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On Hamiltonian Balanced Dynamics and the Slowest Invariant Manifold
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Department of Physics, University of Toronto, Toronto, Ontario, Canada

(Manuscript received 21 October 1994, in final form 30 June 1995)
ABSTRACT

The concept of a slowest invariant manifold is investigated for the five-component model of Lorenz unt?er
conservative dynamics. It is shown that Lorenz’s model is a two-degree-of-freedom canonical Hamiltonian
system, consisting of a nonlinear vorticity-triad oscillator coupled to a linear gravity wave oscillator, whose
solutions consist of regular and chaotic orbits. When either the Rossby number or the rotational Froude number
is small, there is a formal separation of timescales, and one can speak of fast and slow motion. In the same
regime, the coupling is weak, and the Kolmogorov—Armold-Moser theorem is shown to apply. The chaotic orbits
are inherently unbalanced and are confined to regions sandwiched between invariant tori consisting of quasi-
periodic regular orbits. The regular orbits generally contain free fast motion, but a slowest invariant manifold
may be geometrically defined as the set of all slow cores of invariant tori (defined by zero fast action) that are
smoothly related to such cores in the uncoupled system. This slowest invariant manifold is not global; in fact,
its structure is fractal; but it is of nearly full measure in the limit of weak coupling. It is also nonlinearly stable.
As the coupling increases, the slowest invariamt manifold shrinks until it disappears altogether.

The results clarify previous definitions of a slowest invariant manifold and highlight the ambiguity in the
definition of ‘‘slowness.” An asymptotic procedure, analogous to standard initialization techniques, is found 1o
yield nonzero free fast motion even when the core solutions contain none. A hierarchy of Hamiltonian balanced
models preserving the symmetries in the original low-order model is formulated; these models are compared
with classic balanced models, asymptotically initialized solutions of the full system, and the slowest invariant
manifold defined by the core solutions. The analysis suggests that for sufficiently small Rossby or rotational
Froude numbers, a stable slowest invariant manifold can be defined for this system, which has zero free gravity
wave activity, but it cannot be defined everywhere. The implications of the results for more complex systems
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are discussed.

1. Introduction

The study of balanced dynamics is a central subject
in geophysical fluid dynamics. Originally, the subject
arose from the practical imperative of numerical
weather prediction (e.g. Daley 1991): when raw. ob-
servations are used as initial data for the primitive equa-
tions of motion, unrealistically large high-frequency
oscillations develop during the first hours of integra-
tion. (The observed atmospheric flow, for example as
seen in barograph traces, has comparatively little high-
frequency activity.) It was realized (Charney 1949)
that these excessive high-frequency oscillations are as-
sociated with free gravity waves that are triggered by
errors in the observations. The question then became
how to eliminate or at least control such oscillations.

One approach is to use reduced models of the prim-
itive equations, which represent the slow-time behavior
of the flow on a lower-dimensional manifold in phase
space and thereby filter the high-frequency oscillations:
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such models are referred to as balanced models. Bal-
anced models consist of prognostic equations for
slowly evolving variables, for example potential vor-
ticity, and diagnostic invertibility principles relating the
other variables such as winds, pressure, and density to
the predicted slow variables. These invertibility prin-
ciples are constraints that act to filter the high-fre-
quency oscillations, just as the constraint of incom-
pressibility acts to filter sound waves in the incom-
pressible form of the Euler equations. Examples of
balanced models include the barotropic vorticity equa-
tion, the quasigeostrophic equations, and the balance
equations of Charney (1955).

A second approach, which very quickly replaced the
first, is to use the full primitive equations of motion but
to ‘‘balance’ or “‘initialize’ the initial data such that
excessive high-frequency oscillations do not develop.'
The first initialization schemes were linear; these were
surpassed by nonlinear normal-mode initialization

! This really amounts to a combination of the two approaches, be-
cause the primitive equations are hydrostatically balanced and thus
already filter vertically propagating sound waves.
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(Baer 1977; Baer and Tribbia 1977; Machenhauer
1977), which is still in operational use. Leith (1980)
demonstrated the connection between the quasigeo-
strophic equations and leading-order normal-mode in-
itialization and, together with Lorenz (1980), intro-
duced the concept of the slow manifold.

As defined by Leith (1980) and Lorenz (1980),
the slow manifold is a reduced, nonlinear invariant
manifold in the phase space of dynamical variables
whereon the motion, once initialized, is devoid of
gravity wave oscillations; that is, motion on the slow
manifold remains slow. Balanced dynamics is then
an attempt to describe motion on the slow manifold,
while initialization is an attempt to project the data
onto the slow manifold. The question of the existence
of the slow manifold has been debated ever since its
definition (Errico 1982; Warn 1983, unpublished
manuscript; Warn and Menard 1986; Lorenz 1986;
Vautard and Legras 1986; Lorenz and Krishnamur-
thy 1987; Jacobs 1991; Lorenz 1992; Boyd 1994; Ca-
massa 1995). This debate has been conducted mainly
in the context of low-order models, and we shall con-
tinue in this vein.

The central difficulty has proven to be that of defin-
ing what is ‘‘slow’” and what is ‘‘fast.”” Most investi-
gators have employed perturbation expansions related
to the bounded derivative method ( Kreiss 1979, 1980),
based on the formal separation of timescales that exists
when the Rossby number or the rotational Froude num-
ber is small. It was found that such approaches are gen-
erally asymptotic, and not convergent (Warn 1983, un-
published manuscript; Kopell 1985; Warn and Menard
1986; Lorenz 1986; Vautard and Legras 1986; Lorenz
and Krishnamurthy 1987), and that initialization pro-
cedures based on such approaches generally yield a
nonzero amount of gravity wave activity. This is not
surprising, because even a long-period closed wave-
number—triad interaction in the barotropic vorticity
equation, whose solution can be represented in terms
of elliptic functions, has high-frequency overtones that
do not satisfy the bounded derivative condition (Lorenz
1986) and that can be difficult to distinguish from free
gravity wave oscillations (Errico 1982). These consid-
erations have led to the concept of a ‘‘fuzzy manifold”’
(Warn 1983, unpublished manuscript; Warm and Men-
ard 1986), or a ‘‘slow quasi manifold”’ (Mclntyre
1994), which is regarded as a stochastic layer of vary-
ing thickness in phase space, but relatively thin in the
““fast’’ direction, wherein the gravity wave oscillations
are bounded. The fuzziness of this quasi manifold is
seen to be related to the lack of a precise definition of
a free gravity wave or equivalently to the lack of a
precise definition of slow motion.

Another argument against the existence of a slow
invariant manifold involves an appeal to notions of sta-
tistical mechanics. Errico (1984) and Warn (1986)
have shown that the statistical mechanical equilibrium
of a primitive-equations model involves an equiparti-
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tioning of energy into all degrees of freedom, both vor-
tical modes and gravity waves. Obviously, such a ten-
dency toward energy equipartition works against any
sort of balance. Selective dissipation of gravity waves
could prevent this equilibration; however, Kopell
(1985) showed that an attracting invariant slow mani-
fold (a center manifold) existed only for damping rates
that were unrealistic for the atmosphere or oceans
(Warn and Menard 1986; Lorenz 1986).

Lorenz (1986) introduced a five-component model,
based on a truncation of the shallow-water equations. Its
conservative form represents a nonlinear vorticity triad,
nonlinearly coupled to a linear gravity wave. This model
has since attracted considerable attention, as it represents
what is arguably the simplest possible dynamical system
involving nonlinear slow motion coupled to linear fast
motion. Many investigators have studied the problem of
balance in the strongly forced-dissipative regime; but, as
noted above, this regime is not of obvious relevance to
the atmosphere or oceans. It is arguable that one should
first attempt to understand the nonlinear, conservative
aspects of the dynamics, whose mathematical descrip-
tion is at least known, before trying to parameterize forc-
ing and dissipation for a low-order system. (We would
also note that the practical advances in initialization
methods described earlier were all first developed by
appealing to the properties of the conservative form of
the relevant governing equations.) In this paper we fol-
low Lorenz (1986) and focus attention on the conser-
vative form of his system.

Noting the difficulties with asymptotic approaches
to balance based on a formal separation of time-
scales, Lorenz (1986) proposed an exact approach to
balance for his model, based on periodicity. He first
noted that for any balanced solution, the fast vari-
ables ought to be slaved to the slow variables via a
single-valued slaving relation. He then showed that
any such solution (for this system) must be periodic
in time and defined such solutions as constituting the
slowest invariant manifold. (Periodic solutions ob-
viously lie on an invariant set.) By searching numer-
ically for periodic solutions (which, however, were
not guaranteed to have single-valued slaving rela-
tions), Lorenz mapped out his slowest invariant
manifold for this system.

Yet Lorenz’s analysis raises a number of questions.
In particular, what is the dynamical meaning of Lo-
renz’s slowest invariant manifold? What is its struc-
ture? Why should periodicity be related to slaving?
What is the connection between Lorenz’s manifold and
the asymptotic approaches? Is there [as Lorenz (1992)
suggests ] an inherent contradiction between invariance
and slowness? Does the asymptotic nature of classic
initialization methods merely reflect a failure of those
methods, or does it reflect something more fundamen-
tal? Can one unambiguously identify free fast motion
that is independent of the slow motion? If so, can one
completely eliminate it?
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In this paper we attempt to answer these questions.
We do so by recognizing and exploiting the Hamilto-
nian structure of Lorenz’s (1986) five-component
model. It turns out that for this model the problem of
balanced dynamics falls within the province of Ham-
iltonian perturbation theory. A consequence is that one
may use the Kolmogorov—-Arnold-Moser (KAM) the-
orem, complemented by numerical analysis, to obtain
a geometric definition of a slowest invariant mani-
fold—a subset of Lorenz’s slowest invariant manifold,
it turns out—on which the free gravity wave activity
is unambiguously zero. This manifold is moreover non-
linearly stable: if a small amount of gravity wave ac-
tivity is introduced, it will remain forever bounded. On
the other hand, this manifold is not defined smoothly
throughout the slow phase space but is fractal, though
it is of nearly full measure as the perturbation parameter
goes to zero. Numerical analysis reveals that, as the
perturbation parameter increases, the manifold gets
smaller and eventually disappears. All these insights,
and the understanding of Lorenz’s analysis, arise from
the fact that the slaving manifold is closely related to
the structure of rational and irrational tori in the un-
perturbed system.

The plan of the paper is as follows. In section 2 we
introduce Lorenz’s five-component model and identify
the nondimensional measure of amplitude, ¢, that will
serve as the perturbation parameter. When ¢ < 1, there
is a formal separation of timescales between the slow
vorticity-triad oscillator and the fast gravity wave os-
cillator. The model’s Hamiltonian structure and canon-
ical formulation are provided in section 3, where it is
also shown that the KAM theorem applies in the limit
¢ = 0. Numerical calculations presented in section 4
confirm the existence of invariant tori in a sea of cha-
otic orbits; this allows a precise geometric definition of
a slowest invariant manifold. The slowest invariant
manifold proposed by Lorenz is analyzed as a slaving
manifold in section 5 and compared with our definition.
A comparison between asymptotic initialization pro-
cedures and initialization onto the slowest invariant
manifold is given in section 6. The analysis confirms
that our slowest invariant manifold is completely de-
void of free gravity wave oscillations. In section 7 a
hierarchy of Hamiltonian balanced models is derived,
and the Hamiltonian and so-called classic balanced
models are compared with asymptotically initialized
orbits and with orbits on the slowest invariant manifold.
The implications and limitations of our analysis are dis-
cussed in section 8.

2. Lorenz’s five-component model

Lorenz (1986, hereafter L86) derived the following
nine-component ‘‘primitive equations’’ model:

du;
T = Vi T s

dT (1a)
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dy; -
7)]): =ca;' (a, — a)y;yx — Wi, (1b)
dz;
a7 = Bt (lc)

where {i, j, k} are cyclic permutations of {1, 2, 3}.
The dynamical variables in (1) are the cosine coeffi-
cients of one closed wavenumber triad in a Fourier ex-
pansion of the shallow-water equations. The system de-
scribes the (simplified) interaction between a vorticity
triad with coefficients y; and a gravity wave triad as-
sociated with the divergence u; and the height z; . Here,
a; is the square of the ith wavenumber, ¢ = s[(aa,
+ s + aray) — 3(at + a3 + a3))'"?, go = gHIf*L?,
g is the gravitational acceleration, H the mean depth, L
a characteristic horizontal length scale, and f the Cor-
iolis parameter; time T has been nondimensionalized
by f~'. Geostrophically balanced dynamics are ob-
tained by elimination of the time derivative of the di-
vergence coefficient u; in (1a) and elimination of u;
between (1b) and (1c), giving

dy;
(goa; + 1) d—); = goc(ar — a)Y;Yr. (2)

The system (1) has two invariants: the energy

E=%Z(goa,~(u? +yH) +z) =Y E

and enstrophy
Z = 2 a; Ei .

This is in contrast to the complete triad model for the
shallow-water equations based on a cosine expansion
only, without the further simplifications that lead to
(1), which has no energy and enstrophy invariants.

The five-component model results if (1) is replaced
by (2) for wavenumbers 1 and 2 but kept for wave-
number 3. Further simplifications, and restricting atten-
tion to the case a, > a, > aj, then yield

dx,

— = —XX3 + bx>xs,

dr 2X3 2X5

=2 = xx — bxyx

dt 1A3 145,

o _

dt—' 142,

ax _ X

d €’

dxs x4

—=—+5b . 3
dt . X1 X2 3)

L86 derived (3) without introducing the parameter e
(his form is recovered on taking ¢ = 1); that is, his
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equations were nondimensionalized but not scaled.
Apart from some factors involving the wavenumber pa-
rameters g;, which we take to be of order unity, the
dependent variables x; in L86’s form of (3) all have
nondimensional amplitudes, that are formally of or-
der e = bRIWT + b2. In (3), b = 1/gea, = fIxigH
is the rotational Froude number, with x being the di-
mensional wavenumber of the gravity wave compo-
nent, and R = U/fL is the Rossby number, with U
being a characteristic velocity scale. We have explicitly
accounted for the amplitude dependence of the vari-
ables by scaling the amplitudes by ¢ relative to L86.
We also scale time ¢ by ¢ ' relative to L86; in terms of
the original dimensional variables, this means that time
is nondimensionalized by the advective timescale L/U.
The system (3) describes the interaction between a
vorticity triad with associated coefficients x,, x,, x; and
a gravity wave mode associated with coefficients of
divergence x, and geostrophic imbalance xs. For b = 0
the system decouples into the nonlinear oscillation of
the vorticity triad (x,, X2, x3), which can be expressed
in terms of elliptic functions and has a frequency of
O(x3) = O(1) [dimensionally O(U/L)], and the har-
monic oscillation of the variables (x4, x5) with fre-
quency 1/¢ [dimensionally fv1 + (gHx?*/f?)]. The
ratio of the two frequencies is O(¢). In the small-am-
plitude limit ¢ — 0, we therefore have a formal sepa-
ration of timescales with ‘‘fast’’ gravity wave oscilla-
tions and ‘‘slow’ vorticity-triad oscillations. The
small-amplitude limit can be approached in two
obvious ways: (i) with R finite and b — 0 and (ii) with
b finite and R — 0. Case (i) corresponds to the low
Froude number scaling of Charney (1963), and case
(ii) to the low Rossby number quasigeostrophic scaling
of Charney (1948). Both cases allow a meaningful def-
inition of balanced motion in the full shallow-water
equations (e.g., Spall and McWilliams 1992).

3. Hamiltonian structure and canonical formulation

The Hamiltonian structure of (3) turns out to be cru-
cial in the identification of a slowest invariant manifold,
in the construction of symmetry-preserving balanced
models, and in performing symplectic numerical inte-
grations. Thus far we have been unable to find a Ham-
iltonian structure for (1).

The dynamical system (3) may be represented in the
Hamiltonian form (Bokhove 1993)

dF(x)

2 W H]

4

for functions of state F(x) with variables x = (x,, x,,
X3, X3, X5 ), Hamiltonian

H = %(x% +23 +x2+x2+x3),  (5)
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and generalized Poisson bracket [ -, -] defined by
6F 0G 0G
i7.01= 505 5e)
a_Fx 96 _, 96
8xZ ! 6x3 ax$
LOF(,9G_ 8G\ 10FG
Ox; z ox, ' Ox, € Ox4 Oxs
OF 0G BG 1 0G
— 1 - -— 6
+ 8)65 ( bx2 Ox X\ bXI 6X2 € 6)@;) ( )

for functions F(x) and G(x). The bracket (6) is skew
symmetric and obeys Leibniz’s rule and Jacobi’s iden-
tity [f, [g, hl] + [g, [h, f1] + [k, [f, 1] = O [for
the mathematical background see L1ttlejohn (1982)].
The Casimir function C = 3(x? + x32) arises immedi-
ately from (6) as the solution of {C, G] = O for all
functions G. The invariance of C in time is guaranteed
by construction and may be verified directly from (3).
The vorticity-triad dynamics for b = 0 has two inde-
pendent Hamiltonian structures, in the sense that the
Casimir for each bracket is different, but in proving
Jacobi’s identity with & # 0 only one form of the
bracket survives. In appendix A we explain the con-
nection between the uncoupled vorticity-triad dynam-
ics of (3) and rigid-body rotation. The Hamiltonian H'’
and Casimir invariant C are linearly related to analogs
of the energy E and enstrophy Z of the simplified and
truncated shallow-water system (1).

The existence of a Casimir invariant suggests a re-
duction to four variables with the constant Casimir pa-
rameter C, since d C/dt = 0. Making the transformation

=v2C cosé, x, = 2C sing yields the system

d
7‘:’ = x; — bxs, (7a)
Ay
- = C sin2¢, (7b)
dX4 _ Xs
&t €’ 7e)
dx
s _ 5 4 bC sin2¢. (7d)
dt €

The Hamiltonian may be rewritten as
r_ 3~ 1 1.2 2 2
H —-2-C=H= —ECCOSZ(b +§(x3 + x5 + Xx5).

(8)

The system (7) then has the Hamiltonian H and the
reduced bracket



OF 0G  OF BG) <8F 9G
( —————— +b

O Ix;  Ox; O 0xs O
_oF00)  1(0F00_0F6)
6¢ ax_s BX5 8x4 6X4 6x5 ) )

A variational formulation of the dynamics (7) is pro-
vided by Hamilton’s principle

6f —(¢—ebx4)%+ex49-5-—eH dr =0,
dar dr

(10)

subject to the endpoint conditions 6x; = 0 = dxs, where
the dynamics has been expressed on the fast timescale
T = tle.

The following canonical formulation arises from
Hamilton’s principle (10): ¢, = ¢ — ebxy, p) = X3, @»
= Vex,, Dy = —exs, with the Hamiltonian

ﬁE€H=<E%p%

- -;-e«C cos2(q, + bVeq,) + %(P% +43). (11)

The corresponding canonical equations are

i.‘ﬂ BH e

dr Bp P

dj H

a _ _ 6_ = —eCsin2(q, + b\/ng),

d’T' 8q1

dg: _OH _

dar op, >

dj oH

f = =5 €%bC smz(q. + biegy),

(12)

with g; the generalized coordinates and p; the gener-
alized momenta. This is a two-degree-of-freedom ca-
nonical Hamiltonian system. When b = 0, the two con-
jugate pairs decouple, and the system is integrable: (q,,
p1) corresponds to the vorticity triad and is (for given
C) equivalent to the nonlinear pendulum, while (g,
p») corresponds to the gravity wave and is equivalent
to the harmonic oscillator. Thus, L86’s primitive-equa-
tions atmosphere corresponds to a pair of coupled os-
cillators: one nonlinear and the other linear. In the
small amplitude limit € — 0, the frequency of the non-
linear oscillator goes to zero (on the fast timescale),
while the frequency of the linear oscillator remains fi-
nite. This is probably the simplest possible dynamical
system for examining the interaction of fast and slow
modes, which may help to explain its lasting interest.
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Since balanced dynamics concerns the behavior of
the system (12) when ¢ <€ 1 (i.e., when there is a sep-
aration of timescales, so that the concepts of “‘fast’
and ‘‘slow’’ are meaningful), and since the system
(12) is integrable when ¢ = 0, it is evident that for this
system the problem of balanced dynamics falls within
the province of Hamiltonian perturbation theory (e.g.,
Arold and Avez 1968; Arnold 1978; Arnold et al.
1988). Since the two uncoupled oscillators are integra-
ble, each may be written in action-angle variables (7;,
8,) i = 1, 2] (e.g., Arnold 1978), where the actions
I; are constants of the motion and where the angles 6,
evolve in time according to 6,(z) = w;t + B, with §;
being constants of integration and w; (I;) the frequen-
cies. Note that action-angle variables are not defined at
a separatrix and that different action-angle representa-
tions are required on either side of a separatrix.

The total (i.e., perturbed ) Hamiltonian (11) may be
rewritten (except at the separatrix H, = 1C) in terms
of these action-angle variables as
H = Hy(L) + eH,(I)) + €*bH,(I;, 6;3 b,¢), (13)
where H, = 3(p} + q3}), H, = 5p} — 3C cos2q,, and
H, is periodic in the angles 6;. The unperturbed Ham-
iltonian Hj, is degenerate: it depends only on I,. The
perturbation at O(e) removes the degeneracy but does
not destroy integrability: the action—angle structure now
involves both I, and I,. Moreover, the ‘ ‘intermediate’’
Hamiltonian H;,, = HO(IZ) + eH, (1)) is isoenergetically
nondegenerate (for H, # 3 1), in the sense that the ratio
of the frequencies w,/w, varies as either one of the
actions is varied on a constant energy surface this con-
dition may be written as

azHint azHim aHim
or? oL o1, 9l
3 2 int 6 2PIim 8fIint
det ' *=0 14
“Nonor, e ol (4
a[{int 6H int 0
oI, oL

(e.g., Amold et al. 1988, chap. 5). The consequence
of isoenergetic nondegeneracy is that the KAM theo-
rem applies (op. cit., chap. 5.3, theorem 14): for small
enough ¢, most of the phase space is filled by invariant
tori that are close to the invariant tori (I, I,) of the
intermediate system. Hence, we expect the generic pic-
ture of a perturbed, nearly integrable Hamiltonian sys-
tem: most of the original tori survive for a sufficiently
small perturbation and on these tori the solutions re-
main regular, but there are regions of chaos around
resonant tori, whose measure goes to zero (in this case
exponentially fast, like exp[—c/¢]) as € — 0. Indeed,
Camassa (1995) has proven the existence of chaos in
this system by using a Melnikov analysis in the vicinity
of the separatrix.
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Hereafter, we will investigate the four-component
model (7) rather than the five-component model (3).
For given values of the energy H and the Casimir pa-
rameter C, the accessible phase space is three-dimen-
sional. The topology of regular orbits corresponds to a
two-torus (Fig. 1a) around which the orbits wind them-
selves (Fig. 1b). The winding number around the two-
torus can be either rational or irrational. The two-di-
mensional invariant tori partition the three-dimensional
accessible phase space, so that the phase space on one
side of the invariant surface is not accessible from the
other side of the invariant surface. The invariant tori
thus restrict the chaotic orbits to the phase space sand-
wiched between them. Energy-conserving balanced
motion has only one degree of freedom, and balanced
orbits are therefore regular. It follows that chaotic or-
bits necessarily involve both low- and high-frequency
degrees of freedom and are therefore unbalanced.

4. Regular and chaotic orbits

In this section we explore the phase space structure
of regular and chaotic orbits by numerical means. This
leads to a geometric characterization of a slowest in-
variant manifold.

Numerical integrations of (7) are performed with a
fourth-order explicit symplectic integrator (Yoshida
1990) applied to (12), which preserves the phase space
volume dg; dp;; control runs have been made with an
implicit fourth-order Gear’s algorithm ( Gear 1971) and
by using different time steps. Symplectic integration
preserves the symplectic structure of the dynamics by
defining each time step as a canonical transformation.
The implicit nature of Gear’s algorithm guarantees that
the energy does not increase monotonically, as it would
under integration by a fourth-order Runge—Kutta
scheme, but oscillates around its constant analytical
value. The symplectic integrator is about 10 times fas-
ter than Gear’s algorithm, and the variations in the en-
ergy are smaller.

Figure 2 shows pairs of Poincaré sections for in-
creasing values of the rotational Froude number b, for
fixed R = 1 and C = 1. The upper member of each
vertical pair is the section in the ‘‘slow’’ variables ¢—
X3, and the lower member the section in the ‘‘fast”
variables x,— xs. The two sections contain the same sets
of orbits; since a Poincaré section is taken at a fixed
energy, this means that lower-energy curves in the ¢—
x; plane correspond to higher-energy curves in the x,—
xs plane, and vice versa. The leftmost pairs correspond
to the unperturbed case b = 0: the phase portraits of
the nonlinear pendulum and the harmonic oscillator
emerge. Three two by four sets of panels are shown,
corresponding to different energies: (i) H = 1, (ii) H
= 0.5, and (iii) H = 0. These values of H are chosen
so that when the fast motion is of small amplitude the
slow motion will be, respectively, outside, around, or
within the separatrix of the nonlinear pendulum.

BOKHOVE AND SHEPHERD

281

a

Fic. 1. a) The two-torus. b) The individual regular orbits or
trajectories wind their way around the two-torus.

Moving to the right in each set of panels, the per-
turbation b, and therefore ¢, increases. For b = 0.1, the
structure of the irrational invariant tori survives in ac-
cordance with the KAM theorem. But as b increases
further, the tori begin to break up over significant parts
of the phase space, being replaced by chaotic regions
(the sea of dots in each section). Clear areas are pre-
sumably filled with tori. For lower energies the breakup
of the tori as b increases is less severe. Secondary tori
(island structures ) emerge in some of the sections; they
arise from the breakup of rational tori. All this behavior
is, of course, quite generic for perturbed Hamiltonian
dynamical systems.

Figure 3 presents the same kind of picture, but for
increasing values of the Rossby number R, for fixed b
= 0.5 and C = 1. Again the three two by four sets of
panels correspond to H = 1, H = 0.5, and H = 0. The
same complex structure of regular and chaotic orbits is
seen.

The finite-time Liapunov exponents of two orbits,
one chaotic and one regular, among those of Figs.
3(i)c,d, are given in Fig. 4a. The persistent phase space
stretching around the chaotic orbit is implied. In Figs.
4b,c, power spectra of the departure from the mean of
x; are shown for the same two orbits. In the chaotic
case (Fig. 4b) one sees a broadband spectrum; in the
regular case (Fig. 4c) one sees a finite set of peaks
corresponding to two fundamentals and their overtones.

A consideration of the phase space geometry for this
system offers a compelling definition of a slowest in-
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FIG. 2. Pairs of Poincaré sections; the upper panel of each pair corresponds to the section in the *‘slow’’ ¢—x; plane
when x, = 0 and X, < 0, and the lower panel to the section in the ‘‘fast’” x,—xs plane when ¢ = 0 and¢ < 0. Three
two by four sets of panels are shown, corresponding to three decreasing energies as one moves down: (i) H = 1, (ii)
H = 0.5, and (iii) H = 0. In each set the rotational Froude number b increases as one moves to the right: (a) and (b)
b=0,(c)and (d) b = 0.1, (e) and (f) b = 0.5, and (g) and (h) b = 1. In all cases C = 1 and R = 1. The solutions are
for 3750 time units with a time step of At = 0.0025 (i.e., 1.5 X 10° time steps).
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FiG. 3. As in Fig. 2 but for increasing Rossby number R: (a) and (b) R = 0.1, (¢) and (d) R = 0.5,
(e) and (f) R = 1, and (g) and (h) R = 10. In all cases b = 0.5.
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Fic. 4. (a) Finite-time Liapunov exponents, as functions of time,
of a regular and chaotic orbit taken from the solutions in Fig. 3(i)c,d.
(b) and (c) Power spectrum of the departure from the mean of x; over
3000 time units for the (b) chaotic and (c) regular orbit; the ordinates
of (b) and (c) are scaled logarithmically.

variant manifold. In the uncoupled case b = 0, it is
clear that the slowest invariant manifold is defined by
setting the fast action I, = 0 for any choice of the slow
variables; this corresponds to the center, or core, of the
tori shown in the x,— x5 cross section [e.g., Fig. 2(i)b],
which has zero free gravity wave activity. The question
then arises: Is it possible to define corresponding core
solutions J, == 0 in the new (i.e., perturbed) action-
angle variables (J;, ;) that are smoothly related to the
original core solutions I, = 0 as € — 07 If this could be
done for any choice of the slow variables, then we
would have a well-defined invariant manifold that
would contain no free fast motion and would arguably
be the slowest invariant manifold. Moreover, it would
be nonlinearly stable: small disturbances from the core
would stay small, trapped by an invariant torus of small
amplitude in the J, direction—the amplitude of the free
fast motion would be bounded. The KAM theorem
guarantees that, for sufficiently small perturbations, one
can in fact construct new action-angle variables over a
significant part of the phase space, which are smooth
deformations of the original variables; in other words,
most invariant tori survive and are merely smoothly
deformed. The preservation of the topology of the un-
perturbed dynamics, for most initial conditions, means
that it is indeed possible to define core solutions J, = 0,
for sufficiently small ¢, that are smoothly related to the
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original core solutions I, = 0.2 The surviving invariant
tori that can be used to define the core solutions are
defined only for irrational frequency ratios [ the rational
tori are resonant and break up according to the Poin-
caré—Birkhoff fixed-point theorem (Arnold and Avez
1968)], which means that the slowest invariant mani-
fold J, = 0 is not continuous in the slow actions.
Rather, it is the complement of a Cantor-like set and
has nearly full measure. (The degenerate isoenergetic
version of the KAM theorem, which applies here, says
that the fraction of phase space where the tori are not
defined is exponentially small in the perturbation pa-
rameter.) For practical purposes then, J, = O effectively
defines an invariant manifold wherever the tori struc-
ture remains intact.

We can now reexamine Figs. 2 and 3 to see whether
these core structures can be identified. Such core struc-
tures would be seen as single dots in the center of the
primary tori in the x;— x5 plane. In Fig. 2 the cores are
clearly evident in each case for b = (.1 but for larger
b they are clearly identifiable only for the case H = 0.
Of course, what appear to be dots in the figures are
actually tori of exceedingly small radius in the x,— x5
plane, the size of which seems to be limited only by
numerical precision (about 10~'?). Since the oscilla-
tions in the fast plane are close to being linear (i.e.,
with frequency independent of amplitude to leading or-
der in €), the resonance condition will be essentially
independent of the amplitude of the fast motion. This
means that we can identify the dots with true cores J,
= 0. As the perturbation increases and the chaotic
regions become more extensive, it becomes increas-
ingly unlikely that a core can be identified for a given
choice of the slow variables. In Fig. 3 the same con-
clusions generally apply, although chaos appears to set
in more drastically with R than with b. This is not sur-
prising in light of (13): the perturbation is O(b*'?)
relative to H,, in the small-b limit but only O(R'?) in
the small-R limit.

Taken together, the KAM theorem and the numerical
analysis demonstrate that for small but finite b or R one
may define a slowest invariant manifold, which will
cover most, but not all, of the slow phase space. It is
not a simply connected manifold, because it is not con-
tinuous in the slow actions, but it is of nearly full mea-

% Since the transformation between the original variables and the
action-angle variables in the unperturbed problem has a singularity
at I, = 0, we leave open the question of whether the mathematical
existence of such core solutions in the perturbed problem is guaran-
teed by the KAM theorem. What is guaranteed is the preservation of
a topological structure that allows one to define the limit J, = 0: the
smoothness of the transformation to new action-angle variables guar-
antees that the nesting order of different tori cannot change. Since
for practical purposes one is only interested in whether J, can be
made arbitrarily small, to machine accuracy for example, we use J,
= 0 throughout the paper as a shorthand for the limit J, = 0, with
the above caveat in mind.
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sure. We would not wish to call it a *‘slow manifold,”’
for two reasons. First, even the uncoupled slow motion
has high-frequency overtones. Second, it is possible
that the transformation to new action-angle variables,
although smooth, will introduce some fast motion in
the original variables. This possibility will be explored
in section 6. The set of core solutions J, = 0 is, how-
ever, devoid of free gravity waves and is arguably the
slowest invariant manifold.

It should be noted that there are secondary core struc-
tures that arise in the perturbed system; a good example
is provided by Fig. 2(i)h. These are associated with
islands that arise from the breakup of rational tori. Such
secondary core structures are described by action-angle
variables that are not smoothly related to the original
action-angle variables and thus would be difficult to
reach by perturbative methods; moreover, they involve
a nonzero winding in the x,— x5 plane and thus may be
regarded as containing a nonzero amount of free fast
motion.

5. The slaving manifold

In this section we connect our geometric definition
of a slowest invariant manifold—namely, the cores of
the primary invariant tori with J, = 0, which are
smoothly related to the original cores I, = 0 as e » 0—
with that proposed by L86. It turns out that L86’s re-
sults can be readily understood in terms of the Hamil-
tonian structure of the dynamics.

We may anticipate the existence of an invariant
manifold by introducing a slaving principle (Kreiss
1979, 1980; van Kampen 1985; Warn et al. 1995),
which entails that the fast variables x4, x5 are assumed
to be (possibly multivalued) functions of the slow vari-
ables ¢ and x,; that is,

X2 = U, x3; C), x5=Us(d, x3;C). (15)

Conservation of energy then ensures that the slaved
motion is integrable by quadratures. In principle, we
would then obtain an invariant slaving manifold in
phase space. There is, however, no guarantee that it
would be devoid of gravity waves.

In section 6 we solve the slaving relations approxi-
mately by expanding them in a power series in ¢; this
corresponds to well-known initialization techniques in
numerical weather prediction (Lorenz 1980, L86). In
the remainder of this section we look for exact slaving
solutions. That such solutions exist is clear from the
presence of regular orbits in the numerical solutions
(section 4). Eliminating ¢ by conservation of energy,
the slaving relations can be written

xs = Us(x3; C, H), x5 =Us(xa; C, H). (16)

Substitution of (16) into (7) and further elimination of
¢ gives the so-called (Lorenz 1980) *‘superbalance
equations’’:
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e °  dt -t Ox3
X [C? — (32 + U? + U2 — 2H)*]'?,
Yy, = i‘%é T B[C? — (X3 + U2 + Ut — 2H)*]'"?
€

(C? — (x}+ Ui+ U:-2H)*1'"*. (17)

Combining these two equations and making a change

of variables to U, = V2U cosé, Us = V2U siné, x = X3,
yields after some algebra

do 1 ,  (dUY]'"?
a2 (&) ]

1 1 172
+Z[cz—(x2+2U—2H)2] » (18a)
au L, 1
dx? €

2Ub% — (dUldx)* '
[02 P r2u—2my) O (8D
Equations (18a,b) have two solutions for b = 0: (i) U
= 0 and (ii) U = E,, with @ given by

2 1 x2 — 2K,
=——" [ F[=cos™!| Z2—-L)
o e(2E,+C)”2[ <2°°S ( C ) m)

- K(m)] +3.(19)
where F(-; -) is the elliptic integral of the first kind,
K(-) is the complete elliptic integral of the first kind,
m = 2C/(C + 2E,), and E; and E, are the energies in
the uncoupled nonlinear and linear oscillators, respec-
tively. The n/2 and K(m) terms in (19) arise from
imposing the boundary condition x, = 0 when ¢ = 0,
as will be justified shortly. These solutions for b = 0
merely reflect the action-angle structure of the uncoup-
led, integrable system; obviously, there can be no real
dynamical slaving when b = 0. The case U = 0 cor-
responds to I, = 0, that is, zero gravity wave amplitude.
The case U # 0 corresponds to expressing 6, in terms
of 8, (and I,) through the elimination of time.

It is clear that only slaving solutions with I, = 0 can
reasonably be regarded as slow solutions. The other
slaving solutions contain free fast motion, which is
completely independent of the slow motion. When the
ratio of the slow to the fast periods is an integer, then
the fast solution is a harmonic of the slow solution and
satisfies a single-valued slaving relation. When this ra-
tio is a noninteger rational number, then the slaving
relation is multivalued but with a finite number of
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branches. Both of these cases correspond to rational
tori. But the most likely scenario is that the ratio is
irrational, in which case the slaving relation has a dense
infinity of branches: the orbits densely fill a two torus
in the four-dimensional phase space, and for a given
value of the slow variables there is a continuous infinity
of fast variables, which may be associated with it. In
this case the concept of slaving would appear to lose
any significance.

L86 argued that one should restrict attention to sin-
gle-valued slaving relations. For & = 0 these include
all tori (rational or irrational) with I, = 0 and all ra-
tional tori with I, # 0 having integer resonances w,/w,
€ Z. He then proposed such solutions as the definition
of the slowest invariant manifold in the case b # 0. By
an appeal to the discrete symmetries of (7), L86
showed that all single-valued slaving solutions must be
periodic in time. He then solved for periodic orbits by
an iteration procedure. [ Note, however, that although
periodic orbits must be slaved in the sense of (15) they
need not correspond to single valued slaving relations.]
We have implemented 1.86’s algorithm: Figs. 5a,b
show x5 as a function of ¢ when ¢ = x, = 0 for fixed
values of x; and with C = 1. The dashed lines corre-
spond to b = 0, and the continuous lines or dots to b
= 0.5. In Fig. 5a we have taken x; = 1/Y0.405; the
associated orbits lie well outside the separatrix of the
nonlinear pendulum [cf. Fig. 2(i)a]. This figure cor-
responds to L.86’s Figs. 4 and 5. In Fig. 5b we have
taken x; = v2.04; the orbits now lie close to the separa-
trix. For b = 0, the horizontal dashed line x; = 0 shows
the slow slaving manifold I, = 0 of the uncoupled sys-
tem, while the vertical dashed lines are the rational tori
with I, # 0 for which the frequency ratio w,/w, is an
integer. For b = 0.5, the lines composed of dots show the
complex character of the siaving manifold. The mult-
valued nature of x; is especially evident in Fig. 5b.

The interpretation of Fig. 5 becomes clear by ap-
pealing to Hamiltonian perturbation theory. Since the
dashed vertical lines correspond to rational tori, they
break up under the perturbation. On the other hand, in
the resulting band of chaos one can still find isolated
stable and unstable periodic solutions. This follows
from the Poincaré—Birkhoff fixed-point theorem (e.g.,
Arnold and Avez 1968). However, these new periodic
solutions will have a high-frequency time dependence,
which is associated with the original resonance. The
dashed horizontal lines correspond to the core solutions
L, = 0 of the uncoupled system, including the cores of
both rational and irrational tori. Under the perturbation,
most of the irrational cores will survive and moreover
will be close to their original location. Since these so-
lutions are just those described at the end of the pre-
vious section, we can see that our slowest invariant
manifold is a subset of the slowest invariant manifold
of L86. It is clear from Fig. 5 that for smali ¢ the hor-

. izontal dashed line corresponding to I, = 0 deforms to
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FiG. 5. The slowest invariant manifold of periodic orbits found
using L86’s algorithm, showing xs vs ¢ when ¢ = x, = 0 for fixed
values of x; and with C = 1 and either b = 0O (the dashed lines) or

b = 0.5 (the continuous lines or dots): (a) x; = 1/0.405; (b) x;

= y2.04. Four points are marked by circles in (a) for later reference.
Note that the set of dashed lines represents all integer fractions of the
fundamental and is therefore incomplete; to the left of the leftmost
one there is an infinity of lines, accumulating at € = 0.

a quasi-horizontal apparently continuous curve, which
is tangent to the horizontal dashed line in the limit € —
0. However, we know that the quasi-horizontal curve
cannot really be continuous, because it must be punc-
tuated by resonances—and not only the pure integer
resonances corresponding to the vertical dashed lines
but all resonances. In other words, the slowest invariant
manifold represented by the quasi-horizontal curve
cannot be defined for a dense set of ¢’s corresponding
to all the rational numbers. Of course, the rational num-"
bers have zero measure relative to the irrational ones.
As one approaches ¢ = 0, the density of the resonances
becomes ever greater; but their order also increases
(i.e., wy/w, gets larger), which means that more of the
surrounding invariant tori survive the perturbation. And
in the limit ¢ = 0, we know from the KAM theorem
that the fraction of phase space that is filled with non-
resonant tori approaches unity exponentially fast in e.
Thus, for practical purposes the slowest invariant mani-
fold is well defined for sufficiently small (but nonzero)
€. As € increases, however, the resonances become less
frequent but much stronger; this is why the curves start
to diverge in Fig. 5a. The calculation shown in Fig. 5b
is deliberately performed close to the separatrix, where
we expect the resonances to appear for much smaller
¢, as is indeed observed.
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FIG. 6. Pairs of Poincaré sections, defined as in Figs. 2 and 3, of the phase space surrounding the four orbits denoted by circles in Fig.
5a. The pair (a) and (b) corresponds to the small-¢ orbit, and the sequence of pairs (c) and (d), (e) and (f), and (g) and (h) corresponds to
increasing values of x; along the larger-e branch in Fig. 5a. In the sections these four orbits are denoted by crosses.

It is interesting to see exactly where, in the Poincaré
sections, L86’s periodic solutions reside. In Fig. 6 we
plot Poincaré sections that include the four points
marked by circles in Fig. 5a; those orbits are marked
by crosses in Fig. 6. The orbit corresponding to the
point with small € evidently lies in the core J, = 0 of
the primary tori and is therefore part of the slowest
invariant manifold. The orbit corresponding to the
lower point of the larger-e branch in Fig. 5a is seen to
lie within a sea of chaos, while the two upper points
lie at the cores of visible island structures. Whether
these cores are smooth deformations of the original
core I, = 0 is not at all obvious. The point lying in the
chaotic sea turns out to be numerically stable; in other
cases, however, we found that L.86’s algorithm con-
verged (for a convergence threshold of 10~'2) to so-
lutions that appeared to be unstable in the time inte-
grations.

6. Slaving and initialization

After substitution of the slaving ansatz x, = U,(¢,
x3) and x5 = Us(¢, x3) introduced in section 5 into (7),
the superbalance equations result:

du;

1 .
- Us + bC sin2¢ = dr

_ v,
-

In section 5 we tried to find exact solutions of (20)
by eliminating ¢ using conservation of energy. Here,
we pursue a different strategy, obtaining approximate
and smooth solutions of (20) by expanding the slav-
ing relations in a geries in € as U, f,o) + eUi”
+--and Us = U§°) + 6U§” + -+ -, To leading order,
we find U, = 0 = Us, and at the next order U,
—ebC sin2¢ and Us = 0. (In appendix B we give
the solutions up to the fourth order in ¢.) Higher-
order solutions are found by expressing the nonzero
terms U™ and U as sums of products
A ,C 2 sin®'(2¢) cos?(2¢)x§ and AL, C*o
sin(2¢) cos’2(2¢ ) x5, respectively; A® and Al are
coefficients depending on b; i), i,, i, are integers;
and i, is given in terms of (%, i,, i,). We have iter-
atively constructed higher-order slaving relations by
calculating all unknown coefficients A and A in
this expansion to 40th order and could proceed be-
yond this if desired. As a check, the algorithm repro-
duced the column labeled BT (Baer—Tribbia initial-
ization) in Table 3 of L86.

(xs — bUs) — 9Us Csin2¢. (20)
3x3
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FiG. 7. Part of }he composite Poincaré sections in the x,—x; plane
when ¢ = 0 and ¢ < O for asymptotic initializations of varying order
in €; the numbers from 0 to 16 denote the order of the asymptotic
initialization. The point marked C denotes the L86 periodic orbit
initialization. The abscissa is x, X 107% the ordinate is (xs
— 0.01260708) X 10*. The initial values of ¢ and x; are the same in
all cases. The parameter values are R = 0.2, b = 0.5, and C = 1, with
At = 0.0025 over ~1250 time units.

*‘Classic’’ balanced models follow upon substituting
such approximations to x; = U,(¢, x3) and x5 = Us(¢,
x3) into (7a, b); namely,

= x; — bUs(¢, x3), (21a)

(21b)

followed by a truncation to the required order in €. Gen-
eralizations of this systematic procedure to construct
balanced models for partial differential equations can
be found in Warn et al. (1995). The procedure does
not guarantee preservation of the conservation laws of
the full system (7) unless the slaving relationship (20)
is exact. Second-order ordinary differential equations,
however, cannot exhibit chaotic behavior. Moreover,
the stable fixed point of (21) remains (neutrally ) stable
up to at least the fourth order in ¢. Hence, we expect
that the approximate forms of (21) probably have an
invariant, but phase space volume conservation and the
preservation of Hamiltonian structure are not expected.

To continue the exploration of phase space, we ex-
amined composite Poincaré sections of orbits (of the
full system) initialized by the series approximations of
the slaving relations to various orders. Figure 7 shows
a blowup of a section in the x,— x5 plane (the fast vari-
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ables) for initializations up to 16th order, for b = 0.5
and R = 0.2 [so ¢ = 1/(5v5)]. Here, the initial values
for the slow variables are ¢ = 0 and x, = V2.04 ,asin
Fig. 5b, which lies just outside the separatrix. The ini-

.tial values of the fast variables x, and x5 are determined

by the different initializations, from leading order up
to 16th order in the asymptotic case (the numbers de-
noting the order of the initialization), and by L86’s
algorithm (denoted by C in the figure). Evidently, the
asymptotic initializations are landing on tori with non-
zero J,. The asymptotic nature of the initialization pro-
cedure is reflected in the fact that the optimal initializa-
tion is the 12th-order one, after which the procedure
begins to diverge. In contrast, L86’s initialization finds
the core of the torus (the only limit to the precision of
this statement being numerical). So in this case at least,
the slowest invariant manifold is precisely defined even
though € is nonzero. (We have reproduced these results
for a variety of other initial values of x;, both inside
and outside the separatrix.) This underscores the point
made by L86 that the convergence or nonconvergence
of a particular algorithm has nothing to do with the
existence or nonexistence of a slow manifold. (Recall
that even when invariant tori exist the standard Ham-
iltonian perturbative approximation procedures tend to
diverge; yet this does not preclude the possibility of
constructing a convergent approximation. Indeed, this
is precisely how the KAM theorem is proven.)

Figure 7 suggests that the asymptotic initializations
contain a nonzero amount of free gravity wave activity
whereas the core solution contains none. This is veri-
fied by a computation of power spectra of x, for the
solutions corresponding to the 10th and 12th order ini-
tializations, and the core solution, shown in Fig. 8. The
most noticeable feature of the power spectra is a dom-
inant low-frequency peak with strong overtones, vir-
tually identical in all three cases. This structure is the
spectrum of the slow dynamics, essentially that of the
elliptical functions. (It does not seem to be much af-
fected by nonzero b.) Among the overtones, one can
detect a small peak at w = 1/e ~ 11.18 in Fig. 8a,
which decreases in Fig. 8b, and disappears altogether
in Fig. 8c. This is the free gravity wave signal whose
amplitude corresponds to the radius of the circles in
Fig. 7. To further illustrate that this is the case, a time
series of the difference in the value of x, between the
12th-order initialized solution and the core solution is
plotted in Fig. 9. One clearly sees an oscillation with
period 27e =~ 0.56. That the free gravity wave has truly
zero amplitude (within numerical limitations) in the
core solution is easily seen as follows: since the gravity
wave frequency does not correspond to an overtone of
the slow periodic motion (Fig. 8), if there were any
amplitude at the gravity wave frequency, then the tra-
jectory would have to show up either as a curve or as
a set of points in Fig. 7 (depending on whether the fast/
slow frequency ratio was an irrational number or a non-
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FiG. 8. Power spectra of x, for solutions shown in Fig. 7 initialized
by (a) the 10th-order asymptotic scheme, (b) the 12th-order asymp-
totic scheme, and (c) the L86 scheme. Among the overtones of the
slow dynamics one can see a free gravity wave peak at w ~ 11.18,
which decreases between (a) and (b), and disappears altogether for
(c). The power spectra are calculated from solutions that extend over
~950 time units, corresponding to 200 periods of the L86 solution.

integer rational number) but not as a single point
(within the numerical limitations).

Figure 10 shows a logarithmic plot of the amplitude
of the gravity wave activity, using similar sections as
in Fig. 7, of the optimal asymptotic initialization—the
order changes for different e—versus 1/¢, for fixed
initial values of ¢ and x;. For the smaller values of ¢
we were forced to reduce the time step considerably.
The amplitude decreases as € — 0, reaching the com-
putational limit for the smallest value of e. The results
confirm the asymptotic nature of the classic initializa-
tion procedure: for fixed ¢, there is a minimum nonzero
amount of fast motion, but this amount decreases as ¢
decreases. The exponential dependence of the ampli-
tude on 1/¢ agrees with Lorenz and Krishnamurthy
(1987), who found a dependence of the form exp(— =/
2¢). The slope of —1.07 in our graph is considerably
shallower than — /2. However, the results are not
strictly comparable; Lorenz and Krishnamurthy (1987)
considered the fixed point at the separatrix, where
chaos is strongest, and used only a first-order initializa-
tion.

There are two important points to be made here. The
first is that when the structure of the primary invariant
tori persists then a core solution J, = 0 exists and can
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F1G. 9. Time series of the difference in the value of x, between the
solution corresponding to the 12th-order initialization and the core
solution of Fig. 7.

be found numerically. [ We have used L86’s algorithm
to find it here, but it should be cautioned that this works
only for an initial condition with sin2¢ = 0. In a general
initialization problem, with given sin2¢ # 0, L86’s al-
gorithm could not be used, and one would have to find
another convergent perturbative approach (e.g. Bar-
anger et al. 1988; Davies et al. 1992).] This is an im-
portant conceptual point, because it seems to be a com-
mon belief that free gravity wave motion cannot be
completely eliminated in this system and that the min-
imum gravity wave activity found by classic initializa-
tion procedures reflects an inherent *‘fuzziness’” of a
slow manifold. Instead, we find that the nonconverg-
ence of classic initialization procedures merely reflects
a failure of those procedures and that a slowest invar-
iant manifold, having a dimension equal to that of the
slow variables, can be defined for this system —though
not for all values of the slow variables. But in the limit
e — 0, the set of values for which it can be defined
approaches full measure (in accordance with the KAM
theorem). Moreover, the slowest invariant manifold is
nonlinearly stable, since it is surrounded by invariant
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FiG. 10. Logarithmic plot of the amplitude of the gravity wave
activity of the optimal asymptotic initialization vs l/e. The gravity
wave activity is defined by the radius J, of the invariant torus (when-
ever it exists) in Poincaré sections similar to Fig. 7.
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tori; if a small amount of gravity wave activity is in-
troduced, it will remain bounded for all time (as is seen
in the asymptotically initialized solutions).

Yet this slowest invariant manifold has a fuzziness
of its own, in that for finite ¢, it will not be defined
where there are strong resonances (i.e., where the in-
variant tori are destroyed). This is illustrated by Fig.
11, which follows a cross section in x; along the ¢ = 0
axis, with C = 1, b = 0.5, and R = 0.5. We compare
the value of x5 (note that x, = 0 since ¢ = 0) corre-
sponding to various algorithms. The dots denote L.86’s
slowest invariant manifold, following his procedure as
in Fig. 5; the asterisks denote the second-order asymp-
totic slaving (zeroth order is of course x5 = 0); the plus
signs the fourth-order asymptotic slaving; and the open
circles are selected core solutions (a subset of the
dots). It is clear that as one crosses the separatrix where
%, = V2 the slowest invariant manifold ceases to be well
defined: for two values of x;, periodic solutions could
not be found, and for another value of x;, an unstable
periodic orbit was found in addition to a stable one.

The second important point to be made, which com-
plements the first, is that the free gravity wave activity
is not the only fast motion in the system and that below
a certain amplitude it is overwhelmed by the overtones
of the slow dynamics. This overlap between the free
gravity waves and the overtone spectrum explains why
definitions of a slowest invariant manifold based on a
timescale separation are imprecise: there is no time-
scale separation. [This point has also been made by
Warn (1983, unpublished manuscript), Warn and
Menard (1986), and L86.]

7. Hamiltonian balanced dynamics

Integrable Hamiltonian balanced models are con-
structed by imposing the two slaving relations x,
= U,(¢, x5) and x5 = Us(¢, x3) as constraints in Ham-
ilton’s principle (10). This is equivalent to the use of
Lagrange multipliers and yields the balanced bracket

O Ox;  0x3 0¢ ) (1 + eg(d, x3))
(22a)
with g(¢, x;) defined by
_ _(p . 2Us\ 0Us , 8Us s
together with the Hamiltonian
H=-— % C cos2¢ + %(x% + U(d, x3)
+ Ui, x3)).  (22c)

The bracket (22a) obeys all mathematical requirements
by construction for any U,(¢, x3) or Us(¢, x3). More
generally, for example for noncanonical systems such
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FiG. 11. A cross section of L86’s slowest invariant manifold, show-
ing x5 vs x; when ¢ = x, = 0 (for fixed b =05,R=05,C = 1),is
given by the dots. The open circles denote selected core solutions (a
subset of the dots) for later reference. The second-order slaving re-
lation is shown by ‘‘**’ and the fourth-order one by “‘+;"’ the for-
mulas are given in appendix B. The zeroth-order solution is xs = 0.
No periodic orbit was found for two of the values of x,, and for one
value of x, an unstable periodic orbit (the lower of the two circles)
was found in addition to a stable one. The unperturbed separatrix
corresponds to x; = V2.

as (3), one may appeal to Dirac’s theory of Hamilto-
nian systems with constraints (Dirac 1950, 1958, 1964,
Sudarshan and Mukunda 1974).

The Hamiltonian balanced equations corresponding
to (22) are

dp 1 au, AU
dt 1+ eg(e, x3) <x’ + U B +Us a;:,) ’
a1
dr 1+ eg(d x3)
. au. au.
X <c sin2¢ + U4—&7" + USE;> . (23)

If the slaving relations are exact, then (20) and (23)
give (21); if, on the other hand, the slaving relations
are only approximate, then a hierarchy of Hamiltonian
balanced models may be obtained by approximating the
slaving relations U,(¢, x3) and Us(¢, x3) in (23).

The procedure of finding asymptotic constraints to
the required order, calculating g{¢, x3), and construct-
ing the corresponding balanced model is performed us-
ing computer algebra. The equations for the balanced
dynamics at a specific order are then automatically
translated into numerical code and subsequently inte-
grated numerically (although the balanced models are
in principle exactly integrable). A fourth-order, mul-
tistep, implicit Gear’s algorithm is used to integrate the
balanced models. 4

We now examine the accuracy of the various bal-
anced models. Because all the balanced models are re-
stricted to evolve on a phase plane, the evolution is
always regular, and classic measures of predictability
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are inapplicable. We choose to examine two measures
of accuracy: average values of the variables over the
orbits and phase shift errors along the orbits.

Figure 12 shows three pairs of panels, each pair con-
sisting of the average values of x3 and xZ, shown as
functions of the (positive) value of x; when ¢ =0
(thereby indicating the location of the orbit on the
phase plane). Parameter values are as for Fig. 11. The
three pairs of panels correspond to (a) zeroth-order, (b)
second-order, and (¢) fourth-order models. The solid
lines, which are the same in all three cases, indicate the
stable periodic core solutions marked by open circles
in Fig. 11. The long-dashed lines marked by plus signs
indicate the full solution initialized to the given order;
there is clearly a substantial amount of gravity wave
activity, as seen in (x3), excited by all initializations in
the chaotic region around the separatrix. However, one
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hesitates to regard this gravity wave activity as spuri-
ous, because balance is evidently not a precise concept
in the vicinity of the separatrix. In general both bal-
anced models show the same performance and improve
as the order is increased.

A measure of the phase drift errors of the different
balanced models and initializations is given by

1f ’ ’
f(n)y = ;J; Ag(t")ar’, (24)

where Ad¢ is the difference in ¢ relative to the stable
periodic core solutions. The initialized runs of the full
system are denoted by long-dashed lines, the Hamil-
tonian balanced models by dashed lines, and the classic
balanced models by long-short dashed lines. The cor-
responding differences are plotted on a log-linear graph

b

220
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FIG. 12. Average values of x% and x2 over the orbits (based
on 200 time units), as functions of the initial value of x,, for
the various models and initializations at (a) O(1), (b) O(eh),
and (c) O(e*). Parameter values are as in Fig. 11. The solid
lines connect the 13 stable periodic core solutions denoted by
open circles in Fig. 11, the long-dashed lines marked by plus
signs the 15 initialized orbits, the dashed lines marked by
asterisks the Hamiltonian balanced models, and the long—
short-dashed lines marked by circles the classic balanced
models. No circles are shown in (a) because the classic model
is identical to the Hamiltonian model at O(1).
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in Fig. 13 for (a) zeroth order, (b) second order, and
(c) fourth order. We can see that the initialized models
remain closest to the slowest invariant manifold, fol-
lowed by the Hamiltonian balanced models, and finally
by the classic balanced models—except in the chaotic
region around the separatrix where both balanced mod-
els perform poorly. All differences reduce as the order
is increased.

Given the asymptotic character of the small-¢ expan-
sion of the slaving relations, we expect that there is an
optimal balanced model. From the above results we
may conclude that the fourth-order balanced models are
superior to the second-order models and that among the
balanced models tested here the Hamiltonian fourth-
order balanced model appears to be the best one.
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FiG. 13. An integrated measure of the average phase dif-
ference f(#) of the balanced models and the initialized full
model, as compared with the stable periodic core solution, at
(a) O(1), (b) O(e?), and (c) O(e*). Same line labeling as in Fig.
12. The origins of these comparisons relative to the 1st, 6th,
11th, and 13th L86 solution (see the circles in Fig. 11) have
been shifted vertically by 0, 1, 1.5, and 4, respectively, to
avoid crowding.

8. Summary and discussion

We have reexamined the concept of a slowest in-
variant manifold in the context of the conservative low-
order model of Lorenz (1986). The L86 model is
shown (section 3) to be a two degree of freedom ca-
nonical Hamiltonian dynamical system, consisting of
two coupled oscillators. One oscillator is the nonlinear
pendulum and corresponds to a vorticity-triad inter-
action; the other is the harmonic oscillator and cor-
responds to a gravity wave. The amplitude of the
motion is given by the nondimensional parameter e
= bR/V1 + b?, where b is the rotational Froude number

and R is the Rossby number. (The Froude number is
then bR.)
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The ratio of the nonlinear frequency to the linear
frequency is O(e). Thus, in the small amplitude limit
€ = 0, and only in the small amplitude limit, a separa-
tion of timescales exists, and we may refer to the vor-
ticity-triad oscillation as ‘‘slow’’ and the gravity wave
oscillation as ‘‘fast.”” Balanced dynamics concerns the
description of the slow dynamics under such a sepa-
ration of timescales. In this model the small amplitude
limit € — O can be approached in two ways: b — 0, or
R~ 0. Both of these correspond to well-known scalings
that yield balanced dynamics in the full shallow-water
equations.

In the same limit € — O, the two oscillators decouple,
and the system is integrable. It is shown (section 3)
that the degenerate isoenergetic version of the KAM
theorem applies to this system, with ¢ as the perturba-
tion parameter. For € = 0, only the linear (gravity
wave ) oscillator enters the Hamiltonian, so the system
is degenerate. The O(¢) correction to the Hamiltonian
breaks the degeneracy but does not destroy integrabil-
ity; the intermediate, O(e) Hamiltonian is isoenerget-
ically nondegenerate and consists of the two uncoupled
oscillators. Solutions of the intermediate system may
be expressed in terms of action-angle variables (/;, 6;)
and lie on invariant two-tori within a three-dimensional
constant energy hypersurface.

For the uncoupled system, the slow dynamics is de-
fined by setting the action of the fast oscillator to zero:
I, = 0. This corresponds to linear normal-mode initial-
ization. Geometrically, I, = Q defines the core of the
invariant tori when viewed in a cross section in the fast-
variable plane. The union of all such cores (for all pos-
sible values of the slow variables) evidently defines a
‘‘slowest invariant manifold’’ for the uncoupled sys-
tem. We resist using the term ‘‘slow manifold”’ be-
cause even the ‘‘slow’’ motion contains high-fre-
quency overtones, which overlap with the fast fre-
quency.

The higher-order corrections to the Hamiltonian cou-
ple the two oscillators and render the system nonin-
tegrable. However, the KAM theorem implies that for
sufficiently small (but finite) ¢ most of the invariant
tori survive. In particular, over most of phase space one
can construct new action-angle variables (J;, ;) that
are smooth deformations of the original action-angle
variables (I;, 6;). In this case, ‘‘most’’ means a set
whose complement approaches zero measure exponen-
tially fast as ¢ = 0, like exp(—c/¢€). The resonant tori
break up under the perturbation and around them zones
of chaos emerge, containing secondary tori (island
structures). The existence of chaos in this system has
recently been rigorously established by Camassa
(1995). For this model, chaotic motion is necessarily
unbalanced, because it must involve all degrees of free-
dom on the constant energy hypersurface.

Wherever the primary invariant tori survive the per-
turbation, a natural, and precise, definition of a slowest
invariant manifold is obtained by setting the new fast
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action to zero: J, = 0. For sufficiently small ¢, the
KAM theorem ensures that this can be done for most
values of the new slow variables (J;, ¢,). Such core
solutions will not however be defined for J, corre-
sponding to resonant tori in the intermediate system,
which are distributed densely throughout phase space.
This means that even for infinitesimally small e the
slowest invariant manifold J, = 0 will not be a simply
connected manifold, because it will be punctured
densely with gaps, and its structure will be fractal.
However, the total measure of these gaps goes to zero
exponentially fast as ¢ — 0. Moreover, the KAM the-
orem implies that this slowest invariant manifold is
nonlinearly stable: if a small amount of free gravity
wave activity is introduced by setting J, * O, then its
amplitude must remain forever bounded. This applies
even within the chaotic regimes, which are sandwiched
between invariant tori.

We have explored the phase space geometry of reg-
ular and chaotic orbits numerically (section 4). It is
found that for ¢ = 0.1 one can define such a slowest
invariant manifold over a significant fraction of the
slow phase space on either side of the separatrix of the
nonlinear oscillator, but as € gets much larger, this be-
comes increasingly difficult to do: the slowest invariant
manifold evaporates.

Our results shed light on previous studies of the L86
model. The fact that a slowest invariant manifold can
be defined only where the invariant tori survive is con-
sistent with the demonstration by Lorenz and Krish-
namurthy (1987) that a slow manifold cannot be
global: they follow the unstable manifold emanating
out of the unstable fixed point (x;, ¢) = (0, #/2) and
find that fast oscillations develop. From the standpoint
of Hamiltonian perturbation theory this makes perfect
sense: Lorenz and Krishnamurthy were attempting to
follow the separatrix solution, which of course breaks
up under the perturbation. Indeed, the slowest invariant
manifold cannot be defined everywhere—most notice-
ably in the vicinity of the separatrix (Fig. 11). This
point has been further developed by Camassa (1995).

L.86 observed that slaved solutions of his system are
necessarily periodic and proposed that the slowest in-
variant manifold should be defined to be the set of all
periodic solutions having single-valued slaving rela-
tions between the fast and slow variables. Such a mani-
fold is certainly invariant; the question is whether it is
in any sense slow. In a similar vein Boyd (1994) pro-
posed that all periodic solutions should constitute the
slowest invariant manifold.

These definitions, however, are seen to be problem-
atical in light of our results. In the uncoupled case there
are two kinds of periodic solutions: those correspond-
ing to rational tori and those for which one of the ac-
tions is zero (including both rational and irrational
tori). Boyd’s definition of the slowest invariant mani-
fold would include all such solutions, even though most
will have nonzero free fast motion. Lorenz’s (1986)
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definition of the slowest invariant manifold, which re-
quires a single-valued slaving relation, eliminates the
rational tori with noninteger frequency ratios and the
solutions with zero slow action. Yet it is clear that in
the uncoupled case the only solutions with zero free
fast motion are those with zero fast action: I, = 0.

In the coupled case, the continuous branches of pe-
riodic solutions corresponding to the rational tori
breakup under the perturbation, but periodic solutions
can still be found in the same region of phase space.
This is not surprising: the Poincaré—Birkhoff fixed-
point theorem states that rational tori break up into sta-
ble and unstable periodic solutions, which are sur-
rounded by chaos. But these periodic solutions are not
smoothly related to the rational tori, would be difficult
to find by perturbative methods based on the uncoupled
solutions, and contain nonzero amounts of free fast mo-
tion in that they wind around the primary tori. In con-
trast, the core solutions I, = 0 are smoothly transformed
to new core solutions J, = 0 for most irrational tori,
which means for most values of J;.

The problem with definitions of a slowest invariant
manifold based on periodicity is that periodicity can
reflect a kind of ‘‘false slaving.”” In the small-ampli-
tude regime € < 1, the full system is close to being
integrable and most orbits are regular. For a regular
orbit any variable can be written in terms of time and
thus can be written in terms of any other variable
through the elimination of time. Hence, any regular or-
bit is formally a slaved solution. This is demonstrated
explicitly in the uncoupled case (section 5). Yet reg-
ular orbits generally contain nonzero free fast motion.
When the regular orbit is quasi-periodic, then the slav-
ing relation has a dense infinity of branches and is
meaningless as a reduced manifold. When the regular
orbit is periodic, then the slaving relation will generally
be multivalued. When the winding number of the orbit
is an integer, then the slaving relation is single valued.
But such an orbit may still contain a nonzero amount
of free fast motion, which just happens to be an exact
harmonic of the slow motion. Thus, any slaving that
comes purely from integrability, through the elimina-
tion of time, is really a false slaving.

Our results also shed light on asymptotic approaches
to defining ‘‘slowness’’ based on the formal separation
of timescales when ¢ < 1. Even when the core solutions
J, = 0 can be unambiguously identified, classic per-
turbative approximations are only asymptotic; solu-
tions initialized by such procedures contain a nonzero
amount of fast action J,, as is clearly reflected in com-
posite Poincaré sections (Fig. 7). This minimum
amount of free gravity wave activity that is excited by
the asymptotic initialization procedure goes to zero as
e = 0 (Fig. 10), like exp(—c/¢), but is finite for any
finite €. This gravity wave activity has been previously
taken by some to indicate the inherent ‘‘fuzziness’’ of
the slow manifold. This interpretation may be correct
for more complex systems (see further discussion be-
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low) but it is definitely not correct for this system: as
L86 points out, the convergence or nonconvergence of
a particular approximation procedure has nothing to do
with the existence or nonexistence of a slow manifold.
We show (Fig. 8) that the power spectrum of the op-
timal asymptotic initialization contains a nonzero peak
at the gravity wave frequency, which disappears alto-
gether for the core solution J, = O while the rest of the
spectrum (consisting of the slow frequency and its
overtones ) remains unchanged; the difference between
the two solutions consists of a clean sinusoidal wave at
the gravity wave frequency (Fig. 9). On the other hand,
the fact that the gravity wave frequency may be sur-
rounded by overtones of the slow frequency of equal
or even larger amplitude explains why perturbative def-
initions of a slow manifold based on a timescale sep-
aration are imprecise: there really is no timescale sep-
aration.

A rather different argument against the existence of
a precise slowest invariant manifold is that of Errico
(1984) and Warn (1986) that the tendency toward sta-
tistical mechanical equilibrium will inevitably excite
gravity waves. It has been shown that this argument
does not apply to the L86 system, because the dynamics
is constrained by KAM tori and is decidedly noner-
godic. Such behavior is, of course, generic for per-
turbed, nearly integrable Hamiltonian systems—the
classic example being the Fermi—Pasta—~Ulam system
of coupled oscillators, which even for a large number
of oscillators is constrained by KAM tori and does not
thermalize (for sufficiently weak coupling).

The Hamiltonian structure of the full dynamics per-
mits the construction of a hierarchy of Hamiltonian bal-
anced models (section 7), up to arbitrarily high order
in €. These models have been compared with so-called
classic balanced models (analogous to the Charney bal-
ance model), which are generally not Hamiltonian;
with asymptotic initializations of the full system; and
with the core solutions. Regarding the core solutions as
the exact slowest invariant manifold whose dynamics
we wish to simulate as accurately as possible, the Ham-
iltonian models show good accuracy in average ampli-
tude and in phase drift, with well-bounded activity in
the fast variables, when compared with the other ap-
proximate balanced models and solutions.

This study has focused on a single model dynamical
system and thus has many limitations. Our reason for
focusing on the .86 model is twofold: first, it is prob-
ably the simplest dynamical system containing the es-
sential ingredients of a fast linear and a slow nonlinear
oscillator, coupled nonlinearly, with physically mean-
ingful dimensionless parameters, and second, it has be-
come a paradigm system for recent investigations of
balanced dynamics—yet despite much study, many
questions previously remained unanswered.

The single most important limitation is the integra-
bility of the uncoupled slow dynamics of the L86
model. The consequence of integrability is that the slow



15 JANUARY 1996

dynamics has a frequency spectrum consisting of a fun-
damental and its higher-frequency overtones. For most
slow solutions these overtones can be distinguished
from the gravity wave frequency; overlap will occur
only for a resonance. The KAM theorem implies that
for a sufficiently small perturbation most nonresonant
tori will survive the perturbation, and one can therefore
continue to distinguish the spectrum of the free fast
dynamics (which now will contain overtones of its
own) from that of the slow dynamics. It is this distinc-
tion that allows one to unambiguously set the amplitude
of the free fast motion to zero, thereby obtaining a
slowest invariant manifold. But for a sufficiently com-
plex system (and certainly for a continuous system),
the uncoupled slow dynamics will be chaotic, with a
full spectrum. The mathematical consequence of this is
that the KAM theorem cannot be invoked; the physical
consequence is that one cannot unambiguously identify
free fast motion. 4

A second limitation is that the L86 model contains
only one gravity wave. The full nine-component model
(1) would seem in principle to be a more representative
model of ‘‘primitive equations’’ dynamics because like
the full shallow-water equations it has one gravity wave
(i.e., two fast degrees of freedom) for every vortical
mode. However, even if a Hamiltonian representation
of (1) could be found, the KAM theorem would not
apply because the intermediate (uncoupled) system
would contain three (linear) gravity waves and would
therefore be degenerate. However, this might only be
a technical problem: many perturbed Hamiltonian sys-
tems, for example the Hénon—Heiles system, exhibit
KAM-like behavior even though the KAM theorem
does not strictly apply.

A third limitation is that the accessible phase space
(namely the energy—Casimir hypersurface) of the L.86
model is three dimensional, so the invariant tori parti-
tion the space. The KAM theorem may well establish
the presence of invariant tori for higher-dimensional
systems, but these tori would no longer partition the
space and orbits could drift significantly, a phenome-
non known as ‘‘Amold diffusion.”” The implication is
that the core solutions described here would no longer
be nonlinearly stable. However, this may also only be
a technical problem because the diffusion speed is
found in practice to be superexponentially small in
terms of the closest distance to an invariant torus (Nek-
horoshev 1977; Morbidelli and Giorgilli 1995).

A fourth limitation is that a low-order model has a
restricted range of wavenumbers, which suppresses
gravity wave generation by the process of ‘‘Lighthill
emission’” (M. E. MclIntyre 1995, personal communi-
cation). In Lighthill emission (so named because of
the parallel with Lighthill’s theory of aerodynamic
sound generation) low Froude number vortical motion
at a given horizontal scale can directly excite gravity
waves at much longer wavelengths, by matching fre-
quencies. In this case, of course, even a formal sepa-
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ration of timescales cannot be guaranteed if one has a
sufficiently wide range of length scales available in the
problem.

A rather different limitation concerns our investiga-
tion of only the conservative form of the L86 model.
Many previous investigations of balanced dynamics in
low-order models have relied strongly on forcing and
dissipation (e.g., Kopell 1985; Jacobs 1991). But the
appropriate parametrization of forcing and dissipation
for a low-order model is highly problematical, to say
the least. The fundamental ingredient in balanced dy-
namics is the nonlinear interaction between fast and
slow degrees of freedom, which is part of the conser-
vative, Hamiltonian structure of geophysical fluid dy-
namics (e.g., Shepherd 1990). In this regard we note
that the development of balanced models, and of linear
and nonlinear normal-mode initialization methods, has
occurred through the theoretical analysis of the con-
servative form of the relevant governing equations. Of
course, dissipation may ultimately be important in con-
trolling the fast degrees of freedom but this dissipation
probably occurs either through radiation of the fast
waves to infinity (classic geostrophic adjustment) or
through a nonlinear cascade of fast energy to small
scales (Sadourny 1975; Warn 1986) —neither of
which can be said to be appropriately represented by
dissipation in low-order models. So while we accept
that the conservative framework is limiting, it is not at
all clear to us how one should deal with this limitation
in the context of low-order models.
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APPENDIX A
Rigid-Body Rotation for b = 0

For b = 0 the vorticity-triad dynamics of (3) is given
by

dx, dx, dx;
— = —X2X3, = XXz, T = XX,

dt dt dt
with bracket
oOF 9G OF 060G

(A1)

F,G)l=— oyt 4 25 &
L Gl = = e ® an  on ™ o,
oF [ 9G  8G
+—— —_— —_—
0% ("2 o axz) (A2)
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or
10F 0G 10F
F = ————xy— 4 ——
[ ,G]Z 26x. X36XZ+26.X2
><(x §§+x_62 —liF‘ B_G (A3)
‘ox,  om) 20k om,

for arbitrary functions F and G, and Hamiltonian

H' =2 (x +2x3 + 1), (A4)
The Casimir invariants of (A2) and (A3), namely, the
solutions of [C, G],, = 0 for arbitrary G, are C,
= 2(x} + x2) and C, = (x5 — x?), respectively. The
brackets [F, G], and [F, G}, are different in the sense
that the associated Casimir invariants are different but
both brackets satisfy Jacobi’s identity. One may also
use the Hamiltonians H, = H' — 2C, = C,and H, = H'
— C, = 2C, for the brackets (A2) and (A3), respec-
tively.

The standard rigid-body dynamics (Amold 1978) of
the angular momenta M = (M,, M,, M;)" has the Ham-
iltonian representation

dr
d_ = [F, HR]Ra (AS)
-
with the bracket [-, ‘]z given by
OF G 0G
F.Ghr=—7\My— - M, —
LF, Gle = 547, ( * oM, 26M3>
OF oG oG
—_— M —_— —_
oM, ( ' oM, M aMl)
OF oG oG
+ —_— —_— ——
M, <M2 om, M 8M2) (A6)
and the Hamiltonian H given by
1 (M} M3 M;
HR_2(11+12+13), (A7)

with I; (i == 1, 2, 3) being the moments of inertia. The
corresponding Casimir function Cp is

C =5 (M3 + M3 + M3).

It may be verified that with the identification

M, = x, M2=——\/§x2, M; = x;, and t=\/§'r,
(A8)
as well as the choice
1 1
l——i—% l= +I3, L =1,

L L L L
the dynamics (AS5) yields the system (Al).
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APPENDIX B
Slaving Relations to Fourth Order

In this appendix we give the asymptotic series so-
lutions of the superbalance equations (20) up to fourth
order in the Rossby number. At leading order in ¢ the
solution of (20) is

Us=Us =0; (B1)
at first order
U, = —ebCsin(2¢), Us=0; (B2)
at second order
U, = —ebCsin(2¢),
Us = 2€bx;C cos(2¢); (B3)

at third order
U, = —ebC sin(2¢)[1 + 4€%x2 + 2¢2C cos(24)],
Us = 2¢%bx:C cos(2¢); (B4)
and at fourth order
U, = —eb sin(26) Cl1 + 4€2x3 + 2¢2C cos(24)],
Us = 2€%bx;C[cos(2¢) — 2¢?b*C cos?(2¢)
+ 4€%x3 cos(2¢) + 2€2C cos?(2¢)

— 6€°C sin*(2¢)]. (B5)
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