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Expressions for the viscosity correction function, and hence bulk complex impedance, density,
compressibility, and propagation constant, are obtained for a rigid frame porous medium whose
pores are prismatic with fixed cross-sectional shape, but of variable pore size distribution. The low-
and high-frequency behavior of the viscosity correction function is derived for the particular case of
a log-normal pore size distribution, in terms of coefficients which can, in general, be computed
numerically, and are given here explicitly for the particular cases of pores of equilateral triangular,
circular, and slitlike cross-section. Simple approximate formulae, based on two-point Pade´
approximants for the viscosity correction function are obtained, which avoid a requirement for
numerical integration or evaluation of special functions, and their accuracy is illustrated and
investigated for the three pore shapes already mentioned. ©1998 Acoustical Society of America.
@S0001-4966~98!04009-0#
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INTRODUCTION

There have been several studies related to the theore
description of porous granular materials that extend and a
ment the original analysis by Biot.1 Two of the most inter-
esting developments have been perpetrated by Stinson2 and
Yamamoto and Turgut3 and allow for arbitrary pore shap
and distributions of pore sizes, respectively. As a con
quence of Stinson’s work, exact analytical results for cyl
drical, slitlike, triangular, and rectangular pore shapes
available. Yamamoto and Turgut concentrated on the cas
a log-normal pore size distribution in sedimentary materia
Attenborough4 has shown that, of the possible pore char
teristics, the presence of a variable distribution of pore si
potentially has greater effect than change in pore shape.
is of particular practical interest since pore size distribut
is routinely measurable. A different type of development,
of relevance to further progress in routine calculations
acoustical properties of rigid-framed porous materials is
use of Pade´ approximants. These have been developed
structures consisting of uniform pores in Ref. 5. In this pa
these various contributions are combined. Pade´ approximants
for the acoustical properties of media with size distributio
of variously shaped pores are derived. It is anticipated
these approximations offer a practical and efficient alter
tive to increasingly sophisticated models~see, for example
Ref. 4! for sound propagation in a medium with pore si
distribution.

In the first section an argument is presented to justify
use of the viscosity correction function of Yamamoto a
Turgut3 in computing the bulk acoustic properties of rigi
frame porous media. An expression is derived for the visc
1198 J. Acoust. Soc. Am. 104 (3), Pt. 1, September 19980001-4966/98
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ity correction function in terms of a single integral involvin
the pore size probability density function and a single fun
tion of a complex variable,c̄(z), specified in terms of the
pore shape. This expression is simplified further for the i
portant case of a log-normal pore size distribution in Sec.
Low- and high-frequency approximations to the viscos
correction function are obtained in the second section, us
results on approximation of a class of integrals in the App
dix. These approximations are used to derive two-point P´
approximants for the viscosity correction function in Sec. I
and the accuracy of these simple approximants in calcula
the acoustic characteristics such as relative admittance
complex wavenumber is explored.

I. THE VISCOSITY CORRECTION FUNCTION

The majority of porous materials are composed of po
of variable shape and size which obey a distinctive statist
distribution. For these materials we can only refer to t
values of the dynamic density and complex compressibi
which have been averaged over a range of realistic pore s
identified in the material. The same argument is applicabl
acoustic quantities such as the acoustic admittance
propagation constant.

To derive the general form for the viscosity correctio
function we consider a sample of a bulk rigid-frame poro
material which is pierced through by normal to the surfa
prismatic~i.e., uniform with respect to cross-sectional geo
etry! straight pores of various sizes but the same cro
sectional shape. Let us characterize the different sizes of
by measurement of some linear dimensions and let E(s)
denote the pore size distribution function, that is,E(s) is the
1198/104(3)/1198/12/$15.00© 1998 Acoustical Society of America
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to
fraction of the total pore volume consisting of pores of s
not exceedings. Thene(s)5dE(s)/ds is the corresponding
probability density function.

Within a typical pore of sizes the velocity componentu
in the direction of the pore axis~the x3-direction! satisfies,
for harmonic (e2 ivt) time dependence, to a good approxim
tion the force equation2

ivr0u1mDu5
dp

dx3
. ~1!

In this equationr0 is the equilibrium fluid density,m the
dynamic viscosity, a Cartesian coordinate systemOx1x2x3

has been adopted,D5]2/]x1
21]2/]x2

2, andp is the pressure
in the fluid which depends, to a good approximation, only
x3 . The velocityu vanishes on the sides of the pore.

Similarly,2 the excess temperatureT satisfies that

kDT1 ir0vCpT5 ivp, ~2!

wherek is the thermal conductivity of the fluid andCp its
specific heat at constant pressure. The excess temperat
assumed to vanish on the sides of the pore.

We introduce an auxiliary functionc5c(x1 ,x2 ;w)
which is defined by a boundary value problem which it s
isfies within the pore cross-section of a unit size pore
dimensions51. This two-dimensional boundary value pro
lem consists of the equation

Dc2w2c51 ~3!

within the pore cross-section, wherew is a given constant
and the boundary conditionc50 around the edge of th
section. The form of the functionc depends on the value o
the real or complex parameterw. We assume that2p/2
,argw,p/2 in which casec is uniquely determined by
these imposed conditions.

In terms of this auxiliary functionc it is easy to see, by
substitution, that the solutions of~1! and~2! which vanish on
the walls of the pore are

u5
s2

m

dp

dz
c~x1 /s,x2 /s;A2 il! ~4!

and

T5
ivs2

k
pc~x1 /s,x2 /s;A2 iNpr

1/2l!, ~5!

whereNpr is the Prandtl number and

l5~r0v/m!1/2s. ~6!

For any fluid propertyf let f̄ denote the mean valu
over the cross-section and^f& denote the mean value off̄
over all pore sizes, i.e.,

^f&5E
0

`

e~s!f̄~s!ds. ~7!

Then, if we assume that there are sufficient interconnect
between the pores of different sizes so that the dependen
p on x3 is independent of the pore sizes, it follows from ~1!
that
1199 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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ivr0^u&1m^Du&5
dp

dx3
, ~8!

an equation which we can write as

ivrx~v!^u&5
dp

dx3
, ~9!

whererx(v) is an effective complex density averaged ov
the pore size given by

rx~v!5r01
m^Du&
iv^u&

. ~10!

In physical termŝu& is the mean velocity over all pores
i.e., the total volume flux through the pores divided by t
total pore cross-sectional area. By Gauss’ theorem,

mDu5
m

A E
P

]u

]n
ds5

1

A E
P
t ds, ~11!

whereP is the perimeter of the cross-section andt the shear
stress. Thusm^Du&5 ^t&, where^t& denotes the total shea
force in thex3-direction per unit thickness of the sample, p
unit cross-sectional area, so that

rx~v!5r01
1

iv

^t&

^u&
. ~12!

In terms of the auxiliary functionc we easily see that

ū5
s2

m

dp

dx3
c̄, Du5

1

m

dp

dx3
Dc, ~13!

where c̄5c̄(A2 il) and Dc5Dc(A2 il) are the mean
values over the cross-section of the pore of sizes51 of c
andDc, respectively, whenw5A2 il. Clearly

rx~v!5r02
Rx

iv
F~v!, ~14!

where

Rx52 lim
v→0

^t~v!&

^u~v!&
~15!

is an effective DC flow resistivity averaged over the por
and

F~v!5
^t~v!&

^u~v!& F lim
v→0

^t~v!&

^u~v!&G21

~16!

is the viscosity correction function as utilised by Yamamo
and Turgut3 and Attenborough.4 In terms of the auxiliary
function c we have that, sinceil2c̄1Dc51 from ~3!,

F~v!52
ivr0I ~v!

Rx~12I ~v!!
, ~17!

where

I ~v!5E
0

`

e~s!Dc~A2 il!ds

512
ivr0

m E
0

`

s2e~s!c̄~A2 il!ds. ~18!
1199Horoshenkov et al.: Sound propagation in porous media
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In the remainder of this paper we concentrate on
problem of evaluating the viscosity correction functio
F(v). OnceF(v) is known we can evaluate the dynam
densityrx(v). Further, similarly to the definition of~9!, we
obtain from~2! that

u~v!^T&5p ~19!

with

u~v!5
Cpr0

12I ~Nprv!
5Cprx~Nprv!. ~20!

From ~9! and ~19!, the equation of continuity, and th
ideal gas law, we obtain thatp satisfies the usual one
dimensional Helmholtz equation with complex wave numb
kx(v) as in Ref. 2, but with single pore size values replac
by averaged values. Precisely

d2p

dx3
2 1kx

2~v!p50 ~21!

with

kx
2~v!5v2rx~v!Cx~v! ~22!

and the complex compressibility,Cx(v), given by

Cx~v!5
1

P0
2

1

T0u~v!
5

1

gP0
S g2

r0~g21!

rx~Nprv! D . ~23!

Finally, we include the effects of tortuosity and of th
sample porosityV. Relaxing the condition that the pores b
normal to the sample surface, letq>1 be the ratio of pore
length to sample thickness so thatq2 is the tortuosity. Then
^v&5V^u&/q is the bulk velocity, the total volume flux di
vided by the sample cross-sectional area. Equation~9! holds
with ^u& replaced bŷ v& provided we replacerx(v) by a
bulk medium dynamic complex density rb(v)
5(q2/V)rx(v). Thus

rb~v!5
q2

V S r02
VRb

ivq2 F~v! D , ~24!

where we have introduced the bulk flow resistivity,Rb

5q2Rx /V. Equation~21! holds with x3 replaced byqx3 ,
alternatively withkx(v) replaced by the bulk medium wav
number kb(v)5qkx(v). Then Eq. ~22! holds with
rx , kx , Cx replaced by their bulk medium values, i.e.,

kb
2~v!5v2rb~v!Cb~v!, ~25!

provided we define the bulk medium complex compressi
ity by Cb(v)5VCx(v). Finally the complex impedance o
the medium is

Zb~v!5p/^v&5vrb~v!/kb~v!5Arb~v!/Cb~v!, ~26!

so that the bulk medium admittance relative to that of
fluid medium is

bb~v!5r0kb~v!/~krb~v!!5~q/V!bx~v!, ~27!

wherek is the wave number in the fluid medium and

bx~v!5r0kx~v!/~krx~v!!. ~28!
1200 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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II. LOG-NORMAL PORE SIZE DISTRIBUTION

The expressions presented in the previous section
only practical if the pore size distributione(s) in the material
is known. Experimental values for the statistical distributi
e(s), which can be measured by either the water suct
method6 or the mercury injection technique7 or recovered
from acoustical experiments,8 are normally replaced in Eq
~18! with an explicit expression which provides a good fit
the experimental data.

It has been found from numerous experiments in g
physics and in outdoor noise propagation that in many gra
lar materials4,7 the real pore size distributione(s) can be
closely approximated by a log-normal statistical distributio

In the log-normal statistical distributionf52 log2 s is
normally distributed with meanf̄52 log2 s̄, wheres̄ is the
median pore size, and standard deviations. Thus, where
G(f) is the distribution function off,

E~s!512G~f! ~29!

so that

e~s!5E8~s!52g~f!
df

ds
, ~30!

whereg(f)5G8(f) is the probability density function off,
i.e.,

g~f!5
1

A2ps
expS 2

~f2f̄ !2

2s2 D . ~31!

The standard deviations is dimensionless and is a measu
of the deviation ofs about its median value in relative term
Precisely, for anya.0,

PrS 1

2sa <
s

s̄
<2saD 5PrS U f2f̄

s
U<a D 52F~a!21,

where

F~a!5
1

A2p
E

2`

a

e2y2/2dy

is the distribution function of the standard normal distrib
tion.

Recall that the viscosity correction function is given
terms ofI (v) by ~17!. For a log-normal distribution, substi
tuting s522f in ~18! and noting~30!, we obtain that

I ~v!512
ivr0

m E
2`

1`

222fg~f!c̄~A2 il!df. ~32!

Defining

l̄5S r0v

m D 1/2

s̄ ~33!

to be the median value ofl, noting ~6! and~31!, and substi-
tuting f5f̄1st, we see that, for a log-normal distribution
I (v) depends only on the dimensionless parameter comb
tions l̄ ands : precisely,
1200Horoshenkov et al.: Sound propagation in porous media

bject to ASA license or copyright; see http://asadl.org/terms



FIG. 1. ~a! The real part of the viscosity correction function and its Pade´ approximant~thin solid lines! in the case of a material with slitlike pores.~b! The
imaginary part of the viscosity correction function and its Pade´ approximant~thin solid lines! in the case of a material with slitlike pores.
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I ~v!512
i l̄2

A2p
E

2`

1`

222ste2t2/2c̄~A2 i l̄22st!dt

5
1

A2p
E

2`

1`

x~A2 i l̄22st!e2t2/2dt, ~34!

where the functionx, which depends only on the pore shap
is defined by

x~z!511z2c̄~z! ~35!

for 2p/2,argz,p/2. From~14! to ~17! it can be seen tha

I ~v!512
r0

rx~v!
~36!

and, in particular, this holds in the cases50 of fixed pore
size distributions5 s̄. In this case~34! reduces to

I ~v!5x~A2 i l̄ !. ~37!
1201 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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It is probably easiest to extract from the literature t
form of the functionx for various pore shapes using the
last two equations~36! and~37!. Using these equations, from
Stinson and Champoux,2 for pores which are infinite rectan
gular slits of half-widths, we obtain that

x~z!5
tanhz

z
. ~38!

For circular pores of radiuss, we find

x~z!5
2I 1~z!

zI0~z!
, ~39!

where I 0 and I 1 are the modified Bessel functions of ord
one and zero, respectively. For equilateral triangular po
with s the length of the triangle side,

x~z!53S coth~)/4z!

)/4
2

16

3z2D . ~40!
1201Horoshenkov et al.: Sound propagation in porous media
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FIG. 2. ~a! The real part of the viscosity correction function and its Pade´ approximant~thin solid lines! in the case of a material with triangular pores.~b! The
imaginary part of the viscosity correction function and its Pade´ approximant~thin solid lines! in the case of a material with triangular pores.
a-

p
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f

n,
III. ASYMPTOTIC APPROXIMATIONS FOR LOW AND
HIGH FREQUENCY

For none of the particular forms~38!–~40! for x(z) can
the integral~34! be evaluated analytically, but approxim
tions valid for low and high values ofl̄ ~corresponding to
low and high values of frequencyv, with other variables
fixed! can be obtained via expansions ofx(z) for small and
largez.

To obtain these approximations using results in the A
pendix we write, from~34!,

I ~v![I ~A2 i l̄,d!, ~41!

where, for convenience, we introduced5s ln 2 and define
the function

I ~z,d!5
1

A2p
E

2`

1`

x~ze2dt!e2t2/2dt, ~42!
1202 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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for 2p/2,argz,p/2 andd>0.
Determination of the asymptotic behavior ofc

5c(x,y;w) asw→0 is a regular perturbation problem an
for any pore shape,c has a power series expansion inw2,
convergent for smallw:

c~x,y;w!5c0~x,y!1w2c1~x,y!1w4c2~x,y!1¯ .

Substituting this expansion into~3! and comparing powers o
w2 we find that each of the termsc0 ,c1 , . . . satisfies a Pois-
son’s equation, that is,

Dc051, Dcn5cn21 , n51,2,... ~43!

within the pore cross-section~of sizes51), with cn50 on
the pore boundary, forn50,1,. . . . From the maximum prin-
ciple it follows by induction thatcn<0 for n even and that
cn>0 for n odd. Thusc̄(z) has the power series expansio

c̄~z!5c̄01z2c̄11z4c̄21¯ , ~44!
1202Horoshenkov et al.: Sound propagation in porous media

bject to ASA license or copyright; see http://asadl.org/terms



s.
s.
FIG. 3. ~a! The real part of the viscosity correction function and its Pade´ approximant~thin solid lines! in the case of a material with circular cylindrical pore
~b! The imaginary part of the viscosity correction function and its Pade´ approximant~thin solid lines! in the case of a material with circular cylindrical pore
t,
pt
convergent for smallz, with c̄n the mean value ofcn(x,y)
over the pore cross-section~of sizes51) and

c̄n,0, n50,2,... ,
~45!

c̄n.0, n51,3,... ,

so that, for smallz,

x~z!511z2c̄01z4c̄11¯ . ~46!

It now follows from ~42! and~46!, and the results in the
Appendix thatI (z,p) has the asymptotic expansion

I ~z,d!;11 (
n51

`

c̄n21z2ne2n2d2
~47!

asz→0, so that
1203 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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n51

`

c̄n21~2 i !nl̄2ne2n2d2
~48!

as l̄→0 ~the low-frequency limit!.
Considering now the high-frequency limit; we note tha

for w large,c'21/w2 across the pore cross-section exce
within a boundary layer of widthO(1/w). A local analysis of
the behavior within this boundary layer yields that~cf. Ref.
9!, for a piecewise smooth boundary,

c~x,y;w!5
1

w2 ~e2wr21!1OS 1

w2 e2wDD
1OS 1

w3 e2wrD , as w→`, ~49!
1203Horoshenkov et al.: Sound propagation in porous media
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wherer is the distance of (x,y) from the pore boundary an
D is the distance to the nearest corner point.

Integrating~49! over the pore cross-section we find th

c̄~z!52
1

z2 1
A1

z3 1OS 1

z4D , as z→`,

where the pore shape factorA1 is the ratio of the length of
the perimeter to the area of the cross-section for a por
sizes51. It follows that

x~z!5
A1

z
1OS 1

z2D , as z→`,

and hence, using the results in the Appendix, that

FIG. 4. Distribution of the relative errorDF for different values of the
standard deviation and dimensionless parameteru«u.
1204 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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I ~z,d!5
A1

z
ed2/21OS 1

z2D , as z→`,

so that

I ~v!5
A1

A2 i l̄
ed2/21OS 1

l̄2D , ~50!

as l̄→` ~the high-frequency limit!.
The coefficientA1 is easily calculated for any pore

cross-section. For general pore shapes the coefficie
c̄0 ,c̄1 ,¯ can be obtained via a numerical solution of th
Poisson’s equations~43!. For the particular case of slitlike,
circular, and triangular pores these coefficients, which a
seen in~46! to be the coefficients in the power series expan
sion for x(z), can be obtained exactly. From~38! to ~40!,
and the power series for tanhz and the modified Bessel func-
tions I 0(z) and I 1(z),10 we have that, for slitlike pores,

x~z!512
z2

3
1

2

15
z41O~z6!, z→0;

for triangular pores,

x~z!512
z2

80
1

z4

4480
1O~z6!, z→0;

and for circular pores,

x~z!512
z2

8
1

z4

48
1O~z6!, z→0.

Thus the coefficientsc̄0 , c̄1 and A1 for these pore shapes
are as tabulated in Table I.

For a general pore size distribution, taking the limitv
→0 in ~18!, it is found that

I ~v!512
ir0v

m
c̄~0!^s2&1o~v!, as v→0,

where ^s2&5*0
`s2e(s)ds. Thus, taking the limitv→0 in

~17! and noting that limv→0 F(v)51 and c̄(0)5c̄0 , we
find that

Rx5
2m

c̄0^s
2&

5
2m

c̄0s̄2e2d2
~51!

in the case of a log-normal pore size distribution.
TABLE I. Values of the coefficientsc̄0 , c̄1 , A1 and the pore shape factorsc̄1 /c̄o
2 andA1A2c̄o. Note that the

numerical values of the coefficientsc̄0 , c̄1 , A1 , depend on the definition ofs, for each pore geometry. The

values of the pore shape factorsc̄1 /c̄o
2 andA1A2c̄o are independent of this choice.

Pore shape c̄0 c̄1
A1 c̄1 /c̄0

2 A1A2c̄0

Slit-type 2
1

3
2

2

15
1

6

5

1

)

Triangular 2
1

80

1

4480
4)

10

7
A3

5

Circular 2
1

8
2

1

48
2

4

3
1

&

1204Horoshenkov et al.: Sound propagation in porous media
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FIG. 5. ~a! The real part of the relative admittance and the result obtained via Pade´ approximation~thin solid lines! for a material with circular cylindrical
pores.~b! The imaginary part of the relative admittance and the result obtained via Pade´ approximation~thin solid lines! for a material with circular cylindrical
pores.
in

ore
Using ~51!, ~17! and ~48!, it can be shown that, in the
low2frequency/high flow resistivity limitl̄→0,

F~v!511 i l̄2e2d2S c̄1

c̄0

e4d2
2c̄0D 1O~ l̄4!

511u1«21O~«4!, ~52!

where

u15
c̄1

c̄0
2

e4d2
21, ~53!

and the complex-valued, dimensionless parameter comb
tion « is given by
1205 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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«5A2 ivr0

Rx
5A2 i c̄0ed2

l̄. ~54!

Similarly, using~51!, ~17! and~50!, we find that, in the high-
frequency/low flow resistivity limitl̄→`,

F~v!5A2 i l̄c̄0A1e5d2/21O~1!5u2«1O~1!, ~55!

where

u25A1A2c̄0e3d2/2. ~56!

For the convenience of the reader the values of the p

shape factorsc̄1 /c̄0
2 and A1A2c̄0 for slit-type, triangular

and circular pores are tabulated in Table I.
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l pores.
FIG. 6. The relative error in the relative admittance computed for several values of the standard deviation for a medium with circular cylindrica
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Utilizing these low- and high-frequency approximatio
for the viscosity correction function we can obtain the lo
and high-frequency behavior of the complex densityrx(v).
From ~14! it follows that

rx~v!

r0
511«22F~v!

so that, in the low-frequency/high flow resistivity limit,«
→0,

rx~v!

r0

5
1

«2
111u11O~«2!5

iRx

vr0

1
c̄1

c̄0
2

e4d2
1O~«2!.

~57!

In the high-frequency/low flow resistivity limit,«→`,

rx~v!

r0
511

u2

«
1O~«22!

5112A m

2 ivr0

ed2/2

r̄ h

1O~«22!. ~58!

To obtain this last equation we use expression~51! and that
2s̄/A15 r̄ h , wherer̄ h is the median hydraulic radius, and th
hydraulic radius of a pore is defined as twice the ratio of
cross-sectional area to its perimeter. Equations~57! and~58!
agree with those in, e.g., Stinson and Champoux10 for the
cased50 of uniform pore size.

From ~57! and~58! the low- and high-frequency behav
ior of all acoustic quantities can be deduced using relati
~22!, ~23! and ~28!.

IV. TWO-POINT PADÉ APPROXIMANTS

Equations~52! and~55! provide good approximations t
the viscosity correction function for small and large values
u«u5(r0v/Rx)

1/2, respectively. To provide an interpolatio
between these approximations for small and largeu«u and,
hopefully, a sufficiently accurate approximation for interm
diate values ofu«u, we construct a two-point Pade´ approxi-
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s

f

-

mant, i.e., a rational approximantF̃(v) which has the same
asymptotic behavior as the viscosity correction functi
F(v) at the two points«→0 and«→`.11

Let

F̃~v!5
11u3«1u1«2

11u3«
, ~59!

whereu35u1 /u2 andu1 andu2 are given, by~53! and~56!,
in terms ofd5s ln 2 and the pore shape factorsc̄1 /c̄0

2 and

A1A2c̄0 ~tabulated for various shapes in Table I!. Then it is
easy to see thatF̃(v) has the required characteristics, i.e
that F̃(v) has the same asymptotic behavior,~52! and ~55!,
for small and largeu«u, asF(v): precisely

F~v!2F̃~v!5O~«4!, «→0, ~60!

and

F~v!2F̃~v!5O~1!, «→`. ~61!

Noting that the values ofF(v) andF̃(v) depend only on the
pore shape and the values of the dimensionless param
combinationu«u and the~dimensionless! standard deviation
s, we now investigate the accuracy of the approximat
F̃(v) for F(v) for various pore shapes, various values ofs,
and 0<u«u,1`.

A. Error in the approximation of the viscosity
correction function

Approximation~59! has been computed for several va
ues of the standard deviations, for all three types of pore
geometry, and has been compared with the exact visco
correction function obtained from Eq.~17!, with the integral
I (v), given by~34!, computed by numerical integration.

The real and imaginary parts of the approximationF̃(v)
are compared with those of the exact viscosity correct
function F(v) in Figs. 1, 2, and 3, for slit-type, triangula
and circular pores, respectively, fors50.2, 0.8, and 1.6. As
expected, in view of the asymptotic estimates~60! and~61!,
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FIG. 7. ~a! The real part of the complex wave number and the result obtained via Pade´ approximation~thin solid lines! for a material with slitlike pores.~b!
The imaginary part of the complex wave number and the result obtained via Pade´ approximation~thin solid lines! for a material with slitlike pores.
m

te

re

iv
ns

tical

y
-
um-
se
xi-

e

a-
the approximation is accurate foru«u5(r0v/Rx)
1/2 small and

u«u large. The accuracy of approximation deteriorates so
what in the intermediate range 0.1,«,10.

To quantify this error more precisely, we have compu
the magnitude of the relative error, i.e.,

DF~v!5U F~v!2F̃~v!

F~v!
U.

Figure 4 shows contour plots ofDF(v) as a function ofs
andu«u for the three pore shapes. It can be seen that the a
of maximum error are mainly concentrated in the range
,u«u,10 and that, as a function ofs, the error has two
distinctive mimima at arounds50.4 and s51.5. These
graphs can be used for estimating the ranges ofu«u ands for
which F̃(v) satisfies given accuracy requirements.

Precise calculations indicate that the maximum relat
error in the range of interest for most practical applicatio
1207 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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0.2,s,1.5, does not exceed 15.5% (s51.1) for slits, 11%
(s51.5) for triangles, and 9% (s51.0) for a circular pore
cross-section.

B. Error in the approximation of other acoustic
quantities

A comparison has also been made between acous
quantities calculated approximately, by replacingF(v) by
its approximationF̃(v), and their exact values, obtained b
computingF(v) exactly by numerical integration. Consid
ered are the relative admittance and the complex wave n
ber. Figures 5–8 illustrate graphically, for each of the
quantities, results for the pore shape for which the appro
mation error is greatest.

In Fig. 5, for the case of circular cylindrical pores, th
relative admittancebx(v)5bb(v)/q, given by~28!, is plot-
ted againstu«u for s50.2, 0.8, and 1.6, as is the approxim
1207Horoshenkov et al.: Sound propagation in porous media
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FIG. 8. The relative error in the complex wave number computed for several values of the standard deviation for a medium with slitlike por
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tion b̃x(v) to bx(v) obtained by replacingF(v) in the com-
putations by its Pade´ approximantF̃(v). The agreement is
good, especially foru«u small and large, and is quantifie
further in Fig. 6, in which the magnitude of the relative erro

Dbx~v!5U bx~v!2b̃x~v!

bx~v!
U

is plotted againstu«u, for various values ofs. It can be seen
that the error in the derived quantitybx(v) is less than that
in the viscosity correction function, and does not exceed
(s51.0, u«u51.32) for circular pores. Similar calculation
show that the maximum error inbx(v) does not exceed 4%
for slits (s51.2, u«u50.44), and 2.2% for triangular pore
~s51.0, u«u50.38).

Analogous trends can be observed for the complex w
number. The approximation tokx(v) obtained by replacing
F(v) by F̃(v) is denoted byk̃x(v) and Dkx(v)5u(kx(v)
2 k̃x(v))/kx(v)u is the relative error. Figure 7 plots the re
and imaginary parts ofkx(v) and k̃x(v) againstu«u for s
50.2, 0.8, and 1.6, andDkx(v) is plotted againstu«u in Fig.
8. The agreement between both the real and imaginary p
of kx(v) and k̃x(v) is excellent. From Fig. 8 and simila
graphs we note that the relative errorDkx(v) does not ex-
ceed 4.5% (s51.2, u«u50.58) for slitlike pores, 3% (s
51.0, u«u50.5) for circular pores and 1.4% (s51.2, u«u
50.4) for triangular pores.

V. CONCLUDING REMARKS

A theoretical justification has been given and simplifi
expressions presented for the form of the viscosity correc
function for a porous medium with a statistically distribut
pore size. This function, originally introduced by Biot1 and
extended by Yamamoto and Turgut3 to the case of porous
media with a statistically distributed pore size, describes
cous, thermal diffusion and pore size distribution effects
1208 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
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sound propagation inside a porous rigid frame mater
Computationally efficient and simple two-point Pade´ ap-
proximants for this function have been derived in this pa
for various pore geometries. The resulting equations@~23!–
~26! and ~59!# are simple. The accuracy of the proposed a
proximation to the exact viscosity correction function h
been investigated over the whole range of microscopic m
terial parameters of interest. For most of this range the
proximation is highly accurate and it is our belief that t
accuracy established over the remaining range will be q
adequate for practical modelling of acoustical characterist
particularly bearing in mind uncertainties in accurately ide
tifying material parameter values and, indeed, in the ac
racy of the model of acoustical characteristics in terms
viscosity correction function proposed.

The simple analytical form of the approximations mea
that these are likely to be of substantial practical interest
predictions of the acoustic field in the presence of a por
absorbing surface. Some preliminary and encouraging c
parisons of excess attenuation predictions, using the
posed approximations for triangular pore shapes, with sh
range experiments over sand are reported recently in Ref

Although the most definite results are only for select
pore geometries, the general equations allow for any co
plex pore shape to be considered. In this case the shape
tors ~Table I! which relate to the asymptotic behavior of th
solution of the Helmholtz equation for such particular po
shape could be obtained either numerically or experim
tally. Specifically, it can be seen from the asymptotic beh
ior of the viscosity correction function at the lower- an
higher-frequency limits@expressions~52! and ~55!, respec-

tively# that the shape factors,c̄1 /c̄0
2 and Ac̄0A1 , can be

recovered from low/high-frequency acoustical experime
on the material combined with nonacoustical measurem
of other parameters.
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APPENDIX: APPROXIMATION OF A CLASS OF
INTEGRALS

Suppose thatf (z) is a complex-valued function of th
complex variablez, and that, for somea in the range 0
,a<p, f (z) is continuous in the sector of the comple
plane,uargzu<a, uzu.0. In Sec. II integrals of the form

I ~z,d!5
1

A2p
E

0

`

f ~e2dtz!e2t2/2 dt ~A1!

arise, for various choices of the functionf .
Consider the approximation off by a function f̃ of the

form

f̃ ~z!5 (
n51

N

anzbn,

where a1,¯, an ,b1,¯, bn are real coefficients, and sup
pose that the remainder,r (z)5 f (z)2 f̃ (z), satisfies, for
some real constantsc andC (C.0),

ur ~z!u<Cuzuc, ~A2!

for uargzu<a, uzu.0. Let Ĩ (z,d) denote the correspondin
approximation toI (z,d), i.e.,

Ĩ ~z,d!5
1

A2p
E

2`

1`

f̃ ~e2dtz!e2t2/2 dt

5 (
n51

N
anzbn

A2p
E

2`

1`

e2dbnte2t2/2 dt.

Now, for any real numberp,

1

A2p
E

2`

1`

e2pte2t2/2 dt5
ep2/2

A2p
E

2`

1`

e2~p2t !2/2 dt

5ep2/2 ~A3!

since
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1

A2p
E

2`

1`

e2t2/2 dt51.

Thus

Ĩ ~z,d!5 (
n51

N

anzbned2bn
2/2.

Further, the error in this approximation satisfies

I ~z,d!2 Ĩ ~z,d!5
1

A2p
E

2`

1`

r ~e2dtz!e2t2/2 dt

and, utilizing~A2! and ~A3! it follows that, for uargzu<a,

uI ~z,d!2 Ĩ ~z,d!u<
C

A2p
uzucE

2`

1`

e2cdte2t2/2 dt

5Cuzucec2d2/2.

1M. A. Biot, ‘‘Theory of propagation of elastic waves in a fluid-saturate
porous solid. I. Low-Frequency Range,’’ J. Acoust. Soc. Am.28, 168–
178 ~1956!; ‘‘II. Higher Frequency Range,’’ J. Acoust. Soc. Am.28,
179–191~1956!.

2M. R. Stinson, ‘‘The propagation of plane sound waves in narrow a
wide circular tubes, and generalisation to uniform tubes of arbitrary cro
sectional shape,’’ J. Acoust. Soc. Am.89, 550–558~1991!.

3T. Yamamoto and A. Turgut, ‘‘Acoustic-wave propagation throu
porous-media with arbitrary pore-size distributions,’’ J. Acoust. Soc. A
83, 1744–1751~1988!.

4Keith Attenborough, ‘‘Models for the acoustical properties of air-satura
granular media,’’ Acta Acust.~China! 1, 213–226~1993!.

5S. N. Chandler-Wilde and K. V. Horoshenkov, ‘‘Pade´ approximants for
the acoustical characteristics of rigid frame porous media,’’ J. Aco
Soc. Am.98, 1119–1129~1995!.

6J. M. Evans, ‘‘Measuring the pore size distribution of a model granu
material using a water suction method,’’ Working paper/Internal rep
Department of Engineering Mechanics, Open University, October 199

7C. H. Juang and R. D. Holtz, ‘‘Fabric, pore size distribution, and perm
ability of sandy soils,’’ J. Geotechn. Eng. Am. Soc. Civil Eng.112, 855–
868 ~1986!.

8K. V. Horoshenkov, D. C. Hothersall, and K. Attenborough, ‘‘Poro
materials for scale model experiments in outdoor sound propagation
Sound Vib.194, 685–708~1996!.

9M. R. Stinson and Y. Champoux, ‘‘Propagation of sound and the ass
ment of shape factors to model porous materials having simple pore s
geometries,’’ J. Acoust. Soc. Am.91, 685–695~1992!.

10M. Abramovitz and I. A. Stegun,Handbook of Mathematical Functions
~Dover, New York!.

11G. A. Backer, Essentials of Pade´ Approximants~Academic, London,
1975!.

12K. Attenborough, ‘‘Natural noise control,’’ Proceedings of Internation
Congress on Noise Control Engineering, pp. 51–73, Liverpool, Engla
July–August 1996.
1209Horoshenkov et al.: Sound propagation in porous media

bject to ASA license or copyright; see http://asadl.org/terms


