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Expressions for the viscosity correction function, and hence bulk complex impedance, density,
compressibility, and propagation constant, are obtained for a rigid frame porous medium whose
pores are prismatic with fixed cross-sectional shape, but of variable pore size distribution. The low-
and high-frequency behavior of the viscosity correction function is derived for the particular case of
a log-normal pore size distribution, in terms of coefficients which can, in general, be computed
numerically, and are given here explicitly for the particular cases of pores of equilateral triangular,
circular, and slitike cross-section. Simple approximate formulae, based on two-point Pade
approximants for the viscosity correction function are obtained, which avoid a requirement for
numerical integration or evaluation of special functions, and their accuracy is illustrated and
investigated for the three pore shapes already mentionedl998 Acoustical Society of America.
[S0001-496608)04009-7

PACS numbers: 43.20.Bi, 43.20.MDAC]

INTRODUCTION ity correction function in terms of a single integral involving

. . the pore size probability density function and a single func-
There have been several studies related to the theoretlcf':\ —

I . e
description of porous granular materials that extend and au fon of a complgx vanablg;b(z), s.pec-|f.|ed in terms of th‘?
- . . . %ore shape. This expression is simplified further for the im-
ment the original analysis by BiétTwo of the most inter- ortant case of a log-normal pore size distribution in Sec. I
esting developments have been perpetrated by Sfiresuh b 9 P L

Yamamoto and Turgtitand allow for arbitrary pore shape Low qnd h|gh'frequency ellppro.xmatlons to the Y'SCOS'W
N . ; correction function are obtained in the second section, using
and distributions of pore sizes, respectively. As a conse- Lo . ;
. ; : . results on approximation of a class of integrals in the Appen-
guence of Stinson’s work, exact analytical results for cylin-

: . ) dix. These approximations are used to derive two-point Pade
drical, slitlike, triangular, and rectangular pore shapes are

available. Yamamoto and Turgut concentrated on the case gpproximants for the viscosity correction function in Sec. 1V,
’ . R . - _and the accuracy of these simple approximants in calculating
a log-normal pore size distribution in sedimentary materials

. the acoustic characteristics such as relative admittance and
Attenborough has shown that, of the possible pore charac- .
N : e .~ complex wavenumber is explored.
teristics, the presence of a variable distribution of pore sizes
potentially has greater effect than change in pore shape. This
is of particular practical interest since pore size distribution”
is routinely measurable. A different type of development, but  The majority of porous materials are composed of pores
of relevance to further progress in routine calculations ofof variable shape and size which obey a distinctive statistical
acoustical properties of rigid-framed porous materials is thalistribution. For these materials we can only refer to the
use of Padeapproximants. These have been developed fowalues of the dynamic density and complex compressibility
structures consisting of uniform pores in Ref. 5. In this papemwhich have been averaged over a range of realistic pore sizes
these various contributions are combined. Pagleroximants  identified in the material. The same argument is applicable to
for the acoustical properties of media with size distributionsacoustic quantities such as the acoustic admittance and
of variously shaped pores are derived. It is anticipated thapropagation constant.
these approximations offer a practical and efficient alterna- To derive the general form for the viscosity correction
tive to increasingly sophisticated modétee, for example, function we consider a sample of a bulk rigid-frame porous
Ref. 4 for sound propagation in a medium with pore size material which is pierced through by normal to the surface
distribution. prismatic(i.e., uniform with respect to cross-sectional geom-
In the first section an argument is presented to justify theetry) straight pores of various sizes but the same cross-
use of the viscosity correction function of Yamamoto andsectional shape. Let us characterize the different sizes of pore
Turgut in computing the bulk acoustic properties of rigid- by measurement of some linear dimens®mnd let E(s)
frame porous media. An expression is derived for the viscosdenote the pore size distribution function, thatbgs) is the

THE VISCOSITY CORRECTION FUNCTION
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fraction of the total pore volume consisting of pores of size p

not exceeding. Thene(s)=dE(s)/ds is the corresponding
probability density function.

Within a typical pore of size the velocity componeni
in the direction of the pore axighe x5-direction satisfies,

for harmonic € '“!) time dependence, to a good approxima-

tion the force equatioh

dp

dxs’

iwpou+ uAu= (1)
In this equationpq is the equilibrium fluid densityu the
dynamic viscosity, a Cartesian coordinate sys@m Xx,X;
has been adopted,= 4%/ 9x2+ 4%/ 9x5, andp is the pressure

d
i w+ u(Au)y= —, 8
wpo{U)+ u(Au) = 5 = ®
an equation which we can write as
: _dp 9
prx(w)<u>—d—xs, 9

wherep,(w) is an effective complex density averaged over
the pore size given by

p(Au)
io{u)

In physical termgu) is the mean velocity over all pores,

px(®)=po+ (10

in the fluid which depends, to a good approximation, only oni-€., the total volume flux through the pores divided by the

Xz. The velocityu vanishes on the sides of the pore.

Similarly,? the excess temperatufiesatisfies that
kAT+ipowCpT=iwp, (2

where « is the thermal conductivity of the fluid and, its

total pore cross-sectional area. By Gauss’ theorem,

deS,
P

whereP is the perimeter of the cross-section antthe shear

A—_,u o7ud_1
HAU=RN | on ST A

(11)

specific heat at constant pressure. The excess temperaturestsess. Thug.(Au)= (7), where(r) denotes the total shear

assumed to vanish on the sides of the pore.
We introduce an auxiliary functionf= (Xy,X5;w)

which is defined by a boundary value problem which it sat-
isfies within the pore cross-section of a unit size pore of
dimensions= 1. This two-dimensional boundary value prob-

lem consists of the equation

Ay—w?y=1 ®)

within the pore cross-section, wheweis a given constant,
and the boundary conditiogh=0 around the edge of the
section. The form of the functiog depends on the value of
the real or complex parametey. We assume that- /2
<argw<m/2 in which casey is uniquely determined by
these imposed conditions.

In terms of this auxiliary functiony it is easy to see, by
substitution, that the solutions ¢f) and(2) which vanish on
the walls of the pore are

u=%2g Y(X118,%5 15,7/ —N) 4
and

T= gp‘//(Xl/S:Xz/S; V=iNGEN), ®
whereN,, is the Prandtl number and

A= (powlu)*s. (6)

For any fluid propertys let ¢ denote the mean value

over the cross-section afg) denote the mean value @_5
over all pore sizes, i.e.,

()= [ etsasias @

Then, if we assume that there are sufficient interconnections

force in thexs-direction per unit thickness of the sample, per
unit cross-sectional area, so that
1 (7

Px(w):Pome@-

(12

In terms of the auxiliary functions we easily see that

1dp —

e Au= A
u_;d_x3 ¥,

Ve
where y=¢(J—i\) and Ay=Ay¢(/—i\) are the mean

values over the cross-section of the pore of sizel of
and Ay, respectively, whem=+—i\. Clearly

(13

Ry
px(w)=po—mF(w), (14)
where
L (w(w)
Ry= lITO () (15

is an effective DC flow resistivity averaged over the pores,
and

-1

(m(w)) im (m(w))
(U(@)) | 4o (U(@))
is the viscosity correction function as utilised by Yamamoto
and Turgut and Attenboroughi. In terms of the auxiliary
function ¢ we have that, since\?y+ A =1 from (3),

Flw)=

(16)

between the pores of different sizes so that the dependence of

p on X5 is independent of the pore sisgit follows from (1)
that

1199 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998

B iwppl (w)
O TR AT ap
where
|(w)=f:e(s)H(J—_i>\)ds
_ 1 @po fwsze(s)E(\/—_i)\)ds. (18)
I 0
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In the remainder of this paper we concentrate on thdl. LOG-NORMAL PORE SIZE DISTRIBUTION
problem of evaluating the viscosity correction function
F(w). OnceF(w) is known we can evaluate the dynamic
densityp,(w). Further, similarly to the definition o), we

The expressions presented in the previous section are
only practical if the pore size distributi@{s) in the material

obtain from(2) that is known. Experimental values for the statistical distribution
e(s), which can be measured by either the water suction
O(w)(T)=p (19  method or the mercury injection techniqler recovered

from acoustical experimentsare normally replaced in Eq.
(18) with an explicit expression which provides a good fit to
Cppo the experimental data.
6(w)= mchpx(l\lprw)' (20) It has been found from numerous experiments in geo-
or physics and in outdoor noise propagation that in many granu-
From (9) and (19), the equation of continuity, and the |ar materialé’ the real pore size distributior(s) can be
ideal gas law, we obtain thap satisfies the usual one- closely approximated by a log-normal statistical distribution.
dimensional Helmholtz equation with complex wave number  |n the log-normal statistical distributiogp=—1log, s is

ky(w) as in Ref. 2, but with single pore size values replaced,ormally distributed with mea=—log, s, wheres is the

with

by averaged values. Precisely median pore size, and standard deviatienThus, where
d2p G(¢) is the distribution function ofp,
+k2(0)p=0 21
ag e B E9=1-6(9) 29
with so that
k(@) = 0?py(©)Cy(w) (22) d¢
: . e(s)=E'(8)=~9(¢) 5. (30

and the complex compressibilit@,(w), given by

1 1 po(y—1) whereg(¢) =G’ (¢) is the probability density function ab,
C == =— | y——]. 23 ie.,
()= BT Toa(w) 7P ( px(Nprm) @3 B
i i | 1 (¢= )
Finally, we include the effects of tortuosity and of the _ exp( _ 31
sample porosity). Relaxing the condition that the pores be 9(¢) 270 202 | (31)

normal to the sample surface, lg&=1 be the ratio of pore
length to sample thickness so thgtt is the tortuosity. Then
(v)=Q(u)/q is the bulk velocity, the total volume flux di-
vided by the sample cross-sectional area. Equa8pmolds
with (u) replaced by(v) provided we replace,(w) by a

.

The standard deviationr is dimensionless and is a measure
of the deviation ok about its median value in relative terms.
Precisely, for anyx>0,

isi$2‘m) =Pr( u
g

bulk medium dynamic complex density pp(w)

Sa) =2®(a)—1,

= (g% Q) py(w). Thus 2" s
q2 b where
po(@)=§ PO_WF(“’) : (24)
B(a)=— [ e
where we have introduced the bulk flow resistiviti, (@)= 2 ,we y

=0%R,/Q. Equation(21) holds with x5 replaced byqgxs,
alternatively withk,(w) replaced by the bulk medium wave is the distribution function of the standard normal distribu-
number kp(w)=qk(w). Then Eg. (220 holds with tion.
Py, Ky, C, replaced by their bulk medium values, i.e., Recall that the viscosity correction function is given in
) ) terms ofl (w) by (17). For a log-normal distribution, substi-
k(@) =w"pp(w)Cp(w), (29 tuting s=2" ¢ in (18) and noting(30), we obtain that

provided we define the bulk medium complex compressibil- i wpo J.Hc

272%g(p)p(V—iN)dg. (32

ity by Cp(w)=QC,(w). Finally the complex impedance of [(w)=1-
the medium is

Zy(©)=pl{v) = wpy(©)/ke( )= pp(@)/Cp(w), (26)  DEMNING

— o

1/2
so that the bulk medium admittance relative to that of the Y=(M) s 33)
fluid medium is e
Bu(w) = pokp(w)/(Kpp(w))=(a/Q) By(w), (27)  to be the median value of, noting (6) and(31), and substi-

tuting ¢=$+ ot, we see that, for a log-normal distribution,
| (w) depends only on the dimensionless parameter combina-

By(@)=poky(w)/ (Kpy(w)). (28  tions\ ando: precisely,

wherek is the wave number in the fluid medium and
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FIG. 1. (a) The real part of the viscosity correction function and its Pageroximant(thin solid lines in the case of a material with slitlike pore®) The
imaginary part of the viscosity correction function and its Pagproximantthin solid lineg in the case of a material with slitlike pores.

iN2 [to A It is probably easiest to extract from the literature the
f 2720 2y (([—in27 Y dt form of the functiony for various pore shapes using these

Va2m )= last two equation$36) and(37). Using these equations, from

Stinson and Champou{or pores which are infinite rectan-

l(w)=1—

:L f+wX( /_i)\z—ot)e—tZ/Zdt, (34) gular slits of half-widths, we obtain that
\/2 — 00
4 tanhz
where the functiory, which depends only on the pore shape, x(2)=— (39
is defined by
_ For circular pores of radius, we find
x(2)=1+72%)(2) (35 21,(2)
1
for — w/l2<argz<m/2. From(14) to (17) it can be seen that x(2)= 210(2)’ (39
(w)=1— Po (36) wherel, andl; are the modified Bessel functions of order
px(®) one and zero, respectively. For equilateral triangular pores,
and, in particular, this holds in the case=0 of fixed pore ~ With s the length of the triangle side,
size distributions=s. In this casg34) reduces to - (cotr(\/imz) 16) 0
(@)= x(V=iN). (37) X V34 3z°)
1201 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 Horoshenkov et al.: Sound propagation in porous media 1201
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FIG. 2. (a) The real part of the viscosity correction function and its Pagieroximani(thin solid lines in the case of a material with triangular porés. The
imaginary part of the viscosity correction function and its Pagproximant(thin solid lineg in the case of a material with triangular pores.

. ASYMPTOTIC APPROXIMATIONS FOR LOW AND for — w/2<argz<m/2 andd=0.

HIGH FREQUENCY Determination of the asymptotic behavior ofs
=(x,y;w) asw—0 is a regular perturbation problem and,
for any pore shapey has a power series expansionvis,
convergent for smalv:

For none of the particular form88)—(40) for x(z) can
the integral(34) be evaluated analytically, but approxima-
tions valid for low and high values of (corresponding to
low and high values of frequency, with other variables PG W) = (X, Y) + W2y (X,Y) +WHh(X,y) 4+

fixed) can be obtained via expansionsffz) for small and  gpetituting this expansion int8) and comparing powers of

large z. ) L ) ) w? we find that each of the termk,, ¢, . . . satisfies a Pois-
To obtain these approximations using results in the APson's equation, that is

pendix we write, from(34),

Ao=1, Adn=14pn-1, N=12,... 43
l(w)=1(y=i),d), (41) o Yn=t¢n-1, N 43)

within the pore cross-sectioff sizes=1), with ,=0 on

where, for convenience, we introdude=o In 2 and define the pore boundary, far=0,1,. . . . From the maximum prin-
the function ciple it follows by induction thaty,<0 for n even and that
1 +oo ) ¥,=0 for n odd. Thusy(z) has the power series expansion,
I(z,d)= — f x(ze e gt (42) e
N2 J e W)= ho+ 29+ 2o+, (44)
1202 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 Horoshenkov et al.: Sound propagation in porous media 1202
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FIG. 3. (a) The real part of the viscosity correction function and its Pagieroximanithin solid lines in the case of a material with circular cylindrical pores.
(b) The imaginary part of the viscosity correction function and its Pagjgroximantthin solid lines in the case of a material with circular cylindrical pores.

[’

convergent for smalt, with En the mean value o#r,(X,Y) S o o2
over the pore cross-sectigof sizes=1) and |(w)~1+n§=:l Yn—1(— )"\ e (48)

¥,<0, n=0,2,..., o
_ (49 as\—0 (the low-frequency limit
>0, n=13,..., Considering now the high-frequency limit; we note that,
for w large, =~ — 1?2 across the pore cross-section except
within a boundary layer of widtlo(1/w). A local analysis of
X(Z):1+22E0+ Z4El+.-- . (46) the behavior within this boundary layer yields thaf. Ref.

9), for a piecewise smooth boundary,

so that, for smalk,

It now follows from (42) and(46), and the results in the
Appendix thatl (z,p) has the asymptotic expansion

1 1 5
» Pxysw)=a(e”*-1)+0| ze"
— 242
l(z,d)~1+ >, i,_,z2"e?"d (47
n=1
+0| —e "], as w—oo, 49
asz—0, so that w3 (49)
1203 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 Horoshenkov et al.: Sound propagation in porous media 1203
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Error in Padé approximation. Slit-like pores. A
1

2 1

18 I(z,d)= —e%2+0| |, as z—»,
16 z z°
=14
512 so that
(S
508
2os Al 1
H 04 l(w)= ——e"""+0| —|, (50

02 —i\ A2

-2 -1 0 1 2
s Error in Padé approximation. Triangular pores aS)\—>°O (the high'frequency I|m)t

9 . . .
1 The coefficientA,; is easily calculated for any pore
214 cross-section. For general pore shapes the coefficients
312 — — . . . .
z 5 o,¥1, -+ can be obtained via a numerical solution of the
gos Poisson’s equation&t3). For the particular case of slitlike,
ggi circular, and triangular pores these coefficients, which are
W . . . . .

02 seen in(46) to be the coefficients in the power series expan-

-2 -1 0 1

N

sion for y(z), can be obtained exactly. Frof88) to (40),
i PG4 BRI iation, CIFElaF pores. and the power series for taztand the modified Bessel func-
tions 14(z) andl,(z),'° we have that, for slitlike pores,

2

12 2o 0;
x(2)=1==+3z2'+0(2°), 2z-0;

for triangular pores,

2 4

i3 R 0 1 2 =1— Z_ z
1o B X(2)=1=25" 2280

+0(2%, z—0;

Relative error

and for circular pores,

| 1 [ ]

0 002 004 008 008 01 012 014 016 018 02

Z 7
6

x(2)=1- s+ --+0(z°), z—0.
FIG. 4. Distribution of the relative erroAF for different values of the 8 48
standard deviation and dimensionless parameter . — —
Thus the coefficientsyy, ¢, and A, for these pore shapes
are as tabulated in Table I.

wherer is the distance ofX,y) from the pore boundary and For a general pore size distribution, taking the linmit
D is the distance to the nearest corner point. —0in (18), it is found that

Integrating(49) over the pore cross-section we find that .
|p0(1)

l(w)=1— $(0)(s?)+0(w), as w—0,

_ L A
=— =+ =+ -7 ®©
l//(Z) ZZ Z3 Z4 , aS Z— >,

where (s?) = [5s%e(s)ds. Thus, taking the limito—0 in
where the pore shape factéy is the ratio of the length of 17) and noting that lim_, F(w)=1 and J(O)=$o, we
the perimeter to the area of the cross-section for a pore Cﬁnd that

sizes=1. It follows that

Ay Rt =~ (51)
2)=—+0| |, asz—», X — T == o2
x(2) 7 72 Uo(S)  Posed
and hence, using the results in the Appendix, that in the case of a log-normal pore size distribution.
TABLE I. Values of the coefficientsy,, i, A; and the pore shape factags / 2 andA;\/ — i,. Note that the
numerical values of the coefficieni,, ¢, A;, depend on the definition of, for each pore geometry. The
values of the pore shape factoﬁ/@i andA;\ — i, are independent of this choice.
Pore shape Yo o Ay Y} A=
Slit-type 1 _2 1 6 1
3 15 5 V3
Triangular — i i 4v3 1_0 \/§
80 4480 7 5
Circular _1 _t 2 4 1
8 48 3 Wi
1204 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 Horoshenkov et al.: Sound propagation in porous media 1204
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Using (51), (17) and (48), it can be ihown that, in the
low—frequency/high flow resistivity limih— 0,

o™
|

—iw — .
= Te. (54
X

— o, — — Similarly, using(51), (17) and(50), we find that, in the high-
F(w) =1+ ge‘ldz_wo O fre uenB(/: /Iowgfiovxz r(es?stivit(lin)m)T—wo ’
l;bo q y y ]
=1+ 6,82+ 0(e%), (52 Flw)= \/—i)\%AleF’dz/Z%— O(1)=6,e+0(1), (55)
where where
s — 2
glzﬁemz_ 1, (53) 0,=A1N— '/f093d 2, (56)

=
b :
0 For the convenience of the reader the values of the pore

and the complex-valued, dimensionless parameter combinahape factorsy,; /42 and A;\ — ¢ for slit-type, triangular
tion ¢ is given by and circular pores are tabulated in Table I.

1205 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 Horoshenkov et al.: Sound propagation in porous media 1205
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Utilizing these low- and high-frequency approximations mant, i.e., a rational approximaft ) which has the same
for the viscosity correction function we can obtain the low- gsymptotic behavior as the viscosity correction function

and high-frequency behavior of the complex dengityw). F(w) at the two points—0 ande—.!t
From (14) it follows that Let
px(@) - - 1+ 03¢+ 0,82
L 146 () Flo)= o ®9

Po 1+ 03¢

so that, in the low-frequency/high flow resistivity limi, whereds= 0, /0, and ¢, and ¢, are given, by(53) and(56)

-0, in terms ofd=o In 2 and the pore shape factopsflwo and
po(w) 1 5 1#1 2 5 AN — i, (tabulated for various shapes in TableThen it is
=5 +t1+0,+0(e )_ +0(e%). easy to see thad(w) has the required characteristics, i.e.,
Po € wPo 'ﬂo

57) thatF(w) has the same asymptotic behavi@?) and (55),

_ S for small and largee|, asF(w): precisely
In the high-frequency/low flow resistivity limitg — oo,

CFay— 4
px(w)_l @Jro , F(w)-F(w)=0(&", &—0, (60)
po (7% and
n e” , F(w)—F(0)=0(1), e—. (61)
— 142\ ———+0(s7?). (58) B
lwpo 1y, Noting that the values d¥ () andF(w) depend only on the

To obtain this last equation we use expresg®1 and that Pore §hape and the valu_es of_the dimensionless parameter
2sIA,=Ty,, wherery is the median hydraulic radius, and the combination|e| and the(dimensionlessstandard deviation

hydraulic radius of a pore is defined as twice the ratio of its?» W€ NOW investigate the accuracy of the approximation

cross-sectional area to its perimeter. Equati@ and(58)  F (@) for F() for various pore shapes, various valuesrof
agree with those in, e.g., Stinson and Champbtar the — and 0<|e|<+c.
cased=0 of uniform pore size. A. Error in the approximation of the viscosity

From (57) and(58) the low- and high-frequency behav- correction function

ior of all acoustic quantities can be deduced using relations L 9 has b dqf l val
(22), (23) and (28). Approximation(59) has been computed for several val-

ues of the standard deviatian for all three types of pore
. geometry, and has been compared with the exact viscosity
IV. TWO-POINT PADE APPROXIMANTS correction function obtained from E¢L7), with the integral
Equationg52) and(55) provide good approximations to |(®), given by(34), computed by numerical integration.
the viscosity correction function for small and large values of ~ The real and imaginary parts of the approximatfe(w)
le|=(pow/R,) Y2, respectively. To provide an interpolation are compared with those of the exact viscosity correction
between these approximations for small and laegeand, function F(w) in Figs. 1, 2, and 3, for slit-type, triangular,
hopefully, a sufficiently accurate approximation for interme-and circular pores, respectively, for=0.2, 0.8, and 1.6. As
diate values ofe|, we construct a two-point Padgpproxi-  expected, in view of the asymptotic estimaté§) and (61),
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FIG. 7. (a) The real part of the complex wave number and the result obtained viagpadeximation(thin solid lineg for a material with slitlike poresb)
The imaginary part of the complex wave number and the result obtained viaaPadeximation(thin solid lines for a material with slitlike pores.

the approximation is accurate for| = (pow/R,) Y2 smalland  0.2<0<1.5, does not exceed 15.5% € 1.1) for slits, 11%
le| large. The accuracy of approximation deteriorates someto=1.5) for triangles, and 9%d=1.0) for a circular pore
what in the intermediate range 8t <10. cross-section.
To quantify this error more precisely, we have computed
the magnitude of the relative error, i.e.,
B. Error in the approximation of other acoustic

F(w)—F(w) quantities

F(o)

AF(w)= A comparison has also been made between acoustical

guantities calculated approximately, by replaciifw) by

Figure 4 shows contour plots dF(w) as a function ofc its approximatiorF(w), and their exact values, obtained by
and|e| for the three pore shapes. It can be seen that the aregdmputingF () exactly by numerical integration. Consid-
of maximum error are mainly concentrated in the range lered are the relative admittance and the complex wave num-
<|e|<10 and that, as a function af, the error has two ber. Figures 5-8 illustrate graphically, for each of these
distinctive mimima at aroundr=0.4 ando=1.5. These quantities, results for the pore shape for which the approxi-
graphs can be used for estimating the rangds|and o for mation error is greatest.
which F(w) satisfies given accuracy requirements. In Fig. 5, for the case of circular cylindrical pores, the

Precise calculations indicate that the maximum relativaelative admittance,(w) = B,(w)/q, given by(28), is plot-
error in the range of interest for most practical applicationsted againste| for c=0.2, 0.8, and 1.6, as is the approxima-
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FIG. 8. The relative error in the complex wave number computed for several values of the standard deviation for a medium with slitlike pores.

tionﬁx(w) to B,(w) obtained by replacing (w) in the com-  sound propagation inside a porous rigid frame material.
putations by its Padapproximant=(w). The agreement is Computationally efficient and simple two-point Paep-

good, especially fofe| small and large, and is quantified proximants for this function have been derived in this paper
further in Fig. 6, in which the magnitude of the relative error, for various pore geometries. The resulting equatid@s)—

- (26) and(59)] are simple. The accuracy of the proposed ap-

Aﬁx(w)=‘ Bx(@) ~ Bx(@) proximation to the exact viscosity correction function has

Bx(®) been investigated over the whole range of microscopic ma-

is plotted againsle|, for various values of. It can be seen terial parameters of interest. For most of this range the ap-
that the error in the derived quantify() is less than that Proximation is highly accurate and it is our belief that the

in the viscosity correction function, and does not exceed 99@&ccuracy established over the remaining range will be quite
(0=1.0, |¢|=1.32) for circular pores. Similar calculations adequate for practical modelling of acoustical characteristics,

show that the maximum error i6,(w) does not exceed 4% particularly bearing in mind uncertainties in accurately iden-
for slits (c=1.2, |¢|=0.44), and 2.2% for triangular pores tifying material parameter values and, indeed, in the accu-

(0=1.0, |[e|=0.38). racy of the model of acoustical characteristics in terms of
Analogous trends can be observed for the complex waveiscosity correction function proposed.
number. The approximation ta(w) obtained by replacing The simple analytical form of the approximations means

F(w) by F(w) is denoted byk,(w) and Aky (o) =|(Ky(w) that these are likely to be of substantial practical interest for
—ky(w))/k(w)| is the relative error. Figure 7 plots the real predictions of the acoustic field in the presence of a porous
and imaginary parts ok,(w) and k(o) against|e| for o absorbing surface. Some preliminary and encouraging com-
=0.2, 0.8, and 1.6, andk,(w) is plotted againsfe| in Fig. ~ parisons of excess attenuation predictions, using the pro-
8. The agreement between both the real and imaginary pargosed approximations for triangular pore shapes, with short
of k(w) andk,(w) is excellent. From Fig. 8 and similar ange experiments over sand are reported recently in Ref. 12.
graphs we note that the relative ermbk,(w) does not ex- Although the most definite results are only for selected
ceed 4.5% ¢=1.2, |¢|=0.58) for slitike pores, 3% &  pore geometries, the general equations allow for any com-
=1.0, |¢|=0.5) for circular pores and 1.4%oE1.2, |¢] plex pore shape to be considered. In this case the shape fac-

=0.4) for triangular pores. tors (Table ) which relate to the asymptotic behavior of the
solution of the Helmholtz equation for such particular pore
V. CONCLUDING REMARKS shape could be obtained either numerically or experimen-

A theoretical justification has been given and simplifiedta"y' Specifically, it can be seen from the asymptotic behav-

expressions presented for the form of the viscosity correctiotP" of the viscosity correction function at the lower- and
function for a porous medium with a statistically distributed Nigher-frequency limitgexpressiong52) and (55), respec-

pore size. This function, originally introduced by Biaind  tively] that the shape factors), /¢3 and VA, can be
extended by Yamamoto and Turgub the case of porous recovered from low/high-frequency acoustical experiments
media with a statistically distributed pore size, describes vison the material combined with nonacoustical measurements
cous, thermal diffusion and pore size distribution effects ofof other parameters.
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APPENDIX: APPROXIMATION OF A CLASS OF
INTEGRALS

Suppose thaf(z) is a complex-valued function of the
complex variablez, and that, for somex in the range 0

<a<m, f(2) is continuous in the sector of the complex

plane,|argz<e, |z|>0. In Sec. Il integrals of the form

1(z,d)= f(e dtz)e "2 dt (A1)

1 foo
V2 Jo
arise, for various choices of the functidn

Consider the approximation dfby a functionf of the
form

N
n=1

whereay, -+, a,,bq,"**, b, are real coefficients, and sup-
pose that the remainder,(z)=1f(z)—1(z), satisfies, for
some real constantsandC (C>0),

r(z)[<Clz", (A2)

for |argz<a, |2|>0. LetT(z,d) denote the corresponding
approximation td (z,d), i.e.,

T(z,d)= —diz)e=t2 gt

1 f+°°~
— f(e
Vzm )
:% anzn

& o

Now, for any real numbep,

+ )
f e dbnta—t%12 |t

o

o p?12 o
1 f+ e Ple=t2 gt= © j+ e~ (P-0%2 gy
N2 J - mJ -
= P2 (A3)

since
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Further, the error in this approximation satisfies

I(z,d)=T(z,d)= \/% fj:r(efdtz)ef@/z dt
and, utilizing(A2) and (A3) it follows that, for|argz<a,
~ c o ,
[1(z,d)—1(z,d)|< EMCJOO e Cdte—t%12 4t

=Cl] cgc?d®2
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