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There exists a well-developed body of theory based on quasi-geostrophic (QG) 
dynamics that is central to our present understanding of large-scale atmospheric and 
oceanic dynamics. An important question is the extent to which this body of theory 
may generalize to more accurate dynamical models. As a first step in this process, we 
here generalize a set of theoretical results, concerning the evolution of disturbances to 
prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG 
dynamics, is a Hamiltonian balanced model whose evolution is described by the 
material conservation of potential vorticity, together with an invertibility principle 
relating the potential vorticity to the advecting fields. SG dynamics has features that 
make it a good prototype for balanced models that are more accurate than QG 
dynamics. 

In the first part of this two-part study, we derive a pseudomomentum invariant for 
the SG equations, and use it to obtain: (i) linear and nonlinear generalized 
Charney-Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local 
conservation law for the invariant, obeying the group-velocity property in the WKB 
limit ; and (iii) a wave-mean-flow interaction theorem consisting of generalized 
Eliassen-Palm flux diagnostics, an elliptic equation for the stream-function tendency, 
and a non-acceleration theorem. All these results are analogous to their QG forms. 

The pseudomomentum invariant - a conserved second-order disturbance quantity 
that is associated with zonal symmetry - is constructed using a variational principle in 
a similar manner to the QG calculations. Such an approach is possible when the 
equations of motion under the geostrophic momentum approximation are transformed 
to isentropic and geostrophic coordinates, in which the ageostrophic advection terms 
are no longer explicit. Symmetry-related wave-activity invariants such as the 
pseudomomentum then arise naturally from the Hamiltonian structure of the SG 
equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of 
isentropic gradients at the lower boundary, preferring instead to incorporate explicitly 
those boundary contributions into the wave-activity and stability results. This makes 
the analogy with QG dynamics most transparent. 

This paper treats the f-plane Boussinesq form of SG dynamics, and its recent 
extension to ,&plane, compressible flow by Magnusdottir & Schubert. In the limit of 
small Rossby number, the results reduce to their respective QG forms. Novel features 
particular to SG dynamics include apparently unnoticed lateral boundary stability 
criteria in (i), and the necessity of including additional zonal-mean eddy correlation 
terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance 
in (iii). 

In the companion paper, wave-activity conservation laws and stability theorems 
based on the SG form of the pseudoenergy are presented. 
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1. Introduction 
A classical and important area of research in fluid mechanics concerns the evolution 

of disturbances to prescribed basic states. Notable examples of theoretical questions 
falling within this framework include the propagation of waves in inhomogeneous 
media, the stability or instability of basic states, and the driving of mean-flow changes 
by wave transience and dissipation. Within the field of large-scale atmospheric 
dynamics, there is a well-developed body of such theory based on quasi-geostrophic 
(QG) dynamics. It includes Eliassen-Palm (E-P) flux diagnostics (Andrews & 
McIntyre 1976, 1978); finite-amplitude wave-activity conservation laws (McIntyre & 
Shepherd 1987); nonlinear stability theorems for parallel and/or steady flows (Holm 
et al. 1985; McIntyre & Shepherd 1987; Shepherd 1989, hereinafter referred to as S89); 
and rigorous saturation bounds on baroclinic instabilities (Shepherd 1988, 1993 ; S89). 
Aspects of this theory have been successfully applied to diagnose the role of eddies in 
simple models, primitive-equations general circulation models, and observations (e.g. 
Edmon, Hoskins & McIntyre 1980; Dunkerton, Hsu & McIntyre 1981 ; Hoskins 1983; 
Held & Hoskins 1985; Randel & Held 1991). 

It is nevertheless widely recognized that QG theory has serious quantitative 
limitations. Therefore it is natural to ask to what extent the body of theory described 
above generalizes to other, more complicated dynamical models. To answer this 
question, one must consider what is fundamental about this theory, and what is specific 
to the QG model. Despite its seemingly broad range of form and application, it turns 
out that the above-mentioned QG theory has two related, central features, within 
which everything may be concisely understood. First, the dynamics can be described 
in terms of material advection of potential vorticity (PV), together with some sort of 
‘invertibility ’ or ‘balance’ relation that determines the advecting velocity given the PV 
(see e.g. Hoskins, McIntyre & Robertson 1985); and second, there is an underlying 
Hamiltonian structure which provides conservation laws for so-called ‘ wave-activity ’ 
invariants such as the pseudomomentum and pseudoenergy (see e.g. Shepherd 1990). 
Both of these features are exact, finite-amplitude properties of the dynamics. 

Seen from this perspective, it seems plausible that the wave-activity conservation 
laws and stability theorems that underlie the modern understanding of QG dynamics 
may generalize to other models that are more accurate, yet which contain the two 
ingredients of balanced dynamics and Hamiltonian structure. The derivation of such 
models is an active topic of current research. At the present time, there is only one such 
model : semi-geostrophic (SG) dynamics. 

The SG model was first introduced by Hoskins (1975) in the context of thef-plane 
Boussinesq equations. It is based on the ‘ geostrophic momentum’ approximation of 
Eliassen (1948), and has been widely used to study the dynamics of mesoscale 
phenomena. More recently, the SG model has been extended to the B-plane 
compressible equations by Magnusdottir & Schubert (1990, hereinafter referred to as 
MSc90). 

The purpose of the present study is to generalize the well-established body of QG 
theory consisting of wave-activity conservation laws and stability theorems to these 
two SG models. While the study is motivated by analogies between QG and SG 
dynamics, its length is largely due to the differences between them. Both models are 
described by material conservation of PV, with appropriate time-evolution equations 
for quantities at the boundaries. In both models, an invertibility principle relates the 
advecting stream-function potential to the PV and boundary terms. However, the SG 
model differs from the QG one in its use of a coordinate transformation to express the 
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invertibility principle, in the nonlinear nature of the principle, and, most prob- 
lematically, in its form of the boundary conditions. The coordinate transformation to 
isentropic geostrophic coordinates (IGC) is used to reduce the SG model to its simplest 
form. However, the transformation introduces complications into the dynamics at 
fixed geometric bounding surfaces. In the transformed space, these surfaces become 
dynamic quantities whose positions evolve with time. This variability has been 
explicitly incorporated, where feasible, into the theory. 

The paper is structured as follows. We first introduce the reader to SG dynamics, 
establishing notation and providing some insight into its properties. In $2, the f-plane 
Boussinesq system of Hoskins (1975) is introduced and transformed to IGC. The set 
of equations (2.18)-(2.20) summarize the prognostic interior and boundary equations 
and the diagnostic invertibility relation. Section 3 motivates the rest of the paper by 
using direct methods to derive a version of the Charney-Stern theorem for disturbances 
to parallel flows that includes explicit boundary contributions from both vertical and 
lateral bounding surfaces. The theorem is expressed in terms of a conservation law 
(equation (3.10) or (3.12)) that turns out to be an expression of linearized 
pseudomomentum conservation. 

We then proceed with a systematic theoretical treatment. In $4, the conservation 
laws for the system are derived in physical coordimtes. In $ 5 ,  the pseudomomentum 
- i.e. the wave-activity invariant for disturbances to parallel flows that is related to the 
zonal symmetry of the system-is derived from a variational principle, after a 
discussion of the nature of the basic state and the variational problem at the 
boundaries. In $6, a nonlinear generalization of the Charney-Stern theorem is derived, 
with some restrictions on the nature of the perturbations at the boundaries. In $7, a 
local form of the wave-activity conservation law is developed, and the group-velocity 
property verified for the particular form of the flux. In $8, wave-mean-flow E-P flux 
diagnostics are developed, including a non-acceleration theorem. In $ 9, the results of 
82-8 are extended to the /3-plane compressible system of MSc90. The results are 
summarized, and their relevance and limitations discussed, in $ 10. 

In the sequel to this paper (Kushner & Shepherd 1995), wave-activity conservation 
laws and stability theorems based on the SG form of the pseudoenergy are 
presented. 

2. Semi-geostrophic dynamics 
Our discussion begins with the hydrostatic Boussinesq inviscid adiabatic equations 

of motion under the geostrophic momentum approximation (Eliassen 1948 ; Hoskins 
1975), expressed in physical coordinates (x ,y,  z) ,  where the pseudoheight z is defined 

where p is the pressure, and the scale height H ,  = p0/@,,  g) is defined with respect to a 
reference level pressure po and density po (Hoskins & Bretherton 1972). The horizontal 
momentum equations are 

(2.2 a, b) 

where q5 is the geopotential, andfa constant reference value of the Coriolis parameter. 
The material derivative is D / D t  = a, + u - V, + wa,, (2.3) 
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with velocity components 
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Dz (2’:) Dt 
u = ( u , v ) =  - - , w=--. 

The geostrophic velocity ug is defined by 

ug = (ug, Q = (-&/A Mfl. (2.5) 

Coordinate subscripts denote partial derivatives, and V, = (az, a&. From (2.2), we see 
that the geostrophic momentum approximation amounts to a neglect of the Lagrangian 
acceleration of the ageostrophic velocity uag = u--ug. The continuity equation is 

v , . u + w z  = 0, 
the thermodynamic equation 

where 8 is the potential temperature, and hydrostatic balance requires 

where 8, is a reference value of 8. 

DB/Dt = 0, 

A = gel803 

We transform the system to IGC 

and define the Montgomery-Bernoulli potential by 

Y = $4 - f zz + gu; + 0;). (2.10) 

The sum of the first and second terms on the right-hand side of (2.10) is the 
Montgomery potential for the system, associated with the transformation to isentropic 
coordinates. The sum of the first and third terms, on the other hand, is the Bernoulli 
function associated with geostrophic coordinates (Hoskins 1975). Further discussion 
of the Legendre transformations relating these different potentials may be found in 
Sewell & Roulstone (1993) and Roulstone & Norbury (1994). The partial derivatives 
transform as 

(2.1 1) 

where the partial derivatives on the left-hand side and in the matrix are evaluated in 
physical space, and the derivatives a, etc. in IGC. From (2.8)-(2.11) we find 

In IGC. the material derivative is 

DX DY DZ 
- a,+-a,+-a,+-a,, D 

Dt Dt Dt Dt 
-- 
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and using the momentum equations (2.2), as well as (2.5), (2.7), (2.9) and (2.12), we find 

= (-3 y " , o  = ( U g , U g , O ) .  f ' f  1 
Thus the material derivative contains no explicit ageostrophic advection terms : 

D 1 1 1 
-= aT+-vxay--vya, =aT+-axy(y,  -1. 
Dt f f f 

(2.13) 

It is a straightforward matter to show that the materially conserved potential vorticity 
(Hoskins 1975) is proportional to the dimensionless quantity 

The fact that q is the Jacobian of the transformation (x, y ,  z) + ( X ,  Y,  Z )  is used often 
below. Defining the non-dimensional potential pseudodensity (the term used in 
MSc90) g = l/q, we find 

D a / D t  = 0. (2.14) 

Careful treatment of the boundary conditions in the different coordinate systems is 
necessary in order to prove global invariance and to develop the wave-activity-based 
theory. In physical (pseudoheight) space, solid horizontal boundaries are subject to the 
condition that the boundaries are material surfaces : 

us A = 0 at horizontal walls, (2.15) 

where A is the unit vector normal to the horizontal wall. The vertical boundary 
condition 

w = D z / D t  = 0 at bounding z-surfaces (2.16) 

is an approximate boundary condition, consistent with Boussinesq scaling (Hoskins & 
Bretherton 1972; White 1977), and equivalent to taking the domain to be bounded by 
material surfaces of constant pseudoheight, or pressure. That is, (2.16) implies that 
o = Dp/Dt  = 0 at the boundaries. 

Other, and in general simpler, boundary conditions that will be considered below 
take the flow to be periodic or unbounded in a particular direction, or steady at a given 
boundary. 

Since the coordinates in IGC are dependent on the velocity fields, material 
boundaries fixed in physical coordinates become dynamic quantities under the 
transformation. This detracts from the apparent simplicity of the equations derived 
above and summarized in (2.18H2.20) below. Andrews (1983) and others have tried 
to circumvent such problems by using the so-called 'massless layer' approach of 
Lorenz (1955): isentropic surfaces intersecting the earth are taken to extend below 
ground and are assigned to have the surface pressure. By this construction, no mass is 
trapped between the subsurface layers, so that the ' pseudodensity ' -pe vanishes there : 
the layer is massless but infinitely stable. The bounding isentropic surface at the ground 
is the largest value of 0 remaining below ground everywhere. Taking this surface to be 
one of constant height, we obtain as a vertical boundary condition 

g5 = const. at bounding, below-ground 6' surface, (2.17) 

with additional conditions at the interface, as outlined for example by Andrews (1983). 
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The approach has a strong conceptual appeal in that it is consistent with the idea of 
the equivalence of interior PV and surface 8 dynamics in the equations of motion 
(Bretherton 1966). However, for the problem of determining conservation laws for the 
system, disconcerting questions remain regarding the nature of the kinematics of the 
massless layer and the boundary position, both of which are difficult to determine 
explicitly. Andrews (1983), for example, proposes the need for additional ‘body force’ 
terms in the momentum equations below ground. Furthermore, it is unclear how the 
approach generalizes to IGC when, for example, treating the intersection of Y-surfaces 
with bounding meridional walls. We also wish the wave activity to include explicitly the 
dynamic effect of surface 8-distributions, in order to aid physical interpretation and to 
allow a close comparison with the QG theory. For these reasons, our analysis avoids 
the ‘massless layer’ concept and makes direct use of the boundary conditions (2.15) 
and (2.16). 

It is useful at this point to summarize the equations in their IGC forms both for 
future reference and to express the invertibility principle for the system. We consider 
flow in a box [x,, x2] x [yl, y2] x [zl, zz] bounded on all sides by material surfaces. The 
governing prognostic equations are then 

Dcr/Dt = 0 in the interior, 

Dx/Dt = 0 at x = x,,x,, 

Dz/Dt = 0 at z = z1,z2, 

Dy/Dt = 0 at Y = Y ~ , Y Z ,  

where the material derivative is 

1 
- = aT+-aXy(Y, .). 
Dt f 
D 

The diagnostic invertibility relations are 

( 2 . 1 8 ~ )  

(2.18b) 

(2 .18~)  

(2.18d) 

(2.19) 

(2.20) 

In IGC, the parallel between the QG and SG systems is clear: in the interior, both 
are governed by the quasi-two-dimensional advection of a three-dimensional PV-type 
quantity, itself related through an inversion to a scalar potential. Quantities advected 
at the boundaries are also related to the potential Y. The principal differences between 
the models lie in the complexity of the inversion, and in the variability of the 
boundaries. The invertibility condition requires n to be of definite sign; since n is 
proportional to the inverse of the potential vorticity, we require sign-definite PV. This 
ensures that the transformation to IGC is globally well-defined, since n is its Jacobian. 
(It is possible to have well-defined coordinate transformations in the SG system which 
are associated with multivalued potentials (Purser & Cullen 1987; Chynoweth & Sewell 
1989; Sewell & Roulstone 1993). This is important in the treatment of discontinuous 
solutions such as fronts.) For small Rossby number, from (2.9) and (2.20), 
cr B zz x w / N ) , ,  where N is the buoyancy frequency. We therefore take the sign of cr 
to be positive. 

Note that the necessary information pertaining to the mass distribution between 
isentropic Z-surfaces (Hoskins et al. 1985) is also implicit in the coordinate 
transformation. 
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3. A linear Charney-Stern theorem 
In this section we derive a linear Charney-Stern theorem for small disturbances to 

a parallel steady basic state, directly from the linearized equations of motion. The 
method follows that of Eliassen (1983) and MSc90, but unlike the latter includes 
explicit boundary criteria. The theorem is connected to the conservation of 
pseudomomentum developed in $ 5 ,  and can be obtained from that result. Nevertheless, 
we present a direct derivation here for a variety of reasons. The development 
introduces certain mathematical techniques necessary to approach the complicated 
boundary conditions, and serves as an independent cross-check for the plausibility of 
the pseudomomentum-based result. In addition, it provides some physical insight into 
the stability criteria, particularly the boundary contributions, that aids in the 
understanding of the more formal wave-activity derivations. 

The approach is straightforward. We consider a zonally periodic channel bounded 
with material surfaces laterally at y, ,  y ,  and vertically at zl, z,. We linearize the motion 
about a zonal steady basic state ii,(y, z) that will be discussed in more precise detail in 
$5.1. In the basic state a, = 0, and so from (2.11), a, = 0. It follows that ijB = 0, and 
thus I = X, where here and henceforth tildes indicate the basic state and primes the 
disturbance quantities. Therefore averages in x and X are the same at the basic state. 
We obtain in the interior 

where the linearized advection operator is 

Note from (2.9) and (2.12) that vi = - fx’  = Vx/J At the solid boundaries 

W / D t  + Zy V ;  = 0,  

6 / D t  = aT + fig a,. 

(3.1) 

(3.2) 

and 
Multiplying (3.1) by (u’/ZY) and integrating in X = I, we obtain 

where zonal integration is denoted by an overbar. 
We shall see later that the term in parentheses in (3.5) is proportional to the 

linearized pseudomomentum. We investigate the second term, the flux of inverse PV by 
the meridional geostrophic flow, following MSc90. To first order in disturbance 
amplitude, 

= - (w) t v;x 5 + a y z v y ,  .a + ayzv, vZ)i, (3.6) 
using I = X and Z = a,&, 5) at the basic state, together with (2.20). Then multiplying 
(3.6) by vi = !P&/fwe obtain 

- ayz (F, 2) - ayz (y, y), (3.7b) 
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where in (3.7b) we have used thermal wind balance to take i, = yZ (see (2.20)). Then 
invoking periodicity in X, we obtain 

0; = a y z ( v ; y ,  + ayz(y, 0; z’). (3.8) 

The expression (3.7b) is the linearized E-P flux divergence, as will be seen in $7, 
and as is noted by MSc90 for the compressible /3-plane case. Consider now the global 
integral of (3.8) over the domain in IGC: 

where we have changed variables in the final step. The basic-state limits of integration 
in IGC are symbolized by B, while the limits of integration in physical coordinates are 
constant and the region is denoted D (cf. $5).  Note that y’ and z’ are fluctuations in 
IGC and may be sensibly defined as functions of the physical coordinates. Now 

a,,&% 0; y’, 3 = a&; v’) 12. p ,  

and similarly for the second Jacobian in (3.9). Then (3.5) and (3.9) imply 

which after using (3.3) and (3.4) may be written 

where we have used the fact that in the basic state, averages in X and X are identical. 
Equation (3.10) and its generalization to the compressible /3-plane case (9.17) 

provides a statement of the linearized Charney-Stern theorem for this system. If 52., 
throughout the interior, -JY over y = y,, y y  over y,, -2, over z2, and 2, over z1 all 
have the same sign, then the disturbance may not grow (in a mean-square sense). 
Following MSc90, we can restate the result in terms of particle displacements 7’ 
brought about by the meridional geostrophic wind. Defining 7’ by 

U; = fi>r’/Dt 

we may integrate (3.1), (3.3) and (3.4) to obtain 

I a’ + 5,q’ = 0 in the interior, 

y’+.P,7’ = 0 at y = Y1,YZ, 

z’+2,7’ = 0 at z = z1,z2, 

(3.11) 

so that we may rewrite (3.10) as 

Equations (3.10) and (3.12) provide statements of ‘formal stability’ (Holm et al. 
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1985) in the sense that they hold independently of the form of the small-amplitude 
disturbance. In particular, the disturbance is not required to be a normal mode. The 
following remarks concern (3. lo), (3.12), and their P-plane compressible counterparts, 
(9.17) and (9.18). 

(i) The Charney-Stern theorem of MSc90 comprises only the conservation of the 
interior PV term in (9.18), corresponding to the first term in (3.12). MSc90 take the 
boundary variability expressed in the third term to be included in the interior integral, 
with the massless-layer ideas discussed above as implicit justification. The idea has 
some merit from a conceptual viewpoint, but it is useful to have an explicit expression 
for the boundary contribution. At the meridional boundaries MSc90 use an 
approximate - and generally incorrect - boundary condition (vh = 0 there) that 
suppresses the walls’ contributions to the conservation law. 

(ii) The theorem is consistent with the QG Charney-Stern theorem in the small 
Rossby number limit, where the Rossby number e = U/fL,  with U and L being 
characteristic velocity and length scales. For small e, ,ZY z - ( f / N ) 2 Z y  for the QG 
vertically stratified reference state with a prescribed buoyancy profile N = N(z). In the 
same limit, lateral wall contributions to (3.12) disappear because they are an 
ageostrophic effect, and we may correctly take u = vg+vag z ug = 0 there. Then we 
obtain the classical Charney-Stern theorem: the flow is necessarily stable if the 
meridional P V ( a  l/g) gradient has the opposite sign to the meridional temperature 
gradient at the top and the same sign as the meridional temperature gradient at the 
bottom. 

(iii) The lateral contributions from the second term in (3.12) have implications for 
the effect of lateral bounding surfaces on the stability of large-scale flows running 
parallel to them. Unless there is a large barotropic shear near one of the boundaries, 
we expect that at both meridional boundaries j jy > 0, since 9, = 1 + (QY/f  = 1 + O(e). 
We will see below, moreover, that requiring y, > 0 at the boundary, i.e. requiring that 
Y be a reasonable meridional coordinate at the boundary, is a necessary condition for 
the construction of the pseudomomentum. Under this condition, we conclude that the 
presence of the two lateral boundaries prevents the system from satisfying the 
Charney-Stern stability criteria. A possible instability mechanism arising from a 
violation of the stability criteria would be a resonance between counterpropagating 
Kelvin edge waves, analogous to the instability arising from the resonance between 
counterpropagating Rossby edge waves in the baroclinic Eady model (cf. Hoskins et 
al. 1985,56). That this instability can indeed occur has been demonstrated by Kushner 
(in preparation) for the special case of a linear anticyclonic barotropic shear flow, 
although the growth rates are exceedingly weak. 

(iv) Kushner (1995) has extended the conservation law (3.12) to zonal flow along 
zonally invariant topography. 

The conservation laws (3.10) and (3.12) serve as motivation for the rest of this study. 
It will be shown below that (3.10) is a statement of the conservation of linearized 
pseudomomentum for the system. The invariance of the pseudomomentum defined for 
finite-amplitude disturbances is, however, a more powerful result. From it we find a 
stability theorem for finite-amplitude disturbances to a linearly stable basic state, as 
well as a local finite-amplitude wave-activity conservation law that in turn yields a 
theorem of wave-zonal-mean-flow interaction. 



76 P. J .  Kushner and T. G. Shepherd 

4. Global invariants 
We consider closed box, channel, or doubly periodic boundary conditions. Working 

with the system in physical coordinates, we obtain from (2.2)-(2.8) the energy flux law 

is the energy density in (x,y,z)-space (Hoskins 1975). Under the Boussinesq 
approximation, variations in density do not contribute to the energy. The density is 
thus factored out of (4.2), so that the energy has dimensions of velocity squared. 
Integrating (4.1) over the domain using the boundary conditions (2.16) and either 
(2.15) or x or y periodicity, we obtain conservation of the total energy, I :  

(4.3) 

In a similar manner, (2.2a) can be rewritten as a local flux law for the zonal impulse 
M :  

where 

Mt + v, * (uM)  + a,(wM) + $hZ = 0, 

M = - f Y  

has dimensions of momentum divided by mass. There is a corresponding conserved 
global impulse A for flow periodic in x: 

With material conservation of u (2.18a) and of Z (2.7), we may determine a family 
of globally conserved quantities. For any function C(cr, Z )  we find using the continuity 
equation (2.6) that 

This yields the global conservation law 

(4.7) Ct+v,'(uC)+a,(wc) = 0. 

In the variational calculations below we will use the IGC form of the fields. The 
functional variations will be taken on integrals over the field densities in IGC, i.e. the 
densities in physical space multiplied by the Jacobian of the transformation from 
physical coordinates to IGC, axuz(x, y, z )  = u. For example the zonal impulse density 
in IGC is M*, defined by 

A = Mdxdydz = M*dXdYdZ, (4.9) 

(4.10) 
s 

M* = -flu.  
I 

i.e. 

The functionals V thus take the form 

V = C*(CT, 2) dXd YdZ, (4.1 1) I 
where C* = aC(a,Z) is an arbitrary function of cr and Z. 

The conservation of the quantities 8, A, and W is linked to the underlying 
Hamiltonian structure of the dynamics (Salmon 1985, 1 9 8 8 ~ ;  Roulstone & Norbury 
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1994; Kushner 1993). From this point of view, d is the Hamiltonian functional 
reflecting, through Noether’s theorem, the time symmetry in the system, and A the 
corresponding zonal impulse invariant reflecting the system’s zonal symmetry. The 
functionals ‘2? are the system’s Casimir invariants, arising from degeneracies in the 
Poisson operator in the Hamiltonian formulation, and corresponding to the ‘particle 
relabelling’ symmetries (e.g. Salmon 1988 b ;  Shepherd 1990). Further discussion is 
provided in Part 2 of this study (Kushner & Shepherd 1995). 

5. Pseudomomentum 
A ‘wave-activity’ invariant is defined to be a conserved quantity that is second order 

in the amplitude of a disturbance to a reference or ‘basic’ state with some continuous 
symmetry. A review of the concept of these invariants, together with a general 
discussion of their role within Hamiltonian theory, is provided by Shepherd (1 990). 
The ‘pseudomomentum’ is the wave activity, defined with respect to zonally 
symmetric basic states, that is associated with the zonal symmetry of the system; it is 
an exact invariant of the nonlinear dynamics. In a similar way the pseudoenergy, which 
is considered in Part 2 of this study, is associated with the temporal symmetry of the 
system and is likewise an exact invariant. The ‘wave action’ (Whitham 1965; 
Bretherton & Garrett 1968) is related but distinct from these quantities; it is associated 
with the symmetry properties of a phase-averaged Lagrangian, rather than an exact 
coordinate symmetry. 

5.1. Basic state 

Consider a steady zonal basic state in physical space. As noted in $3,a, = 0 implies that 
a, = 0 in the basic state. Because a, = $,.f = 0 in the basic state, the meridional 
boundaries are straight in IGC, i.e. constant in Y for all X ,  at every Z-level. However, 
in general the distance q-  may vary with Z, and the bounding z-surfaces will be 
curved as well. 

At the basic state 
(Y,4 = ( * ( y , z ) , e ( y , z ) ) .  (5.1) 

Following previous approaches (e.g. McIntyre & Shepherd 1987; S89) we define an 
inverse map in the interior, znt(e, 2) : for every Z, values of r~ map onto particular Y- 
values at the basic state. If e is not monotonic in Y,  znt will be multivalued in e, and 
additional Lagrangian information will be needed to fully define the inverse map. See 
McIntyre & Shepherd (1987) for a more complete discussion of this issue. 

At each of the surfaces at the basic state, there is an isentropic distribution zs( Y ) ,  
where s is a discrete index specifying the surface. Let us denote the surface inverse map 
z ( Z )  such that for example at z1 

g ( Z )  = [zz,( Y)]-l at the basic state, lower z-surface. 

Depending on the monotonicity of 2 in Y, may also be multivalued. The index s 
serves in a sense as another Lagrangian marker. There is also a basic-state surface 
distribution of e, labelled eS, and defined by 

3s(z) = 3( Q Z ) ,  Z ) .  (5 .2 )  

Although the surface maps are defined with respect to the basic-state Z-distributions, 
they may be treated simply as functions of 2 alone. Thus integrals over the functions 
are Casimirs of the form (4.1 l), although independent of r ~ .  It is for this reason that 
8, is defined as a function of Z rather than of Y. 
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FIGURE 1. (a) A zonal basic-state profile sketched in IGC. The heavy solid line shows the material 
boundaries, with the z = z1 surface unbounded to the south and ending at A to the north, the 
northern y = y ,  surface running between A and-B, and the upper z = z2 surface running south from 
B. The solid contours are curves of constant F(Y,Z) ,  a function monotonic in Y and Z .  Dashed 
contours are of the surface function F,(Z). This basic state is linearly stable for -d, > 0. (b) As in 
(a), but for a basic state breaking the stability criteria in two ways, for -CY > 0: the presence of the 
southe-m boundary y = y l ,  between C and E, and a surface warm anomaly at Y = < on the z,-surface. 
Now e ( Z )  is multivalued. 

Figures 1 (a)  and 1 (b) illustrate the definition of the surface maps. Figure 1 (a)  depicts 
a Y, 2 cross-section of a zonal basic state that would be stable according to (3.10) for 
positive interior PV gradients, - d ,  > 0. The flow is unbounded to the south, the lower 
boundary z = z1 ends at point A, the northern boundary y 2  runs between A and B, and 
the upper boundary z2 continues south from point B. For these boundaries -2, at 
zl, 2, at z2, and j y  at y, are all positive for Zz > 0. Consider a function i( Y, Z )  which 
for purposes of this illustration is monotonic and increasing in both Y and 2. Contours 
of P are sketched in the figure. At a boundary, the surface distribution 4 is defined 
uniquely for all 2: we define it to be the value of at the point (Y , ,Z)  where the 
surface’s isentropic height is 2. Horizontal contours of are sketched with dashed 
lines in the figure. Hence &Zi) = El(Zi) = 8 and E(ZJ = F,,(Zf) = 4. 

Considering figure l (b) ,  we see how the uniqueness of the inverse surface maps is 
broken under conditions that violate the linear stability criteria. We include for 
illustration two ‘problem’ regions, a ‘bump’ (corresponding to a ‘warm anomaly’) at 
r, on the z,-surface, where 2, changes sign; and the presence of a southern boundary 
y = y1 with Y y  > 0 running between points C and E. &Z) is no longer defined without 
additional ‘point of origin’ information. At Z j ,  for example, the function can take 
either the value 8 if s = y, or & if s = y,. At Zi, the function can have one of four 
values : 4 if s = y z  ; 4 if the region Y > r, is specified on z1 ; F, for s = z1 and Y < ; 
or 4 for s = yl. We emphasize the connection between violation of the stability criteria 
and the multivaluedness of whatever the monotonicity properties of F. 

5.2 .  Fin ite-amplitude pseudomomen tum 
We seek a conserved quantity, 9, that is second order relative to the zonal basic state. 
This requires that Y be of the form 

(5.3) Y = 4 4  - d [ 5 ] ,  
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FIGURE 2. Cross-section of boundaries for a given basic state (heavy solid curve ABCE) and perturbed 
state (lighter solid curve A'BC'E') at a given value of X .  The hatched region is D'. The arrows at P 
and N represent positive and negative 2-variations of the 2,-surface. The cross-hatched region near 
the upper and northern edge B is of second order relative to the variations at P and N. 

where (T and 2 symbolize all perturbed and basic-state fields, and that si2 be extremal 
at the basic state, i.e. 

S d  = 0 at the basic state. (5.4) 

In order to apply a variational principle of the form (5.4) we must include the 
variation at the boundaries explicitly. Consider an integral 9 of a density F whose 
local variation is denoted SF. Rather than specify limits of integration, we will denote 
the variable region as 0" and variations to it by D'. We find 

The variations at x1 and x, cancel owing to periodicity. The quantity 6 Z ) ,  is the 
displacement in IGC of the z1 boundary at a given ( X ,  Y), and SYI,, s(mi1arly 
represents displacements of y, in IGC for each ( 2 , X ) .  These displacements are 
unambiguously defined as long as 

0 < Iyy Jz,x I < 00 at y-boundaries, 0 < (zz I x ,  1 < 00 at z-boundaries, (5.6) 

for both the perturbed and unperturbed boundaries. If we take the gradients to be 
positive, the conditions (5.6) require, in essence, that Z and Y act as sensible vertical 
and meridional coordinates in a statically stable flow with Rossby number less than 
unity (see remark (iii) in $3). 

We note that (5 .5 )  neglects as second-order quantities the variations in the limits of 
integration along the meridional edges {(x, y,, zl): x,  < x < x,}, etc. The contributions 
at the corners cancel owing to periodicity. Hence, to leading order, the limits of 
integration on all the integrals are taken to be those of the basic state and there is no 
additional need to consider the variations D'. The subscripts 0" on the surface y- and 
z-integrals indicate this approximation. 

Figure 2 schematically illustrates the boundary variations in IGC. At a given X, the 
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boundary of the domain is outlined by a heavy curve for the basic state and a lighter 
curve for the perturbed (non-zonal) state. The region D' is the hatched region 
representing the perturbation of the domain. A perturbation 6Z1,, is shown to be 
positive at point P and negative at point N. It is supposed that under perturbation, 
each point on a given bounding surface maps onto another, and the variations 
6 Y I,, 6Z 1, parametrize these displacements everywhere except near the edges. Such a 
second-order edge contribution is represented by the cross-hatched region in the figure. 

Consider, for example, variations in the zonal impulse A. From (4.9), (4.10) and 
(5.5), 

jYa621,,dXdY . (5.7) 

Clearly the zonal impulse is not extremal for this basic state as its first variation is, in 
general, non-zero. As is standard practice for wave-activity construction (e.g. Shepherd 
1990), we define the invariant 

d = .M+%, (5.8) 

whose conservation is guaranteed by (4.6) and (4.8), and then determine %? such that 
d satisfies (5.4). On general grounds one may always expect such a '3 to exist (e.g. 
Shepherd 1990). 

-[1,.6 11:: 

For any Casimir '3 of the form (4.1 I), 

(5.9) 
In order to satisfy (5.4), we require from (5.7) and (5.9) that 

X*/i3a Iz = jY in the interior, basic state, 
(5.10) 

C* =flu at all boundaries, basic state. 

A Casimir density satisfying (5.10) takes the local form 

C*(a, Z )  = fin&+, Z)  d++fls(Z) c?#(Z). (5.11) 

We now consider a finite-amplitude disturbance to the basic state. We define 

Y = *+ Y ,  rJ = 8+d, (5.12) 

where we have dropped the &variational notation to emphasize that the disturbance 
can be large. We leave the limits of integration of both the 6- and the D'-regions 
unspecified for the moment. 

and ZS are only defined over the range of values 
of cr and Z present in the basic state. If the disturbance (5.12) introduces values outside 
that range, then the function (5.1 1) must be extended to include such values. One can 
make this extension arbitrarily without compromising the fact that C* is a Casimir 

r *,(Z) 

disturbance quantities !P' and a' by 

Note that the inverse maps xnt, 
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density, and is therefore conserved (cf. Arnol'd 1966). Bearing this possibility in mind, 
the finite-amplitude pseudomomentum can be written 

9 = A[u]+%[cr]-A[8]-%[8] 

g,,(&,Z)d&+ E(Z)e , (Z)  dXdYdZ 1 
cnt(&, Z)  d& + t ( Z )  8,(Z) 

[E,,(&,Z)- znt(8,Z)]d& dXdYdZ 1 
+ ID [ l, grit(+, Z)  d& - Y8 + E ( Z )  C,(Z) 

[E,,(8+&,Z)- Ent(8,Z)]d& dXdYdZ 1 

= Yint + Y,, 

where in the derivation of (5.13) we have used the identities 

Z,t@, 2) = Y, g , m Z ) ,  Z) = QZ). 

(5.13) 

The final expressions in (5.13) formally define the pseudomomentum in terms of both 
surface and interior contributions. 

5.3. Comparison with QG theory and small-amplitude reduction 
It is worthwhile to compare (5.13) with the pseudomomentum invariant of QG theory. 
From S89, 

+i (-1 (-1)'l z, P f g [ ~ [ ~ i ( 8 + d ) - ~ i ( 8 ) ] d d  N " 6  1 dxdy. (5.14) 

In (5.14), p = p(z), 8# = 8,(z) and N = N(z) are the prescribed reference-state density, 
potential temperature and buoyancy frequency profiles, q is the QG PV, and 8 = 8+ 8' 
the potential temperature deviation away from 8,. Both q and 8 are related, via the QG 
invertibility principle, to the stream function. The form, as written, is defined on the 
8-plane, with the 8-term included in the definition of the PV. The Znt maps defined at 
every height z are similar to those we have used for the SG analysis except that there 
is no explicit interior-surface connection as defined in (5.2). The reason for this is that 
z is not a dynamical variable in the QG model. 
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(5.13) and (5.14), are analogous. At small amplitude 
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By inspection we see that the interior contributions to 9, i.e the first integrals in 

q,, = s [fl[ Znt(3 + 6, Z)  - gnt(5, Z)] d 6  dX d Y dZ 
d+D 1 

(5.15) 

which has the same form, within a factor off, as the first term in braces in (3.10). The 
small-amplitude form of the QG interior wave-activity density in (5.14) is 

(5.16) 

The differences between (5.15) and (5.16) are due to the fact that Q is the inverse of q, 
and that we have removed the dimensional reference density in the Boussinesq SG 
system. 

The appearance of the finite-amplitude surface contributions in (5.13) and (5.14), on 
the other hand, are quite distinct. This is not entirely surprising given the differences 
in construction of the QG and SG expressions. In the QG system, the zonal impulse and 
Casimirs have separate contributions at the vertical boundaries (cf. Shepherd 1990, §4), 
and all limits of integration are fixed. Conversely, in the SG system, the first equality of 
(5.13) has no explicit boundary contributions, but the contributions emerge as 
differences in the limits of integration of the basic- and disturbed-states' volume 
integrals. 

Despite the different forms of the pseudomomentum boundary integrals, it may be 
shown that at small amplitude the SG surface contributions are analogous to the QG 
ones. To do so, we first divide the boundary contributions in (5.13) surface by surface, 
taking 

2 x = c (%{+%J 
i=l 

where at small amplitude 

The paths of integration in E or 2 are meant to represent the displacement of a 
material boundary in IGC. The notation 0" indicates that fixed basic-state limits of 
integration are to be taken for the outer variables of integration, i.e. (Z, X) in (5.17) 
and (X, Y) in (5.18). The expressions are only valid for small amplitude because they 
neglect the edge contributions as discussed above. Thus the displacement of the zt- 
surface is parametrized at fixed (X, Y) as a Z-displacement 2. Similarly, the 
displacement of the y,-surface is expressed at fixed (2, X) as a Y-displacement f. The 
lower limit of integration 2 ( X ,  Y) represents the 2-position of the z,-surface at the basic 
state, for every (1, Y); a similar statement applies to P(Z, X). The integrands in square 
brackets are thus integrated for each fixed outer variable towards the perturbed 
position, Z + Z  or P+ Y. 
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FIGURE 3. (a) Sketch_ used to evaluate c5.2?), for a displacemen! 2’ = 2-2 < 0 away from the 
sprfae-z =,zz. Here Y,(Z)  = &, and Y, - Y,(Z) = - & x - Y, Iz2 Z’ .  (b) As in (a), for a displacement 
Y’ = Y -  Y > 0 away from the surface y = y , .  

The first-order contribution to the integrands in square brackets in (5.17) and (5.18) 
is s:, -u a $mi(‘, a‘ ‘) d s  x ( -cr- -a2qJ6-68). 

6-+., = 6 ( Y , Z ) - 6 ( ~ ( Z ) , Z )  x ( Y -  K(Z))6.,.  

(5.19) 

(5.20) 
From (5.2), 

To evaluate (5.20), we first take a point away from a given z-surface. Figure 
3 (a) illustrates a point (5, a located near and below the basic-state z,-surface 
point (5 ,  a = (5, ZJ, representing the lower limit of integration in (5.18), with 
2-5  = 2 < 0. In the illustration, the surface slope Zyl z ,  > 0. To lowest order, 
Y- Y, = 5 - yZ x - Yz I z e  2. The argument applies generally so that near a 2,-surface 

5( Y,  Z )  - +,((Z) = - cy Y, I Z (  2. (5.21) 

For displacements of the y-surface, we consider the example in figure 3 (b), showing 
the point (9, Z,) to the right of the y, basic-state surface point ( y, Z,) = (Y,, Z,). Here 
?- 

6( f, Z )  - 6Yy,(z) = 6, 2. (5.22) 

Combining (5.18)-(5.21), and using the small-amplitude relation z’ Iz = - Z Z Z  1, 
with Zz satisfying the second of conditions (5.6), we obtain for the z-surface 
contribution 

= ?‘ > 0, and in general 

(5.23~) 

(5.23~) 

Note that since az&, Y, Z) = Zz/+, the change of variables made to obtain (5.23b) is 
well defined. Equation (5.23 c) is identical (within a factor off)  to the separate z-surface 
contributions in the conservation equation (3. lo). 
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from (5.14), 
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The QG contribution to the wave activity at small amplitude at the z-surfaces is, 

(5.24) 

with fluctuations defined in the physical coordinates. The form (5.24),  representing the 
boundary available potential energy, is analogous to (5.23 c) after appropriate scalings 
of the fluctuations and gradients. 

Similarly to the derivation of (5.23) it may also be shown that 

whose form is identical within the f-factor to the meridional boundary contributions 
in (3.10). In deriving (5.25) we have used the relation y' J y  = -yy Y' l v ,  requiring that 
jy satisfy the first of conditions (5.6). As noted in $3, the contributions from the lateral 
boundary have no counterpart in QG dynamics, in which the standard scaling sets the 
normal component of the geostrophic velocity to zero on the boundary. 

From (5.15), (5.23) and (5 .25) ,  we conclude that within a factor off, 9' reduces at 
small amplitude to the quantity in braces in (3. lo). 

6. Nonlinear stability 
The stability analysis presented here follows the approach of S89. In 55.3 we have 

shown that the sign of the small-amplitude form of the pseudomomentum (5.13) 
depends entirely on the signs of the meridional gradients of basic-state quantities. By 
conservation of the pseudomomentum these sign-dependences define a linearly stable 
basic state. It turns out that it is possible to define a positive-definite measure of the 
disturbance that is bounded for finite-amplitude disturbances to such basic states. 
Unlike the QG case of S89, however, the nonlinear stability theorem presented here 
only applies to a restricted class of perturbations, and the disturbance quantity is not, 
in general, a norm. 

S89's approach is to bound a disturbance enstrophy-like norm from above and 
below by the QG pseudomomentum. Then using pseudomomentum conservation, the 
norm may be bounded in terms of its initial value, which is a statement of Liapunov 
stability. The method is first illustrated here for the simple case of a disturbance to a 
zonal basic state under the restriction that the disturbance vanish on the boundaries. 
Alternatively, the domain might be periodic or unbounded in x and y ,  and bounded 
vertically by isentropic surfaces. The boundary contributions represented by the 
integration over D' in (5.13) then vanish. For small-amplitude stability ZY must be 
sign-definite in the interior, and for definiteness we choose it to be negative with a view 
to the meteorological case. We suppose further that there exist functions K,(Z) and 
k,(Z) such that in the interior 

(6- 1) 0 < k,(Z) < - 3y < K,(Z) < CO. 

At every point (A', Y , Z )  in the interior 

where Sint is the interior wave-activity density, defined as the quantity within square 
brackets in (5.15). 
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In this case we may define a disturbance norm llcrlll by 

and we find ~ ~ ~ ’ ~ ~ z ( t )  < -y(t) = - y (o )  < Mllg’112(0)7 (6.4) 

where M = max ( K J k J .  (6.5) 
Z 

We have used pseudomomentum conservation in (6.4). The maximum in (6.5) is taken 
over all Z-levels in the interior. 

The inequality (6.4) is a statement of Liapunov stability similar in form to the QG 
case of S89, without the z-boundary contributions. A potential tightening of the bound 
relative to the approach of that study has been realized by considering the 
(- 3y)max/( - 3y)min ratio at each level and seeking its maximum, rather than taking 
the ratio of the global maximum and minimum values. This modified approach follows 
Held’s suggested improvement to the saturation bound of the two-layer model in 
Shepherd (1988) (see $5 of that paper). 

We now proceed to construct a Liapunov stability theorem explicitly including 
boundary contributions. In order to do so we have found it necessary to consider a 
restricted class of perturbations, namely those that vanish along the edges of the 
domain. The edges are the four lines defined by {(x, y , ,  z,): x E [xl ,  XJ}, etc. Restricting 
the perturbations in this way makes the expressions (5.17) and (5.18) exact at finite 
amplitude: we may think of the displacement of the surfaces in IGC as that of a 
membrane fixed at its boundaries, like a drum. The restriction is artificial but appears 
necessary to obtain the nonlinear stability theorem. 

A second problem emerges when considering the potentially destabilizing role of the 
meridional boundaries. From $3, remark (iii), we recall that Yuy, and Yy, will have 
opposite sign, at least at small amplitude. The point is also clearly illustrated by (5.25),  
where we see that for 3 > 0 at the boundaries, the northern contribution must be 
negative and the southern one positive. A basic state that satisfies the Charney-Stern 
stability criteria, then, cannot be constructed if variability is allowed at all bounding 
surfaces. Thus, besides the edge restrictions, we further take the perturbations to 
vanish at lateral boundaries, in which case yU, = 0. We expect the bounds to apply to 
regimes where the disturbance region is located well away from lateral boundaries. It 
is important to remember that the necessity of considering these restrictions for the 
nonlinear theory does not invalidate the linear stability theorem of $3. 

Without a detailed knowledge of the particular basic state to be considered it is 
difficult to determine the tightest bound on the complex expression (5.18); thus we just 
provide a general bound that might be tightened for a specific basic state. We suppose 
that the basic state obeys (6.1) both in the interior and, in addition, at the boundaries. 
For linear stability, -z”y at the lower surface and ZY at the upper surface were required 
to be positive. For nonlinear stability, we further require that the quantities 

- ( - V  Y Z I Z ,  = (-l>i(zz/zY)lzt 

and 3 are positive and bounded away from zero and infinity at the boundaries. 
We bound the surface wave-activity densities Sz, (defined as the double integrals 

within braces in (5.18)) as follows. For example, the lower surface contribution obeys 
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where kzi is defined generally by 
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[ - (- l)i (Y, I,)]]. (6.7) 
1 

The maximum in cr in (6.7) is taken for c r ~ [ 6 ~ ~ . G ] ~  and that in 2 taken for 
ZE [p,  3 + 2’1. We may also define the positive functions 

[ - (- l)i (Y, I,,)]]. (6.8) 

Therefore 

Following the same approach as the derivation of (6.4), we define a positive-definite 
measure of disturbance amplitude by 

(6.10) 

Because the limits of integration of the first integral of (6.10) depend on Z’, Ilcr’II does 
not satisfy the homogeneity property Ilhcr’II = lhl IIdII, where h is a constant and (T’ 

represents the vector of disturbance quantities (g’, 2’ I,,>. Thus (6.10) does not qualify 
as a norm. Nonetheless, the expression may be bounded from above and below in the 
same way as (6.3) and may be shown to obey 

l l ~ ’ I l Z ( ~ )  G Mllfl’1I2(0)Y (6.11) 

with (6.12) 

where the maximum over 2 is taken for all interior values of Z ,  and that over each z- 
surface taken for all (X, Y )  there. This proves nonlinear stability. 

The bound (6.1 1) with (6.12) is analogous to the QG form found in S89, which also 
consisted of interior and vertical boundary terms. The differences lie in the restrictions 
on the perturbations, and in the comparatively complex form of the quantities Kzt and 
k*,* 

7. Local conservation law 
We now develop a local wave-activity conservation law of the form 

(7.1) r + V . F = O  asin, 

for the pseudomomentum density. Since (7.1) is a local relation, we can analyse the 
interior equation alone. Taking (7.1) as a definition of Fdoes not specify it completely: 
the field is only defined to within a non-divergent flux. To further specify the field’s 
form, we require that it satisfy the group-velocity property that in the WKB limit of 
a small-amplitude monochromatic wave packet propagating through a slowly varying 
medium, 

where cg is the group velocity and the angular brackets denote a phase average. 

(F) = Cff(SiRt)’ (7.2) 
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Consider the form of the interior pseudomomentum density Sint, the quantity within 
square brackets in (5.19, whose spatial integral comprises the interior contribution to 
the pseudomomentum (5.13). We note that from g-conservation (2.18a) 

Now 

whence 

D6 D d  - !P’’ I - 
Dt Dt f uy’ 

(7.3) 

(7.4) 

as,,, = f [ En,@ + u’, Z )  - ~, , (6 ,  Z ) ] ,  

aqflt  vf, es,,, = f [ Zfl,(6 + d, Z )  - E,,(6, Z ) ]  - f - 

a g  

- 
a r  23 

- Y&uf = -fv;u’. 
--(---)--- DS,,, - as,,, as,,, DZ 

Dt au a d  Dt (7.5) 

Note that to within a factor off, the zonal average of (7.5) reduces to (3.5) in the 
small-amplitude limit, with the small-amplitude form of the density Sin, given in the 
IGC integral in (5.15). To obtain a finite-amplitude flux law, we must express fvh u’ as 
the divergence of a flux. This is done in Appendix A, gA.1, yielding a wave-activity 
conservation law of the form (7.1). In QG theory, the invertibility principle is linear, 
implying that the meridional PV flux has only quadratic terms at finite amplitude. 
From Appendix A, gA.1 we see that since the SG invertibility principle is cubic- 
nonlinear in Y, the finite-amplitude flux has terms of cubic and quartic order. The 
small-amplitude reduction of the flux is, from (A 3), 

(7 * 6) 
iig s , , , - ; fY(v;)”;~[zz(y’)2-21y y’z’+yy(z’)y  

f (Iz v; y’ - yz v;, z’) 

f ( - I ,  v; y’ + y y  v; z’) 

The zonal average of V - F reduces to f times (3.8). 

property, we introduce the WKB ansatz 
To explore the wave properties of the system, and to verify the group-velocity 

!P’ = Re[Y*(~LX,~Y,’Z)e“K’X-”T’  I ,  (7.7) 

where 
perturbation lengthscale a 1, ’ = wave envelope lengthscale 

the dimensional wave vector K = (K, L, M ) ,  and Q(K, Y,  2) is the frequency. 
Substituting (7.7) into (7.6) and keeping the leading-order contribution in (u yields 

(7.8) 
- ( -Ty KL +Y”,KM) 

To verify the group-velocity property we must use (3.6), the linearized invertibility 
relation for small-amplitude disturbances to the basic state. From (3.6), in matrix form 

= h,, ax( ax, Y ,  (7.9) 



88 

where 
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(7.10) 

is a symmetric matrix from the thermal wind relation. In order for (7.9) to be invertible, 
we require hij to be sign definite. We find 

det ( -htj)  = -, (V (7.1 1) 
6 

-h  --, det f” l1 -f” 
implying that hi, is negative definite for a statically stable basic state (2, > 0) with 
positive PV. Substituting the WKB form (7.7) into (7.9) yields, to lowest order in p, 

u ’ = - ~ ~ , K , K , ’ Y ’ .  (7.12) 

The dispersion relation obtains upon substituting the solution into the linearized 
governing equation and taking the terms of lowest order in p. We find 

(7.13) 

where the minus sign accompanies the denominator to keep the quadratic form 
positive. This is clearly analogous to the QG dispersion relation, which under the WKB 
approximation is 

(7.14) 

where w is the frequency, (k,I,m) the wave vector in physical space, and c&, is the 
meridional QG PV gradient. The group velocity is 

where we have used the symmetry of hi*. The phase-averaged linearized pseudo- 
momentum is, from (5.15) and (7.12), 

(7.16) 

and the group-velocity property (7.2) follows directly from (7.15) and (7.16) if we 
rewrite (7.8) as 

(4,)) = (ti,(siat> -&j Ki Kj I P Iz)  St,+ iKhlj Kj I ‘y*12* (7.17) 

8. Wave-mean-flow interaction theory 
Using the results of $7 we develop diagnostic equations to determine the effects of 

departures from the zonal flow on the zonal flow itself. We must first distinguish the 
time-dependent zonal-mean state e, from the steady zonal basic state G, with respect 
to which the disturbance cr’ is defined (see (5.12)). We may divide u‘ and the other 
disturbance fields into zonal and eddy parts as follows: 

cr‘ = 7( Y, Z ,  T )  + cr*(X, Y, 2, T), such that 2 = 0. (8.1) 
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For small-amplitude disturbances, both 7 and cr* are small compared to 3. Using this 
decomposition based on the zonal-mean statistics of the flow we will be able to see 
clearly how the evolution of the zonal mean is influenced by a given eddy forcing. 

We add a term G to the right-hand side of (7.1) to represent processes that generate 
or dissipate pseudomomentum locally. Then from the interior governing equation 
(2.18 a), (7.1) and (7.5), we find that to lowest order in the amplitude of the disturbance 

We will examine (8.2) in some detail. The equation expresses the way in which eddies 
force the zonal mean cr (inverse PV) tendency. The components of the generalized 
E-P flux F are, from (7.6), 

To obtain the QG limit, one may use the invertibility relations (2.20) to find 

u”, x 1, iz x -, f y’ x -ug, 1 ,  z’ x - & Z  x -- gB’ P f we,’ 

whence 

where we have taken uh Iz % uh J E .  The form (8.4) is a scaled version of the E-P flux from 
Edmon et al. (1980), with an overall change of sign due to their definition of the 
linearized wave activity, which is negative relative to (5.16). 

Comparison of (8.3) and (8.4) suggests that the off-diagonal thermal-wind terms in the 
matrix play an important role in Rossby-wave propagation for large Rossby number. 
This can be seen from the meridional and vertical components of the group velocity 
(7.13, 

where the thermal-wind terms affect the relative magnitudes of the horizontal and 
vertical components. Since both the basic-state and perturbation quantities depend on 
the coordinate transformation, however, the extent to which SG dynamics modifies the 
QG-dynamics-based picture of Rossby-wave propagation is not yet clear. This issue is 
currently being examined. 

The relation (8.2) provides additional diagnostic insight when it is expressed as a 
wave-mean-flow closure. The idea, as in QG theory (see e.g. Andrews, Holton & Leovy 
1987), is to determine the balanced zonal-mean response to a given eddy forcing. We 
will see, however, that the QG and SG forms of the zonal-mean balance differ 
significantly. The source of this difference lies in the nonlinear invertibility relation of 
SG theory, and can be seen by considering the zonal mean invertibility problem. In QG 
dynamics, q = Yo,(!?‘), where YQG is a linear operator and !P may be obtained from 
q subject to linear boundary conditions. The linearity of the system implies that the 
zonal mean - disturbance, - F, or the zonal-mean tendency u, = may be obtained 
given q’ or qk. The SG invertibility relation (2.20), on the other hand, may be 
represented symbolically by u = JV( Y, Y, 9. Since the system is invertible by 
assumption, !P may be obtained from n, but a closure problem emerges when zonal- 
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mean quantities are desired, because 7 = -K( !P', Y* Y*, Y* Y* Y*, . . . ), i.e. correlations 
between eddy quantities come into play in the balance. Thus more than the 7 or 
distribution is needed to determine the corresponding 

We find that the second-order eddy correlations are significant even in the linear 
theory. Equation (8.2) shows that the zonal-mean PV tendency (.;. is second order in 
disturbance amplitude a.  In other words, the dynamics constrain the zonal-mean PV 
to evolve on a slow timescale. Thus, if 7 = 0 initially, we have 7/c? = @a2). From 
(2.20) we find to lowest order in disturbance amplitude that 

or F. 

7 = 9(F)+V. (8.6) 

(8.7) 

(8.8) 
In (8.6), we have neglected higher-order terms such as C?,,(y', z') and axyz(x*,y*, z*). 

The zonal-mean stream-function tendency, K, can be obtained from the following : 

where the linear operator 9 has the form 

9 = -f-2 [FA * ) I T  - 2Yz( .)YZ +YY( .)zzl, 

v * J =  axyZ(x*, y*, 5) + C?yz(y*, z*) + c:xuz(x*, 7, z*). 

and the divergence term consists of second-order eddy correlations : 

_ _  

__ 2 a -  
q Y ; )  = --v.  J=--v;a* 

i3T c?Y 
(8.9a) 

where we have used (8.2) and (8.6). The boundary conditions on 
( 2 . 1 8 ~  d) ,  (2.20), and (3.3) and (3.4), 

are, from 

The quantities in square brackets on the right-hand sides of (8.10) are the scaled small- 
amplitude surface pseudomomentum densities in (3.10) (see also (5.23) and (5.25)). 

The operator 9 is elliptic for a statically stable (Fz > 0) basic state with 6 > 0. The 
ellipticity is used in Appendix B to show that the solution %( Y, 2, T )  to (8.9) with 
boundary conditions (8. lo), for given -___ interior PV fluxfu; cr* = V - F, eddy correlations 
(V - JjT, and boundary fluxes (vQ y*,  u t  z*), is unique to within a spatially constant 
function of time. Since the Y-derivative of such a constant vanishes, and because this 
solution is unique, we obtain as a consequence the following non-acceleration theorem : 
in the absence of transience (namely (V - 4, = [SintlT = Z_guJ, = [sz,lT = 0), 
and of pseudomomentum generation and dissipation - (namely G = 0), the zonally 
averaged flow does not accelerate, i.e. 

We may cast (8.9) into a form that allows us to obtain the zonal acceleration 
directly from the inversion. If an assumption is made that the basic-state 
meridional lengthscales are much larger than those of the disturbance, then -up' 9[c])y x 9(%), and we obtain 

= u& = 0 throughout the domain. 
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Equation (8.1 1) closely resembles the wave-mean-flow balance of QG theory. In the 
QG limit, using scaling arguments similar to those used to derive (8.4), (8.11) becomes 

(8.12) 

Equation (8.12) matches the Boussinesq inviscid limit of equation (3.5.7) of Andrews 
et al. (1987), which expresses the QG zonal-mean response to eddy forcing in log- 
pressure coordinates. In deriving (8.12), we have neglected the term involving (V - & 
as being O(s) compared to the right-hand side of the equation. 

In conclusion, we have shown that while PV fluxes suffice to determine the zonal- 
mean PV tendency (equation (8.2)), the nonlinearity of the invertibility relation implies 
that the zonal-mean stream-function tendency can only be obtained if the flux 
divergence tendency V is also specified. It is not obvious what net effect the eddy 
fluxes Jhave on the mean flow. As a limiting case, we find for WKB conditions (7.7) 
that they have no effect, since ((V - 3,) = 0. 

9. P-plane compressible flow 
9.1. Introduction 

In this section, we extend the results of &j2-8 to the P-plane compressible system of 
MSc90. Like the Hoskins (1975) system, the MSc90 model has the same two 
mathematical features that made it possible to find the pseudomomentum in $5: first, 
its dynamics are also governed by PV advection, with appropriate boundary conditions, 
and an invertibility principle relating the PV and boundary terms to the velocity; and 
secondly, it is a Hamiltonian system. The explicit form of the Hamiltonian structure 
is presented in the sequel to this paper (Kushner & Shepherd 1995). 

Given the similarity in structure of the two systems, many of the derivations of the 
results of this section closely parallel those of the previous sections. We will thus omit 
the details of the developments below, referring the reader to the earlier sections. 

9.2. Semi-geostrophic dynamics for /?-plane compressible Bow 
MSc90 generalize the hydrostatic compressible equations to the /?-plane as follows : 

Du,/Dt- M Y )  +PAVV,l = - U/P) P,, 1 
DuglDt + M Y )  24 +PAP,] = - (l/P)Pv. j (9.1) 

where Ay = y -  Y, f = f ( Y )  is the variable Coriolis parameter, and /3 = df/dY is 
constant. The coordinates are (x ,y,z) ,  where in contrast to the previous sections z 
refers to geometric height, not pseudoheight. Equations (9.1) anticipate the 
transformation to IGC by explicit inclusion of the coordinate Y in the variablefand 
in the Ay-terms. The terms in square brackets in (9.1) represent the SG approximation 
to the Coriolis terms f.2 x u in the horizontal momentum equations. These expressions 
do not represent the /?-plane approximation per se, since while /? is constant f still varies 
in Y ;  nor is Ay a deviation from some reference latitude. Rather (9.1) to order Rossby 
number 6 accuracy expresses the behaviour of the geostrophic coordinate trans- 
formation on the /?-plane. MSc90 arrive at the equations by requiring that the 
horizontal advection in IGC space have the canonical form found in the first two 
components of (9.10) below. The ‘primitive’ momentum equations then follow on 
transformation back to physical space. Equations (9.1) are part of a family of results 
(e.g. Magnusdottir & Schubert 1991; Lu 1993) based on a similar approach of taking 
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the advection to be simplified in the transformed coordinate space. Craig (1993) has 
shown that this form of the momentum equations also follows from a systematic 
asymptotic expansion of the primitive equations in a modified Rossby number. 

The material derivative is (2.3), with velocity components given by (2.4), where here 
and henceforth z is taken to be the geometric height. The geostrophic velocity is now 

where p is the density, the continuity equation 

the thermodynamic equation 

DO O 

and hydrostatic balance requires 
ap/az = - g p .  

We transform the system to IGC 

(9.4) 

(9.5) 

(9.6) 

where henceforth f =f ly ) ,  and because fvaries we choose not to rescale 0 as in (2.9). 
The Montgomery-Bernoulli potential (M* in MSc90) in IGC takes the form 

(9.7) 
with Ii' = c,(p/p,>" the Exner function, and # = gz. Equations (2.10) and (9.7) differ 
only in their internal energy terms, which turn out to be closely related. Using (2.1), 
(2.9), and the ideal gas equation of state, it may be shown that c p  T = -f2Z(z,-za), 
where z p  is the pseudoheight, z ,  = HJK z 28 km the maximum of z p  for standard 
atmospheric values (Hoskins & Bretherton 1972), and f is the constant reference value 
in (2.9). The sum of the first two terms in (9.7) is once again the Montgomery potential, 
and that of the first and third terms the geostrophic-coordinate potential. 

1 ( v ,  f 
U 

( X , Y , O , T ) =  x + Q , y - - 8 , O , t  , 

Y = #+c, r+;(u;+v; )  = #+sn+;(u;+v;),  

The partial derivatives transform as 

From (9.2) and (9.5H9.8) we find (MSc90) 

yT = P t / P ,  y e  = 1 7 9  

with f = f l y ) .  In IGC, the material derivative is 

DX D Y  DO 
- = aT+-a,+-ay+-ae, D 
Dt Dt Dt Dt 
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and using the momentum equations (9.1), the thermodynamic equation (9.4), (9.6) and 
(9.9), we find 

(9.10) 
f ’ f  

The material derivative in IGC is then 

1 
- = aT+-axy(p, .). 
Dt f 
D 

(9.11) 

Following MSc90 we introduce the potential pseudodensity u = f / q  ( u * / g  in their 
notation), where q is the dimensional potential vorticity. The PV is conserved following 
the motion, so that 

D ( u / f ) / D t  = 0. 

The discussion of the boundary conditions in $2 applies here as well. Material 
boundaries obey the ‘no normal flow’ condition, equations (2.15) and (2.16). Note that 
because z is now a geometric coordinate, the second of these equations applies at 
geopotential rather than isobaric surfaces. 

From MSc90, equation (4.1), we find 

fl = - axY& YI p ) / g .  (9.12) 

To obtain an explicit invertibility principle, and to develop expressions for the local 
pseudomomentum flux below, it is necessary to relate the physical coordinates (x, y )  
and the pressure p to the potential Y. The zonal coordinate x is easily obtained from 
(9.9a). For the meridional coordinate, the first component of (9.10) may be written as 
an equation quadratic in ug, 

Yy = - f i g  + (B/f) (24; + V i ) .  (9.13) 

We use a scaling consistency argument to determine the appropriate root to solve for 
ug =fey- Y). The quadratic terms in (9.13) are small relative to the linear term, for 

where U and L characterize zonal and meridional velocity and length scales, E is the 
Rossby number, and ro the Earth’s radius. Thus even for planetary-scale waves we may 
reasonably take Ocfu,) = O(Yy),  forcing a choice of the smaller root of (9.13), namely 

(9.14) 

because the larger root yields O(ug) = O ( y / P )  - lo3 m s-’. We have thus expressed y in 
terms of Y, Y, and Yy, and note that the relation is nonlinear. 

ug = cf”/2P) [1 - (1 - 4Pf3(Pf-3(~x>2 - !4)>”21 
= - yY/f+Pf4[(yx>2 + ( y Y ) 2 1  + “e/r,)2U1, 

For the pressure, from the definition of the Exner function we have 

P = PO(%/C,)”“ = P(Yd 
To summarize, the governing prognostic equations are 

D ( u / f ) / D t  = 0 in the interior, 
D x / D t  = 0 at x = x , ,x , ,  

D y / D t  = 0 at Y = Y , , Y , ,  
D z / D t  = 0 at z = z1,z2,  

(9.1 5 a) 

(9.156) 
(9.1 5 c )  

(9.1 5 d )  
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with the material derivative given by (9.11). The diagnostic invertibility relations are 

(9.16) 

We note the additional nonlinearity for y andp in (9.16) as compared to thef-plane 
case (2.20). MSc90 characterize the nonlinearity as 'weak' in the sense that to good 
approximation the quadratic terms in, for example, (9.13) are small compared to the 
linear term, so that ug = - Yy/f( Y ) .  Under a quasi-Boussinesq approximation, the 
pressure may be taken to be linear in Ye. 

Simpler systems may be obtained from (9.15) and (9.16). For modelling on the$ 
plane, these equations may be used with f constant and p = 0. For modelling 
Boussinesq p-plane flow, equations (2.2) may be used with the terms f v  and f u  replaced 
by the terms in brackets in (9.1). 

9.3. Linear Charney-Stern theorem 
Using the same direct methods of $3, we find that the linear Charney-Stern theorem 
takes the form 

or in terms of the meridional geostrophic displacements r', 

Here meridional gradients in 3 / f=  l/q" replace those of 5 in (3.10). Sincefis variable, 
the effects of differential rotation are allowed for. The conservation of the first term 
alone corresponds to (5.9) of MSc90. We refer to the remarks following (3.12) for a 
discussion of the implications of the boundary terms. 

9.4. Global invariants 
Considering the same flow domains as in 54, we obtain the energy flux law 

E,+V,.[u(E+p)]+a,[w(E+p>] = 0, (9.19) 

where E = p(+($ + v:) + @Ye + $ ) - p  (9.20) 

is the dimensional energy density in physical space. Integrating (9.19) over the domain 
using the boundary conditions (9.15 kf), or periodicity or unboundedness in some 
direction, we find conservation of d as given by (4.3). 

The zonal impulse obeys 

where 

with 

iwt + v,. (UM) + a,(wM) +p, = 0, 

M = -pF( Y ) ,  

dF/d Y =A Y ) .  

(9.21) 

(9.22) 

(9.23) 

For flow periodic in x, we have the corresponding global conservation law (4.6). 
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For any function C(u/f, 0) we have 

@c), + v,. (WC) + a , ( w m  = 0, 

which implies the global conservation law for the Casimirs 

(9.24) 

?.!! dt = AjpCdxdydz  dt = 0. (9.25) 

For the variational calculations we will again need the IGC form of the fields. The IGC 
zonal impulse density M* is 

M * = - F ( Y ) u * A =  M*dXdYd@, (9.26) 

where we have used the relation paxue(x,y,z) = u, which follows from the fifth 
component of (9.16) together with hydrostatic balance (9.5). The functionals %' have 
the form 

%? = fC*(a/f ,  @)dXdYdO, (9.27) 

I 

I 
where C* is an arbitrary function of two arguments. 

9.5. Pseudomomentum 
The basic state is given by (5.1), and we will make use of the inverse maps 

E,,<../f, 0) = F( G , , ( a  @))? 

where F is defined by (9.23), and the boundary maps E(0) = F( E.0)) and [@/A, (0). 
We seek 9 of the form (5.3), involving the sum of the zonal impulse and a Casimir 
chosen to satisfy the extremal property (5.4). Boundary variability is treated similarly 
to thef-plane system. From (9.26) and (9.27), (5.10) is replaced by 

} (9.28) 
aC*/a(u/f) = F( Y) in the interior, basic state, 

C* = F(Y)(a/f) at all boundaries, basic state, 
with solution 

C*(v/ f ,  0) = E n t ( G / f ,  0) d(G/f) + E(0) [3/fl, (0). (9.29) 

Using disturbance quantities as defined in (5.12), the /?-plane compressible version 

[5/fI,(e) 

of (5.13) is then 

= x,, +s$. (9.30) 

Following the approach of 9 5.3, the small-amplitude reduction of the pseudo- 
momentum (9.30) yields the quantity within braces in (9.17). Note from (9.23) that for 
f > 0, F is monotonic and increasing in Y, and thus the ent and Ent maps play 
analogous roles in the stability theory. 
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9.6. Stability 
The nonlinear stability theorem has the form (6.11) and (6.12) with the following 
substitutions : - - 

u -+ (u/f) ,  Z +  8, Knt + &t, 

in (6.1), (6.7), (6.8), and (6.12); and with (6.10) replaced by 

(9.31) 

9.7. Local conservation law 
From (9.30) the interior pseudomomentum density and its small-amplitude reduction 
are 

Similarly to the derivation of (7.3, we find 

(9.33) 

The term !Px u' is expressed as the divergence of a flux in Appendix A, gA.2. To do 
so it is necessary to expand y -  and p-fields in powers of the disturbance field Iy', because 
from (9.16) y and p are not integer powers of gradients of Y. The small-amplitude 
reduction of the E-P flux is, from (A 5) and (A 12) 

(9.34 b) 

(9.344 

where !=A1 +4/3!Py/f3)1'2, Y = dp/d!€'@ = p 0 .  (9.35) 

In deriving the above we have used the small-amplitude relation 

Y' = q f  = - W(fA, 
together with thermal wind balance in the basic state 

(9.36) 

f J e  = - ~ y / ~ h ,  (9.37) 

both of which may be found using (9.16). Using the WKB ansatz (7.7), with 2 replaced 
by 0, 

(9.38b) 

(9 .38~)  
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To verify the group-velocity property, we have from (9.16) that to leading order 

CTf = hij ax< ax, Y +pi  ax{ Y ,  (9.39) 

The matrix hi, is symmetric from thermal wind balance (9.37). In order for (9.39) to be 
invertible, we require hi, to be sign definite. As in the Boussinesqf-plane case, for a 
statically stable basic state with positive PV, hi, is negative definite since in that case 

I -  f(+/f)Z - hll -h  ---0, det = -Ma> 0, det (- h,) = - > 0. (9.41) 
CT 

df l1 - f 2  

Under the WKB approximation 

CT’ = -hij Ki Kj Y ,  
the dispersion relation is - 

o = - y K + ( - h  ( w 9 Y  K K ) ?  K 
i j  i j 

and the group velocity is 

(9.42) 

(9.43) 

which follows from the symmetry of h,. The phase-averaged linearized pseudo- 
momentum is, from (9.32) and (9.42), 

(9.45) 

and the group-velocity property follows directly from (9.44) and (9.45) if we rewrite 
(9.38) as 

(9.46) 2 

9.8. Wave-mean-flow interaction theory 
We find that (8.2) holds withfvariable and Sinl given by the small-amplitude form in 
(9.32). The zonally averaged E-P flux is given by 

(9.47) 

Equation (8.6) holds with the operator 
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where the subscripts 1 and 2 indicate the first- and second-order terms in the 
expansions of p' and y' in (A 4) and (A 7). The linear terms in the Jacobians in (9.49) 
are 

x* = - P X / f 2 ,  y: = - %/( fyj, p :  = f!P& (9.50) 

and the zonally averaged quadratic eddy correlations are, to leading order, 

(9.5 1) 

The nonlinear relation between p ,  y and Y in (9.16) implies, bearing in mind the 
discussion of $8, that the boundary conditions on %will be more complex than (8.10). 

Y;. = -K/(ffi+G (9.52) 
We find from (A 7) that - 

and from (9.16) that 

(9.53) 

The boundary conditions on % are thus, from (9.15c, d) ,  

(9.544 

The ellipticity of the operator (9.48) is guaranteed for a statically stable positive-PV 
basic state. The proof of uniqueness of the boundary value problem, given all eddy 
forcings in the interior and at the boundaries, is similar to that given in Appendix B 
for the f-plane Boussinesq case. Given this uniqueness, the non-acceleration theorem 
holds for this system. 

Under the appropriate WKB-like conditions, (8.1 1) is replaced by 

10. Discussion 
In the Introduction we referred to a body of theoretical work based on QG wave- 

activity invariants. We have derived the pseudomomentum invariant for the SG 
system, and have used it to extend some of this QG theory to SG dynamics: the 
linearized Charney-Stern stability theorem and its nonlinear generalization, the finite- 
amplitude local wave-activity conservation law, and the E-P flux diagnostics describing 
wave-mean-flow interaction. The existence of the pseudomomentum, and its similarity 
to the QG form, is guaranteed because SG dynamics, like QG dynamics, is a PV- 
advecting invertible system, with an underlying Hamiltonian structure. 

At finite amplitude, the interior contributions to the SG and QG pseudomomenta 
are similar, involving the spatial distribution of the basic-state PV. The more 
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complicated form of the finite-amplitude boundary contribution to the SG pseudo- 
momentum reflects the behaviour of the dynamic isentropic and geostrophic 
coordinates at the boundaries. At small amplitude, the SG and QG vertical boundary 
contributions are analogous. However, the ageostrophic circulations allowed in the SG 
form at meridional boundaries yield contributions to the pseudomomentum that are 
absent in QG dynamics. 

Conservation of the small-amplitude form of the pseudomomentum yields the 
linearized Charney-Stern theorem. The QG theorem describes conditions on the signs 
of the meridional gradients of the interior PV and of the vertical-boundary potential- 
temperature distributions that must be obeyed for the flow to be necessarily stable. The 
terms at the meridional boundaries included in the SG pseudomomentum yield 
additional stability criteria. According to these criteria stable basic states for flow in a 
channel are difficult, if not impossible, to construct. On the other hand, the stability 
theorem derived in Part 2 of this study (Kushner & Shepherd 1995), which arises from 
pseudoenergy conservation and is analogous to Arnol’d’s first theorem, does not suffer 
from this restriction. 

The nonlinear generalization of the QG Charney-Stern theorem of S89 bounds a 
disturbance enstrophy-like norm, consisting of both interior and vertical boundary 
contributions, in terms of its initial value. For the extension to SG theory, the complex 
boundary dynamics require us to consider perturbations that are restricted to vanish 
on the domain edges, and the potentially destabilizing effect of the meridional 
boundaries requires further restrictions at these boundaries. Furthermore, the positive- 
definite disturbance quantity that is bounded in terms of its initial value is not, in 
general, a norm. The resulting Liapunov stability theorem, mutatis mutandi, is similar 
to that of QG theory. It is an unresolved question whether having to make these 
restrictions represents a mere technical difficulty or has significant physical implications 
for the nonlinear theory. Before constructing saturation bounds for disturbances to 
unstable basic states in SG theory, it will be necessary to understand this issue more 

The QG and SG finite-amplitude local pseudomomentum fluxes are also similar. 
Because of the nonlinear invertibility relation in SG dynamics, the SG meridional PV 
flux includes terms of higher-than-quadratic order in the disturbance. 

The QG wave-mean-flow interaction theorem provides a closure relation between 
eddy forcing and tendencies in the zonal-mean flow. Because the SG invertibility 
relation is nonlinear, additional eddy correlation terms besides the zonal-mean PV 
fluxes are needed to obtain the mean-flow stream-function tendency. It remains to be 
seen how critical and realistic this effect is, for example, in the eddy-driven circulation. 
A useful test would be a direct comparison of the SG and QG E-P flux diagnostics for 
a highly baroclinic state. 

One principal motivation of this study is to obtain improved diagnostics for the 
analysis of large-scale flows from SG theory. SG theory overcomes many of the 
practical limitations of QG theory, since unlike the latter it: (i) allows for large 
ageostrophic circulations; (ii) does not build in an assumption that the flow is 
linearized about a resting reference state; and (iii) makes no explicit restrictions on the 
shape and size of the variation of underlying topography relative to the scale height. 
These points suggest that SG-based analysis could be superior to that of QG in regimes, 
such as the lower stratosphere and the oceans, where the stratification varies strongly 
with latitude. Regarding the meridional boundaries as finite-amplitude jumps in the 
topography, we have seen how (iii) comes into play in the Charney-Stern theorem. It 
may be shown that the theorem also generalizes to flow parallel to finite-amplitude 

fully. 
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ridges (Kushner 1995). In $9, we have shown that the results of @2-8 generalize to /3- 
plane geometry in a compressible atmosphere. The effects of p and large-scale 
compressibility are critical to any proper model of large-scale dynamics on the sphere. 
It should be noted that Magnusdottir & Schubert (1991) have extended SG dynamics 
to the hemisphere, and we are confident that the results presented here should also 
extend to that geometry. 

The claim that SG theory could provide a superior diagnostic tool might be criticized 
given that the formal and numerical accuracy of three-dimensional SG dynamics, as 
well as its physical realism in simulations, have been questioned (McWilliams & Gent 
1980; Barth, Allen & Newberger 1990; Snyder, Skamarock & Rotunno 1991). These 
objections generally focus on SG dynamics as an accurate, predictive intermediate 
balanced model. The emphasis in this work, however, is on the diagnostic use of the 
system for insight into observations and model output, in the spirit of the use of QG 
theory as a tool of understanding rather than of prediction. The critical question for 
applications of the results in th s  study then becomes whether or not the distinct 
processes captured by SG theory are reasonably well-represented. This is a very 
different issue than that of long-term accuracy of the model equations. Even though 
SG dynamics may be inaccurate in simulations because of small-error buildup over 
time, at any instant the SG diagnostic relationships may be quite good. 

The question of whether the MSc90 system models ,8 and compressibility effects well 
has not yet been fully answered: MSc90 support their system by investigating its 
Rossby-Haurwitz normal modes and comparing them to the modes in Laplace’s tidal 
equations. The results of this study provide a framework for further tests, such as 
general circulation model or observed data analysis. 

We would like to thank 0. Bokhove and J. C. Bowman for helpful discussions. 
P. J. K. is supported by a postgraduate fellowship from the Natural Sciences and 
Engineering Research Council of Canada (NSERC). T. G. S. is supported by NSERC 
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Appendix A. Local flux law calculations 

Equation (7.5) may be rewritten 
A. 1. f-plane Boussinesq system 

ast,,/az-+ ax(us sinti + ay(u; sint) +fi; uf = 0. (A 1) 

We will show that the last term, the meridional d u x ,  can be expressed as the 
divergence of a vector field. The finite-amplitude disturbance d is 

V’ = axyz(z + XI, y’ + y ,  z”+ 2’) - axuz(f, y, 3, 
whence from (2.20) we have (noting that R = X )  

fur B u’ = = a xYz[-xu;)29Y, ZI +faYz(o;Y/, 3 +f3YZ(Y, 
-fY’ aYz(u;, 3 -fz’ ay,(J, $1 
+ a x y z ( ~ , ~ ’ ,  z’) - py azx(~’, z’) - v; a X y w ,  z’) 

= axyz[-:(~;)2~~, ZI +faYz(u;y/ ,  3 +fayz(g, u; z’) 
+ y ax[z“z(y/)2 - 25, y’z’ + p y ( z ’ ) z ~  

+~XYZ(M,~’,~’)+~~~[~ZX((Y’)~, z’) +axy(y’ ,  (z’)’)]. (A 2) 
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From (A 1) and (A 2), a flux F satisfying (7.1) is 

4x) = ug sin, -Xu;)z ayz(y, z) +y[Zz(y’)2 - 2Z“,y’z’+y”,(~’)~] 
+ M a y z ( y ,  z/) + 2f2y3z’ ,  (A 3 4  

qy) = ~ ; s , n , - ~ ~ ; ) z a z x ( ~ , z ) + ~ ~ ~ ~ ; ~ ’ - j j ~ v ; z ’ ) +  ~ a ~ ~ ( y ~ , Z ~ ) - - f 2 Z ; r ~ ‘ ~ ‘ ,  (A 3b) 
<z) = - ;(v;12 axy(y, z) + f l y y  u; zf - z “ ~  .; y / )  + M axy(y’, z/) (A 3 4  
where y and z are to be distinguished from j j  and 2. 

A.2. P-plane compressible system 
The derivation follows that of 5A.1, with the important difference that we must expand 
the pressure and y-fields in power series as follows. From (9.16), we write 
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Combining (9.33) with (A 1 l), a flux F satisfying (7.1) is 

Appendix B. Uniqueness of solutions to (8.9) 
THEOREM The solution %( Y, Z ,  T )  to (8.9) with given Q - F and V 0 &, and boundary 

conditions (8.10) with given uQ+y* and at the appropriate sulfcIces, is unique to within 
a spatially constant function of time. 

Proof The proof uses the methods of $3. Suppose - we have two solutions Y1,, and 
p2, , to the problem. Then their difference @T = Yl, - Y2, , satisfies the homogeneous 
problem 

with Neumann boundary conditions 
9(@,) = 0, (B 1) 

- 
Q,, = 0 on y = y l , y , ,  aZT = 0 on z = z1,z2. 

We find 

= 0, (B 3) 

where the boundary terms are treated in a similar manner to the terms in (3.8) and 
(3.9), and (B 2) has been used. 

The quadratic form in (B 3) is positive definite for a statically stable basic - state 
(Zz > 0) with positive basic-state PV. For the equality to hold, then, @TY = aTZ = 0. 
The theorem follows. 0 
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