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New nonlinear stability theorems are derived for disturbances to steady basic flows in 
the context of the multilayer quasi-geostrophic equations. These theorems are 
analogues of Arnol’d’s second stability theorem, the latter applying to the two- 
dimensional Euler equations. Explicit upper bounds are obtained on both the 
disturbance energy and disturbance potential enstrophy in terms of the initial 
disturbance fields. An important feature of the present analysis is that the disturbances 
are allowed to have non-zero circulation. While Arnol’d’s stability method relies on the 
energy-Casimir invariant being sign-definite, the new criteria can be applied to cases 
where it is sign-indefinite because of the disturbance circulations. A version of 
Andrews’ theorem is established for this problem, and uniform potential vorticity flow 
is shown to be nonlinearly stable. The special case of two-layer flow is treated in detail, 
with particular attention paid to the Phillips model of baroclinic instability. It is found 
that the short-wave portion of the marginal stability curve found in linear theory is 
precisely captured by the new nonlinear stability criteria. 

1. Introduction 
Arnol’d (1965, 1966) established two theorems for the nonlinear stability of steady 

solutions of the two-dimensional Euler equations. His method is essentially a finite- 
amplitude extension of the variational technique of Fjmtoft (1950), and is based on the 
construction of a conserved functional, usually the energy plus a suitably chosen 
Casimir invariant (which for the two-dimensional Euler equations consists of the 
spatial integral of a function of the vorticity), which is sign-definite for arbitrary 
perturbations. The basic state is then an extremum of the conserved functional. 
Arnol’d’s first stability theorem corresponds to cases where the conserved functional 
is positive definite, while the second theorem corresponds to cases where it is negative 
definite. Since the method is general and can be cast in terms of Hamiltonian theory, 
it can be applied to any fluid system which has an underlying Hamiltonian structure 
(see e.g. Holm et al. 1985; Shepherd 1990). 

Generally speaking, the establishment of an analogue of Arnol’d’s second theorem 
is much more difficult than is the case with the first theorem. For the multilayer quasi- 
geostrophic equations, a widely used model for describing large-scale atmospheric and 
oceanic dynamics (e.g. Pedlosky 1979), an analogue of Arnol’d’s first theorem was 
proved by Holm et al. (1985), and significantly generalized to incorporate momentum 
conservation by Zeng (1989) and Ripa (1992). Analogues of Arnol’d’s second theorem 
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have recently been established for this system by Mu (1991) and Ripa (1992). The 
present work continues this line of investigation and derives new nonlinear stability 
criteria analogous to Arnol’d’s second theorem, which are superior to those derived in 
the aforementioned papers. The results establish rigorous upper bounds on both the 
energy and potential enstrophy of finite-amplitude disturbances to steady basic states, 
which are expressed in terms of the initial disturbance fields. These bounds hold 
uniformly in time, and tend to zero uniformly as the initial disturbance amplitude 
decreases to zero. It follows that the bounds establish nonlinear (normed) stability of 
the basic state. This analysis occupies $3. 

The results are applied in 54 to the important case of the two-layer model. Particular 
attention is paid to the classical Phillips model of baroclinic instability. According to 
linear theory, the Phillips basic state is unstable for sufficiently large vertical wind shear 
provided that the disturbance wavenumber is not too large. The minimum critical 
shear for instability corresponds to violation of the nonlinear Charney-Stern stability 
criterion (Shepherd 1988). It is found here that the short-wave portion of the marginal 
stability curve is precisely captured by the new nonlinear stability criteria, thereby 
rigorously explaining the existence of a maximum wavenumber for normal-mode 
instability at any given shear. 

While Arnol’d’s stability method relies on the conserved energy-Casimir functional 
being sign-definite, our new criteria can be applied to cases where it is sign-indefinite 
because of the disturbance circulations. This fact is highlighted by the construction of 
an explicit example in 54.3. 

Andrews (1984) showed that if the flow domain is zonally symmetric (e.g. a zonal 
channel), then any basic state that is stable by Arnol’d’s first stability theorem must 
itself be zonally symmetric. There are generally two ways to prove Andrews’ theorem : 
the first is based on the fact that an Arnol’d-stable flow is an extremum of the 
energy-Casimir functional (Carnevale & Shepherd 1990), while the second is based on 
explicit integral inequalities. The first approach is not applicable to the present case 
because the energy-Casimir functional need not be sign-definite. However, by 
modifying the argument of Andrews (1984) we prove an analogue of his result for the 
stability criteria obtained in $ 3 .  This analysis is presented in 5.5. 

The case of uniform potential vorticity flow is not generally accessible to Arnol’d’s 
theorems, although it is well known that such a flow is stable to normal-mode 
disturbances. It is shown in $ 6  that the present analysis nevertheless can be applied, 
and can be used to prove the nonlinear stability of uniform potential vorticity flows. 

The stability criteria are summarized in $7. 

2. Governing equations 
We consider a stably stratified fluid of N superimposed layers of constant density 

p1 < . . . < p N ,  with equal density jumps pi+l -pi = p’, and mean layer depths di. The 
flow is presumed to be governed by the multilayer quasi-geostrophic potential vorticity 
equation (e.g. Pedlosky 1979) 

a4 
at -++(Qi ,P , )  = 0 ( i  = 1, ..., N ) ,  

where Qi(x , y ,  t )  is the stream function in layer i, and 
N 

p , ( x , y , t ) = V 2 Q i + ~ C ~ j ~ j + ~ ( x , y )  ( i =  1 ,..., N )  (2.2) 
j=1 
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is the potential vorticity in layer i. In the above, a( f ,g )  = fxg,-f,gx is the two- 
dimensional Jacobian, x and y are respectively the eastward and northward 
coordinates, t is time, 4 = f:po/gp’di is an inverse stratification parameter (the so- 
called ‘rotational Froude number’), where fn is a representative value of the Coriolis 
parameter, po is a mean density, and g the gravitational acceleration; 

.UX, Y )  = s i N ( f n / d N )  h(x, Y )  + f n  + PY 
represents the combined effects of topography h in the lowest layer and the Coriolis 
term, where SiN is the Kronecker delta; and the matrix zj is given by 

-1 1 0 ... 0 0 0 
1 -2 1 ... 0 0 0 
0 1 -2 ... 0 0 0 

0 0 0 ... -2 1 0 
0 0 0 ... 1 -2 1 
0 0 0 ... 0 1 -1 

. .  . .  

Because the density jumps have been taken to be equal, we have the condition 

(2.4) 
f : P o  d .  I; = I = constant Vi. 

The horizontal domain D under consideration is a bounded, multiply (or simply) 
connected domain on the beta-plane, with a smooth boundary a l l  consisting of J +  1 
simple closed curves aD,. The boundary conditions are the usual ones of no normal 
flow and conservation of circulation in each layer, namely 

P g  
z a  

Vdji.iids = 0 for j =  0 ,..., J ,  (2.5a, b) 
adji 

as 
- = O  on a l l ,  - 

where s is arclength along the boundary aD, and f i  the outward unit normal. 
Now suppose that (dj,, 4) = (!Pi, QJ is a steady solution to the system (2.1F(2.5); it 

follows that a(Yi, QJ = 0 for each i, and consequently the isolines of Yi and Qi are 
coincident. We further assume that there exist continuously differentiable functions 
Yt( .) such that 

A finite-amplitude disturbance (y?i, qi) to this steady basic state is defined according to 
yi(x, Y )  = Yi(Qi(x, v)) v(x, Y )  E D .  (2.6) 

with 

3. Nonlinear stability theorems 
We now assume (corresponding to the hypothesis of Arnol’d’s second theorem) that 

the functional relations (2.6) are monotonic with a negative slope, and that there exist 
positive constants cli and cZi such that 

dY. 
0 < cli d -2 < cZi < m (i = 1, . . . , N ) ,  

dQi 
(3.1) 
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where dYi/dQ, = VYi/VQi. The goal now is to establish upper bounds for the 
disturbance energy 

N 

E(t) = JJ D 2  A{ i=l d i l V $ i ~ z + ~ d i & ( $ i + l - $ i ) z } d x d y  i=l (3.2) 

and disturbance potential enstrophy 

Z(t) = 11 A{ 5 di(qJ2}dxdy 
D 2  i=l 

(3.3) 

in terms of the initial disturbance fields. 
To do so, first define the functions Gi(?/-) = ’ !Pi(q) dq, using the functional relations 

(2.6). In the usual way (cf. Arnol’d 1966), the definition of the function !Pi( .) may be 
extended if necessary outside the range of Qi in the basic state, while maintaining the 
property (3.1) : such extension is necessary for ‘non-isovortical’ disturbances such as 
are considered in this paper. Using conservation of total energy, total potential 
enstrophy, and total circulation in each layer, it follows that the functional 

+11 { 5diGi(Qi+qi)}dxdy-$ i = l j ’ = O  i$ aDj diYiV(Yi+$i).iids (3.4) 
D i=l 

is conserved in time. Using this result, together with the manipulation 
N N-l  11 D { i=l c diVYi.V$i+ i=l c di4(Yi+1- Yi)($i+l-$i)}dxdY 

I1 N 

diV*(YiV$J-di YiV2$i-di&Yic qj$j dxdy 
j=1 

= 2 if di YiV$i.AdF-ll { e fi- diGi(Qi)qi}dxdy, 

i = i j = u  aDj D i=l 
(3.5) 

it is easy to show that 

(3.6) 

(3.7) 

d 
dt 
-(E(t)+A(t)) = 0, 

N 

where 

Note that under the hypothesis (3.1), A(t )  < 0. E + A  is the energy-Casimir functional 
referred to in the Introduction. 

We wish to use the exact, nonlinear conservation law (3.6) to obtain upper bounds 
on E(t) and Z(t). It is helpful in this regard to decompose the disturbance ($i, qi) into 
two parts, following Mu & Shepherd (1993). To wit, let ykOi(x, y) and qoi(x, y) be the 
initial disturbance stream function and potential vorticity fields. Define 

4 0  = 11 { c di[Gi(Qi + qi) - Gi(QO - GXQJ qil} dxdy. 
D i=l  

1, 40% dXdY 

SSJDdXdY 
q )  = , q;=qi-q;  ( i =  1, ..., N )  (3.8) 
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The reason for making this decomposition is to take advantage of the Poincark 
inequality (cf. (3.29)), which applies to q; but not to qi. Since d/dt(JJDqidxdy) = 0, 
it follows that 

[IDq;dxdy=0 Vt  [ i =  1, ..., N]. 

Let $; be defined by 

(3.9) 

N Vz$ll.;+ec Ti$; = q; in D ;  (3.10a) 
j=1  

V$;.fids=O for j = O ,  ..., J.  i, (3.10b) 

We must establish existence and uniqueness of such a solution. To do so let the matrix 

(3.11) 
K be defined by 

Kij  = diag ( F i ,  . . . , Fa) = 6. .  v Ft,  

and let (Al , .  . . , AN) be the eigenvalues of the matrix - KTK. According to Liu & Mu 
(1992), there exists an orthogonal matrix L such that 

LTKTKL = -diag(A,, ..., A N ) ,  (3.12) 

where LT is the transpose of L ,  LTL = I where I is the identity matrix, and the 
eigenvalues are non-negative and distinct : 

0 = A ,  < ... < A N .  (3.13) 

Multiplying (3.10) on the left by LTK-l gives the problem 

(3.144 

Vpi.fids=O for j = O ,  ..., J; (3.14b) 

where p = LTK-ly/', b = LTK-lq', (3.15) 

after using the property (3.12). However, according to Mu (1992, theorem A l), for 
specified bi the problem (3.14) has a unique solution pi for i > 1, since hi > 0. For 
i = 1, we have A, = 0 and JJDb,dxdy = 0 by (3.9) and (3.15); therefore p 1  is defined 
uniquely up to an additive function of time. 

This proves the existence of solutions to (3.10). As for uniqueness, suppose that 
( G l r . .  . ,GN) and (&. . .,I&,,) are two solutions to (3.10). Then vi = @ i - + i  satisfies the 
homogeneous form of (3.10). Multiplying the ith such equation by (pi/e, integrating by 
parts, and using the boundary conditions yields 

'I I,{ i;lvvil.. i= l  c (Vi+l-viY dXdY = 0;  
N-1 

this implies 

where J(t) is a function of time alone. Hence the non-uniqueness in the definition of $ll.; 
will not affect the energies E'(t) and E* (see (3.21)) associated respectively with $; and 
$,', as defined below. 

- 1  - (p.-(p. 1. t = (p. c+l -@i+l  = J(t) ( i =  l , .*.,jV-l), 
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It follows from (3.8) and (3.10) that $:, defined by $: = $i-$i ,  satisfies 

(3.16 a) 

V@,,.rids for j = O ,  ..., J .  (3.1 6 b) 

Now, using (3.8) and (3.9) we have 

while from (3.7), (3.1), and Taylor's remainder theorem, we have (cf. Arnol'd 1966) 

Combining the above with (3.6) then yields 

Applying the inequality 

(a+b)2 d (1+a)a2+ (3.19) 

which holds for any positive constant a, to (a = $:, b = $;) and (a = V@t, b = V$;) 
gives 

E(t) d (1 +a)E*+ (3.20) 

where 

Combining this with (3.17) and (3.18) then yields 

clidi(q;)2 dxdy < (1 +a)E*+ E'(t)-E(0)-A(0) 
J J D k { $  1 

-jJ D2 A{ i=l 5 clidi(q:)'}dxdy. (3.22) 

The constant a will be determined later. From (3.1) and (3.7), it follows that 

- 4 0 )  < '{ 5 czidi(q,i)z}dxdy = 11 ;{ 5 ~ , ~ d ~ [ ( q ~ ~ ) ~ + ( q : ) ~ ]  
D2 i=l D2 i=l 

Combining (3.23) with (3.22) then yields 

(3.24) 
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where 

H =  E * + / /  D 2  ’{ i=l  $ ( c 2 i - c l i ) d t ( q ~ ) 2  } dxdy+ ss,;{! c 2 i a q 3  I dxdy. (3.25) 

Note that H i s  defined solely by the initial disturbance fields, is always positive for non- 
zero disturbances, and is independent of the free parameter a. 

Now, everything on the right-hand side of (3.24) is determined by the initial 
conditions, with the exception of E’(t). However, as in the one-layer case (Mu & 
Shepherd 1993) we can bound E’(t) from above by applying a PoincarC inequality, as 
follows. First, note that in the light of (3.10), the expression (3.21 b) for E’(t) may be 
rewritten, after integrating by parts, as 

(3.26) 

in terms of the variables pi and bi defined by (3.15), this takes the form 

~ ’ ( t )  = -// D 2  A{ i=l $ di4pibi}dxdy 

the second equality following after integration by parts, using (3.14). Let h be the least 
positive eigenvalue of the problem 

V 2 # + h # = 0  in D ; - = 0; (3.28a) 

V$-iids=O for j = O ,  ..., J.  (3.28b) 

Then from (3.14) and (3.27) together with standard theory of partial differential 
equations, we have the PoincarC inequality 

;: jiu 
i, 

(3.29) 

The expression on the right-hand side of (3.29) must now be cast in terms of 4;. Define 
the diagonal matrices A and C by 

Then in matrix form, (3.29) can be written as 

E’(t) G /ID ;(di 8) bT A b  dx dy 

(3.31) 

(recalling that d i 4  is a constant, by (2.4)); while the left-hand side of (3.24) can be 
written as 

; { cli di(q;)l} dx dy = 1, i(di 4) (q’)!!’ K-lCK-lq’ dx dy. (3.32) 
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l/D+(dic)(q')T K-l K-'q'dxdy 6 aE*+H. ( 3 . 3 3 )  

The expression ( 3 . 3 3 )  is very nearly what we need in order to bound the disturbance 
potential enstrophy Z(t) in terms of the initial fields. Unfortunately, it depends on the 
matrix L, which is not known explicitly. However, it turns out that L A T  may be 
expressed in terms of the basic physical parameters of the problem. In particular, 

f A-lL = L diag ( A  + A,, . . . A + A N )  LT 

= A/+ L diag (Al, . . . , A N )  LT 

= A/- KTK 
after using (3 .12) ,  whence 

LALT = ( f k 1 L T ) - '  = (A/-KTK)-l. ( 3 . 3 4 )  

Now define the matrix 

M = C-LALT = C-(h/-KTK)-l. ( 3 . 3 5 )  

It is clear from ( 3 . 3 3 )  that if M is a positive definite matrix, then the left-hand side of 
(3 .33)  should be positive for sufficiently large a and stability would then follow. This 
is indeed the case, as is shown explicitly below. Hence we hypothesize that M is a 
positive definite matrix with minimum eigenvalue k , ,  namely 

#'M# 2 k11#l2 Vd7 with k, > 0. ( 3 . 3 6 )  

Since from ( 3 . 1 3 )  and (3 .30)  the largest eigenvalue of the matrix LAL is l / A ,  we have 

6 /ID+(di 4) (cI ' )~ K-l[ C - (1 +:) L A T I  K-lq' dx dy. (3 .37)  

The inequality ( 3 . 3 7 )  can be combined with ( 3 . 3 3 )  to yield 

B(a) / /  D 2  '{ i=l 5di(q;)z}d~dy d aE*+H, ( 3 . 3 8 )  

where B(a) = k , - ( l / a h ) .  If we choose a > l / A k l ,  so that B(a) > 0, then (3 .38)  
together with (3 .17)  gives the bound 

( 3 . 3 9 )  

The task is now to choose a so as to minimize the right-hand side of (3 .39) ,  in order 
to obtain the sharpest possible bound on the disturbance potential enstrophy. First 
consider the case E* = 0, for which lV$tl = 0 and $T+l - $: = 0, so that q: = 0. In 
this case the right-hand side of ( 3 . 3 9 )  is minimized for the maximum value of B(a), 
which is achieved in the limit a+ co and is just k,.  This yields the inequality 

z(t) 6 H p , .  ( 3 . 4 0 )  
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In the general case E* $; 0, the minimum of the right-hand side of (3.39) is attained at 

1 +[1 +hk,(H/E*)]i a , =  
hkl 

man , (3.41) 

for which B(amin) > 0 and 

(3.42) amin E* + H - - 2{E* + [E*(E* + hk, H)]i} + hk, H 
B(amin) hk; 

Together with (3.39), this yields 

2{E* + [E*(E* + hk, H)];}  + hk, H +s/ ’{ 5 d,(qf)l}dxdy. (3.43) 
hk; D 2  i=l 

Z(t) d 

In this way we have obtained an upper bound on the disturbance potential enstrophy 
Z(t) in terms of the initial disturbance, since E*, H and q* depend only on the initial 
disturbance. It is worth noting that the special case (3.40) can be obtained from (3.43) 
by setting E* = 0 and qa = 0 in the latter expression. 

We now proceed to determine an upper bound on the disturbance energy. From 
(3.31) and the fact that the largest eigenvalue of the matrix L A T  is l/h, we have 

Z’(t) 1 N 

E’(t) d = - 11 { d,(qi)2} dx dy. 
D 2  i-1 

(3.44) 

First consider the case E* = 0, for which E(t) = E’(t) and Z( t )  = Z’(t). In this case 
(3.40) and (3.17) may be invoked with (3.44) to yield 

E(t) = E’(t) < H/hk,. (3.45) 

In the general case E* $: 0, on the other hand, substituting (3.44) into (3.20) yields 

E(t) d (1 +a)E*+ 1 +- -. ( :):’ 
The minimum of the right-hand side of (3.46) is attained at 

amin = (.Z’/hE*)i, 

which when substituted back into (3.46) gives 

(3.46) 

(3.47) 

E(t) < [E*i+ (Z’/h)q? (3.48) 

Then using the bound on 2’ that comes from (3.43) and (3.17), this yields 

(3.49) 

In this way we have obtained an upper bound on the disturbance energy E(t) in terms 
of the initial disturbance. Note that the special case (3.45) can be obtained from (3.49) 
by setting E* = 0 in the latter expression. 

It is easy to see that when the initial disturbance potential enstrophy and initial 
disturbance circulations tend to zero, then E*, q* and H tend to zero also. This fact, 
together with the rigorous upper bounds (3.43) and (3.49), therefore demonstrates that 
the disturbance potential enstrophy and disturbance energy can be bounded for all 
time below any given positive constants, for sufficiently small initial potential 
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enstrophy and initial circulations. We take this as the definition of nonlinear stability. 
Thus we can state: 

CRITERION 3.1. Suppose the basic state (!Pi, Qi) satisfies (2.6) and (3. l), and the matrix 
M defined by (3.35) is positive definite. Then (!Pi, QJ is nonlinearly stable. In particular, 
upper bounds on the finite-amplitude disturbance potential enstrophy and disturbance 
energy are provided by (3.43) and (3.49), respectively. 

When N 2 3, it is generally a difficult task to obtain the smallest eigenvalue k, of the 
matrix M, and one may have to resort to numerical methods. On the other hand, an 
explicit expression for k, in the case N = 2 is obtainable, and will be given in the next 
section. But it is an easy matter to obtain a simpler, albeit weaker, stability criterion 
in the N-layer case, as follows. For any vector #, we have the inequality 

#'M# = #'C#-#'fAL'# = #'C#-(f '#)'Af '# 2 mincIi-- !#Iz. (3.50) 
( i  

Therefore the condition 
h min cli > 1 

i 

(3.51) 

implies that M is a positive definite matrix. This yields: 

CRITERION 3.2. Suppose the basic state (!Pi, QJ satisfies (2.6) and (3.1), and (3.51) 
holds. Then (!Pi, Qi) is nonlinearly stable in the sense described in Criterion 3.1. 

Obviously it is easier to verify Criterion 3.2 than Criterion 3.1, although the latter 
is better insofar as it applies to a wider class of basic states. Also, whenever (3.51) 
holds, it follows from (3.50) that 

(3.52) k, 2 f ,  = mincIi-- > 0. 

Thus to calculate explicit upper bounds on Z(t) and E(t) when the basic flow is stable 
according to Criterion 3.2, one may use (3.43) and (3.49) with k, replaced by f, .  

It is well known that when the problem is zonally symmetric, conservation of zonal 
momentum can play an important role in the study of nonlinear stability (McIntyre & 
Shepherd 1987; Zeng 1989; Mu 1991; Ripa 1992). We therefore incorporate this 
additional information under the assumption that the topography h is independent of 
x, i.e. h = h(y) ,  and consider the boundaries aD, to consist of lines of constant y .  (A 
zonal channel would be the most common such geometry.) It is straightforward to 
show from (2.1E(2.5) that in that case the zonal momentum (or impulse) 

1 
i h 

(3.53) 

is conserved in time. We now consider a basic state (!Pi, QJ that is zonally symmetric 
and for which a constant a and functions !P; exist such that 

Yi+cty= !P;(Qi) ( i=  1, ..., N ) .  (3.54) 

(The reason for the restriction to zonally symmetric flows is that Andrews' theorem 
applies in this case : see 6 5.) Suppose further that for such 01, constants cli and czi exist 
such that 

d Y; 
O < c , i ~ - - - ~ c z i < c o  ( i = l ,  ..., N ) .  

dQi 
(3.55) 
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Now, using the invariance of (3.53) it is easy to show that (3.6) still holds with A(t) 
given by (3.7), provided Gi is defined by Gi(q) = jrl  !P;(y) dy. The derivation leading to 
Criterion 3.1 above then can be followed step by step, and the estimates (3.43) and 
(3.49) follow directly. Hence we can state: 

CRITERION 3.3. Suppose the basic state (Yi,Qi) satisfies (3.54) and (3.55), and the 
matrix M defined by (3.35) is positive definite. Then (!Pi, Qi) is nonlinearly stable. In 
particular, upper bounds on the finite-amplitude disturbance potential enstrophy and 
disturbance energy are provided by (3.43) and (3.49), respectively. If(3.51) holds, then M 
is guaranteed to be positive definite and the basic state is nonlinearly stable. 

We now compare the above criteria with Criterion 4.2 obtained by Mu (1991), which 
states that the basic state (!Pi, Qi)  is nonlinearly stable if (3.1) holds and 

(3.56) 

where i is the smallest positive eigenvalue of a boundary value problem for an elliptic 
system (see the Appendix). It is shown in the Appendix that h >, 1. Therefore Criterion 
3.2, and its sharper form Criterion 3.1, are stronger than Mu's (1991) Criterion 4.2. 
Perhaps more importantly, in order to verify applicability of the present criteria, one 
needs only to find the smallest positive eigenvalue h of the two-dimensional problem 
(3.28), whereas i is more difficult to determine. It may also be added that while Mu 
(199 1) only obtained implicit bounds on the finite-amplitude disturbance potential 
enstrophy and disturbance energy, in the present work we have derived explicit bounds 
on those quantities. 

Ripa (1992) examined the nonlinear stability properties of the model (2.1)-(2.5), and 
came up with a criterion analogous to our Criterion 3.2, though with h replaced by a 
different minimum eigenvalue, call it /i. It is shown in Mu & Shepherd (1993) that 
/i < h for simply connected domains, while /i = h for a periodic channel. Moreover, 
Criterion 3.1 is superior to Criterion 3.2: an explicit example demonstrating this is 
provided by the case of the Phillips model of baroclinic instability ($4.2 below). 

4. The two-layer model 

We consider the case of two layers, N = 2. Then 
4.1. General results 

and so - 

with eigenvalues A, = 0, A, = F,+F, .  The matrix M defined by (3.35) is seen to be 
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(4.44 

(4.4b) 

In particular, we can see that if 

he,, > 1 and hc,, > 1, (4.5) 

then (4.4~-c) are all satisfied and M is positive definite. The condition (4.5) is the two- 
layer version of (3.51), so we have recovered Criterion 3.2 directly. The best bounds on 
E(t) and Z(t) will however come from the use of k,, which is given explicitly by 

k1 = i ( M ~ ~  + M ~ z  - [ ( M ~ l  - M z 2 ) 2  + 4(M~2)21t)3 (4.6) 

where Mtj  are the entries of M as provided by (4.3). 

particular basic state it is sufficient to establish that (4.4~-c) hold. 
Note that since (4.4a, b) imply cll > 0 and c12 > 0, in proving the stability of any 

4.2. The Phillips model 
The Phillips model of baroclinic instability (e.g. Pedlosky 1979, $7.11) has the basic 
state consisting of a constant zonal flow in each layer, 

u l , (~>  = - U ~ Y ,  Q~(.Y) = (- 1)''' 4 us Y +f, + py, (4.7) 

(4.8) 

with Us = U, - U, and where U,, U,  are constants. The domain is the periodic channel 

D = {-n d x d K, - L  d y  d L}, 

for which h = (7c/2Q2. Since the problem is zonally symmetric we employ Criterion 
3.3 .  Evidently 

and Qi = V+4 u s > ~ + f o ,  Q, = CC-4 U s ) ~ + f .  (4.10) 

There are four cases to consider, depending on the nature of the potential vorticity 
gradients. 

Case 1. p+F, Us = 0. We choose a = U,, in which case the basic state satisfies (3.55) 
with 

Y,+ay = (a-  U,)y ,  ul,+ay = (a-  U,)y, (4.9) 

where c is an arbitrary positive constant. Condition (4.4b) is satisfied if 

(4.11) 

(4.12) 

while if (4.12) holds then ( 4 . 4 ~ )  and ( 4 . 4 ~ )  can be assured to hold by choosing c 
sufficiently large. Thus (4.12) is a sufficient condition for nonlinear stability, by 
Criterion 3.3. 
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Case 2. /I-4 Us = 0. We choose a = U,, in which case the basic state satisfies (3.55) 
with 

(4.13) 

where c is an arbitrary positive constant. Following the argument in Case 1 above, we 
see that the basic state in this case is nonlinearly stable by Criterion 3.3 if 

h2 > 4(4 + &). 

Case 3. (P+E; U,)(J--e  U,) > 0, i.e. 

P P -- < us < -. 
4 4 

(4.14) 

(4.15) 

By (4.9) and (4.10), the basic state satisfies (3.55) for any a < min(U,, U J .  By taking 
a+- co we can make cl, and c,, arbitrarily large, in which case (4.4a-c) hold and the 
flow is nonlinearly stable by Criterion 3.3. Of course, since (P+4 Us)(J-E;2 Us)  > 0 
then the basic-state potential vorticity gradients dQJdy and dQ,/dy are of the same 
sign, so the basic state is nonlinearly stable in any case by the finite-amplitude version 
of the Charney-Stern theorem (Shepherd 1988). This fact explains why no restriction 
on h akin to (4.12) or (4.14) arises in this case. 

Case 4. ( /3+F,  U,)(J-$ Us) < 0, i.e. 

Us <--PI4 or U,>P/&. (4.16a, b) 

Then the basic state satisfies (3.55) with 

V,-a U2-a 

P-4 Us’ c12 = cll = p+E; Us’ 
(4.17) 

where we take a such that U, < a < U, in the case (4.16a), and such that 
U, < a < U,  in the case (4.16b). We must determine under what conditions a may be 
chosen such that (4.4a-c) hold. (Recall that if (4.4a,b) hold, then cll and c12 are 
necessarily positive.) By isolating a between (4 .4~)  and (4.4b), one finds that a solution 
for a satisfying (4.44 b) exists if and only if 

h2-2E;~+((E;-&)/3/Us > 0. (4.18) 

In the case of (4.4c), expressing the left-hand side in terms of powers of a yields a 
quadratic in a, which satisfies the inequality (4.4 c) if and only if a certain discriminant 
is positive. This condition boils down to 

U~h2(h2-4E;4)+2U,P(F,-4)h2+(F,+F,)2P2 > 0. (4.19) 

Therefore the existence of an a such that the matrix A4 is positive definite is equivalent 
to (4.18) and (4.19). Stated otherwise, (4.18) and (4.19) are sufficient conditions for 
nonlinear stability, by Criterion 3.3. Note that applying the obvious generalization 
of Criterion 3.2 (i.e. including a) to Case 4 gives the nonlinear stability criterion 
h > 4+$, which is evidently weaker than (4.18) and (4.19): in particular, it has no 
dependence on Us. 

To summarize the above, the basic state (4.7) of the Phillips model of baroclinic 
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instability has been shown to be nonlinearly stable by Criterion 3.3, provided one of 
the following conditions is satisfied : 

(i) U,=-P/E; and h 2 > 4 ( 4 + + ) ;  
(ii) Us = /3/& and h2 > +(<+&); 
(iii) < Us < p / 4 ;  
(iv) Us < or Us > P/&, and (4.18), (4.19) hold. 

Condition (iii) is not new insofar as it is obtainable using the finite-amplitude 
Charney-Stern theorem, but the other conditions have not been derived before in the 
context of nonlinear stability. 

Since these conditions are sufficient for stability, their violation is necessary for 
instability. From Pedlosky (1979, equation (7.11.6)) it is evident that normal-mode 
instability occurs in the Phillips model whenever the total wavenumber K satisfies 

p 2 ( ~ + + ) 2 + 2 p u , K 4 ( 4 - & ) - K 4 u , Z ( 4 E ; + - K 4 )  < 0. (4.20) 

Clearly, normal modes with sufficiently large K~ cannot satisfy (4.20): this is the well- 
known short-wave cut-off in the Phillips model of baroclinic instability. Note that 
(4.20) is exactly the opposite of (4.19) if we set K~ = A. Since K’ 2 h necessarily, we see 
that satisfaction of (4.20) requires violation of (4.19), as we would expect. By the same 
token, the short-wave portion of the marginal curve described by (4.20) is captured 
precisely by the nonlinear stability condition (4.19). 

In the special case p = 0, the stability conditions (i)-(iv) collapse to the single 
sufficient condition 

h2 > 4 4 4  (4.21) 

for non-trivial basic states Us + 0. This nonlinear stability criterion was also obtained 
by Ripa (1992, equation (5.5)). 

In the special case 4 = 4 = F, conditions (it(iv) can be consolidated into the 
following, any one of which is sufficient for nonlinear stability: 

(a) U,Z = P2/Fz and h2 > 2F2; 
(6) U,Z < P2/F2; 
(c) U,Z > p2/F2 and either 

4F2p2 
(cl)h2 > 4F2 or (c2) 2F2 < h2 < 4F2 and U,Z < 

h2(4F2 - h2) ‘ 

The relative weakness of Criterion 3.2 relative to Criterion 3.1 (making the obvious 
generalizations to include a) is demonstrated by the fact that the former requires 
h2 > 4F2 in cases (a) and (c) above. 

4.3. A n  interesting example 
The mathematical method behind Arnol’d’s nonlinear stability theorems is usually 
presented in terms of constructing an invariant functional, known as the energy- 
Casimir (or more generally the energy-momentum-Casimir) functional, which is 
sign-definite for admissible disturbances to the specified basic state. In our case E + A  
is the energy-Casimir functional. However, we have nowhere had to appeal to E + A  
being sign-definite in order to prove nonlinear stability; indeed it need not be so, as the 
following example demonstrates. 

Consider the periodic channel (4.8), for which h = (7~/2L)~. Let the basic state be 
given by 

Yt = A,cosy+Bty (i = 1,2), (4.22) 
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where A ,  > 0, A ,  < 0, A ,  + A ,  =I= 0, and where B, and B, are chosen to satisfy 

F,(B,-B,)+P - -- B, F,(B,-B,)+P _ -  - B2 

F,(A,-A,)-A,  A,’ &(A,-A, ) -A,  A,’ 
(4.23) 

Using the presumed conditions on A,, it is easy to show that such Bi always exist. 
Now, using (4.23) it can be seen that 

Therefore (3.1) is satisfied with 

and the basic state (4.22) is nonlinearly stable by Criterion 3.2 if 

(4.25) 

(4.26) 

For this basic state, the energy-Casimir functional E + A  defined by (3.2) and (3.7) 
takes the form 

If the disturbance ($(, qi) is given by $, = $, = E sin y, q1 = q2 = - E  sin y ,  with E being 
an arbitrary positive constant, then 

E + A  = ~~~D{(dl+d,)cos2y-(dlcll+d,c12)sin2y)dxdy. (4.28) 

On the other hand, if the disturbance is given by +, = $, = E cos y, q1 = q2 = -eCOSy, 
then 

E+ A = J J D  {(d, + d,) sin2 y - (d, cll + d2 c12) cos2 y} dx dy. (4.29) 

For given A,,  A,, it is clear that we may choose L sufficiently small so that (4.28) is 
positive while (4.29) is negative; yet (4.26) remains valid. Therefore we have 
constructed an explicit example of a basic state that is nonlinearly stable by Criterion 
3.2, but for which the associated energy-Casimir functional E+ A is not sign-definite. 

5. Andrews’ theorem 
It has been proved by Andrews (1984) that any basic state that is nonlinearly stable 

by Arnol’d’s first theorem in a domain with zonally symmetric boundaries must itself 
be zonally symmetric. We show here that this result extends to our new criteria, where 
stable states need not be extrema of the energy-Casimir invariant (see $4.3). 

The claim is that if the basic state (U,, QJ (in a domain D with zonally symmetric 
boundaries) satisfies (3.55) and the matrix M is positive definite, then it follows that 
aYJax = 0 for all i and therefore the basic state, which is stable by Criterion 3.3, must 
be zonally symmetric. 
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The proof is by contradiction. Suppose that for some i, a!P,/ax + 0 somewhere in D. 
Then there exists a constant a such that 

$i(x, V )  Y~(X + a, V )  - Y~(X, Y )  (5.1) 

satisfies a$,/ax + 0 somewhere in D. Obviously $i defined by (5.1) satisfies 

Vy+i.fids = 0 for j =  0 ,..., J ( i =  1 ,..., N ) ,  (5.2) 

since the boundary aD is presumed to be zonally symmetric. It is also clear from (5.1) 
that q: = 0 and so, together with (5.2),  it follows that 4,' = 0 and hence 

iDj % I a D  = 0 and 

yki = $:, qi = q;, E = E'. (5.3) 

Since the total energy, the total momentum, and the Casimir functionals 

JJD di Gi(P,) d x d ~  

are all unaltered by the perturbation (5.1), we have 

E+A = 0, 

where A is given by (3.7) with G,(r) = J 7  Y;(r)dq. From (3.31), 

E < S S ~ D ~ ( d , ~ ) ( 4 ) T K - 1 f A L T K - 1 4 d ~ d y .  

Putting (5.5) together with (3.18) and (5.4) gives 

SS,l(d~4)(4).K-'CK14dxdy < - A  = E < ~ ( d , ~ ) ( 4 ) T K - 1 L A f T K - 1 q d x d y  Ss, 
I(d. P) (4)' K-l[C-f Af '1 K-lqdx dy ,< 0. (5.6) 

But since M = C- LALT has been assumed to be positive definite, (5.6) implies that 

-ss2 a 

n n  

J J gd,4)(q)T(K-1)2qd~dy = 0. 
D 

(5.7) 

Using the fact that the largest eigenvalue of the matrix LALT is l / h  (cf. (3.44)), we thus 
obtain the chain of inequalities 

which implies E = 0. But this contradicts the fact that a$i/i3x + 0 somewhere in D. 
Hence aY,/ilax = 0 for all i, and the basic state must be zonally symmetric. 

6. Nonlinear stability of uniform potential vorticity flows 
Consider the case of uniform potential vorticity flow, VQ, = 0. It is easy to see that 

Arnol'd's stability theorems are not applicable to such a situation, except in the special 
case of uniform velocity: the functional relation (3.54) can only exist, when VQl,  = 0, 
if V, = a!Pi/ax = 0 and U, = -aYt/i3y = a. It is, however, well known that uniform 
potential vorticity flows are always linearly stable to normal-mode disturbances. We 
show below that such flows are in fact nonlinearly stable. 
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When VQi = 0, the potential vorticity equation (2.1) reduces to 

from which it follows that 

& JJD (qi)’ dx dy = 0 Vi .  

But (6.2) demonstrates immediately that the disturbance potential enstrophy Z(t )  is 
a conserved quantity : 

To establish an upper bound on the disturbance energy, as in 53, first note that in the 
light of (3.17), (6.3) implies Z’(t)  = Z’(0) = Zh. Using this fact together with (3.20) and 
(3.44) implies 

Z(t )  = Z(0). (6.3) 

E(t) d ( l+a)E*+ 1+- ( :); 
for any positive constant a. If E* = 0, then the minimum of the right-hand side of (6.4) 
is attained in the limit a+ co, which yields (noting that q* = 0 in this case) the bound 

(6.5) 
1 
h 

E(t) d -Z(O). 

If E* =+ 0, then the minimum of the right-hand side of (6.4) is attained at 

amin = ( z J A E * ) ~ .  

Substituting (6.6) into (6.4) then yields the bound 

E(t) d [E*i+(z; /h) i ]2 .  (6.7) 

The bounds on the disturbance potential enstrophy and disturbance energy provided 
by (6.3), (6.5) and (6.7) demonstrate that uniform potential vorticity flows are always 
nonlinearly stable, in any domain D. 

It is worth noting that although (6.3) and (6.7) prove nonlinear stability in the sense 
we have defined it, (6.7) does not prove Liapunov stability in the energy norm because 
the right-hand side of (6.7) cannot be bounded from above in terms of E(0): that is to 
say, the disturbance energy cannot be bounded a priori in terms of the initial 
disturbance energy. In contrast, (6.3) proves Liapunov stability in the potential 
enstrophy norm. Thus, while the potential enstrophy remains constant in time, the 
energy can in principle amplify by an arbitrarily large amount. This is of course well 
known, and can be seen most visibly in the case of plane Couette flow (e.g. Shepherd 
1985). 

7. Summary 
By using conservation of energy and potential vorticity, nonlinear stability theorems 

have been obtained for the multilayer quasi-geostrophic equations which are analogous 
to Arnol’d’s second stability theorem. Like Arnol’d’s theorem, these new theorems can 
be seen as involving two conditions: one on the basic flow, and one on the geometry 
of the domain. The results establish rigorous upper bounds on both the energy and 
potential enstrophy of finite-amplitude disturbances to steady basic states, which are 
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expressed in terms of the initial disturbance fields. These bounds hold uniformly in 
time, and tend to zero uniformly as the initial disturbance amplitude decreases to zero. 
It follows that the bounds establish nonlinear (normed) stability of the basic state. The 
present stability criteria improve significantly on previous results in this area. 

For non-parallel basic states, the sufficient conditions for nonlinear stability consist 
of (3.1) together with the matrix M defined by (3.35) being positive definite; the latter 
condition involves the geometry of the domain. A simpler, though less powerful, 
alternative to the condition on M is given by (3.51). When the problem is zonally 
symmetric, then incorporation of the conservation of zonal momentum leads to a more 
powerful stability criterion in which (3.1) is replaced by (3.55) in the above description. 
In the case of the two-layer model, the stability criteria are concisely described by (4.4). 
Applying this to the Phillips model of baroclinic instability yields four regimes in which 
nonlinear stability holds. An interesting result is that the short-wave cut-off found in 
normal-mode instability is recovered precisely by (4.4), including the detailed shape of 
the short-wave part of the marginal stability curve when the vertical shear exceeds the 
minimum critical shear. 

This paper was written while M. M. was visiting the University of Toronto under the 
auspices of an International Scientific Exchange Award from the Natural Sciences and 
Engineering Research Council of Canada. M. M., Q. C. Z. and Y. M. L. are supported 
by the National Natural Science Foundation of China. T.G.S. is supported by 
NSERC as well as by the Atmospheric Environment Service of Canada. 

Appendix. Proof that i 6 h 
Following Mu (1991), let be the least positive eigenvalue of the elliptic problem 

N 

v ~ $ ~ + ~ c K ~ Q ~ + ~ ~ $ , = o  in D ( i=  1, ..., N ) ,  (A 1) 
j=1 

with boundary conditions 

$ l l a D ,  = 0, -$ a$ l a D  = 0, faDjV$l.Ads = 0 for j = 1 , .  . ., J, (A 2a) 

V$i.iids = 0 for j =  0 ,..., J ( i=  2 ,..., N). ( A 2 b )  

Let vi denote the eigenfunction corresponding to i. It is easy to verify from (A l), (A 2) 
and the definition of T j  that 

w i  

%Ic3D = O' f, 

(A 3) 
I 

lJDudxdy = 0 (A 4) 

N-1 

I JJD{ ~ ~ i l v ~ i / z +  c di4(ui+,-vi)z dxdy 
A =  

JJ D { i=l ;i(vi)'}dxdy 

Let u be the eigenfunction corresponding to the least positive eigenvalue h of the 
problem (3.28). One sees from (3.28) that 
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J J D  IVUI2dXdY 
A =  (A 5)  and that 

Now define the vector function 
wi = u-c, Vi, 

where c, = u laD,. Obviously wi satisfies the boundary conditions (A 2), whence we have 

J J { c di(wI)’} dxdy 
D i = l  

JJDIVUl2dXdY JJDlvu12dxdY 

JJD(U2+Ct)dXdY 1JDU2dXdY 
< = A. (A 7) - - 

(In obtaining (A 7), the property (A 4) has been used.) This proves that < A. 
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