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Nonlinear Saturation of Baroclinic Instability. Part II: Continuously Stratified Fluid

THEODORE G. SHEPHERD
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, U.K.
(Manuscript received 28 March 1988, in final form 15 September 1988)

ABSTRACT

Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances
to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds
are obtained both on the depth-integrated eddy potential enstrophy and on the eddy available potential energy
(APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of
this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem,
which is a finite-amplitude generalization of the Charney~Stern theorem. As in Part 1, the bounds are valid
both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is
proportional to the potential vorticity in the interior, and to the potential temperature at the ground.

The character of the results depends on the dimensionless external parameter v = fo¢/8,N*H, where ¢ is
the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their
usual meaning. When v » 1, corresponding to “‘deep” unstable modes (vertical scale ~ HY), the bound on the
eddy potential enstrophy is just the total potential enstrophy in the system; but when v < 1, corresponding to
‘shallow’ unstable modes ( vertical scale ~ yH), the eddy potential enstrophy can be bounded well below the
total amount available in the system. In neither case can the bound on the eddy APE prevent a complete
neutralization of the surface temperature gradient, which is in accord with numerical experience.

For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial
eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed
(v + 1)*/24v*h when v = 1, or 1/6vh when v < 1; here h = HN/f,L is the dimensionless scale height, and
L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc
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estimates based on baroclinic-adjustment arguments.

The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization

scheme is also discussed.

1. Introduction

In Part I of this study (Shepherd 1988a), rigorous
upper bounds were derived on the finite-amplitude
saturation of baroclinic instability in a two-layer quasi-
geostrophic fluid. These bounds restricted the growth
of the potential enstrophy of the nonzonal part of the
flow, and were obtained through the use of a Liapunov
(normed) stability theorem which is the finite-ampli-
tude generalization of the well-known small-amplitude
Charney-Stern theorem. Comparison of the bounds
with weakly nonlinear theory for the special case of
the Phillips (1954) model of baroclinic instability
showed very similar parameter dependences as well as
remarkable quantitative agreement, suggesting that the
saturation bounds might provide, inter alia, a useful
way of determining eddy-amplitude closures in tran-
sient-eddy parameterization schemes. It is significant
in this respect that the bounds are unconstrained by
any assumptions about the nature of the initial non-
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zonal disturbance, and thus are not tied in any way to
the concept of normal-mode instability.

Despite the utility of the two-layer model in eluci-
dating fundamental dynamical processes, it neverthe-
less has serious shortcomings with regard to atmo-
spheric applications. Not least is the fact that the trun-
cated vertical modal representation introduces an
unrealistic short-wave cutoff in the linear instability
problem, as well as a minimum critical shear. More-
over, because the meridional temperature gradient is
situated between the layers, any instability must be es-
sentially internal, in the sense that the reversal of the
potential-vorticity gradient must occur well within the
interior of the atmosphere. This feature is certainly un-
realistic as regards synoptic-scale baroclinic instability
in our own atmosphere, where the potential-vorticity
gradient is typically positive throughout the depth of
the atmosphere and the instability is driven by the neg-
ative surface temperature gradient (e.g. Simmons and
Hoskins 1976, 1978). Therefore, it seems appropriate
to apply the methods of Part I to the more realistic
problem of baroclinic instability in a continuously
stratified fluid, including the Charney (1947) model as
a special case.
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The plan of the paper is as follows. In section 2 the
governing equations are reviewed, and the pseudomo-
mentum (or generalized Eliassen-Palm ) conservation
law for finite-amplitude disturbances to zonal basic
flows is established. This conservation law is then used
to derive a generalized Charney-Stern stability theorem
in section 3. In section 4, the methods of Part I are
employed to deduce finite-amplitude saturation bounds
for the Charney (1947) model of baroclinic instability;
in this case the relevant Liapunov (normed) stability
theorem is that given by (4.12) below. Bounds are de-
rived both on the depth-integrated eddy potential en-
strophy and on the eddy available potential energy
(APE) at the ground. The bounds are compared to ad
hoc baroclinic-adjustment estimates in section 5, and
to Pedlosky’s (1979b) weakly nonlinear theory in sec-
tion 6. Then in section 7 the problem of more general
flow profiles is treated. Some implications of these ideas
for transient-eddy parameterization are considered in
section 8, and the paper concludes with a discussion.

2. Governing equations, and the pseudomomentum
conservation law for disturbances to zonal flows

The system under consideration in this paper is that
of three-dimensional, baroclinic, quasi-geostrophic flow
on a beta-plane, which is governed by conservation of
quasi-geostrophic potential vorticity P at each vertical
level z (where z is a log-pressure vertical coordinate ):

Q2.0
ie. .
P +d(®,P)=P — PP+ P, =0,

where ® is the geostrophic streamfunction, J(s,) the
horizontal Jacobian operator, and

1
P= ¢xx+ ny+;{p(f0/N)zq)z}z +f0 + ﬂoy

2.2)

Here f = fo + Boy represents the beta-plane approxi-
mation to the Coriolis parameter, p(z) is the (pre-
scribed) reference-state density stratification, and N(z)
the reference-state buoyancy frequency (e.g., see Ped-
losky 1979a, §6.5). The derivations are performed as-
suming unforced, inviscid flow; but see the comments
regarding forced-dissipative problems in section 9. The
domain is infinite in the zonal coordinate x but
bounded in the meridional coordinate y, with bound-
ary conditions’

¢x=0’ ¢y1=0 at y=J’1,J/2, (2'3)

where the overbar refers to a zonal average

. 1 X
/= AI’EEU 2X f-x S(x)dx.
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The boundary conditions in the vertical are taken to
be

D
—®,=0 at z=z, 2z,

D1 2.9)

with z = z, being the lower surface and z = z, the
upper. (After section 3, attention will be restricted to
the case of a semi-infinite domain; then one replaces
the boundary condition at z = z, with a condition that
the vertical component of the flux given in (2.13) van-
ish as z = o0, and all “upper boundary” effects vanish.)
Conditions (2.4) are those derived under “Type 1”
quasi-geostrophic scaling, under the assumption fi*L2/
gH < | where L is a characteristic length scale and H
the density scale height (see White 1977). While the
assumption is suspect for planetary-scale motions, it is
acceptable for synoptic-scale baroclinic instability
(White and Gadian 1979) and thus (2.4) is appropriate
here. The possibility of allowing the full boundary con-
ditions, which include a term N2g~!9®/dt (where g is
the gravitational acceleration ), is considered in appen-
dix A.

The generalized Charney-Stern theorem derived in
the next section arises from a finite-amplitude pseu-
domomentum conservation law, (2.18) below, which
is obtained as follows. Consider a steady, x-invariant
“basic state” (®,-P) = (¥, Q), with a potential vorticity
distribution

1 .
Q(ys Z) = ‘I,y.v +; {p(fO/N)z\I’z}z +f0 + ﬁ()y'

2.5)
Defining the disturbance (¥, ¢) in the natural way
d=Vv+y, P=Q+qg, (2.6)

so that
1
q= 'pxx + ‘pyy + ; {p(fO/N)z‘l/z}za 2.7

and noting that the basic flow is itself an exact solution
to (2.1) and (2.4), the disturbance potential vorticity
is governed by the exact equation

Dq

- —_y.0,--202
D= Q=0 =-7= (23

for each z, with boundary conditions

D D
- = D=V, =—-—Y,
D tl{: a(y, ¥,) Vx¥2y Di
at z=2z,, 2z, (2.9
¥x=0, ¥,=0 at y=y;,p,. (2.10)

The x-invariance of the basic state Q(y, z) allows
the definition of the inverse function ¥o(Q; z) in the
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interior of the fluid. Now introduce the second-order
disturbance quantity

AQ, g2 ==p [ {Y(Q+ 8 2) - ¥o(Q; 2))dd
@.11)

note that in the limit of small disturbance amplitude,

N 2

N~ L yvrio Ng?=_R9

A(Q,q;2) ~ 2 Yo(Q; z)q 20,

which is just (the negative of) the linearized “Eliassen—

Palm wave activity” (Andrews and MclIntyre 1976;
Held 1985). It may be verified from (2.11) that

(2.12)

194 Y@+ a)+ Yo(Q) + a¥5(Q)
p9Q

104 _ \

i Yo(Q + q) + Yo(Q),

and thence, using (2.8), that

DA
Dr = PaYo(QW:Qy

= p(¥xx + ‘lpy,v)‘,/x + {p(fO/N)2¢z}z¢x
149
= o3 2 (87— ) + 5 ()|

d d (1
gz LGN k) = o) 7 (392

K
3 LG G R )

d 9
+ 3y {o¥sty} + o {p(fo/N)¥xi:}. (2.13)

When averaged in x, this is just the quasi-geostrophic
baroclinic version of the generalized Eliassen-Palm
theorem of Killworth and Mclntyre [1985, Eq. (5.17)].
Integration of the x-average of (2.13) across the channel
and through the depth of the fluid then yields

%f f Adydz = f o(fo/ N) ¥, dy

2=2)

- [ FTD| . @19

Z=2Z)

(It is the convention in this paper that, unless otherwise
indicated, integrals over y and z refer to the full ranges
ns<y<yandz <z<2z.l)

To obtain a conservation law from (2.14) it is nec-
essary to again appeal to the x-invariance of the basic
state, and define the function

B(©, 0) = - ]:’,J:‘g

f: {Yo(© + 8) — Yo(O)} db.
(2.15)
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Here O(y, z) + 8(x, y, z, t) is the deviation from
the reference-state potential-temperature distribution
O,(z), divided into basic-state and disturbance com-
ponents; recall that according to standard quasi-geo-
strophic scaling

O = (0:/0/8)¥:, 6=(O:f0/8)¥.. (2.16)

Using (2.9) and (2.16) it is readily verified that, anal-
ogously to the first equation of (2.13), ’

DB _ Png _ 2
'D_t = Nzes 0y = P(fO/N) Yni:.

Substitution of (2.17) into (2.14) then yields the global

(2.17)

conservation law

d

EJ= 0, (2.18)
where
7= [ [ 4@ ¢ Ddvaz
. + f B(6, 8)dy - f B(6, 0)(_1y (2.19)

is the integrated pseudomomentum. Equation (2.18)
corresponds to the pseudoenergy conservation law (B7)
of McIntyre and Shepherd (1987) for disturbances to
nonparallel basic flows. The way in which the two kinds
of conservation law are related to the symmetry prop-
erties of the basic state is discussed in section 7 of that
paper. :

3. The generalized Charney-Stern theorem

In this section the pseudomomentum conservation
law (2.18) is used to derive a Liapunov stability theo-
rem for disturbances to zonal flows. The theorem ex-
presses nonlinear stability, in the sense that a distur-
bance norm at any time ¢ is bounded in terms of its
value at ¢ = 0, and represents a finite-amplitude gen-
eralization of the well-known Charney-Stern stability
theorem. The essential idea is originally due to Arnol’d
(1966), and other applications of Arnol’d’s method
are described by Holm et al. (1985), Abarbanel et al.
(1986), and Mclntyre and Shepherd (1987).

- The first point to note is that whenever the basic-
state potential vorticity Q is a monotonic function of
y at some level z, then 4(Q, g; z) defined by (2.11) is
of definite sign for arbitrary disturbances q at that level,
and takes a sign opposite to that of Q,. Similarly with
B(6, §), defined by (2.15), which takes a sign opposite
to that of ©, whenever the latter is definite. Therefore,
it may be seen from (2.19) that the pseudomomentum
J will be of definite sign whenever the sign of Q,
throughout the domain is the same as that of ©, at z
= z,, and the opposite to that of ©, at z = z,. Since J
is constant in time, normal-mode instabilities are then
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precluded (because they would necessarily cause | J|
to increase): this is of course just the Charney-Stern
theorem. But the stability is in fact nonlinear, as will
now be demonstrated.

For definiteness, consider the case of Q, > 0 and
suppose there exist constants ¢, C, ¢,, C,, and ¢;, C,
such that

0<c=<Q,<C<ow for z€(z, z),
O<Cl\ey\C1<CX) at zZ =21,
0<C2$—eySC2<CD at zZ=2Z3. (31)

Now introduce the disturbance norm ||¢|| defined by

2= [ [ oePayaz + | Ze& -5y
png —~1p2
+ | Sa 0 0%dy| ; (3.2)
N?O; iz

this evidently involves the potential enstrophy in the
interior, plus the available potential energy on the upper
and lower boundaries. Then noting the inequalities

Pq

2 Pl Yo(Q) | minddd < |4(Q, q)|
<[ p|Yo(Q)|maquq—2—
pfogh?
INGC " ;{g | Yo(0) | mnbdd < |B(O, 0)]
pfog s o~ pfogh?
<J(;N29 [ Y0(O) | maxfd = 2N0.0 3.3)

it follows that

1 C S
: nw(z)nZs;ff |\ A | dydz

+S [ 15Dy
i

z=z;

ca o
max[c p C]IJ(:)I

1

C. -
, +—2f | B(2) | dy
(&)

_ C G G
m_ax{c . cz]mon
C ¢ C
max{c 2, 2] W02 (3.4)

which is a statement of Liapunov (normed) stability
for the norm given by (3.2), under the conditions (3.1).
It may be verified that (3.4) is equally valid for the
norm obtained by replacing c; in (3.2) with C;. Equa-
tion (3.4) is closely related to the pseudoenergy-based
stability theorem discussed by McIntyre and Shepherd
[1987, Egs. (B8) and (B9)].
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4. Nonlinear saturation bounds for the Charney model

In Part I of this study, the generalized Charney-Stern
theorem was used to place rigorous upper bounds on
the saturation of baroclinic instability in the two-layer
model. The device used to obtain these bounds is briefly
described as follows. A (possibly infinitesimal) non-’
zonal disturbance to an unstable zonal flow may be
regarded as a finite-amplitude disturbance (including
a zonal-mean part) to some stable “basic state”; the
evolution in time of this latter disturbance is then con-
strainéd by the generalized (normed) Charney-Stern
theorem. In particular, the nonzonal part of the dis-
turbance (which is independent of the choice of the
basic state) is thereby constrained, and by considering
a family of basic states one may determine a best (i.e.,
least) upper bound for the family.

In the context of the two-layer model, there is a min-
imum critical shear and so it is natural to consider
basic states that are similar in structure to the initial
unstable zonal flow, but with subcritical shears. For a
continuously stratified fluid, of course, minimum crit-
ical shears do not generally exist, and one must consider
a slightly different strategy. To simplify matters, we
focus in this section on the Charney (1947) model of
baroclinic instability, leaving the consideration of more
general profiles to section 7.

The Charney model considers the instability of a
zonal flow

. %
Uiz)=——=¢z 4.1

()=—3 =k “.1)
in the semi-infinite domain 0 < z < o0, and assumes
an isothermal reference atmosphere so that

p(z) = poe™*/" 4.2)
with the scale height H = R7,/g constant, and the
buoyancy frequency N likewise constant. It is conve-
nient to nondimensionalize the equations with length
scaled by the width of the channel L = y, — y,, depth
by D = f,L/N, velocity by £D, potential temperature
by the constant reference temperature T, and density
by po. In these units, the zonal-mean streamfunction
corresponding to (4.1) is taken to be

®(y, z) = —z(y = ), 4.3)

with A an as yet arbitrary constant of integration, and
the associated potential-vorticity distribution (2.2) is
given by

P(y,z2)=%,+&,. - h™'®, + f+ By

=K7Y =N+ By, 44
where
HN- BoL? BoNL SfoL N
h=— = = ==,
foL’ 8 ¢D fot f ¢ ¢
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It is clear from (4.4) that the meridional gradient of P
is everywhere positive, while the temperature gradient:
at the ground,

fEL g _ kL
g b
is everywhere negative; hence the conditions of the
Charney-Stern theorem are decidedly not met, and
indeed the flow is of course known to be unstable.
The problem of interest concerns the nonlinear de-
velopment of an initial condition consisting of the zonal
flow (4.3), (4.4), plus an arbitrary nonzonal distur-
bance. In particular, the goal is to determine some up-
per bound on the growth of the instability. As in Part
I, the strategy is to represent this initial condition as a
_ disturbance (¥, ¢) to some stable basic state (¥, Q),
and then invoke the Charney-Stern theorem (3.4). A
suitable basic state must have ¥,, > 0 at the ground
and Q, > 0 in the interior, and it is evident that it need
differ from (4.3)-(4.5) only in the lowest part of the
atmosphere. Consequently, we choose to consider basic
flows of the form

Up — w1z + u(he”* — 1),

4.5)

zy

o for 0<z<b
U(z) =

z, for z=b,

' (4.6)

as sketched in Fig. 1. Imposing continuity of U and U,
-at z = b leads to the two constraints

uo — b + wh(e”" — 1) = b,

—u; + et = 1.

(4.7a)
(4.7b)

The potential vorticity distribution corresponding to
(4.6) takes the simple form

z

A

» U

Yo

FiG. 1. Vertical profile of the unstable Charney flow (solid line)
and the stable basic flow (4.6) (dashed line).
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oy, z)
[—h“un(y - N +f+ 8y,
h™'(y — N) +f+ By,

which has a positive meridional gradient throughout
the fluid pro_vided that

u; < Bh; 4.9)

while the surface temperature distribution associated
with (4.6) is proportional to

V.(z2=0)=(uy — w)(y — ), (4.10)
which has a positive meridional gradient provided that
(4.11)

Note that (4.7b) and (4.11) together imply that «, and
1, are both positive.

Now, the dimensionless form of the Charney-Stern -
theorem (3.4) is

for 0<z<b
5 (4.8)

for z= b5,

U > us.

1 C C1

— %= =, == ¢0)? @.12
2 ol ma"{c c.]Z WOl (4.12)
(note that the upper-boundary contribution does not
enter into the Charney problem, which considers a
semi-infinite domain), where

lyl?= ff e~ " g2 dydz + f a Widy| (4.13)
2=0
and ¢, C, ¢, and C, satisfy
c<Q<C, ¢ <V,<C. (4.14)

As before, (4.12) is equally valid when c; are replaced
with C; in (4.13). For the basic flow (4.6), it may be
seen from (4.8) and (4.10) that one may take -

c=8~-h'y, C=8+h"", (4.153)
= C] = U - U, (415b)
whence (4.12) may be replaced with
1 , _B+h' 1 ) :
> I < 5—h-'m 2 0% . (4.16)

a. A bound on the eddy potential enstrophy

We first seek a bound on the potential enstrophy of
the nonzonal part of the flow, namely

% ff e "P'X(t)dydz,

where the prime denotes the deviation from the zonal
average. Note that P’ = ¢’ because Q' = 0. Using the

 fact that ¢'> < ¢? (by orthogonality of zonal and non-
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zonal flow components), together with (4.13) and

(4.16), one obtains
-l-ff e *"P2(t)dydz < ff ~2Ihg2(1)dydz
cliy(e) I| 2 < == Cleb(O) 2

<1
=2

AE{Jf o

< (7o
+2 [VAOa

} (4.17a)
z=0

=36+ {8~ 1w [ [ e @dyas

+ (= w)™ [ 7Oy

} . (4.17b)
2=0

" At this point we assume the nonzonal disturbance to
be initially of infinitesimal amplitude, so that |¢'(0)|
< |g(0)| and |¢%(0)| < [¢.(0)]; hence the initial
disturbance to the basic flow (4.6 ) is dominated by its
zonal-mean component, ( This assumption will be re-
laxed later in the section.) Then using (4.4) and (4.8)
to find ¢(0), and (4.3) and (4.10) to find ¥.(0), we
have

a(0) =~ §(0)=P(t=0)-Q

_ { Wu, + 1)y = A), for 0<z< @.18)
0, for z=2b,
¥:(0) =~ ¥, (0) =, (1 =0)— ¥
=(uw—uy— 1} (y—AN) at z=0. (4.19)

Combining (4.17b), (4.18) and (4.19) then gives the
~ bound

% ff e-z/hF(t)dydz < % (B+hY
n? o !
% {Z(_(%llf—_l)t])_j; J; e *"(y — \)?dydz
- -2
¥ %Til_uz)_)_’; (- Wdy] . (4.20)

It is now time to choose the constant of integration A,
which arose in the definition of the streamfunction. In
particular, A may be chosen so as to minimize the right-
hand side of (4.20), as this will yxeld the best bound.
It is easily seen that this choice is A = !4, which gives
f o (v — A)2dy = Y\,. Then performing the integration
in both y and z, (4.20) takes the form
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%” e/ P (1)dydz < = (B + h™)
Gt D o M]
X[(ﬁh—uo“ It T =
= F\(u, 3, b). (4.21)

Equation (4.21) represents a rigorous upper bound on
the eddy potential enstrophy (in the limit of an initially
infinitesimal nonzonal disturbance), for any choice of
the basic-flow parameters u;, ¥, and b satisfying the
stability constraints (4.9) and (4.11) and the matching
conditions (4.7). However, the object is now to min-
imize F,(u,, u, b) over all such choices. Since the
parameter u, does not enter in (4.21), the constraint
(4.7a) may simply be regarded as determining u, and
otherwise ignored; this leaves (4.7b), (4.9), (4.11) as
constraints on the three free parameters u,, u; and b.

The parametric domain is as follows. From (4.9)
and (4.11), u, must lie in the range

0 < u < Bh (4.22)
then for fixed uz, u; must lie in the range
Uy < uy < Bh,
whence (4.7b) implies that b must satisfy
WAl BAET (4.23)
U U

One possible strategy is to eliminate u, using (4.7b),
and then seek a local minimum by setting both dF,/
du, = 0 and 0F, /b = 0. Howeyver, trying to solve both
equations simultaneously leads to a contradiction.
Consequently, one is led to suspect that the minimum
of F| occurs at the edge of the parametric domain.
Because F, diverges as ¥, —» Bh (since then u, — Bh
as well), it is natural to consider the asymptotic limit

(4.24)

(the second condition following from the first by virtue
of (4.7b)), in which case F; takes the form

(u; + 1)2 (u, + 1)2
(Bh — wy) u

which is a function of u.l alone. It is then a simple
matter to minimize (4.25), which gives

_1(Bh+1)?
Fllmm_6 ﬁhz

for the choice u, = Bh/(Bh + 2). Note that this choice
of u, does indeed satisfy both (4.9) and (4.11).

The minimum implied by (4.26) may be approached
arbitrarily closely for small but nonzero u, and large
but finite 5. The result was checked numerically by
computing Fy(u,, u,, b) for fixed u, over the range of

=0, b/h—> o

Fy z%(ﬂ+h")[ }, (4.25)

(4.26)
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b given by (4.23) (after eliminating u,), and varying
u, over the range (4.22). It was found that, indeed, the
minimum of F; over b (for given u,) decreased as u,
decreased, and approached the limit (4.26) as u, = O.

However, there is one rather curious aspect of the
above derivation, which offers scope for improvement
on the bound (4.26). The expression (4.25) for F;(u,)
still retains the factor 8 + 4™, representing the max-
imum basic-state potential-vorticity gradient, despite
the fact that in the limit &/ 4 = oo under which (4.25)
was derived, this value of Q, is found only at heights
z = b» h, where it would seem to be irrelevant to the
dynamics of the instability. Indeed, the factors C/c
and C/c, which are present in (4.25) [see (4.17)] take
values of

£= [3+h_l _ﬁh+2
¢c B—-huy, Bh
£_6+h_l_(ﬂh+l)(ﬂh+2)
Cl— U - ﬁhz

for the choice u; = Bh/(Bh + 2), both of which are
O(1/B8h) » 1 in the limit 84 = 0. Certainly in this
latter regime, then, the fact that we are forced to retain
C = 8 + h~!, despite its apparent dynamical irrele-
vance, is evidently very damaging.

All this suggests that one may significantly improve
upon the bound (4.26) by eliminating all reference to
B8 + h~'. This can be done by taking a rather drastic
step, namely by setting b = oo and u, = 0 exactly, and
abandoning the matching conditions (4.7) altogether.
That is, for the basic flow one chooses (4.6) with b
= oo and u, = 0, namely

U(z) =~ uz (4.27)

through the depth of the atmosphere. ( The extraneous
parameter 1, can now be safely set to zero.) While this
may seem like an odd choice, insofar as it diverges
from the initial zonal-mean flow (4.3) as z = <0, the
point is that the initial disturbance potential vorticity

¢(0) (which is still given by (4.18), but with b = o).

is independent of z, and is thus controlled by the ex-
ponentially-decreasing density factor. The advantage
of taking (4.27) as the basic flow is that now Q, is a
constant throughout the domain, and consequently

C=c=8-h"y . (4.28)

rather than (4.15a). In particular, C/c = 1.

At this stage, it is easy to allow for the case of a finite-
amplitude initial nonzonal disturbance. Denoting the
initial eddy potential enstrophy and eddy APE respec-
tively by Z, and Yy, viz.

Zy= % ff e " P2(0)dydz,  (4.29a)

, - (4.29b)

=0

——f@’z(O)dy
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using (4.18) and (4.19) to evaluate the zonal-mean
disturbance contribution at ¢ = 0, and taking (4.15b)
and (4.28), the bound (4.17a) on the eddy potential
enstrophy becomes

2J] ‘””P’Z(ndyd <ﬂ(“‘—“—)—2 +Zo
Uy

+ B—h"u
U,

This bound is valid for arbitrary Y, and Z,, and is to
be considered over the range (4.9), viz. 0 < u; < §h.
It takes a local minimum at ¥, = 3 = (24Y, + 1)!72,
but this only occurs within the permissible range of u,
for Bh > n. When Bh < 75, the minimum of (4.30)
compatible with (4.9) is achieved in the limit u;, —
Bh. In both cases, when Z;, Y, = 0 the resulting bound
is smaller than (4.26): for 82 > 1 the two bounds are
in fact asymptotically equal, but for 8% < 1 the bound
derived from (4.30) is equal to 84/ 4 times (4.26), and
is thus much smaller.

One may therefore write down the general bound
on the eddy potential enstrophy, obtained from the
nonlinear stability theorem (4.16), as

% f f e~ " P2 ({)dydz
B

Yo = Fi(w; Zo, Yo). (4.30)

—13(17+ D+ Zy—h'Y,, for Bh=q
< .
1 (Bh+ 1)?
24 h + ZO’ fOl‘ Bh < 7,
(4.31)

with 5 = (24Y, + 1)'/2 and Yy, Z, defined by (4.29).
In the important special case of an initial nonzonal
disturbance of infinitesimal amplitude (i.e. the limit
Yo = 0, Zo = 0), n = 1 and the bound simplifies to

! f f P (1) dydz

%B, for Bh=1
1. (Bh + 1)? .32
% h for Bh<1.

Now, to this point we have not considered the fact
that there is another constraint on the eddy potential
enstrophy, namely that it cannot exceed the total
amount of potential enstrophy in the system. The
bound given by (4.31) is clearly useless if it exceeds
this latter quantity, so it is important to determine just
how much potential enstrophy is, in principle, available
to the eddies, quite apart from stability considerations.

Because the potential vorticity P is materially
conserved for each z, it follows that the potential
enstrophy at each level, i f P%dy, is invariant
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in time. Since [Pdy is likewise invariant, it follows
that f(P — 1)2dy is invariant for any constant u. It is
then possible to bound the eddy potential enstrophy
according to

ff -z/h P’zdydz =3 ff -z/h(P ”) dydz

—%ff e~ " P — p)’dydz (4.33a)

<%ff e_Z/h(P—ﬂ)zdydz- (4.33b)

At t = (Q, the invariant

E%” e (P = p)’dydz

consists of the initial eddy potential enstrophy Z, plus
a zonal-mean part which may be determined directly
from (4.4). It is advantageous at this stage to choose
i so as to minimize Z, which for the Charney problem

(4.34)

is achieved by taking p = P (y = '2) = f + 8/2 (this’

presumes the choice A = Y2, which makes the zonal-
mean relative potential vorticity vanish at the channel

midpoint y = ¥2). With this value of u, and using (4.4),
Z is given by
N 2
Z=2Zp+3 ff e~/ + h“)z(y - %) dydz
_ 1 (Bh+1)?
oo — + Zg, (4.35)

which is identical to (4.31) for 8h < 5. When 8h > 9,
Z exceeds (4.31); for the case Yy, Zy — 0 it does so
by a factor 8#/4 in the limit 34 = o . Therefore, when
Bh > n, the rigorous upper bound (4.31) derived by
using the Charney-Stern theorem limits the eddy po-
tential enstrophy below the maximum amount in the
system. To put it another way, the Charney-Stern
theorem provides a useful constraint on the flow dy-
namics, in the sense that it prevents the eddies from
growing to the size permitted by the global constraint
(4.33), only for Bh > 5. The larger the initial eddy
amplitude, the larger the value of 84 that is required
for this.

In terms of dimensional variables, the bound (4.31)
takes the form

%ff p-}ﬁ(t)dydz
1
o poB*HL*y(n + 1) + Z§
< — [ H'N*Ty2yg, for y<nq!
1 _
apoﬂozHL3(1 +v)2+2Z5, for y=q7l,
(4.36)
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where
Z3 = poLD((D/L)Y*Zy = po(fo/N)*L*$°Z,,

Y5 = poL(Tofo/8)*(£L)*Y,

are the dimensional initial eddy potential enstrophy
and eddy APE, and

1 f025
Bh ,3 NZH

Green (1960) and Held (1978) have shown that v
(which equals 4/ H in Held’s notation) is a crucial di-
mensionless parameter determining the nature of the
linearly most unstable wave in the Charney problem.
In the limit v > 1, the relevant vertical scale for the
instability is the scale height H, and the horizontal scale
NH/ f, as in the Eady (1949) model of baroclinic in-
stability on an f~plane (8, = 0). But in the limit y
< 1, which may be considered a Boussinesq limit, the
relevant vertical scale is instead

fo’k
BoN?’

which has a linear dependence on the vertical shear.
To estimate v for the midlatitude troposphere, one may
consider values of fo ~ 10™*s7!, o ~ 1.5 X 107"
m'sT N2~ 2X10%s7% H ~ 8 km, and { ~ 50
ms~'/10 km = 5 X 1073 s, which gives y ~ 2 or
Bh =~ 0.5.

(4.37)

YH =

b. A bound on the eddy APE at z = 0

We now seek a bound on the quantity

V| 5732/
'z_f (I)z (t)dy

z=0

In this case it turns out that the tightest bound comes
from using the norm given by (4.13) with ¢; replaced
by C;. Noting that & = ' because ¥’ = 0, and using
(4.16) with this alternative norm,

%f<1>_’£(t)dyz=0 <%fﬁ(x)dy %C;Ih&(t)ll2
1 1
<zcalwor=3 {2/ f IO dydz
+f¢,2(0)dy ] (4.38)
z=0

As with the potential-enstrophy bound, it turns out

that one does best by considering the basic flow (4.27),

with (4.15b) and (4.28). Then using the definitions
(4.29), together with the right-hand sides of (4.18) and
(4.19) to evaluate the zonal-mean disturbance contri-
bution at ¢ = 0, the bound (4.38) takes the form
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ﬁk (ul + 1)2
<%gh—u TY
h -
+ ﬁhu]_ u Zy=Fy(u; Zo, Yo).  (4.39)

Now, F, takes local minima at u; = Bh = ((Bh + 1)?
+ 24hZ,) ', both of which are outside the permissible
range of u;, viz. 0 < u; < ﬁh The minimum of (4. 39)
over this range is achieved in the limit u, = 0, and is
simply

1
§+ Yo.

FZImin = (440)
As with the eddy potential enstrophy, it is important
to compare the bound (4.40) on the eddy APE at the
surface with any global constraint in the full problem.
In fact, the material conservation of ®, at z = 0 ex-
pressed by (2.4) implies that [ &,>dy at z = 0 is in-
variant, and therefore the eddy APE is bounded ac-
cording to
3 f $2(1)dy | <3
z=0

f 32(t)dy (4.41)

z=0

This last integral is obtainable at ¢ = 0 for the Charney
problem using (4.3) for the zonal-mean contribution
and Y, for the eddy contribution, yielding

1 [ 32
Eféz (t)dyz=0~<é (4.42)

1
ﬁ'*‘ Yo, .

which is identical to (4.40). In terms of dimensional
variables, the bound becomes

1 =
2fp0dy

5. Comparison with baroclinic-adjustment arguments

When trying to estimate the stage at which baroclinic
instability will saturate, the concept of baroclinic ad-
justment (Stone 1978; Lindzen and Farrell 1980) is
intuitively appealing. The hypothesis involved here is
that the disturbance will grow only until such time as
the zonal-mean state is neutralized to linear instability.,
There are, of course, many difficulties with this sort of
argument, which is in any case essentially ad hoc. In
particular, it is based on linear theory, whereas by the
time the “adjusted” state is reached the disturbance is
of finite amplitude; indeed, in weakly nonlinear theory
for the two-layer model, Pedlosky (1970) found that
the disturbance continued to grow past the point where
the zonal-mean flow was neutralized, rendering the
latter subcritical when the disturbance finally saturated.
Moreover, in forced-dissipative problems the equili-
brated zonal flow is generally substantially supercritical

= ;DoTo2 0’82L% 2 + Y§.

< (4.43)

z=0

in realistic parameter regimes (Salmon 1980; James

1987; Vallis 1988).
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Nevertheless, in unforced problems of the type under
consideration here, baroclinic adjustment may be re-
garded as providing a plausible estimate of maximum
disturbance amplitudes. Therefore, it is of interest to
determine the minimum amount of potential enstro-
phy and available potential energy that must be released
by the zonal flow in order to render itself neutral.

Consider first the eddy potential enstrophy, which
may be computed under the neutralization hypothesis
from (4.33a). A particularly simple neutral state is in
fact found by taking the zonal-mean flow to equal the
basic flow (4.6), (4.8), but with the inequalities (4.9)
and (4.11) replaced with equalities so that Q, = O for
z< band ¥,, = 0 at z = 0. (This corresponds to the
neutral state considered by Lindzen and Farrell 1980.)
These two conditions, together with (4.7b), are then
enough to determine the three parameters u,, #,, and
b: in particular,

u; = uy = Bh, é”/" =(Bh+ 1)/Bh. (5.1

For this neutralized zonal-mean flow, with P(y, z)
given by (4.8) and (5.1), and taking A = 2 and u = f
+ (/2 as before, the third integral in (4.33a) can be
evaluated according to

% ff e " P — u)*dydz

=1 b ilhia — p1y22
—24“;e (8 — h'w)*dz

+ fbw e "B + h“)2dz]

_ 515(6 + h)2he b/t = %5(5}; +1); (5.2)

then (4.33a), (4.34), (4.35) and (5.2) imply that
_ l Bh+1 -
z/h 12
3 > [[ e P ayaz = 1z,

Equation (5.3) represents one estimate of the saturated
value of the eddy potential enstrophy according to
baroclinic adjustment arguments, and is to be com-
pared with the rigorous upper bound given by (4.31).

In the limit B2 > 1 [or ¥ < 1, for 4 defined by
(4.37)], corresponding to “shallow” disturbances, the
ratio of the two quantities is given by

Eq. (4.31) 2B(n+ 1)+ 24Z,
~
Eq. (5.3) . B+ 242,

Both are much smaller than the total available in the
system, (4.35). In the limit Yy, Zo = 0, (5.4)— 4 in
which case the upper bound is simply four times the
adjustment estimate. There is an interesting parallel
here with the case of the barotropic “point-jet” insta-
bility (Shepherd 1988b, §7.3): using the same kind of
method to determine a rigorous upper bound on the

(5.3)

5.4
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eddy enstrophy yields (for the case of an initially in-
finitesimal wavy disturbance) a value four times the
“saturation limit” predicted by Schoeberl and Lindzen
(1984) on the basis of presumed adjustment to a neutral
profile. In a numerical simulation of single-wave equil-
ibration presented by those authors (op. cit., Fig. 8),
the eddy enstrophy actually overshot the saturation
limit by a factor of two, coming within a factor of two
of the rigorous upper bound.

It may also be pointed out that for this case of 84
> 1, the “adjustment depth” b over which the zonal-
mean flow is presumed to be modified is given accord-
ing to (5.1) by

b'=hin(1 + (Bh)™") ~ 1/;

in dimensional units, this corresponds to

(5.5)

which is indeed the relevant vertical scale in this regime
(Held 1978).

In the limit 8% < 1 (or v > 1), on the other hand,
the adjustment estimate ( 5.3 ) approaches the stability-
- based bound (4.31), which in fact equals the global
upper bound (4.35). One is therefore led to suspect
that the eddies will take up all the potential enstrophy
that is available to them.

With regard to the calculation leading to (5.3), it
may be objected that, to obtain a neutral zonal-mean
profile, there is no need for the zonal-mean potential
vorticity gradient P, to vanish in some layer, as assumed
by (5.1); allowing it to be reduced from that of the
Charney profile (4.4), namely 8 + /™', to some smaller
positive value would clearly suffice. Consequently, it
is of interest to consider a more general class of neutral
profiles than that implied by (5.1).

This class is again found by taking the zonal-mean
flow to equal the basic flow (4.6), (4.8). Because it is
still natural to assume that the surface-temperature
gradient is eliminated in a neutral profile, (4.11) is again
taken to be an equality; but (4.9) is this time left as an
inequality. Instead of (5.1), then, one has

u +1
U

U =u, €=

, (5.6)

with u; left free, though with 0 < u, < 8h to satisfy
(4.9). The first equation of (5.2) may be used here,
which then gives for such profiles

% f f e~ (P ~ u) dydz
= 5o B {(Bh — u)*(1 — &™)
+ (Bh + 1)2e70/"} =

1 _
ﬂh YB2h: + ), (5.7)
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after using (5.6 ) to eliminate e””*. To allow the greatest
possible eddy potential enstrophy, one seeks to mini-
mize the right-hand side of (5.7) over all suitable values
of u,; this is evidently achieved in the limit u, = 0.
Then using (5.7) with u; = 0, together with (4.33a),
(4.34) and (4.35), one has

lff e gy = 23hh+1

which is larger than (5.3). In the limit 84> 1 and Y,
Zy—>0,(5.8)istwice (5.3); for 84 < 1, they are equiv-
alent. It is perhaps worth emphasizing again that both
(5.3) and (5.8) are no more than ad hoc estimates of
the maximum eddy potential enstrophy under various
neutralization hypotheses; moreover, (5.8) is evidently
somewhat unphysical insofar as the “adjustment
depth” b is presumed to be infinite.

Figure 2 compares the rigorous upper bound (4.31),
the maximum permitted eddy potential enstrophy
(4.35), and the two adjustment estimates (5.3) and
(5.8), over a wide range of i for the case Yy, Zo =
0 and n = 1. For 8h < 1, all the curves are virtually
coincident; for 84> 1, however, there is a fanning out,
with (4.31):(5.8):(5.3) in the ratio 4:2:1, and all three
much smaller than (4.35). This latter regime is clearly

+Zy, (5.8)
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FI1G. 2. Comparison of the rigorous upper bound on the eddy po-
tential enstrophy (4.31) obtained from stability considerations ¢solid
curve), the (minimum value of the) total potential enstrophy in the
system (4.35) (long-dashed curve), and the two baroclinic-adjustment
estimates (5.3) (short-dashed curve) and (5.8) (dash-dot curve), in
terms of B2 = v~ [see (4.37)]; all for the limit Yy, Zo — O corre-
sponding to nonzonal disturbances of infinitesimal initial amplitude.
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the one of most interest in the present context, and a
comparison of these results with weakly-nonlinear the-
ory for 84> 1 is therefore attempted in the next section.
The situation with regard to the eddy APE at z
= 0 can be dealt with quickly. Because a neutralized
state must have ®,, = 0 at z = 0, and thus no zonal
APE (assuming that ®, vanishes for some y € [y,
¥21, as it does for @, given by (4.10)), it follows that
baroclinic adjustment must always predict eddy APE
at z = 0 equal to the total amount available, namely
(4.42) with the inequality replaced by an equality.
Since the stability-based bound (4.40) gives the same
result, one is led to suspect that the saturated state
will indeed be one with all the APE at z = 0 in the
eddies. The numerical experiments of Simmons and
Hoskins (1978) indeed suggest that, at least in the
absence of surface damping, saturation does involve
the expulsion of the surface temperature gradient
within the jet region. (When &, is not taken to vanish
at some y € | %, , ¥21, then it is only the minimum
of § [ (®, — n)*dy|;-o—which isan invariant—over
all constants g which is available to the eddies. For
the discussion above, however, the minimum of this
quantity obtains for u = 0.) ’

6. Comparison with single-wave equilibration from
weakly nonlinear theory for 84 > 1

The weakly nonlinear theory of Pedlosky (1979b)
provides an explicit prediction of the time evolution
of a single-wave disturbance in the Charney model of
baroclinic instability. For given external parameters—
in particular for given 8, which may be considered a

dimensionless measure of the inverse vertical shear -

¢ ~'—one may therefore seek to determine the maxi-
mum eddy potential enstrophy predicted by the weakly
nonlinear theory for a given wave, and compare this
with the various quantities shown in Fig. 2. (It may be
noted that Pedlosky’s 1979b analysis employs the same
nondimensionalization as that used in this paper.)
Unlike the case of the two-layer model, there is of
course no stability threshold in the Charney model.
However, Pedlosky (1979b) focused on the so-called

Charney modes, for which a given wavenumber « .

= (k? + w2[%)"? (where k and =/ are respectively the
zonal and meridional wavenumbers) has a critical shear
given by

B=B)=(h2+4*)'"?~h"'.  (6.1)
(Pedlosky used @ rather than G, but we retain the
latter to avoid possible confusion with the dimensional
beta parameter.) The theory assumes that the super-
criticality A(x), given by

A(k) = Bc(x) — B, 6.2
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is small, and it is the square root of this parameter A(x)
which is taken as the expansion parameter in the per-
turbation series. The situation is shown schematically
in Fig. 3, the key point to note being the absence of
any minimum critical shear {(or maximum 8,.). For 8
> B.(x) the flow is still susceptible to normal-mode
instability at scale « (except for a countable set of values
corresponding to neutral modes), but these instabilities
are rather weaker than those of the Charney modes
and are not considered in Pedlosky’s analysis.

The relevant case to consider for present purposes
is that of nearly inviscid flow (Pedlosky 1979b, §4, with
his v = 0) and 8h > 1; we also simplify the discussion
by restricting attention to the case of infinitesimal initial
disturbance amplitude. To leading order in | A| 2, the
potential vorticity of the nonzonal part of the flow is
given according to the weakly nonlinear theory by

-1
q=- %jzh—) Y= —|A|"2(Be + h7he P12
X Re[A4e’ sin(xly)] (6.3)

[Pedlosky 1979b, Eqgs. (3.14) and (3.28)], where 6 is
the phase. The maximum of the amplitude | 4|2 is

. predicted to be

7l'2ao
40°’1*D(ao, 1)

where R2.. = 2 for R(0) € 1, ap = «/7, go = B.
+ h7', and D(ayo, !) is a complicated function which
is given by Pedlosky’s equation (4.17b). For fixed a
(and «), I*D(ag, 1) is minimized for the gravest me-
ridional mode, / = 1, so this choice of / is made here
so as to make |A|? as large as possible. Taking 8.
= 8> h7'in (6.3) and (6.4), so that B.(x) =~ 2«
= 2way, the maximum eddy potential enstrophy for a
given a, therefore takes the form

| Al fax = Riax 6.4)

i -«
™

FIG. 3. Schematic of the marginal stability curve B.(x) for the
Charney modes, which is given by (6.1); for large « (small horizontal
scale) the supercriticality A(«) becomes increasingly large.
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J‘J' ~2/hi73 'Zdydz——— [A1B2 |4 fua

- 27l'ag 6
xf oz = e Dla)

The correctness of the above expression has been
checked by calculating the quantity

%ff e~ " P — u)’dydz

from weakly nonlinear theory, and then using (4.33a)
to determine the maximum eddy potential enstrophy
(see appendix B).

The right-hand side of (6.5) is a linear function of
B, its dependence on g, is shown in Fig. 4 for 8 = 10,
and is evidently very nearly linear as well. Note that
a, must exceed unity because of the existence of a grav-
est meridional mode in this channel geometry, and
that for A to be positive it is necessary that ao > 3/2x.
The rigorous upper bound (4.32) and the adjustment
estimate (5.3) for the case Yy, Z, —> 0 are also indicated
in Fig. 4; in this Boussinesq limit of 84 > 1 they are
given, respectively, by 8/6 and 8/24. The leading-order
prediction of the weakly nonlinear theory is clearly in-
valid for ay > 2.3, when it violates the rigorous upper
bound. However, when g, = 2.3 the supercriticality A
= 4.4, so one would not expect the theory to be par-
ticularly reliable there in any case. Indeed, for 8 =
A > 1 for ap > 1.75, which suggests that the range of
wavenumbers for which weakly nonlinear theory might
be relevant is very small indeed. Whereas this range

(6.5)

(6.6)

eddy potential enstrophy

FiG. 4. The maximum eddy potential enstrophy (6.5) predicted
by Pedlosky’s (1979b) weakly nonlinear theory for § = 10 in the
inviscid limit (solid curve), as a function of @y = «/w, compared
with the rigorous upper bound $8/6 and the baroclinic-adjustment
estimate §/24.
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—may nevertheless be physically meaningful in a two-

layer fluid, because of the existence of a minimum crit-
ical shear, its physical significance is less clear for the
Charney problem where, for given 8, the flow is su-
percritical to an arbitrarily large degree in the short-
wave (large «) limit.

These results are summarized in Fig. 5. In the (8,
ao) parametric domain, curves have been drawn cor-
responding to constant values of the supercriticality A
and of r, the ratio of the maximum eddy potential
enstrophy predicted by the weakly-nonlinear theory,
(6.5), to the rigorous upper bound (4.32)—the latter
being, of course, just 3/6 in this regime. For r > 1, the
weakly nonlinear theory is in violation of the bound,
and must be wrong; Fig. 5 demonstrates that this state
of affairs only obtains for A > 1. When A < 1, ris
generally at least as small as 0.5. The region above A
= () corresponds to the long-wave “Green modes,” and
is not covered by the weakly nonlinear analysis. Once
again, the small domain of validity for weakly nonlinear
theory is highlighted. It is apparent that a meaningful
comparison between such theory and the results of sec-
tions 4 and 35 is not really possible. This is in contrast
to the situation found in Part I for the Phillips model.
of baroclinic instability in a two-layer fluid; there the
parameter dependences of the exact upper bound and
Pedlosky’s (1970) weakly nonlinear theory were found
to be rather similar.

7. Nonlinear saturation bounds for more general pro-
files

In this section, we consider the problem of deriving
saturation bounds for instabilities to general profiles

. d -
U(y,Z)E—gJ;Q(y,z,FO)-

The first point to make is that for a given initial profile,
and for given values of the initial eddy potential
enstrophy Z§ and eddy APE Y §, the Charney-Stern
theorem+(3.4) provides an infinity of bounds—one for
each choice of a stable basic state (¥, Q). This is be-
cause the eddy potential enstrophy (or the eddy APE
at z = 0) may be bounded in terms of the left-hand
side of (3.4), while the right-hand side of (3.4) is a
functional of ¥(y, z). Specifically, given (P, P) at ¢
= 0 and (¥, Q), one may use

q(t=0)=4(=0)+4'(t=0)

=P(t=0)-Q+P(t=0) (7.1a)
in the interior, and
Y:(1=0)=¢.(t=0)+y.(t=0)
=3,(t=0)—¥,+®,(t=0) (7.1b)

at z = 0, substituting these expressions into (3.2) and
choosing the ¢, C, etc. to satisfy (3.1). This then yields
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F1G. 5. Curves of constant r (dashed) and A (solid) in the parametric domain (83,
a,). A is the supercriticality (6.2), and r is the ratio of the maximum eddy potential
enstrophy predicted by weakly-nonlinear theory, (6.5), to the rigorous upper bound

(4.32). The curves A =0 and r = 0 exactly coincide.

a bound on either the eddy potential enstrophy or the
eddy APE at z = 0.

While this procedure gives a rigorous saturation
bound for any choice of a stable basic state, the interest
is of course in deriving the best (i.e. tightest) such
bound. For a general profile U( ¥, z), the optimization
problem associated with the consideration of all pos-
sible basic states (¥, Q) is evidently rather complicated,
and could only be treated numerically. However, P. H.
Haynes has shown by explicit construction that any
particular saturation bound may be improved upon
(though-possibly only slightly ) if the basic-state poten-
tial-vorticity gradient Q, varies smoothly in the neigh-
bourhood of a point where it takes an extremum
(Shepherd 1988b, appendix C). This means that one
is justified in restricting attention to functions Q, that
take their extrema over finite intervals, which is for-
tunate insofar as it is only for such basic states that the
optimization problem is, in general, analytically trac-
table. (The difficulty is that the parameters ¢, C, etc.
are functionals of (¥, Q), and are therefore global
rather than local properties of the basic state.) More-
over, the calculations of section 4 for the Charney
problem suggest that one in fact does best by restricting

attention to basic states with Q, constant throughout

the domain; the point is that although one could reduce
G(0) in the interior by choosing a basic state U(y, z)
that matched onto the initial profile U(y, z) at some
z (provided the flow was stable above this), the asso-
ciated reduction of [ [ e */%3%(0)dydz is so small (be-
cause of the density factor) that it is more than offset .
by the fact that C/c must then exceed unity.

For simplicity of presentation, we make the as-
sumption of an isothermal semi-infinite atmosphere,
with (4.2) and a constant scale height H; however, the
extension to more general stratifications would be a
straightforward exercise. Choosing £ to be the maxi-
mum vertical shear dU/dz (presumed positive), one
may then employ the nondimensionalization of section
4. In these dimensionless units, it is convenient to write
the potential vorticity of the initial zonal-mean state
as

P(y,z,t=0)={(y,z; N+ [+ 8y, (12)

and the surface temperature distribution as (propor-
tional to) :

$.(y,2=0,t=0)= fW(y; A); _(7-3)
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the meridional gradient of (7.3) is of course just
$.,(y,2=0,1=0)
14
az (y,Z—O,t-—O)— W(y),
with w = dW/dy. By hypothesis, w(y) < 1. The pa-
rameter A in (7.2) and (7.3) denotes the (y—) constant
of integration associated with the streamfunction ®.
For the moment, it is left free.

As suggested in the above discussion, we consider
stable basic states of the form (4.27), with Q, constant

throughout the domain and ¥,, constant at z = 0,
namely

C=c=8-h1uy, Ci=ci=u,. (1.5

It then follows from (4.8), (4.10) (with ¥, = 0 and b
= 0), and (7.2), (7.3) that the initial disturbance (7.1)
may be written as

q(t=0)=P(t=0)—-Q+ P (t=0)
=¢, z; N+ A 'u(y =N+ P (t=0) (7.6)
in the interior, and
Y:(1=0)=8,(1=0)—- ¥, +®,(1=0)
==W(y;A) —u(y —A) + ®:(1=0)
atz=0.

(1.4)

7.7

a. A bound on the eddy potential enstrophy

The eddy potential enstrophy is bounded according
to (4.17a); using (7.5), (7.6) and (7.7), and noting
the orthogonality of zonal-mean and eddy components,
(4.17a) takes the form

%ff e‘zf”?(t)dyd2<%ff e {§(y, 23 N)
B - h_Jul
U

1

+ A u(y — N)Ydydz + Zo +

{1 ] o+ - Ny + 1)

= a,ul" + oy + aszuy,

(7.8)
where

=L [ Wy ay + g3,
' 1
=8 [ WM - Ndy - 5 [ w2050y
+ % ff e/ $2(y, z; Ndydz + Zo — h™'Yo,

az=h"" ff ey, z; A)(y — N)dydz

2o -y - n [ wosne -,
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For the purpose of this discussion we presume that the
initial eddy amplitude is not too large: specifically that

Yo<O(l), Zo<O(h™). (7.9

Now, (7.8) evidently takes a local minimum at u,
= (a;/a3)'/? whenever a; > 0 (a; is always positive);
however, to be an acceptable solution this local min-
imum must fall with the permissible range of u,, which
is

0<u, <ph. (7.10)
Consider first the regime Sh » 1. In this case, a3

asymptotes to the value g J (y —\)*dy, and

f W?2(y; Ndy + 2Y,
o

=

(7.11)

~7

“  [o-va

which is positive and of order unity and therefore sat-
isfies (7.10). The bound on the eddy potential enstro-
phy is then given by (7.8) with u, = (a,/a3)'/?, namely

@+ 2(a)? ~ 6] [ Wi - Ny

+ [[f (y — )\)"'a’y][f W2(y; Ndy + 2Y0]]”2] .
(7.12)

(Because ¢ is generally O(#7!), all but the first term
in the expression for «, is no greater than O(4™!)
and therefore negligible in this regime.) Note that the
expression on the right-hand side of (7.12) is positive,
by virtue of Schwarz’s inequality (x> y*)'/? > Xy.
Moreover, (7.12) is O(8), and therefore much smaller
than Z as defined by (4.34), which is O(8%4). To ob-
tain the best bound, it is now simply a matter of choos-
ing A so as to minimize (7.12). If the zonal-wind shear
w(y) is symmetric about the center of the channel,
then the choice A = % will give the best bound. For
the special case W (y; A\) = y — A corresponding to the
Charney problem, (7.12) reduces to 8(n + 1)/12 for
\ = ¥, in agreement with (4.31) [since Zo — A7'Y, <
B under the hypothesis (7.9)]; this in fact represents
the extreme case, as other symmetric w(y) must give
smaller bounds. For more general functions w(y), the
minimum of (7.12) would have to be worked out ex-
plicitly for the case in question.

In the regime B84 < 1, on the other hand, there is a
problem insofar as a3 may be negative; moreover, even
if it is positive, a;/a; = O(Bh) so u, = O[(Bh)'/?]
> Bh, violating (7.10). Because (7.8) diverges as
u, = 0, this means that the minimum of (7.8) com-
patible with (7.10) is achieved in the limit u, = S8k,
and is given by
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L[] e 150, 20 + 80 - Midydz + 2.

(7.13)

This expression is identical to Z as defined by (4.34),
with p = f + BX; hence the minima of (4.34) and of
(7.13) must be the same. Therefore, as in the Charney
problem, for the case 82 < 1 one can apparently do
no better than the global invariant Z for a bound on
the eddy potential enstrophy.

When gh = O(1), it is difficult to make a general
statement. If there are choices of A for which a3 > 0
and (a;/a3)'/? < Bh, then (7.8) has a local minimum
(in u,) which is acceptable, namely a; + 2(aja3)'/?;
and one may choose A (consistent with these condi-
tions) to minimize this quantity. Since it is a local
minimum of (7.8), it is guaranteed to be smaller than
the minimum value of Z, though not by much since
both quantities are O(g8). If, however, one cannot find
a local minimum (in ,) for any A, then the best bound
is found for u, — Bh and is simply (7. 13), equiva-
lently Z.

b. A bound on the eddy APE at z = 0

The eddy APE at z = 0 is bounded according to
(4.38), which for (7.5), (7.6) and (7.7) becomes

.%f@(t)dy <FThm h ul{ ff ~#/h

X [£(7, 23 A) + A uy(y — N)]2dydz + zo}

+%f {(Wr; N +ui(y —N)}2dy + Yo

_ o + o) + a3u.2
B—h""u

It is straightforward to check that (7.14) takes extrema
at

. (1.14)

u; = Bh £ [B*h? + a3 (Bhay + ;)]"?  (7.15)

whenever the discriminant in (7.15) is positive. Now,
if a3 and Bha, + «; are both positive (recall that «; is
necessarily positive) then both solutions (7.15) violate
(7.10), and the best bound on the eddy APE is found
by taking ¥, = 0 in (7.14), namely

%f W2(y; Ndy + Yo.

But (7.3) implies that this is just the total APE at z
= 0, viz. the right-hand side of (4.41). This outcome
was of course obtained in the Charney problem, for
which a3 = /24 and Bha; + a; = (ﬂzh/IZ) + (B/
24) + BhZ, (taking A = '2). However, in the general
case there is now a possibility of doing better than
(7.16), provided that there are choices of A for which

(7.16)
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(¥3<O or ﬂha2+al<0,

but not both, and for which the discriminant in (7.15)
is positive. In such cases, the minus root of (7.15) may
be substituted into (7.14), and the resulting expression
minimized over all such acceptable A\. However, it can
be shown that this state of affairs cannot exist in the
regime Bh < 1, and that it can give only an asymptot-
ically-negligible improvement in the regime 8h > 1.

8. Implications for transient-eddy parameterization

_The rigorous saturation bounds derived in this paper
have a direct application in the context of transient-
eddy parameterization schemes for use in simple cli-
mate models. Traditionally, such schemes have usually
been based on notions of eddy diffusivity, with a spa-
tially varying diffusivity coeflicient whose form is cho-
sen according to linear instability theory (e.g., Green
1970, et seq.) Such an approach is however difficult to
justify, for reasons which need not be spelled out here.
An alternative philosophy is suggested by the so-called
“Transformed Eulerian Mean” formulation of the
governing equations (Andrews and MclIntyre 1976):
there the effect of the eddies is collected in a single
term, the divergence of the Eliassen-Palm flux V- F,
which is itself related to eddy growth and decay. In the
special case of weakly-dissipative flow, small-amplitude
eddies, and no thermal driving, the zonal-mean’ flow
evolution is determined according to the system

%—?—ﬁﬂ"* =V.F, (8.1a)
g_;ﬁ N _q{% W* =0, (8.1b)
(fy* 1a_az(pw*) -0, (8.10)
0 a:=_gg_z, (8.1d)

while the eddies themselves satisfy the conservation
law .

04

i +V:F=0.
In the above A is the linearized Eliassen-Paim wave
activity, just the negative of the zonal average of the
right-hand side of (2.12), though here faking the zonal-
mean flow as the basic state, and (8.2) corresponds to
the zonal average of (2.13). Thus, given knowledge of
the evolution of 4, one can deduce V-F; and from
V . F, one may infer the zonal-mean atmospheric re-
sponse [ which is a combination of mean-flow * accel-
eration” (i, §,) and “residual circulation” (3%, w*)
in the meridional plane, together with a surface-pres—
sure tendency (Haynes and -Shepherd 1989)]. For a
complete description of the problem, the surface con-

(8.2)
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tribution to the wave activity must be included. It may
either be given by a separate term [ just minus the small-
amplitude form of B(©, 0) given by (2.15)], or alter-
natively incorporated as a surface contribution to A4
(Bretherton 1966; Hoskins et al. 1985). For the purpose
of this discussion the latter choice is followed.

We now focus attention on the specific problem of
parameterizing transient-eddy fluxes due to synoptic-
scale baroclinic instability, and consider how the sat-
uration bounds derived here may be used for this pur-
pose. It must be emphasized that the nature of this

discussion is purely heuristic and very speculative, and

intended only to point the way towards a full quanti-
tative description. Thus the arguments will be far from
rigorous, and in particular will involve a judicious
mixture of both linear and nonlinear ideas.

The results of numerically simulated nonlinear “life
cycles” of baroclinic waves (Simmons and Hoskins
1978; Edmon et al. 1980) suggest the following se-
quence of events (see Hoskins 1983; Held and Hoskins
1985): (i) linear growth near the surface, much as in
the Charney (1947) model; (ii) nonlinear saturation,
with an eddy APE cascade to small scales on the surface
(frontogenesis) leading to dissipation; (iii) Rossby-
wave propagation from near-surface levels to the tro-
popause, and generally also equatorward; (iv) Rossby-
wave “‘breaking” and an associated enstrophy cascade
to small scales in the vicinity of the subtropical jet. In
terms of the E-P wave activity A4, stage (i) corresponds
to growth of positive 4 in the near-surface interior re-
gion, and of negative 4 of the same magnitude con-
centrated at the lower surface (or negative 4 and pos-
itive B, in the notation of section 2). The total wave
activity, including the boundary contribution, must
remain zero because it is zero initially (since the basic
flow is here the initial zonal-mean flow), but this con-
straint does not apply to the eddy wave activity 4.

Associated with this vertical dipole structure in 4 is
a vertical E-P flux F, or equivalently a poleward heat
flux, as one expects from baroclinic instability. The
magnitude of the net heat flux can then be determined
on the basis of the saturation bounds on the surface
eddy APE, and its vertical structure from the charac-
teristics of the unstable Charney modes. This is in fact
essentially no more than has-already been proposed in
the studies of Lindzen and Farrell (1980) and Brans-
come (1983) on heat-flux parameterization. Given the
net heat flux (equivalently the vertical E~P flux), the
effect on the mean flow can be fourd from (8.1) to-
gether with appropriate boundary conditions. Hayashi
(1985, appendix D) shows the mean-flow changes as-
sociated with a growing Charney mode, though without
allowing the concomitant surface-pressure tendency
which would undoubtedly affect his result (see Haynes
and Shepherd 1989).

The more difficult part of the problem, however,
concerns the eddy momentum fluxes associated with
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stages (iii) and (iv). To address this aspect of the pa-
rameterization problem, we now propose to invoke the
saturation bounds on the eddy potential enstrophy to
determine how much eddy wave activity 4 is trans-
ported from the near-surface regions to the tropopause
level. Because the unstable Charney-like modes in the
life cycles are relatively shallow, we may idealize the
problem by presuming that the regime vy < 1 (or gh
» 1) is the relevant one, in which case the meridional
potential-vorticity gradient may be approximated by
Bo. Then the net A4 in the interior, following saturation
of the baroclinic instability, may be estimated as the

- eddy potential enstrophy divided by 8, and is thus

constrained by the saturation bounds. Note that it is
not possible to estimate this A [relative to the zonal-
mean flow at the end of stage (ii)] from the surface
part of A (relative to the initial zonal-mean flow) fol-
lowing saturation. This is because it is only the total
(i.e. finite-amplitude ) wave activities 4 and B that are
linked, and these involve non-negligible zonal-mean
disturbance components.

Then given the new A in the interior, it is presumed
[according to stage (iii)] that it propagates (linearly or
nonlinearly) vertically and meridionally. Where it goes
will generally be a sensitive matter, determined in part
by the “refractive index” associated with the relevant
zonal-mean state (Hoskins, MclIntyre and Thorncroft,
manuscript in preparation). For the purpose of this
discussion, however, we simply presume that it goes
to some region near the tropopause where it is dissi-
pated at small scales following an enstrophy cascade
(cf. Held and Hoskins 1985). Then the magnitude of
V - F both at this region ( where it is negative) and near
the surface (where it is positive) is known from the
saturation bounds, and the effects on the mean flow
may be determined from (8.1). When the two regions
of nonzero V - F are offset meridionally, as they gen-
erally will be, then the calculations of Pfeffer (1987)
suggest that the net effect will be a meridional dipole
in 91/ ¢, reflecting eddy momentum flux convergence
and divergence.

The total problem is thus closed by small-scale dis-
sipation in two regions: near the subtropical jet, and
at the surface itself. This phenomenological hypothesis
is indeed borne out in the life-cycle experiments (see
Held and Hoskins 1985, Fig. 4). The dissipation is of
course essentially dynamical, in the sense that it is
driven by nonlinear cascades (of potential enstrophy
in the interior, and of APE at the surface) to small
scales, which are associated with the large-scale flow
itself; moreover, it acts to destroy both positive 4 (at
the tropopause) and negative A (at the surface), as it
must since there is no net production of A by the baro-
clinic instability process. However, it is the spatial sep-
aration of the two dissipation processes which is re-
sponsible for the net effects on the mean flow.

Perhaps needless to say, this picture is highly ideal-
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ized and will need to be tested quantitatively. In par-
ticular, surface damping will be expected to modify the
behavior, although preliminary studies have shown that
the effects on the life cycles are more quantitative than
qualitative (M. Blackburn, personal communication
1987). Work along these lines is currently in progress
and will be reported on in due course.

9. Discussion

This paper addresses the question of finite-amplitude
saturation of baroclinic instability in a continuously
stratified, quasi-geostrophic fluid. It thereby extends
the analysis of Part I of this study (Shepherd 1988a),
on the two-layer model, to a more geophysically rele-
vant seiting. By appealing to a nonlinear Liapunov
(normed) stability theorem, (3.4), which is the finite-
- amplitude generalization of the well-known Charney-
Stern theorem for zonal flows, rigorous upper bounds
have been derived both on the depth-integrated eddy
potential enstrophy and on the eddy available potential
energy at the ground. These bounds are unconstrained
by any assumptions about the nature of the initial non-
zonal disturbance, and thus are not tied in any way to
the concept of normal-mode instability.

The character of the results depends on the dimen-
sionless external parameter y = fo>£/8oN2H, where
£ is the maximum vertical shear of the zonal wind, and
the other symbols have their usual meaning (see sec-
tions 2 and 4). When v > 1, corresponding to “deep”
unstable modes (vertical scale =~ H), the bound on
the eddy potential enstrophy, (7.13), is just the total
potential enstrophy in the system; but when v < 1,
corresponding to “shallow” unstable modes (vertical
scale ~ yH), the eddy potential enstrophy is bounded,
by (7.12), well below the total amount available in the
system. In neither case can the bound on the eddy APE,
(7.16), prevent a complete neutralization of the surface
temperature gradient, which is in accord with numer-
ical experience (Simmons and Hoskins 1978).

For the special case of the Charney (1947) model of
baroclinic instability, the bounds on the eddy potential
enstrophy and eddy APE are given in terms of dimen-
sional variables by (4.36) and (4.43), respectively, and
have the same character as the general results described
above. In the important limit of infinitesimal initial
eddy disturbance amplitude, the dimensionless bound
on the eddy potential enstrophy is (4.32), namely 8/
6 for v < 1 and (asymptotically) 535 for v > 1; here 8
and 4 are the dimensionless beta and scale height pa-
rameters (see section 4). These bounds are very similar
to (though of course generally larger than) ad hoc es-
timates based on baroclinic-adjustment arguments
(section S and Fig. 2).

The system of equations used here is the standard
quasi-geostrophic set, which is appropriate for the
problem under consideration. It is, however, a

[
JOURNAL OF THE ATMOSPHERIC SCIENCES

VOL. 46, No. 7

straightforward matter to show that the more general
“modified quasi-geostrophic equations” (White 1977)
also allow a pseudomomentum conservation law and
generalized Charney-Stern theorem, and that satura-
tion bounds likewise obtain. The details are provided
in appendix A.

The theory in this paper has been worked out under
the assumption of conservative (inviscid, unforced)
flow. It turns out, however, that the results go through
for a certain kind of forced-dissipative problem, namely
that where the potential vorticity and surface potential
temperature are relaxed back to the initial unstable

- state. In place of (2.1) and (2.4), then, one considers

DP =—y(P—-P,), for z;<z<2z, (9.1a)
Dt
D
P, =—p(P,—&,.), at z=2zy,2z,. (9.1b)

Dt
Here » is the relaxation coeflicient and the subscript e
(for equilibrium ) denotes the (constant) initial unstable
zonal-mean state, viz. P, = P (¢ = 0); in the atmo-
spheric context such a state might represent the radia-
tive-convective equilibrium state, for example. The
system (9.1) can also be thought of as one having dis-
sipation proportional to the potential vorticity in the
interior, and to the potential temperature at the surface,
together with a constant forcing to ensure that the initial
(unstable) zonal-mean state is a steady solution of the
governing equations. Although the pseudomomentum
conservation law (2.18) now has nonconservative
terms on the right-hand side, so that J(¢) # J(0) gen-
erally, and although d| J|/dt may in fact be positive,
nevertheless one may establish that

[J(0)] < |J(0)], 9.2)

from which the stability theorem (3.4) follows directly;
thus all the results derived in this paper continue to
hold for the system (9.1).

The proof of (9.2) for the system (9.1) is given for
the case of two-dimensional (barotropic) flow in Shep-
herd (1988b, §4.1), where P = &, + ®,, + fo + Boy
rather than (2.2). Since the proof does not depend on
the detailed definition of P, but only on the form (9.1)
together with the nature of the pseudomomentum in-
variant A(Q, q), it is a straightforward exercise to verify
that it goes through for the present case. ( This is most
easily seen by treating the surface contribution as part
of the potential vorticity, and imposing the homoge-
neous lower boundary condition &, = 0; see Bretherton
1966; Hoskins et al. 1985.) .

Whatever the physical relevance of the forced-dis-
sipative system (9.1), it does correspond to the kind
of system often used in theoretical and modeling stud-
ies. It arises, for example, when dissipation is provided
by Rayleigh friction and Newtonian cooling with equal,
constant relaxation coefficients. On the other hand, it
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has not been possible to derive a result corresponding
to (9.2) when these coefficients are unequal, or when
Ekman damping is applied at the surface. The extent
to which the saturation bounds can be salvaged in gen-
eral kinds of forced-dissipative problems is an inter-
esting subject for further study.

Although the saturation bounds derived here have
been obtained by varying the vertical structure of the
basic flow, the method is evidently not limited to this
sort of approach, For example, the study of Gutowski
(1985) suggests that changes in the static stability as-
sociated with vertical heat fluxes may be a crucial part
of mean-flow adjustment to baroclinic instability. It
would therefore be interesting to determine the satu-
ration bounds obtainable by considering basic flows
with different static stability profiles (in effect, taking
part of the “reference state” O,(z) as the initial dis-
turbance). Similarly, James (1987) has proposed that
adjustment involves changes in the barotropic com-
ponent of the mean flow, and one might try to see how
much of James’s “barotropic governor” could be cap-
tured through the saturation-bound approach.

One application of these bounds is in providing a
constraint for evaluating the validity of approximate
(e.g. weakly nonlinear or low-order) theories. For ex-
ample, Pedlosky’s (1979b) weakly nonlinear theory for
the Charney problem was shown (section 6) to violate
the rigorous saturation bounds for O(1) supercriticality.
Another application is that of providing an eddy-am-
plitude closure for transient-eddy parameterization
schemes (section 8), a subject of both theoretical and
practical importance. In this regard, and indeed more
generally, it would be of considerable interest to de-
termine the extent to which the saturation bounds give
quantitatively accurate estimates of maximum eddy
amplitudes under various conditions.

Although this last question can only be properly ad-
dressed through fully nonlinear numerical simulations,
it is nevertheless fairly clear that there is a parameter
regime where the saturation bounds will give hopelessly
large overestimates (I. M. Held, personal communi-
cation 1988); namely the homogeneous limit of a very
broad jet. When the Rossby deformation radius NH/
Jo (which is an upper bound on the eddy length scale)
is much less than the width of the jet, L, then the ho-
mogeneous limit is reached where eddy statistics are
independent of L (Haidvogel and Held 1980). If we
take L ~ L, the channel width (as in the Charney
problem), then the homogeneous limit is the limit &
< 1, and the spatially-integrated eddy potential enstro-
phy and eddy APE would be expected to scale as L.
The rigorous saturation bound (4.36), on the other
hand, scales as L3, and so will be a considerable over-
estimate as L = oo. This implies, inter alia, that the
flow cannot be neutralized as in the adjustment ar-
guments. The physical reasons for this involve the fact
that the saturation bound must cover the (extreme)
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case of the gravest meridional mode, but the gravest
mode is unstable in the homogeneous limit and proves
to be irrelevant to the finite-amplitude dynamics
(Haidvogel and Held 1980). The earth’s atmosphere
is far from the homogeneous limit, but these consid-
erations might be relevant on Jupiter, for example.

Another limitation of this study is that the method
used here would seem to be restricted to quasi-geo-
strophic dynamics. This is because the Liapunov sta-
bility theorem on which the method relies does not
appear to exist in the fully ageostrophic case (Abarbanel
et al. 1986), unless one can make a priori assumptions
about the spatial structure of the disturbance. Of course,
for practical purposes such assumptions (e.g. the ex-
istence of a minimum vertical scale) may be quite rea-
sonable in certain circumstances.
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APPENDIX A

Generalization to the Modified
Quasi-geostrophic Equations

The system of equations used in the body of this
paper is the standard quasi-geostrophic set, which
is derived under the quasi-Boussinesq assumption
fo?L?]gH < 1. Although this assumption is reasonable
for synoptic-scale motions of the kind under consid-
eration here, it becomes highly suspect (if not invalid)
for planetary-scale motions. When this parameter is
taken to be of order unity, the potential vorticity equa-
tion (2.1) remains unchanged, but the boundary con-
dition (2.4) becomes

D N?

= (q> ; q,) 0.
Similarly, while the expression for the potential vor-
ticity is still (2.2), the potential temperature is given

by
o-8h(n- ) 0= %h(u- ),
(A2)

instead of (2.16). White (1977) refers to this as the
modified quasi-geostrophic set of equations. The pur-
pose of this appendix is simply to point out that the
pseudomomentum conservation law and generalized
Charney-Stern theorem derived in sections 2 and 3 go
through for the modified equations without alteration,
and that saturation bounds will therefore follow.

The crucial point about the changes implied by (A1)
and (A2) is that the potential temperature at the
boundaries is still a materially conserved quantity, viz.

(A1)
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D )

E(9+0)=0 at z =z, z,, (A3)
and so the function B(O, 0) defined by (2.15) remains

- appropriate. The only difference is that (2.17) becomes

B 5 N?
=2 = oo/ N) ¢x(¢z ; ¢) . (Ad)
but this has no effect on (2.18) since the new term is
proportional to ¥,¢ and thus vanishes under a zonal
average. The generalized Charney-Stern theorem (3.4)
goes through accordingly. Blumen (1978) has shown
that the pseudoenergy conservation law and associated
Arnol’d stability theorem hold for the linearized version
of the modified quasi-geostrophic equations.

With regard to the saturation bounds, the details of
the calculations presented here (especially in sections

5 and 7) would generally require modification. How- -

ever, because both the unstable Charney profile (4.1)
and the stable basic flow (4.27) have zero velocity at
the ground, the extra term in (A2) vanishes anyway

-and the saturation bounds derived in section 4 apply
virtually as they stand. The only modification is that
in their dimensionless versions, the expressions for the
eddy APE (including that for Y;) require the correct
version of dimensionless potential temperature ac-
cording to (A2).

APPENDIX B
Check on the Expression (6.5)

From Pedlosky’s (1979b) equation (3.44), the lead-
mg-order correction to the zonal-mean potentlal vor-
ticity is given by

qoe *¢| A|*xl sin(2xly),

sotaking A =%, u=f+8/2,1=1,and ¢ ~ B, as
before, this yields

~u=6+n(y 1)

+ |A|Bce 4| A|*w sin(27y).

At t = 0, the second term of the above expression
is negligible (by hypothesis); when |4|? = | 4|Z%.,,
the ratio of the two terms is O(]A|7'|A4]|™?)

O(|A|"ﬁcz) > 1 and the first term dominates.
Therefore, usmg (4.33a), the maximum eddy potential
enstrophy is given by :

% ff e~*!" P2 dydz

= % ff e M P — u)dydz

(14)2=0)

——ff e~/ P — u) dydz

(‘A|2_|A'max)
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~ —|A|Bc|A|maxwff e IHB + h)

X (v =3 ) e sin(any)ddz ~ 1 14181412

which agrees with (6.5) to leading order in |A|'/2.

REFERENCES

Abarbanel, H. D. 1, D. D. Holm, J. E. Marsden and T. Ratiu, 1986:
Nonlinear stability analysis of stratified fluid equilibria. Phil.
Trans. Roy. Soc. London, A318, 349-409.

Andrews, D. G., and M. E. Mclntyre, 1976: Planetary waves in hor-
izontal and vertical shear: The generalized Eliassen-Palm relation
and the mean zonal acceleration. J. Atmos. Sci., 33, 2031-2048.

Arnol’d, V. 1., 1966: On an a priori estimate in the theory of hydro-
dynamical stability. Izv. Vyssh. Uchebn. Zaved. Matematika,
54(5), 3-5. [English transl.: Amer. Math. Soc. Transl., Series
2,79, 267-269 (1969).]

Blumen, W., 1978: A note on horizontal boundary conditions and
stablhty of quasx-geostrophlc flow. J. Atmos. Sci., 35, 1314-
1318.

Branscome, L. E., 1983: A parameterization of transient eddy heat
flux on a beta-plane. J. Atmos. Sci., 40, 2508-2521.

Bretherton, F. P., 1966: Critical layer instability in baroclinic flows.
Quart. J. Roy. Meteor. Soc., 92, 325-334. .

Charney, J. G., 1947: The dynamics of long waves in a baroclinic
westerly current. J. Meteorol., 4, 135-162.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33-52.

Edmon, H. J., B. J. Hoskins and M. E. MclIntyre, 1980: Eliassen—
Palm cross-sections for the troposphere. J. Atmos. Sci., 37, 2600~
2616. (Corrigenda, 38, 1115.)

Green, J. S. A, 1960: A problem in baroclinic instability. Quart. J.
Roy. Meteor Soc., 86, 237-251.

——, 1970: Transfer properties of the large-scale eddles and the
general circulation of the atmosphere. Quart. J. Roy. Meteor.
Soc., 96, 157-184.

Gutowski, W. J., 1985: Baroclinic adjustment and midlatitude tem-
perature profiles. J. Atmos. Sci., 42, 1733-1745.

Haidvogel, D. B., and I. M. Held, 1980: Homogeneous quasi-geo-
strophic turbulence driven by a uniform temperature gradient.
J. Atmos. Sci., 37, 2644-2660.

Hayashi, Y., 1985: Theoretical interpretations of the Eliassen-Palm
diagnostics of wave-mean flow interaction. Part I: Effects of the
lower boundary. J. Meteor. Soc. Jpn., 63, 497-512.

Haynes, P. H., and T. G. Shepherd, 1989: The importance of surface-
pressure changes in the response of the atmosphere to zonally-
symmetric thermal and mechanical forcing. Quart. J. Roy. Me-
teor. Soc., in press.

Held, I. M., 1978: The vertical scale of an unstable baroclinic wave
and its importance for eddy heat flux parameterizations J. At-
mos. Sci., 35, 572-576.

——, 1985: Pseudomomentum and the orthogonahty of modes in
shear flows. J. Atmos. Sci., 42, 2280-2288.

——, and B. J. Hoskins, 1985: Large-scale eddies and the general
circulation of the troposphere. Advances in Geophysics, 28A,
3-31, Academic Press.

Holm, D. D,, J. E. Marsden, T. Ratiu and A. Weinstein, 1985: Non-
linear stability of fluid and plasma equilibria. Phys. Rep., 123,
1-116.

Hoskins, B. J., 1983: Modelling of the transient eddies and their
feedback on the mean flow. Large-Scale Dynamical Processes
in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Aca-
demic Press, 169-199.

——, M. E. Mcintyre and A. W. Robertson, 1985: On the use and
significance of isentropic potential vorticity maps. Quart. J. Roy.
Meteor. Soc., 111, 877-946.



1 APRIL 1989

James, I. N., 1987: Suppression of baroclinic instability in horizontally
sheared flows. J. Atmos. Sci., 44, 3710-3720.

Killworth, P. D., and M. E. Mclntyre, 1985: Do Rossby-wave critical
layers absorb, reflect or over-reflect? J. Fluid Mech., 161, 449~
492,

Lindzen, R. S., and B. Farrell, 1980: The role of polar regions in
global climate, and a new parameterization of global heat trans-
port. Mon. Wea. Rev., 108, 2064-2079.

Mclintyre, M. E,, and T. G. Shepherd, 1987: An exact local conser-
vation theorem for finite-amplitude disturbances to non-parallel
shear flows, with remarks on Hamiltonian structure and on
Arnol’d’s stability theorems. J. Fluid Mech., 181, 527-565.

Pedlosky, J., 1970: Finite-amplitude baroclinic waves. J. Atmos. Sci.,
27, 15-30.

—, 1979a: Geophysical Fluid Dynamics. Springer-Verlag, 624 pp.
——, 1979b: Finite-amplitude baroclinic waves in a continuous
model of the atmosphere. J. Atmos. Sci., 36, 1908-1917.
Pfeffer, R. L., 1987: Comparison of conventional and transformed
Eulerian diagnostics in the troposphere. Quart. J. Roy. Meteor.

Soc., 113, 237-254.

Phillips, N. A., 1954: Energy transformations and meridional cir-
culations associated with simple baroclinic waves in a two-level
quasi-geostrophic model. Tellus, 6, 273-286.

Salmon, R., 1980: Baroclinic instability and geostrophic turbulence.
Geophys. Astrophys. Fluid Dyn., 15, 167-211.

THEODORE G. SHEPHERD

907

Schoeberi, M. R,, and R. S. Lindzen, 1984: A numerical simulation
of barotropic instability. Part I: Wave-mean flow interaction.
J. Atmos. Sci., 41, 1368-1379.

Shepherd, T. G., 1988a: Nonlinear saturation of baroclinic instability.
Part I: The two-layer model. J. Atmos. Sci., 45, 2014-2025.

——, 1988b: Rigorous bounds on the nonlinear saturation of insta-
bilities to parallel shear flows. J. Fluid Mech., 196, 291-322.

Simmons, A. J., and B. J. Hoskins, 1976: Baroclinic instability on
the sphere: Normal modes of the primitive and quasi-geostrophic
equations. J. Atmos. Sci., 33, 1454-1477.

———, and ——, 1978: The life cycles of some nonlinear baroclinic
waves. J. Atmos. Sci., 35, 414-432.

Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561-
571.

Vallis, G. K., 1988: Numerical studies of eddy transport properties
in eddy resolving and parametrized models. Quart. J. Roy. Me-
teor. Soc., 114, 183-204.

White, A. A., 1977: Modified quasi-geostrophic equations using geo-
metric height as vertical coordinate. Quart. J. Roy. Meteor. Soc.,
103, 383-396.

——, and A. M. Gadian, 1979: Baroclinic instability governed by
the modified quasi-geostrophic equations. Quart. J. Roy. Meteor.
Soc., 105, 759-766.



