ∩ C(D)
satisfies conditions (i)–(iii) of Problem (P) (with g ≡ 0, k > 0). We prove in this
section a basic inequality satisfied by u which plays an important part in the proof of
the uniqueness result.

Given a > f+ define, for A,B ∈ R with A > B,

I(B,A) =

∫
Γa(B,A)

{|∂2u|2 − |∂1u|2 + k2|u|2}ds.(3.9)

For a > f+, b ∈ R, let γa(b) = {(b, x2)|f(b) ≤ x2 ≤ a}.
Theorem 3.2. Let u ∈ C2(D) ∩C(D) satisfy conditions (i)–(iii) of Problem (P)

(with g ≡ 0, k > 0). Then ∂nu ∈ Lloc2 (Γ) and, for some positive constant C,∫
Γ(B,A)

|∂nu|2ds ≤ C{I(B,A) +R1(B,A)}(3.10)

for all A,B ∈ R with A > B, where

R1(B,A) = 2<
[∫

γa(A)

−
∫
γa(B)

]
∂2u∂1uds.

Proof. Let Bj denote the square with horizontal and vertical sides of length d > 0
centered on the corner (tj , f(tj)), i.e., Bj = {x ∈ R2| |x1 − tj | < d/2, |x2 − f(tj)| <
d/2}, j ∈ Z. Then u ∈ C1(D̄\Sd) ∩ C2(D), where Sd = ∪j∈ZBj . Given A > B
and a > f+, choose d < a − f+, and set T = Da(B,A)\Sd. Multiply (2.8) by 2∂2ū,
integrate over T , and take the real part of the equation thus obtained. Noting that
2<{∂2u(∆u+k2u)} = 2<{∇· (∂2u∇u)}−∂2(|∇u|2)+k2∂2(|u|2), we find, on applying
the divergence theorem, that

I(B,A) + I1 = I2 + I3,(3.11)

where

I1 = 2<
[∫

γa(A)\Sd
−
∫
γa(B)\Sd

]
∂2u∂1uds,

I2 =

∫
Γ(B,A)\Sd

{n2|∇u|2 − 2<(∂2ū∂nu)}ds,

and

I3 =

∫
∂Sd∩Da(B,A)

{n2(|∇u|2 − k2|u|2)− 2<(∂2ū∂nu)}ds.
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SCATTERING BY ROUGH SURFACES 1781

As u = 0 on Γ, we have that ∂2u = n2∂nu and |∇u| = |∂nu| on Γ\S. Since also
n2 = −{1 + [f ′]2}−1/2 ≤ −(1 + L2)−1/2 on Γ\S, it follows that

I2 = −
∫

Γ(B,A)\Sd
n2|∂nu|2ds ≥ (1 + L2)−1/2

∫
Γ(B,A)\Sd

|∂nu|2ds.(3.12)

Now, using Theorem 3.1, we easily see that R1(B,A) is well defined as an improper
integral, so that I1 → R1(B,A) as d → 0. Further, from Theorem 3.1, we easily
estimate that, for some constant C > 0, |I3| ≤ Cd2α−1. Thus I3 → 0 as d → 0,
since α > 1/2. It follows, on letting d → 0 in (3.11) and noting (3.12), that ∂nu ∈
L2(Γ(B,A)) and that (3.10) holds. Since B and A are arbitrary, ∂nu ∈ Lloc2 (Γ).

Taking A = j and B = j − 1 with j ∈ Z in (3.10) we have, on using (2.9), (3.1),
and Theorem 3.1 to bound R1(B,A) and I(B,A) independently of B and A, the
following result.

Corollary 3.1. Let u satisfy the conditions of Theorem 3.2. Then

sup
j∈Z

∫
Γ(j−1,j)

|∂nu|2ds < +∞.(3.13)

3.3. A representation theorem. In this section we derive a form of Green’s
representation theorem for the solution u of Problem (P) in the case g ≡ 0, using
Green’s theorem combined with the radiation condition (2.3).

Let G(x, y) be the Dirichlet Green’s function for the Helmholtz operator ∆ + k2

in the upper half-plane U0. Then

G(x, y) = Φ(x, y)− Φ(x, y′), x, y ∈ U0, x 6= y,(3.14)

where y = (y1, y2), y′ = (y1,−y2).
From the definition of G and the asymptotic properties of the Hankel function it

follows that, for some constant C > 0 independent of x and y,

|G(x, y)| ≤ C (1 + |log |x− y||)(3.15)

and that (see [10])

|G(x, y)| ≤ Cx2y2

|x− y|
∣∣∣H(1)

1 (k|x− y|)
∣∣∣

≤ Cx2y2{|x− y|−2 + |x− y|−3/2}.(3.16)

Both inequalities hold for all x, y ∈ U0, x 6= y. From (3.16) and Lemma 3.1 it follows
that, given C > 0,

G(x, y), ∇yG(x, y) = O(|x− y|−3/2)(3.17)

uniformly in x and y with 0 ≤ x2, y2 ≤ C as |x− y| → ∞, and that, given a > f+,

|G(x, y)|, |∇xG(x, y)|, |∇yG(x, y)| ≤ Ca(1 + |x1 − y1|)−3/2(3.18)

for y ∈ Γ, x ∈ Γa, where Ca is a positive constant depending only on a and k.
Theorem 3.3. Let u be a solution of Problem (P) (with g ≡ 0). Then

u(x) =

∫
Γ

∂nu(y)G(x, y)ds(y), x ∈ D.(3.19)
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1782 SIMON CHANDLER-WILDE AND BO ZHANG

Proof. Define Sd as in the proof of Theorem 3.2. Take x ∈ D, and choose
a > max(x2, f+), A > |x1|, d in the range 0 < d < x2 − f(x1), and ε > 0 sufficiently
small. Noting that (see section 3.1) u ∈ C1(D \ S), apply Green’s second theorem to
G(x, ·) and u in the bounded region Da(A) \Bε(x) ∪ Sd, and then let ε→ 0 to obtain
that

u(x) =

∫
∂T

[
u(y)

∂G(x, y)

∂n(y)
−G(x, y)

∂u

∂n
(y)

]
ds(y),(3.20)

where T = Da(A) \ Sd. Letting first d→ 0 and then A→∞ in (3.20), in view of the
bounds (3.1), (3.3), and (3.17) and the fact that u = 0 on Γ, we obtain that

u(x) =

∫
Γ

∂nu(y)G(x, y)ds(y) +Ra,

where the integral over Γ is well defined by (3.13) and (3.16), and

Ra =

∫
Γa

[
u(y)

∂G(x, y)

∂n(y)
−G(x, y)

∂u

∂n
(y)

]
ds(y).(3.21)

Since u satisfies the UPRC and G(x, ·) is a radiating solution in Uh for h > x2,
we find, in view of (3.16) and the equivalence of (i) and (v) in Lemma 2.1, that
Ra = 0.

3.4. The uniqueness result. Let u be a solution of Problem (P) (with g ≡ 0,
k > 0), and let a > f+. Then, by Theorem 3.2 with B = −A,

KA ≡
∫

Γ(A)

|∂nu|2ds ≤ C{IA +R1(A)}, A > 0,(3.22)

where IA = I(−A,A) and R1(A) = R1(−A,A) with I(−A,A) and R1(−A,A) as
defined in section 3.2.

To use the inequality (3.22) we need the following two lemmas. The first of these
is a consequence of the UPRC and was proved in [11, Lemma 6.1].

Lemma 3.2. If φ ∈ L2(Γh) ∩ L∞(Γh) and v is defined by (2.3), then the restric-
tions of v, ∂1v, and ∂2v to Γa are in L2(Γa) ∩BC(Γa) for all a > h and∫

Γa

[|∂2v|2 − |∂1v|2 + k2|v|2]ds ≤ 2k=
∫

Γa

v∂2vds.(3.23)

Lemma 3.3. Suppose that u satisfies the conditions of Theorem 3.2. Then

JA = R2(A), A > 0,(3.24)

where

JA = =
∫

Γa(A)

u∂2uds, R2(A) = =
[∫

γa(−A)

−
∫
γa(A)

]
u∂1uds.

Proof. Apply Green’s first theorem to u and u in S = {x ∈ Da(A)|x2 > f(x1)+ε}
with ε > 0 to obtain that∫

S

{|∇u|2 − k2|u|2}dx =

∫
∂S

u∂nuds

D
ow

nl
oa

de
d 

05
/3

0/
13

 to
 1

34
.2

25
.1

01
.6

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SCATTERING BY ROUGH SURFACES 1783

on noting that ∆u = −k2u in D. Taking the imaginary part of this equation and
then the limit ε→ 0 we obtain (3.24) on utilizing the bounds in Theorem 3.1.

To make use of Lemma 3.2 we define

v(x) =

∫
Γ(A)

∂nu(y)G(x, y)ds(y), x ∈ D.(3.25)

Then, by (3.18) and Corollary 3.1 combined with the Cauchy–Schwarz inequality, we
have that v|Γb , the restriction of v to Γb, is in L2(Γb) ∩ BC(Γb) for all b > f+. On
the other hand, v is a radiating solution in Ub for b > f+, so that, in view of the
equivalence of (ii) and (iv) in Lemma 2.1, v satisfies (2.3) with h = b and φ = v|Γb
for every b > f+. Set

J ′A = =
∫

Γa(A)

v∂2vds, J ′′A = =
∫

Γa

v∂2vds,

I ′A =

∫
Γa(A)

{|∂2v|2 − |∂1v|2 + k2|v|2}ds, I ′′A =

∫
Γa

{|∂2v|2 − |∂1v|2 + k2|v|2}ds.

Then, by Lemma 3.2,

I ′′A ≤ 2kJ ′′A,

so that, by (3.22) and Lemma 3.3,

KA ≤ C[(IA − I ′′A) + 2k(J ′′A − JA) +R1(A) + 2kR2(A)].

Now set w(x1) = ∂nu((x1, f(x1))), x1 ∈ R. Then, for all A > 0,∫ A

−A
|w(x1)|2dx1 ≤ KA ≤ (1 + L2)1/2

∫ A

−A
|w(x1)|2dx1.(3.26)

By (3.18), (3.19), and (3.25),

|v(x)|, |∇v(x)| ≤ Ca(1 + L2)1/2WA(x1), x ∈ Γa,

|u(x)− v(x)|, |∇u(x)−∇v(x)| ≤ Ca(1 + L2)1/2(W∞(x1)−WA(x1)), x ∈ Γa,

where, for 0 ≤ A ≤ +∞,

WA(x1) =

∫ A

−A
(1 + |x1 − y1|)−3/2|w(y1)|dy1, x1 ∈ R.

It follows that

|I ′A − I ′′A|, |J ′A − J ′′A| ≤ C
∫

R\[−A,A]

(WA(x1))2dx1,

where C = C2
a(1 + L2)(2 + k2), and that

|IA − I ′A|, |JA − J ′A| ≤ 2C

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1)dx1,

so that, for some constant c > 0 and all A > 0,∫ A

−A
|w(x1)|2dx1 ≤ c

{∫
R\[−A,A]

W 2
A(x1)dx1+

∫ A

−A
(W∞(x1)−WA(x1))W∞(x1)dx1 + |R1(A)|+ |R2(A)|

}
.(3.27)
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1784 SIMON CHANDLER-WILDE AND BO ZHANG

Further, by Corollary 3.1,

sup
j∈Z

∫ j

j−1

|w(x1)|2dx1 < +∞,

so that, applying Lemma A in the appendix, we obtain that w ∈ L2(R) (equivalently,
by (3.26), ∂nu ∈ L2(Γ)) and, for all A0 > 0,

(1 + L2)−1/2

∫
Γ

|∂nu|2ds ≤
∫ ∞
−∞
|w(x1)|2dx1 ≤ c sup

A>A0

(|R1(A)|+ |R2(A)|).(3.28)

For x ∈ Da with |x1| ≥ 1, we have, by (3.19) and (3.16) along with the Cauchy–
Schwarz inequality,

|u(x)|2 ≤ 2

{∫
Γ\Γ(|x1|/2)

|∂nu(y)||G(x, y)|ds(y)

}2

+2

{∫
Γ(|x1|/2)

|∂nu(y)||G(x, y)|ds(y)

}2

≤ C1

∫
Γ\Γ(|x1|/2)

|∂nu|2ds+ C2

{ |x1|
2

}−3

,

where

C1 = 2 sup
x∈Da

∫
Γ

|G(x, y)|2ds(y) <∞

by (3.15) and (3.16) and

C2 = 8C2a4

∫
Γ

|∂nu|2ds

with C as given in (3.16). Thus, u(x) → 0 as x1 → ∞ with x ∈ Da, uniformly in
x2. Noting also Theorem 3.1 and Lemma 3.1, it follows that Rj(A) → 0 as A → ∞,
j = 1, 2 and thus, from (3.28), that ∂nu = 0 on Γ and hence, from (3.19), that u ≡ 0
in D. We have shown the following result on noting the remark made at the beginning
of section 3.

Theorem 3.4. Problem (P) has at most one solution.

4. Existence of solution. We require additionally in this section that f ′ is
uniformly Hölder continuous, i.e., that, for some constants M,α > 0,

|f ′(s)− f ′(t)| ≤M |s− t|α, s, t ∈ R,(4.1)

so that the whole boundary Γ is Lyapunov. With this additional assumption we
apply the results of [10] to show existence of solution to Problem (P) when Γ is a
small perturbation of a flat boundary.

Let

G1(x, y) = Φ(x, y) + Φ(x, y′) + P̂ (x− y′), x, y ∈ U0, x 6= y,(4.2)

where y = (y1, y2), y′ = (y1,−y2), and

P̂ (x) :=
eik|x|

π

∫ ∞
0

t−1/2e−k|x|t(1 + γ(1 + it))√
t− 2i(t− i(1 + γ))2

dt, x ∈ U0,(4.3)
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SCATTERING BY ROUGH SURFACES 1785

with γ = x2/|x|. Then (see [8]), P̂ ∈ C(U0)∩C∞(U0\{0}) and G1(x, y) is the Green’s
function for the operator ∆ + k2, which satisfies the impedance boundary condition

∂G1(x, y)

∂x2
+ ikG1(x, y) = 0, x ∈ Γ0, y ∈ U0, x 6= y.

Chandler-Wilde and Ross [10] suggested looking for a solution to Problem (P)(i)–(iii)
in the form of a double layer potential,

u(x) =

∫
Γ

∂G1(x, y)

∂n(y)
ψ(y)ds(y), x ∈ D,(4.4)

for some ψ ∈ BC(Γ). It is shown in [10] that, for every C > 0,

G1(x, y), ∇yG1(x, y) = O(|x− y|−3/2)(4.5)

uniformly in x and y with 0 ≤ x2, y2 ≤ C as |x−y| → ∞, so that (4.4) is well defined.
It is easy to see using (4.3) [5] that P̂ is a radiating solution in U0, and hence

um(x) =

∫
Γ(m)

∂G1(x, y)

∂n(y)
ψ(y)ds(y), x ∈ D,(4.6)

is a radiating solution in Uh for every h > f+ and m ∈ N. Using (4.5) we see that
um(x) → u(x) as m → ∞ uniformly on compact subsets of Uh, and, by [10, Lemma
4.2],

sup
m∈N, x∈Uh

x
−1/2
2 |um(x)| <∞.

Thus, by the equivalence of (i) and (ii) in Lemma 2.1, u, given by (4.4), satisfies
the UPRC. Combining this result with Lemmas 4.1–4.3 in [10] we have the following
result.

Theorem 4.1. The double-layer potential (4.4) satisfies Problem (P), with β =
−1/2 in (2.9), provided ψ ∈ BC(Γ) satisfies the boundary integral equation

ψ(x) = 2

∫
Γ

∂G1(x, y)

∂n(y)
ψ(y)ds(y)− 2g(x), x ∈ Γ.(4.7)

It is shown in [10, Theorem 5.5] that the integral equation (4.7) has exactly one
solution provided Γ is sufficiently close to a straight line. Combining Theorem 4.1 with
[10, Theorem 5.5] we obtain Theorem 4.2 below. In this theorem, to make explicit
the dependence on the wavenumber k, u(λ) denotes the unique solution (if it exists)
of Problem (P) when k = λ.

Theorem 4.2. For every H > 0 there exists a constant ε > 0 (dependent on H
and M) such that, if

|f(s)−H| ≤ ε, |f ′(s)| ≤ ε, s ∈ R,

then (4.7) has exactly one solution ψ ∈ BC(Γ) for every g ∈ BC(Γ). Further, u,
given by (4.4), is the unique solution of Problem (P) and, for some constant C > 0
independent of g,

|u(x)| ≤ Cx1/2
2 ||g||∞, x ∈ D.(4.8)
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1786 SIMON CHANDLER-WILDE AND BO ZHANG

Moreover, in the case k > 0, u satisfies the following limiting absorption principle:
that, for all ε > 0 sufficiently small, u(k+iε) exists and u(k+iε)(x) → u(x) as ε → 0,
uniformly on compact subsets of D.

We remark that an example in [7] for the case of a flat boundary shows that, for
particular choices of g, the solution of Problem (P) does not satisfy (2.9) for β > −1/2,
so that the exponent 1/2 in (4.8) gives a sharp bound for the general case.

Appendix. The following lemma is a key element in the uniqueness proof of the
paper. It has also been used recently as part of the uniqueness proof for a related
problem of scattering by an infinite inhomogeneous layer [11], and it is anticipated
that it will prove valuable as an ingredient in the proof of many other uniqueness
results for scattering by one-dimensional rough surfaces and interfaces. The proof of
the lemma is suggested in large part by the proofs of Lemmas 4.8–4.14 in [7].

Lemma A. Suppose that F ∈ Lloc2 (R) and that, for some nonnegative constants
M,C, ε, and A0, ∫ j

j−1

|F (t)|2dt ≤M2, j ∈ Z,(A.1)

and ∫ A

−A
|F (t)|2dt

≤ C
∫

R\[−A,A]

G2
A(t)dt+ C

∫ A

−A
[G∞(t)−GA(t)]G∞(t)dt+ ε, A > A0,(A.2)

where, for 0 < A ≤ +∞,

GA(s) =

∫ A

−A
(1 + |s− t|)−3/2|F (t)|dt, s ∈ R.(A.3)

Then F ∈ L2(R) and ∫ +∞

−∞
|F (t)|2dt ≤ ε.(A.4)

Proof. For A > A0 let

JA =

∫ A

−A
|F (t)|2dt, PA =

∫
R\I1

G2
A(t)dt, QA =

∫ A

−A
[G∞(t)−GA(t)]G∞(t)dt,

where Iα = [−Aα, Aα] for α > 0. We will show, in a number of steps, that PA → 0,
QA → 0 as A→∞ through some sequence of positive values. It is clear that it then
follows from (A.2) that F ∈ L2(R). Further, by taking the limit A → ∞ through
this sequence in (A.2), we obtain (A.4). Throughout the proof C denotes a positive
constant independent of A, not necessarily the same at each occurence.

Step 1. We first show that PA = O(lnA) as A→∞.
Noting that |s−j−1/2|−1/2 ≤ |s−t| ≤ |s−j−1/2|+1/2 for s ∈ R, j−1 ≤ t ≤ j,

we see, using the Cauchy–Schwarz inequality, that, for j ∈ Z,∫ j

j−1

(1 + |s− t|)−3/2|F (t)|dt ≤ (1/2 + |s− j − 1/2|)−3/2M
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SCATTERING BY ROUGH SURFACES 1787

≤ 23/2M(1 + |s− j − 1/2|)−3/2

≤ 8M

∫ j

j−1

(1 + |s− t|)−3/2dt.(A.5)

Thus, for s ∈ R,

GA(s) ≤ 8M

∫ A+1

−A−1

(1 + |s− t|)−3/2dt, A > A0,(A.6)

and

GA(s) ≤ 16M

∫ ∞
0

(1 + t)−3/2dt, A0 ≤ A ≤ +∞,(A.7)

so that, for |s| ≥ A+ 1, A > A0,

GA(s) ≤ C
∫ A+1

−A−1

(1 + |s| − t)−3/2dt ≤ C{(|s| −A)−1/2 − (2 + |s|+A)−1/2}

≤ C(A+ 1)(|s| −A)−1/2(2 + |s|+A)−1

since, for all b ≥ a > 0, we have a−1/2 − b−1/2 ≤ a−1/2b−1(b − a). Thus, and using
(A.7) to bound GA(s) for A ≤ |s| < A+ 1, we obtain that, for A > A0,

PA ≤ C
{

1 + (A+ 1)2

∫ ∞
A+1

(s−A)−1(2 + s+A)−2ds

}
= C

{
1 +

∫ ∞
1/(A+1)

dt

t(2 + t)2

}
,

substituting 1 + s = (A+ 1)(1 + t). Thus PA = O(lnA) as A→∞.
Step 2. We next show by induction that JA = O(A2/n) as A→∞ for n = 2, 3, . . . .
By (A.1) this is true for n = 2. Suppose now that JA = O(A2/k) as A → ∞ for

some integer k ≥ 2. Set p = 2/k, α = 2/(p+ 1). We have that

G∞(s)−GA(s) =

∫
R\I1

(1 + |s− t|)−3/2|F (t)|dt, s ∈ R.(A.8)

Further, for |s| ≤ A, by the Cauchy–Schwarz inequality,

∫
Iα\I1

(1 + |s− t|)−3/2|F (t)|dt ≤ J1/2
Aα

{∫
Iα\I1

dt

(1 + |s− t|)3

}1/2

≤ CAαp/2
{∫ ∞

A

dt

(1 + |s− t|)3

}1/2

≤ CAp/(p+1)

1 +A− |s| .

Also, using (A.5), for |s| ≤ A and all A sufficiently large,∫
R\Iα

(1 + |s− t|)−3/2|F (t)|dt ≤ 8M

∫
R\[1−Aα,Aα−1]

(1 + |s− t|)−3/2dt

≤ C
∫ ∞
Aα−1

(1 + t− |s|)−3/2dt ≤ C(Aα − |s|)−1/2.
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1788 SIMON CHANDLER-WILDE AND BO ZHANG

Now ∫ A

−A

ds

1 +A− |s| = 2 ln(A+ 1)

and ∫ A

−A

ds

(Aα − |s|)1/2
= 4{Aα/2 − (Aα −A)1/2} ≤ 4A1−α/2 = 4Ap/(p+1).

Thus, and using (A.7), QA = O(Ap/(p+1) lnA) as A → ∞ and, since p/(p + 1) <
2p/(p + 2) = 2/(k + 1), QA = O(A2/(k+1)) as A → ∞ and JA = O(A2/(k+1)) as
A→∞ by (A.2) and Step 1.

Step 3. We show that F (ε), G
(ε)
∞ ∈ L2(R) for all ε > 0, where F (ε)(s) = (1 +

|s|)−εF (s), G
(ε)
∞ (s) = (1 + |s|)−εG∞(s).

Clearly, it is sufficient to show that this holds for ε in the range 0 < ε < 1/2. We
have that JA = O(Aε) as A→∞ by Step 2. Integrating by parts,∫ A

−A
(1 + t2)−ε|F (t)|2dt = (1 +A2)−ε

∫ A

−A
|F (t)|2dt

+2ε

∫ A

−A

{∫ t

0

|F (s)|2ds
}
t(1 + t2)−1−εdt

≤ JA(1 +A2)−ε + 2ε

∫ A

−A
t(1 + t2)−1−εJtdt = O(1)

as A→∞ since t(1 + t2)−1−εJt = O(t−1−ε) as t→∞. It follows that F (ε) ∈ L2(R).
Since (1 + |t|)/(1 + |s|) ≤ 1 + |t− s|, t, s ∈ R, we have that

G(ε)
∞ (s) ≤

∫ ∞
−∞

(1 + |s− t|)ε−3/2|F (ε)(t)|dt

and thus G
(ε)
∞ ∈ L2(R) by Young’s theorem.

Step 4. We show that PA → 0 as A → ∞ through some sequence of positive
values.

Since, by Step 2, JA = O(Aε) as A→∞ for all ε > 0, it follows from [4, Lemma
4.12] that, given α in the range 0 < α < 1/2, there exists a sequence {Am|m ∈ N} ⊂
[A0 + 1,∞) such that Am →∞ as m→∞ and∫

Wm

|F (t)|2dt ≤ CA−αm , m ∈ N,(A.9)

where, for m ∈ N, Wm = W+
m ∪W−m ,

W+
m = [−A+

m, A
+
m]\[−Am, Am], W−m = [−Am, Am]\[−A−m, A−m],

and A±m = Am ±A1/2
m .

Now, by the Cauchy–Schwarz inequality, for |s| > Am,∫ A−m

−A−m

|F (t)|dt
(1 + |s− t|)3/2

≤ J1/2

A−m

{∫ A−m

−A−m

dt

(1 + |s| − |t|)3

}1/2

≤ CJ1/2
Am

(1 + |s| −A−m)−1.
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SCATTERING BY ROUGH SURFACES 1789

Similarly, and using (A.9), for |s| > Am,∫
W−m

(1 + |s− t|)−3/2|F (t)|dt ≤
{∫

W−m
|F (t)|2dt

}1/2{∫
W−m

(1 + |s| − |t|)−3dt

}1/2

≤ CA−α/2m (1 + |s| −Am)−1.

Thus, and since JA = O(Aε) as A→∞ for all ε > 0, for |s| > Am we have

G2
Am(s) ≤ C{Aε/2m (1 + |s| −A−m)−1 +A−α/2m (1 + |s| −Am)−1}2

≤ CAεm(1 + |s| −A−m)−2 + CA−αm (1 + |s| −Am)−2.

Thus

PAm ≤ CAεm
∫ ∞
Am

ds

(1 + s−A−m)2
+ CA−αm

∫ ∞
Am

ds

(1 + s−Am)2

= CAεm(1 +A1/2
m )−1 + CA−αm → 0

as m→∞ on choosing ε < 1/2.
Step 5. We show that QAm → 0 as m→∞, where {Am} is the sequence in Step

4.
By the Cauchy–Schwarz inequality, for |s| ≤ Am and 0 < ε < 1/2,∫

R\[−A+
m,A

+
m]

|F (t)|
(1 + |s− t|)3/2

dt ≤
√

2‖F (ε)‖2
{∫ ∞

A+
m

(1 + t)2εdt

(1 + t− |s|)3

}1/2

≤ CAε/2m

{∫ ∞
A+
m

(1 + t− |s|)2ε−3dt

}1/2

≤ CAε/2m (1 +A+
m − |s|)ε−1.

Similarly, and using (A.9), for |s| ≤ Am,∫
W+
m

(1 + |s− t|)−3/2|F (t)|dt ≤
{∫

W+
m

|F (t)|2dt
}1/2{∫

W+
m

(1 + |t| − |s|)−3dt

}1/2

≤ CA−α/2m (1 +Am − |s|)−1.

Thus, and noting (A.8),

[G∞(s)−GAm(s)]2 ≤ C[Aε/2m (1 +A+
m − |s|)ε−1 +A−α/2m (1 +Am − |s|)−1]2

≤ CAεm(1 +A+
m − |s|)2ε−2 + CA−αm (1 +Am − |s|)−2.

Now∫ Am

−Am
G2
∞(t)dt ≤ (1 +Am)2ε

∫ Am

−Am
(1 + |t|)−2εG2

∞(t)dt ≤ (1 +Am)2ε‖G(ε)
∞ ‖22,

and so, by the Cauchy–Schwarz inequality,

QAm ≤ CAεm
{
Aεm

∫ Am

−Am
(1 +A+

m − |s|)2ε−2ds+A−αm

∫ Am

−Am
(1 +Am − |s|)−2ds

}1/2

≤ CAεm{Aεm(1 +A+
m −Am)2ε−1 +A−αm }1/2 ≤ CA−1/8

m

on choosing ε = 1/16 and α = 3/8.
In view of the preliminary remarks made before Step 1, the proof is complete.
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