
Rigorous bounds on the nonlinear 
saturation of instabilities to parallel shear 
flows 
Article 

Published Version 

Shepherd, T. G. ORCID: https://orcid.org/0000-0002-6631-
9968 (1988) Rigorous bounds on the nonlinear saturation of 
instabilities to parallel shear flows. Journal Of Fluid 
Mechanics, 196. pp. 291-322. ISSN 0022-1120 doi: 
10.1017/S002211208800271X Available at 
https://centaur.reading.ac.uk/32907/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1017/S002211208800271X 
To link to this article DOI: http://dx.doi.org/10.1017/S002211208800271X 

Publisher: Cambridge University Press 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



J .  Fluid Mech. (1988), vol. 196, p p .  291-322 
Printed in Great Britain 

29 1 

Rigorous bounds on the nonlinear saturation of 
instabilities to parallel shear flowst 

By THEODORE G. SHEPHERDS 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 16 November 1987) 

A novel method is presented for obtaining rigorous upper bounds on the finite- 
amplitude growth of instabilities to parallel shear flows on the beta-plane. The 
method relies on the existence of finite-amplitude Liapunov (normed) stability 
theorems, due to Arnol’d, which are nonlinear generalizations of the classical stability 
theorems of Rayleigh and Fjerrtoft. Briefly, the idea is to use the finite-amplitude 
stability theorems to constrain the evolution of unstable flows in terms of their 
proximity to a stable flow. Two classes of general bounds are derived, and various 
examples are considered. It is also shown that, for a certain kind of forced-dissipative 
problem with dissipation proportional to vorticity, the finite-amplitude stability 
theorems (which were originally derived for inviscid, unforced flow) remain valid 
(though they are no longer strictly Liapunov) ; the saturation bounds therefore 
continue to hold under these conditions. 

1. Introduction 
In any discussion of the stability of a shear flow, the discovery of exponentially 

growing linearized normal-mode disturbances inevitably raises the question of finite- 
amplitude equilibration of the instability. In  particular one seeks a determination of 
the maximum amplitude that can be attained by the growing disturbance, something 
that is intrinsically outside the province of linear theory. 

One method for attacking this problem is provided by weakly nonlinear theory, 
along the lines of the now-classical work of Stuart (1960) and Watson (1960). Recent 
applications of such theory to zonal (i.e. parallel, x-invariant) shear flows on a beta- 
plane are provided by Burns & Maslowe (1983), Churilov & Shukhman (1987), and 
Shukhman (1987). Although this approach can provide detailed information on the 
flow evolution, it suffers from a severe handicap in that it is restricted to instabilities 
that are only weakly supercritical ; and because the perturbation expansions that are 
employed are invariably asymptotic, its range of validity must be deduced a 
posteriori by numerical calculation. Moreover, such theories implicitly enforce modal 
truncations by their choice of initial conditions, thus precluding the irreversible 
spectral cascades that will generally occur in a system with an infinite number of 
degrees of freedom. 

In the limit of very large supercriticality, of course, one might expect the 
instability to lead to a complete breakup of the flow into homogeneous, isotropic 
turbulence (subject to any constraint that might exist on the total zonal momentum 

t With an appendix by P. H. Haynes. 
$ Present address: Department of Physics, University of Toronto, Toronto M5S 1A7, 

Canada. 
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- or, more usefully, Kelvin’s impulse - of the system). Such an expectation is based 
on an explicit presumption of randomization or dynamical ergodicity (Kraichnan 
1975; Carnevale 1982). However, it has recently been shown (Shepherd 1987) that 
two-dimensional flow on a beta-plane is provably non-ergodic for sufficiently small 
wave steepness, and that the arguments of turbulence theory must therefore be used 
with caution in this context. In  particular, one is led to ask: under what range of 
supercriticality can turbulent breakup be strictly precluded 1 

In this paper, a new method is presented for obtaining rigorous bounds on the 
finite-amplitude growth of instabilities to zonal shear flows. Such bounds implicitly 
address the two questions of nonlinear saturation and the possibility of turbulent 
breakup. The method relies on the existence of nonlinear Liapunov (normed) 
stability theorems constraining the evolution of disturbances to stable shear flows 
(Arnol’d 1966), and is briefly described as follows. Given a wavy (i.e. non-zonal) 
perturbation to an unstable zonal flow, construct a class of (nearby) stable basic 
zonal flows ; the total disturbance to such a basic flow, consisting initially of the wavy 
perturbation plus a zonal-mean component, will then be constrained by the nonlinear 
stability theorem. By minimizing the resulting bound over the class of stable basic 
flows, a rigorous upper bound on the amplitude of the wavy part of the flow is 
obtained. However, there always remains the possibility that the bound could be 
tightened by considering a wider class of stable basic flows. 

The plan of the paper is as follows. The governing equations are reviewed in $2, 
together with the two relevant nonlinear stability theorems (finite-amplitude 
generalizations of the Rayleigh (1880) and Fjmtoft (1950) theorems), and the 
method is presented formally in $3. In $4 it is shown that the stability theorems 
apply not only to inviscid flow, but also to a special kind of forced-dissipative flow 
where the dissipation is proportional to the vorticity, and that the saturation bounds 
therefore extend to this case. Two general applications of the method are given: to 
supercritical zonal flows on the beta-plane ($5), using the generalized Rayleigh 
theorem; and to a class of almost-antisymmetric flows ($6), using the generalized 
Fjartoft theorem. Various examples for the beta-plane are then presented in $7, 
including: (a )  the Bickley jet, U = -sech2 y ;  ( b )  the free shear layer, U = tanh y ;  ( c )  
the point jet, U = Iyl; and ( d )  a strip of constant relative vorticity. Finally, the 
results are discussed in $8. 

Although the nonlinear stability theorems presented in $ 2  formally break down for 
the case of piecewise-constant distributions of vorticity, the finite-amplitude 
conservation laws on which such theorems rely involve integrals of the basic-state 
vorticity Q(y) (rather than derivatives, as in their linearized versions), and thus 
remain well defined. The application of Arnol’d’s method (for deriving nonlinear 
stability theorems) in such circumstances is considered in Appendix A. 

2. Nonlinear stability theorems for disturbances to zonal flows 

governed by conservation of the absolute vorticity P = Vz@++y: 
The system under consideration is barotropic flow on a beta-plane, which is 

where @ is the flow stream function, t the time, x the zonal coordinate and y the 
meridional coordinate, subscripts denoting partial derivatives. In $4 it  will be shown 
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that  the results obtained below in fact hold for a certain kind of forced-dissipative 
flow, with the right-hand side of (2.1) non-zero; but for the present we restrict 
attention to the conservative case. The flow is presumed to be zonally homogeneous, 
in the sense that the zonal average Jof any quantity f,  viz. 

is well defined. The meridional geometry is taken to be either infinite, with boundary 
conditions 

@,+constant as lyl+co, ( 2 . 2 ~ ~ )  

or bounded (a ‘zonal channel’ geometry), in which case the boundary conditions 
are 

@= = 0, cFVt = o a t  y = Yl, Yz. (2.2b) 

Now consider an x-invariant ‘basic state ’ @ = Y,  P = Q ;  since the advection term 
J (  Y,  Q )  vanishes identically, it follows that Y ,  Q is itself a steady solution to (2.1). 
Defining the ‘disturbance ’ $, q in the natural way 

@ =  Y+$, P =  Q + q ,  (2 .3)  

with q = V2$, the governing equation (2 .1)  may then be written in the form 

(2 .4)  
Dq - DQ 5 = q t + J ( Y ,  4)  + J ( $ , q )  = - J ( $ l  Q )  = - $ z Q y  = -- ; Dt 

the boundary conditions ( 2 . 2 ~ )  or (2.26) now apply to $. 
Because the geometry of the problem, and the basic state, have both a spatial 

(zonal) and a temporal symmetry, it follows that conservation laws exist for suitable 
measures of a pseudomomentum and a pseudoenergy (see McIntyre & Shepherd 
1987, $7) .  These conservation laws respectively lead to the following nonlinear 
stability theorems. 

2.1. The generalized Rayleigh theorem 

If the basic flow is presumed to have monotonic Q(y), Rayleigh’s (1880) theorem 
implies that the flow is stable. But this stability is not just linearized stability to 
infinitesimal normal-mode disturbances ; it is in fact nonlinear stability, in the 
Liapunov sense that a disturbance norm a t  any time t is bounded in terms of its value 
at t = 0 (Arnol’d 1966). In particular, 

where the disturbance norm is here taken to be the square root of (twice) the 
disturbance enstrophy. Equation (2 .5)  holds for disturbances q of any amplitude 
whatever, and may be considered a generalized Rayleigh stability theorem. Q must 
be continuous, but Qy need not be (e.g. $ 7 below). Although implicit in the important 
work of Arnol’d (1966), the bound (2 .5)  appears to have been stated explicitly for the 
first time by McIntyre & Shepherd (1987, equation ( 6 . 2 8 ) ) ;  a concise derivation is 
available in Shepherd (1987, $4). Note that in an unbounded domain it is necessary 
to have /3 + 0 in order to find flows with monotonic &(y). 

In  the case of a flow consisting of piecewise-constant distributions of vorticity, 
(2 .5)  becomes useless because Qy is then composed of delta-functions. Arnol’d’s 
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FIGURE 1.  (a)  The flow profile U(y) for (2.7) with E = 0.2. U = 0 a t  the single inflexion point. ( b )  The 
corresponding Y(Q) profile, shown for the range IyI < 2.  d!P,fdQ = -U,fQ, is positive everywhere, 
but Y(Q) has two branches. 

method nevertheless remains perfectly valid for such flows, and leads to a stability 
theorem that is analogous to that above (Appendix A, SA.1). 

2.2. The generalized Fjurtoft theorem 
If the basic flow is presumed to have U/Qy = - Yy/Qy everywhere negative (in some 
frame of reference), then Fjortoft's ( 1950) theorem implies stability to linearized 
normal-mode disturbances. But again the stability is in fact nonlinear (Arnol'd 
1966), and one can show (McIntyre & Shepherd 1987, equation (6.13); cf. also Holm 
et al. 1985, $3.3) that 

for any A in the range ( -U/Qy)mi,, < A < ( -U/Qy)max. Compared with $2.1, 
however, this case is somewhat more subtle as one must require not only that 
U/Qy < 0, but also that the function Y(Q) be one-to-one. (In $2.1, Q(y) monotonic 
implies trivially that Q(y) is one-to-one.) To illustrate the point, the following 
example (with /3 = 0) is instructive. Consider the basic flow 

U ( y )  = sinh y + e sech y + q,, &(y) = - cosh y + c tanh y sech y, (2.7) 

sketched in figure 1 (a )  for e = 0.2. The value of u,, (which is arbitrary, because of the 
Galilean invariance of the problem) is chosen such that U = 0 a t  the single inflexion 
point, so U/Q, < 0 everywhere and all linearized normal-mode disturbances must be 
neutral. But the Y(Q)-curve, shown in figure 1 ( b ) ,  is evidently not one-to-one, and 
the basic flow (2.7) is therefore not provably stable by the generalized Fjortoft 
theorem. (The essential problem is that the disturbance pseudoenergy, (4.15) below, 
is not of definite sign in this case.) A rather similar example is discussed by McIntyre 
& Shepherd (1987, $5). Only for e = 0 do the two branches of the !P(&)-curve collapse 
onto a single branch, providing a flow that is provably stable in the Liapunov 
sense. 

A nonlinear stability theorem corresponding to (2.6) for the case of piecewise- 
constant vorticity is described in Appendix A, 5A.2. 
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3. A method for bounding the finite-amplitude growth of disturbances to 
unstable flows 

Although either of the stability theorems (2.5) and (2.6) may be used by this 
method, for the purpose of illustration we shall focus on the generalized Rayleigh 
theorem (2.5). 

Suppose we are given an initial condition (at t = 0, say) with stream function a0, 
consisting of a zonal-mean flow 6o which is known to be unstable (hence with non- 
monotonic po(y)), plus a wavy component @;. (In this paper, the 'wavy' component 
of the flow is defined to  be the departure from the zonal mean.) The question is : can 
we usefully bound the finite-amplitude growth of the wavy part of the flow ? To do 
this, we choose to separate the total flow Q, into a basic flow Y plus disturbance @, 
as in $2. The most conventional choice of a basic flow would be the initial zonal-mean 
flow 60, but this would not allow the use of (2.5) because 6o is unstable by 
hypothesis. However, the power of the finite-amplitude theory leading to  (2.5) lies in 
the fact that (2.5) is valid for any choice of the basic flow, even one that differs 
significantly from the initial zonal-mean flow. It is only the total flow @ that  is 
physically meaningful ; the basic flow Y is purely a mathematical device, which one 
is free to  choose on grounds of expediency. (This would not be the case for a small- 
amplitude theory, by contrast.) Of course, for a given total flow @, different choices 
of Y imply different disturbances 11.; but if Y is independent of x (as it is taken to be 
here), then the wavy part of @, v ,  will be equal to @' and will thus be independent 
of Y. 

Therefore, introduce a family of 'basic flows ' Y(y ; a )  with &(y ; a)  = V2 Y+ Py 
monotonic in y, the parameter a characterizing the family. With respect to any one 
of these basic flows, the disturbance a t  t = 0 is given by 

@@, y, 0 ; a)  = @&, y) - V y ;  4, (3.1) 

and the disturbance enstrophy at  t = 0 may be written as 
c c 

Now, because the basic flow is purely zonal, i t  follows (by the orthogonality of zonal- 
mean and wavy flow components) that the wavy enstrophy a t  any time t 2 0 must 
be bounded by the disturbance enstrophy a t  that time, for any a, viz. 

Finally, because the basic flow is stable by hypothesis, one may invoke the Rayleigh 
theorem (2.5); then using (2.5), (3.2) and (3.3), one obtains 

(the min and the max being taken over y, and yielding functions of a) ,  which 
represents a family of bounds on the enstrophy of the wavy part of the flow. The 
tightest bound (for this family) is obtained by minimizing the right-hand side of(3.4) 
over all a. Of course, a better choice of basic flows might well yield an even tighter 
bound, but that would not invalidate (3.4). 
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Whether the bound derived in this way is useful depends on whether it gives any 
more information than is available from the global invariants of the problem. For 
example, the wavy enstrophy is clearly bounded by the total relative enstrophy, 
which (in the inviscid problem) is constant in time;? hence 

[+(Vz@’)z (x, y, t )  dy < +(Vz@)z (x, y, t )  dy = +(V2@,J2 (2, y) dy. s s (3.5) 

If the boundary conditions are such that the zonal-mean flow could (in principle) 
become constant, then one might anticipate on global grounds that (3.5) would 
approach an equality. Thus (3.4) would be useful provided that the minimum of the 
right-hand side were less than the right-hand side of (3.5), in the sense that it would 
then preclude a breakup into homogeneous turbulence. If, on the other hand, the 
boundary conditions do not allow the zonal-mean relative vorticity to vanish, then 
the right-hand side of (3.5) could be replaced by something smaller, and (3.4) would 
have to be compared with that. 

Equation (3.4) provides a bound on the wavy enstrophy. I n  a confined domain it 
would be possible to convert this into a bound on the wavy energy, by using a 
Poincark inequality (see e.g. McIntyre & Shepherd 1987, p. 541). 

The procedure using the generalized Fjortoft theorem (2.6) is entirely analogous to 
that  described above, and yields a bound on the non-zonal part of a linear 
combination of the energy and enstrophy. One must, however, take heed of the 
discussion at the end of 52.2, and ensure that Y(Q;  a) is one-to-one for each a. 

It is natural to ask whether there are any implicit restrictions that must be placed 
on the choice of the family of basic flows. One might, for example, argue that the 
basic flow should not contain any values of vorticity not already present in the total 
flow (this is generally a moot point for unbounded domains). But for the bounds to 
hold the only formal requirement is that the stability theorems (2 .5)  or (2.6) hold, 
and these depend on the fact that  the divergence of the flux of pseudomomentum or 
of pseudoenergy, respectively, vanish when integrated over the domain. This latter 
property is however assured, for any steady x-invariant basic flow, by the boundary 
conditions (2.2). 

4. The forced-dissipative case 
I n  this section i t  is shown that the generalized Rayleigh theorem (2 .5)  and the 

generalized Fjrartoft theorem (2.6), derived for conservative flow, hold also for a 
particular kind of forced-dissipative problem (though they are no longer strictly 
Liapunov). It then follows that bounds of the type obtained in $ 3  remain valid. 
Rather than (2.1), the governing equation is taken to be 

- - r V 2 @ + F  
DP 
Dt 
-- 

( r  a positive constant), with dissipation proportional to vorticity, and a constant 
forcing F to be specified. The problem considered in $ 3  is the nonlinear saturation of 
an instability to some given zonal flow 6n; normally for such a problem to be 

t The invariance of the absolute enstrophy J i p d y  is obvious from (2.1) and (2.2); the fact that 
the relative enstrophy Ji(V2@)2dy is also invariant is a consequence of the zonal symmetry of the 
geometry (see e.g. Shepherd 1987, $3) .  
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meaningful &o must be a steady solution of (4.1), in which case F must necessarily 
be given by 

F = r V 2 6 ,  = doyY. (4.2) 

The governing equation (4.1) may then be written as 

- 
= -II., Qv-rq-r(Yyy- @oyy) = - II.z Qv-r(q-qe), (4.3) 

DQ 
Dt 

where qe = $oyy- Yvv is the disturbance vorticity a t  the unstable equilibrium. 

4.1. The generalized Rayleigh theorem 

To show that (2.5) holds for the system (4.1), (4.2), equivalently (4.3), it  is necessary 
to return to the pseudomomentum conservation law from which (2.5) was derived 
(e.g. Shepherd 1987, $4).  The pseudomomentum density is given by 

where Yo(&) is the inverse of the basic-state profile Q(y) ; note that since Q(y) is here 
presumed monotonic, Yo(&) is also monotonic and A(Q,q) is of definite sign. 
Following the derivation of Shepherd (1987, $4) it  may easily be verified, using (4.3), 
that the inviscid conservation law 

becomes instead 

(This is in fact a special case of the more general conservation relation for forced- 
dissipative flow recently worked out by Haynes 1988.) Now, the proof of (2.5) in the 
inviscid case took the form 

and it is evident that (2.5) remains valid if the equality can be replaced with an 
inequality. 

We now proceed to demonstrate that, indeed, 

(4.7) 

for the system (4.3), whence (2.5) holds. Without loss of generality, take Qy > 0 so 
that A(&, q) d 0 everywhere. Now consider 

Illa(&.l-la(g.Y,))dy = {IA(&,l--/A(&,lldy 

{IA(&,q,)l- I r n U  dY, (4.8) 
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.T 
Q 

FIQURE 2. (a) Graphical proof of (4.9), for the two cases where q/q, is positive (left) and negative 
(right). IA(&,q)l equals the area of the horizontally hatched region, and IA(Q,q,)l the area of the 
vertically hatched region. Their difference (which is positive, by hypothesis) is evidently less than 
{Yo(&+@- Yo(&)} (q-q,). ( b )  As (a) but for (4.10). Note that in the case of negative q/qe, the right- 
hand side of (4.10) is actually negative while the left-hand side is positive, so the inequality is 
satisfied trivially. 

where the sub-domains D+ and D- are those for which, at any given time t ,  the 
difference (A(Q,  q)l- IA(Q, qe)l respectively takes positive and negative values. In 
D,, it is easy to see graphically (figure 2a) that 

IA(Q,q)l-lA(Q,qe)l {Yo(Q+q)-Yo(Q)} ( q - q e ) ,  (4.9) 

and in D- it  is likewise evident (figure 2 b )  that  

IA(Q, qe)l-IA(Q,q)l 2 { y o ( Q + ~ ) -  Yo(Q)} ( q e - q ) .  (4.10) 

Combining (4.8), (4.9) and (4.10), one obtains 

It therefore follows that whenever 

(4.12) 
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the right-hand side of (4.11) must be positive, from which (4.5) implies (since 
A(&, q )  < 0 for the case under discussion) that 

To complete the proof of (4.7), it  remains to show that 

But since by definition q(0) = qe+qh, with 2 = 0, it is 
figure 2) that (4.13) must be true : when qe > 0, one has 

(4.13) 

obvious graphically (cf. 

(4.14) 

implying that the absolute value of the pseudomomentum can never exceed its initial 
value, from which (4.7) follows immediately. Therefore the generalized Rayleigh 
theorem (2.5) holds for the forced-dissipative system (4. l) ,  (4.2). Note, however, that 
the stability theorem is no longer strictly Liapunov (in the sense that disturbances 
can be kept arbitrarily small), because JIA(8,ao)ldy will have a positive lower 
bound, namely J" M(&, qe)l dy. 

4.2. The generalized Fjertoft theorem 

The proof that (2.6) holds for the system (4.1), (4.2), equivalently (4.3), is largely 
similar to the case of (2 .5) ,  though with one additional step. Here the relevant 
conservation law is that for the pseudoenergy, which is given by 

E(&, q)+B(Q,q) = tlv$l2+r {w2+a")- WQ))dB (4.15) 

(e.g. McIntyre & Shepherd 1987, 93);t since dY/d& is presumed positive, B(Q,q) is 
likewise positive (as is E ,  of course). Following the derivation of McIntyre & 
Shepherd, it may easily be verified, using (4.3), that the inviscid conservation law 

0 

4 dt ((1'+R)dy = 0 

t We here use E,  rather than McIntyre & Shepherd's E ,  purely for notational convenience and 
emphasize that it is not to be confused with the total energy. 
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becomes instead 

The quantity B(&, p) is formally very similar to  JA(&, p)l in $4.1, so by orthogonality 
of zonal and non-zonal flow components we have, analogous to (4.13), that 

It remains to establish that the right-hand side of (4.16) must be negative 
whenever 

J1E(&,y)+rn}dY 2 S(B(&,q.)+R(&,}dy. (4.18) 

which (together with (4.17)) will guarantee that the pseudoenergy can never exceed 
its initial value, and that the generalized Fjmtoft theorem will therefore continue to 
hold for the system (4.1), (4.2). 

To do this, consider the expression 

(4.19) 

Once again exploiting the analogy between B(&, q )  and IA(&, q)I, the graphical proof 
presented in figure 2 here implies that  

analogous to (4.11); while 

I {E(&,--E(Q, qe)} dy = Jg+e qe - fi} dy, (4.21) 

after integrating by parts, and using (2.2) together with the fact that  $ = ljle on the 
boundary. Now, employing a similar application of the boundary conditions one has 

It then follows that 

the 
the 

+2 ($-$el (q-pe)dy 

(4.23) 

equality being an identity, and the inequality arising from (4.22) together with 
readily established fact that  

'I 
- J $(P - pel dy, 

Jri,q-$qe)dy = 0 .  
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Combining (4.20), (4.21) and (4.23) then yields the relation 

(4.24) 

From (4.24) it is clear that the right-hand side of (4.16) is negative whenever (4.19) 
is positive, namely whenever (4.18) is true, which completes the proof. 

5. A general bound for supercritical zonal flows 

disturbances to initial zonal flows 
In  this section the method of $3 is used to derive general bounds on the growth of 

with ug a positive constant and g, a continuous function of y. Such flows are unstable 
only if 

(5.2) 
P -  ug > - = Ucritr C 

with C = max {g,,} > 0, and can therefore be called supercritical whenever (5.2) is 
true. It is useful to write 

(5 .3)  
P ug = ( l ts)ucrit  = ( 1 + € ) - - ,  
C 

with B a measure of the relative supercriticality (not assumed small!). For flows of this 
type, a natural family of stable basic flows is provided by 

(5.4) 
P 

U ( y ; a )  = (l--a)@), 

with 0 < a B 1. The object is now to evaluate the right-hand side of (3.4), and then 
calculate its minimum over the range of a. 

From (5.4), one has 

P P 
C C P--( l -a)C B &,(y;a) B/3--(1-a)c, 

where c E min{g,,}, and therefore 

where y = c / C .  The initial disturbance enstrophy is given by 

where 
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Therefore the right-hand side of (3.4), providing the bound on the enstrophy of the 
non-zonal part of the flow, takes the form 

For given E ,  y and zo, we seek the minimum of f ( a , E ,  y,zo) over the interval 
0 < a < 1.  Noting that f diverges as a+O, this minimum will either be a local 
minimum, attained a t  some amin < 1, or it will be attained at a = 1 ; but in the latter 
case the bound is identical to that obtained from conservation of total relative 
enstrophy, viz. (3.5), since the basic flow U vanishes for a = 1 .  

Seeking the local minimum, setting af/aa = 0 leads to the cubic equation 

a 3 + { ,  (1 -Y) + €  } aZ-( l - -Y)(e2+zo)  2y = 0. (5.10) 

For sufficiently small xo (5.10) has three real roots, and the minimum off is attained 
at 

amin = 2p cos (Q+34x)-P. - (5.11) 

where 

(see Bronshtein & Semendyayev 1985, $2.4.2.3). Figure 3 shows f (amin, e ,  y ,  zo) as a 
function of e ,  for various values of zo, for the two cases y = - $ and y = - 1. The bound 
obtained by considering the total relative enstrophy in the flow, which may be 
calculated by putting a = 1 in the formula for f,  is also drawn; so long as the former 
bound is less than the latter, the stability theorem can be regarded as constraining 
the flow behaviour. It may be seen from figure 3 that the bound obtained with (5.11) 
is only useful for zo < 1 ,  and that as y becomes more negative the useful range of 
zo decreases. 

An important special case is that where the initial wavy disturbance has 
infinitesimal amplitude, viz. the limit z,, + 0. In  that limit the cubic (5.10) is easily 

(5.12) 

and a .  =- rnm (5.13) 

It is evident from (5.13) that for sufficiently small E ,  amin is well approximated as 
a,,, x E. In  fact, numerical calculation reveals that  in using a = E the true minimum 
off is overestimated by no more than about 3 % over the useful range of E .  The latter 
is the range for which f (amin, E ,  y ,  0) < f ( l , ~ ,  y ,  0) ; taking f (aminr E ,  y ,  0) % f ( E ,  E ,  y ,  0) 
the condition on E becomes 

4 ~ ( 1 - y + + ~ y )  < ( 1 + ~ ) ~ ~ ( 1 - 4 ~ ) ~ ~ - 2 2 ( 1 - 2 ~ ) ~ + 1  > 0. (5.14) 

Under the reasonable presumption that y = min {g,,)/max {g,,} is negative, (5.14) is 
satisfied for 

€ < -  (5.15) 
1 

1-47'  
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which represents the range of e (for z,, = 0) for which a complete breakup into non- 
zonal motion is definitely precluded. Both f(amin, e,  y ,  0) and f (1,  e ,  y ,  0) are shown in 
figure 3 for y = -5 and y = - 1. One may therefore write down the general bound 

valid in the limit zo+O, where 

4e(l--y+ey) for e < (1-4y)-' 
for e 2 (1-4y)-l. 

F ( y , e )  = 

(5.16) 

(5.17) 

Equation (5.16) represents a rigorous upper bound on the possible nonlinear growth 
of an infinitesimal wavy disturbance to an unstable zonal flow (5.1) with 
supercriticality e. 

6. A general bound for almost-antisymmetric flows 
I n  this section attention is directed to a class of zonal flows which have U / Q ,  < 0 

everywhere (at  least in some frame of reference) but for which Y(Q) is not one-to- 
one. (For the general case we must have P = 0;  but see the discussion below (6.7).) 
The example of (2.7) and figure 1 is a case in point. These may be considered almost- 
antisymmetric flows, in the sense that 

qi(Y) = QY) + a y ) ,  PO(Y) = - 0, -€Q (6.1) 

with o(y) an odd function of y having a single inflexion point (at y = 0) ,  o,foYY > 0, 
and e presumed small. Provided that e is sufficiently small, it  will generally be the 

FIGURE 3. (a )  The solid curves show the graph off(ami,, E ,  y ,  zo)  versus E for y = -i and for various 
z,,, as indicated. The upper dashed curves show f ( l , e , y , z O ) ,  which represents the value o f f  
corresponding to the total amount of relative enstrophy in the system. ( b )  Same as in (a),  except 
for y = - 1. 
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case that oO/ey < 0 in some frame of reference, and hence linearized normal-mode 
disturbances must be neutral, but the flow (6.1) will not be provably stable in the 
Liapunov sense because of the problem of multifunctionality discussed at the end of 
$2. However, by construction the flow 

U(Y) = @Y), &(Y) = -oy (6.2) 

is provably stable, by the generalized Fjmtoft (or Arnol’d) theorem, and may serve 
as a basic flow. Relative to  this basic flow, then, (2.6) immediately provides the 
following bound on the energy and enstrophy of non-zonal disturbances to  (6.1) : 

for any h in the range ( -  U/Qu)min < h < (-  U/Qy)max, with 

Thus, apart from co, a flow that departs from exact antisymmetry by O ( E )  cannot 
support the growth of wavy energy and enstrophy beyond O(2) .  

As a concrete example, consider an initial zonal flow given by (2.7), taking 
uo = 0, in the domain Yl < y < Y2 and in the limit 5, --f 0. This is of the form (6.1), with 
I?(y) = sinh y, and taking the basic flow (6.2) it follows that 

(6 .5)  
U sinh y 
Qy -sinhy 

= - 1 ,  - - - 

so h = 1 necessarily, while 

= Btanh Y,-tanh Yl+&tanh3 Y,-tanh3 Y,)}. (6.6) 

In the limit Yl +- CO, Y,+co, the expression (6.6) approaches Q (this is in fact its 
upper limit), and using (6.5) the bound (6.3) takes the form (for c o + O )  

It turns out that  the condition p = 0 can be relaxed in cases, such as the example 
above, where pi?uY = 0 with p a positive constant. For then one may choose a frame 
of reference where the basic flow is given by 

so that 
u 0-pp 

QY P-0. 
- -P - 
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and is constant, and h = ,u necessarily; the bound (6.3) then takes the form 

of which (6.7) is a special case, valid for arbitrary /3 although itself independent 
of p. 

7. Specific examples, using the generalized Rayleigh theorem 

First consider the Bickley jet 
7.1.  The Bickleyjet 

go(y) = -uo sech'y, e(y) = py-2u0 sech2y tanh y ( -  co < y < a), (7.1) 

shown in figure 4. This zonal flow is of the type considered in $5, and is known to be 
unstable for uo > uCrit = $?. The parameters used in $5 take the values 

(7.2) c=2, c = - Z  y=-'  2,s 
39 39 15 

and the enstrophy of the non-zonal part of the flow is therefore bounded by (5.9) with 
a given by (5.11) ; see figure 3 ( a )  for the dependence off on E and zo. (Here E is the 
relative supercriticality, as defined by (5.3).) In  the special case of an infinitesimal 
initial wavy disturbance, zo+O, the bound (5.16) may be invoked, yielding 

2@ 2 $(V ) d y <  
(&p2e(4-e) for e < 0.43 

I&?'( 1 +e)' for E 2 0.43. 
(7.3) 

It turns out that this bound can be significantly tightened by considering a rather 
different family of stable basic states, which has discontinuous Qv, namely 

the construction is shown in figure 4(b), and y1 is the (positive) root of the 
equation 

I n  effect, the basic flow differs from the initial zonal flow only in the immediate 
vicinity of its unstable region. For this family, 

(P-a) y = 2u0 sech2 y tanh y. (7.5) 

where yo = arctanh (2/3); M 1.15, and 

m 00 

$q2(0; a ) d y  = $ m d y + r '  { (p -a )y -2u0  sech2y tanhy}2dy. (7.7) 

The second term on the right-hand side of (7.7) may be integrated exactly in terms 
of yl, and y1 may be found numerically from (7.5) using an iterative root finder. Then 
the minimum over a of the right-hand side of (3.4), using (7.6) and (7.7),  can be 
determined numerically for given 

Lm 0 
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FIGURE 4. (a) The flow profile go(y) for the Bickley jet (7.1).  ( b )  The corresponding po(y) profile, 
together with the basic flow (7.4) (thin line). For notation see text. 
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FIGURE 5. The bound on the wavy enstrophy for the Bickley jet, as a function of the 
supercriticality E ,  for /3 = 1 .  The dotted curve shows (7.3),  relevant to the limit z,+O. The solid 
curves indicate the minimum over a of (3.4),  using (7.6) and (7.7),  for various i0; the number 
denotes the value of ẑ ,/p2. The dashed curves show the total relative enstrophy in the system, again 
for the various values of ẑ ,,//3'. For /3 + 1 all the curves are multiplied by @'. 
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FIGURE 6. Comparison between the bound on the wavy enstrophy for the Bickley jet (upper curve) 
and the maximum wavy enstrophy obtained in numerical calculations by Kwon & Mak (1988). The 
crosses denote results from inviscid calculations, and the open circles denote results from viscous 
calculations of the form (4.1)-(4.3) with r = 0.2. I n  all cases /3 = 0.4. For E > 1.2 the best upper 
bound is given by (7.3), but for smaller B i t  must be picked off from figure 5. 

and given E .  The results are presented in figure 5 ,  together with the bound (7.3) ; the 
latter is seen to be relatively feeble. Also plotted is the total amount of relative 
enstrophy in the system, which here is given by 

do + 2 4  JYrn sech4 y tanh' y dy = io ++A:. 

The nonlinear equilibration of instabilities to the Bickley jet (in a bounded 
domain) has recently been studied numerically by Kwon & Mak (1988). Although it  
is not possible to calculate the wavy enstrophy directly from their published results, 
they have kindly provided the data shown in figure 6. For computational reasons 
Kwon & Mak mainly focus on the case of large e, and in this regime the rigorous 
bound is seen to compare fairly closely with the inviscid calculations. The maximum 
amplitudes in a viscous run are, on the other hand, substantially smaller. 

7.2.  The free shear layer 

Next consider the free shear layer 

oo(y) = uo tanhy, Po(y) = /3y-uo sech2y ( -  co < y -= co), (7.8) 



308 T .  G .  Shepherd 

I \I 

#=-v=v, 

I Q 

FIGURE 7. (a) The flow profile U&) for the free shear layer (7.8). (b) The corresponding p&) 
profile, together with the basic flow described in the text (thin line). 

shown in figure 7. This is known to be unstable for uo > uCrit = 3;/3/4. Once again, one 
may appeal to the formulae of $ 5 ,  using 

c = 4 x 3 - a ,  c = - 4 x 3 - % ,  y = - 1 ,  2 ' 4  37 (7.9) 

and refer to figure 3 (b ) .  In  the special case zo + 0 (5.16) gives 

(7.10) 

As with the previous example, the bound (7.10) may be improved upon 
significantly. The most negative value of ep0/dy occurs a t  y = -yo, where 
yo = arctanh (1143)  z 0.66. The new family of stable basic states is constructed, 
similarly to that given by (7.4), by taking a straight line of (positive) slope a through 
the point (y, &) = (-yo, Po( -yo)); this will intersect Po(y) again at the points y = y1 
and y = y2, say. The construction is indicated in figure 7 ( b ) .  For this family, 

and 

&'(O; a)dy  = tcv"oh)'dy+[: ~ f p - a ) ( y + y o ) + ~ o - ~ o  sech2 yI2dy; 

(7.12) 

as before, the second term on the right-hand side of (7.12) may be integrated exactly 
in terms of y1 and yz, and y1 and y2 may be found numerically using an iterative root 
finder. The minimum over a of the right-hand side of (3.4), using (7.11) and (7.12), 
has been calculated numerically, and is compared with (7.10) in figure 8. It is evident 
that this bound is significantly better than (7.10) over a very wide range of E .  Also 

rm ~ 
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FIGURE 8. The bound on the wavy enstrophy for the free shear layer, as a function of the 
supercriticality E ,  for B = 1. The dotted curve shows (7.10), relevant to the limit z ,+O. The solid 
curves indicate the minimum over a of (3.41, using (7.11) and (7.121, for various So; the number 
denotes the value of SO/Bz. The dashed curves show the total relative enstrophy in the system, again 
for the various values of $/p. For p += 1 all the curves are multiplied by Bz. 

plotted is the total amount of relative enstrophy in the system, which here is given 

ZA, + $L; J-m sech4 y dy = ZAo + $ui. 

Churilov & Shukhman (1987) and Shukhman (1987) have studied the quasi-linear 
equilibration of instabilities to this profile by using weakly nonlinear perturbation 
expansions in the limit of small supercriticality. While the former reference 
considered only single-wave equilibration, the latter treated the more physically 
relevant case of an initial excitation consisting of a large number of waves with close 
phase velocities, and we shall therefore compare the saturation bounds derived above 
with Shukhman’s (1987) theory. We are here especially interested in the inviscid 
case. (Shukhman’s form of viscosity is vorticity diffusion, which is not of the 
form considered in $4.) Taking the wavy perturbation to be a spectrum of waves 
whose spatial structure is given to leading order by the marginally stable mode a t  
k = k, = ($ and c = c, = - 1/2/3,  namely 

by m 

@’(x, y, t )  z C Ak(t)  $,(y) eiko(s-cot) , q5,(y) = e-eoy sechy, (7.13) 
k 

the wavy enstrophy is then given (to leading order) by 

J:m e-2eoy sech2y{(ci-ki-1)+2 tanh2y+2c, tanhy}Zdy. (7.14) 
k 
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E 

FIQURE 9. Comparison between the maximum enstrophy of the weakly nonlinear solution 
presented by Shukhman (lower curve), namely (7.17) with S w dz = 4 .\/3/5, and the rigorous upper 
bound corresponding to (7.11)  and (7.12) for the relevant value of Z,, (upper curve), the latter being 
(7.17) with J w d z  = 0.04. 

The integral in (7.14) has been solved exactly in terms of co (see Appendix B), and 
for co = - l /d3 takes a value of approximately 5.76. According to I. G. Shukhman 
(personal communication, 1987), and using his notation, 

z 0.44(Ap)i I w(z) dx; 

and note that in terms of the shear supercriticality E = ( u ~ - u ~ ~ ~ ~ ) / u , , ~ ~ ,  

(7.15) 

(7.16) 

Then using the relation 

i m d y  = a(0.44) (5.76) peg w(x) dz, (7.17) 

it is possible to convert Shukhman's w's to wavy enstrophies. In the calculation 
presented in Shukhman's figure 3, lwdz  reaches a maximum of 42/3/5 when 
initialized a t  0.04 (personal communication, 1987). The weakly nonlinear results, for 
equilibration of this multiwave spectrum, are compared in figure 9 with the rigorous 
upper bound derived above, using the relevant value of i0 (based on (7.17) with 
{ w dz = 0.04). The agreement is seen to be reasonably close over a wide range of E .  It 
is interesting to note that in Shukhman's calculation the equilibration occurs via a 

s_4. 
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FIGURE 10. (a) The flow profile Uo(y) for the point jet (7.18), with uo = -fL. (b) The 
corresponding po(y) profile, together with the basic flow (7.19) (thin line). 

31 1 

rearrangement of vorticity in the vicinity of the critical layer. For the most unstable 
mode the critical layer is at yc = -arctanh (l/d3), which is also the point where 
dP0/dy is most negative. The bound derived from (7.11) and (7.12) was obtained by 
picking a basic flow that differed from (7.8) in precisely that region. 

7.3.  The point jet 
The next example is the so-called 'point jet ' ,  consisting of the broken-line profile 

with discontinuous Po(y), shown in figure 10. This flow is unstable for any value of 
P, and therefore to apply the Rayleigh theorem (2.5) one must choose a family of 
basic flows having quite different structure. The family 

, (7.19) 

is plausible, being stable for a > 0 ;  to ensure continuity of Q it is necessary to take 
y1 = r / ( p - a ) ,  and we presume y1 < L. A profile of the type (7.19) is shown in figure 
l O ( b ) .  For such a basic flow, we have 

IQylmax = P, IQylmin = (7.20) 

(7.21) 

where Z0 is the initial wavy enstrophy (as before). Thus the right-hand side of (3.4) 
may be written as 

(7.22) 
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where z; = 3P.io/r3,  and is minimized for the choice 

(7.23) a =amin = -{(l+z;)-(l+z;):}. P 
2; 

I n  the limit of small 26, (7.23) may be approximated as 

a,,, = ${ 1 + i z ;  + o(z;2)) ; (7.24) 

substituting (7.24) into (7.22) then gives the asymptotic result 

r 3  

3P 
$ m d y  < -{(4+2z;+O(z~)}, (7.25) 

valid in the limit 2; + 0. Note that the bound is independent of L. 
Schoeberl & Lindzen (1984) have recently performed a numerical study of the 

saturation of the point-jet instability; they argue that a useful estimate (though not 
an upper bound) for the wavy enstrophy is that required to make the zonal flow 
neutrally stable. This quantity is given by (7.21) with So = 0 and a = 0, and equals 
r3/3/3; this is one-fourth of the small-z; limit of (7.25). The numerical experiment 
presented in their figure 8, with z; 4 1,  shows the wavy enstrophy overshooting the 
‘saturation limit’ r 3 / 3 P  by a factor of two, coming within a factor of two of the 
rigorous upper bound (7.25). 

7.4. A strip of relative vorticity 

The final example of this section is a strip of relative vorticity, equivalently a layer 
of constant shear, 

Uo(y) = [ :y for -d d y d d )  Po(y) =IPy for ’ ] (7.26) 

for y 2 d 

PY - r for IYI < d,  
-uo f o r y d - d ,  

with r = uo/d. The zonal flow (7.26) is sketched in figure 11,  and clearly bears a 
certain resemblance to the free shear layer. In  the limit d+O the strip becomes a 
vortex sheet. The flow (7.26) is unstable for any P, so we construct a family of basic 
states according to 

I for Iyl 2 d+a 

ford d IyI < d+a 

for IyI < d, 

(7.27) 

with a > r / P ,  shown in figure 11 ( b ) .  For such a basic state we have 

(7.28) 

a rx 2 
k2(O; a)dy  = l:w $o“dy+/ {a} dx = x”,+$r2a. (7.29) 

0 

and 

The right-hand side of (3.4) may therefore be written as 

(7.30) 



Y 

where z; = 3P&/T3,  and is minimized for the choice 

* 
> Y 

In  the limit of small z;, (7.31) may be approximated as 

4 

4 
- 

r 
P 

amin x - ( 1  + 1/2(  1 + iz;, + O(Zh2) )  ; 

substituting (7.32) into (7.30) then gives the asymptotic result 

(7.31) 

(7.32) 

(7.33) 

valid in the limit z; + 0. It is interesting to  compare this bound with the total amount 
of relative enstrophy in the strip, which is d r 2 .  Thus a total breakup of the strip can 
be definitely precluded (in the limit z;+O) whenever 

r 3  3 
- ( 3 + 2 2 / 2 )  < d P * %  < 
3P Pd 3 + 2 1 / 2 '  

(7.34) 

As expected, breakup can be prevented neither in the vortex-sheet limit d + 0, nor 
in the limit P + O .  The flow in both these limits is of course known to be strongly 
unstable. 

8. Discussion 
I n  this paper, a new algorithm has been presented for obtaining rigorous bounds 

on the nonlinear saturation of instabilities to  parallel shear flows on the beta-plane. 
The method relies on the existence of finite-amplitude Liapunov stability theorems 
( § 2 ) ,  which bound the evolution of disturbance norms about stable basic flows. It 
may seem odd that a stability theorem can constrain the behaviour of an unstable 
flow, but such is indeed the case. The point is that  if the unstable flow is close enough 

FIGURE 1 1 .  (a) The flow profile oo(y) for the vortex strip (7.26). ( b )  The corresponding Po@) 
profile, together with the basic flow (7.27) (thin line). 
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to a stable flow - in a sense that can be made mathematically precise - then the 
former can be regarded as a finite-amplitude disturbance to the latter, and can be 
usefully constrained by the nonlinear stability theorem. The present approach can be 
regarded as complementary to the linearized study of Pierrehumbert (1983), which 
showed that steady states that are close to a stable inviscid steady state are a t  worst 
weakly unstable, in the sense that disturbance growth rates are small. 

Various applications of these bounds suggest themselves. First, since the bounds 
are rigorous, they provide one way of delineating the range of validity of weakly 
nonlinear theories. Second, whenever the bounds are useful, in the sense that they 
prohibit a total breakup of the parallel flow into non-parallel motion (to the extent 
permitted by impulse conservation), the flow can be considered non-ergodic with 
respect to the phase-space hypersurface of constant energy, enstrophy, and impulse 
(cf. Shepherd 1987). This latter result has implications concerning certain statistical 
assumptions commonly used in geostrophic turbulence theory (see e.g. Salmon 1982). 
Third, the bounds give parameter dependences for finite-amplitude saturation which 
(unlike those from weakly nonlinear theories) are unconstrained by any assumptions 
about the nature of the initial wavy disturbance. Whether the maximum amplitude 
of the non-parallel part of the flow is accurately predicted, in any given realization, 
by the bounds derived above is a matter for numerical experimentation. But the 
fairly close agreement with weakly nonlinear and numerical solutions, seen in the 
examples of $4 7.1-7.3, is certainly encouraging. Similarly encouraging results are 
found elsewhere (Shepherd 1988) for the baroclinic-instability problem. 

A weakness of the approach is that there is no way of determining a priori whether 
the best bounds obtained from the consideration of a certain family of stable basic 
flows could not be improved upon by considering a somewhat wider family. The 
examples of 37.1 and $7.2 show that different families of stable basic flows can yield 
bounds which are quantitatively quite different (although the parameter depend- 
ences turn out to be similar). In  the present study, attention has been restricted 
to rather simple kinds of families. To allow a much more complicated range of stable 
basic flows would lead one to a non-trivial problem of multi-parameter optimization, 
but such an approach is certainly feasible for any particular application. However, 
in this regard it is important to note the following point (due to Dr P.  H. Haynes) : 
any particular saturation bound may be improved upon (though possibly only 
slightly) if the basic-state absolute-vorticity gradient Qy varies smoothly in the 
neighbourhood of a point where it takes an extremum. This means that one is 
justified in focusing attention on functions Qy that take their extrema over finite 
intervals, as the best bounds will be found by using such functions (cf. $7). The 
detailed argument is given in Appendix C. 

One interesting insight from the present work is a resolution of an apparent 
dilemma posed by Andrews’ (1984) theorem. Andrews presented an argument which 
implied that if the geometry of a problem is zonally symmetric (i.e. x-invariant), then 
any flow that is provably stable by Arnol’d-type theorems (namely the generalized 
Rayleigh and Fj~rrtoft theorems discussed in $ 2) must itself be zonally symmetric. 
This implies that even slightly non-zonal flows are not provably stable, perhaps 
leading one to question the physical relevance of the Arnol’d theorems. (There is in 
fact a flaw in Andrews’ reasoning in the case of an unbounded fluid, possibly 
connected with the fact that the variations that he uses to derive his result are not 
generally admissible. A simple counter-example to the theorem is that circular 
vortices in an infinite domain may be provably stable by the generalized Rayleigh 
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theorem. Moreover, Andrews’ argument could equally well use y in place of x, and 
would then lead to the absurd conclusion that even zonal flows could not be provably 
stable. However, Andrews’ result does apply to a zonal channel geometry.) I n  any 
case the dilemma is easily resolved by the present work, which suggests that  a 
slightly non-zonal flow may be regarded as a small disturbance to a zonal flow ; if the 
latter is stable, then any instability to the non-zonal flow must saturate at an 
amplitude proportional to the degree of non-zonality. Therefore, provided the 
underlying zonal flow is stable, the saturation of disturbances to non-zonal flows is 
continuous in the limit of small non-zonality. 

One is perhaps led to wonder about the possible connection between the present 
approach and the energy-stability method (e.g. Howard 1972; Joseph 1976, 54) for 
determining upper bounds on quadratic flow quantities. However, the energy- 
stability method relies explicitly on non-zero viscosity (with bounds that diverge in 
the limit of infinite Reynolds number) ; i t  is restricted to flows in confined geometries ; 
and i t  takes no apparent account of dynamical stability mechanisms. Therefore any 
resemblance between the two approaches would appear to be superficial. 

Finally, it may be mentioned that the approach described in this paper is clearly not 
restricted to parallel flows. When the geometry of the problem is not zonally 
symmetric (for example because of topography) then there will generally be non- 
parallel states which are provably stable by one of Arnol’d’s (1966) stability 
theorems (see McIntyre & Shepherd 1987, §6), and instabilities to non-parallel basic 
flows may possibly be bounded if these stable flows are sufficiently close. In  this case 
the bound would be on a combination of the energy and enstrophy, as with the 
generalized Fjmtoft theorem (2.6). 

The author would like to thank M. Mak and H. J. Kwon for providing the data 
in figure 6, I. G. Shukhman for helping to  compare his results with those derived 
here, and P. H. Haynes for many useful comments (including Appendix C). This 
research has been supported by the UK Natural Environment Research Council and 
by St Catharine’s College, Cambridge. 

Appendix A. Nonlinear stability theorems for piecewise-constant 
distributions of vorticity 

For some fluid-dynamical applications, a useful simplifying idealization is provided 
by considering flows with piecewise-constant distributions of vorticity. Taken a t  face 
value, the finite-amplitude stability theorems (2.5) and (2.6) would appear to be 
invalid for such problems because Qu is then composed of delta-functions. However, 
although the linearized versions of the pseudomomentum and pseudoenergy 
conservation laws do indeed break down in such circumstances, their finite-amplitude 
forms involve integrals rather than derivatives (see (4.4) and (4.15)) and therefore 
remain perfectly well defined. In this section, finite-amplitude stability theorems 
corresponding to (2.5) and (2.6) are derived for such problems. 

A. 1.  The generalized Rayleigh theorem 

We begin by considering the form of the pseudomomentum density (4.4) for the case 
of a disturbance to a basic flow 

11 FLY 198 
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FIGURE 12. ( a )  Sketch of a hypothetical disturbance to the basic flow (A 1). The disturbance is 
defined by the position of the contour marking the vorticity jump. (b )  The function Yo(&) (thick 
line). See text for details. 

with Q, > Q, for definiteness, as sketched in figure 12 (a).  The corresponding function 
YJQ) is shown in figure 12 ( b ) .  It may be seen that the function A(&, q)  defined by (4.4) 
is non-zero only when P = Q + q differs from Q, so that the integration in 4 is across 
the jump in Q; physically, this situation corresponds to the hatched regions in figure 
12(a). For example, in the case P = Q2, Q = Q1 indicated by the vertically hatched 
regions in figure lZ(a), the value of A(&, q) is simply minus the area of the vertically 
hatched region in figure 12(6), with Yo(&) = y < 0, namely (Q,-QJy. (This is a 
straightforward application of the rules discussed by McIntyre & Shepherd (1987, $5) 
for the case of the pseudoenergy.) Similarly, in the horizontally hatched regions in 
figure 12(a), with P = Q1 and Q = Q,, the local density A(&, q) is just minus the area 
of the horizontally hatched region in figure 12(b),  with Yo(&) = y > 0, namely 
- ( Q z -  Qi) Y. 

Although A(&, q) is then apparently first order in the disturbance, one may easily 
obtain a second-order quantity by integration in y. For example, a t  x = x1 one 
has m 

J p m A ( & , d d y =  ~ ~ Q , ~ ) ~ Y = - ( Q ~ - Q J  l ~ d y = - % Q , - & , ) $ ;  

while a t  x = x,, 

/:mA(Q.@d~= ~ l A ( Q . q ) d y + S * . A ( Q , q ) d y =  12 (Q2-Ql){ y d ~ - ~ ~ y d y }  

= -KQz-Qi )  ( $ - T : + V ~ ) -  

The general expression for the global integral of A(Q,q) may be written in the 
form 

J ~ ( & , d y  = -~(Q,-QJ +&2dx, (A 2) 

with 7 the contour displacement, the integral on the right-hand side being taken 
along the contour. In  the case of multiple contours Ci, one simply sums the 
contribution from each contour according to 

r r 
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Now, the integrated pseudomomentum (A3) is a constant of the motion, and 
stability will be implied whenever it is of definite sign for arbitrary disturbances. It is 
obvious from (A3) that the latter condition will be true whenever the vorticity 
jumps AQi are of the same sign; this is clearly the condition that is analogous to 
monotonicity of Q(y) in the continuous case. Unlike the continuous case, however, 
where the integrated pseudomomentum is generally not itself a norm (but can 
nevertheless be sandwiched between norms), here it does provide a norm, namely 

Thus, when AQi are all of the same sign, Liapunov stability is assured in the sense 

(A 5) 
that 

Ilr(t)ll = Ilr(0)II. 

These results have recently been derived by Dritschel (1988) by an alternative 
method. Contrary to the claims of Dritschel, it  is evident that his results are in fact 
nothing more than a straightforward application of Arnol’d’s method to the case of 
piecewise-constant vorticity. 

A.2. The generalized Fj~rtof t  theorem 

We now consider the form of the pseudoenergy density (4.15) for the case of a 
disturbance to a basic flow 

1 r y + A d  f o r y < - d  

{ -r f o r y >  d, 1 [  Ty-Ad, for y > d, 

-r f o r y < - d  
Q(y) = A-T for -d < y < d U(y) = ( r - A ) y  for - d  < y < d (A 6) 

with A > 0 for definiteness, as sketched in figure 13. This may be considered a strip 
of positive vorticity A in the presence of a shear flow U cc r y .  Because the vorticity 
jumps AQ are of opposite sign, the generalized Rayleigh theorem (A5) does not 
apply ; however, it will be shown below that the flow is nonlinearly stable whenever 
(r- A )  A > 0 in some frame of reference, which is precisely analogous to the Fjmtoft 
condition UlQ,  < 0 (or, strictly speaking, to the equivalent condition UQu < 0) in 
the continuous case. Thus we take r > A ,  which correponds to the case of ‘adverse ’ 
shear r, as indicated in figure 1 3 ( b ) .  

In the expression for the pseudoenergy density (4.15), the disturbance energy 
E(Q, q)  is positive definite ; thus stability is provable whenever B(Q, q)  is also positive 
definite (this is Arnol’d’s first stability theorem). The Y(Q)-function for the basic flow 
(A 6) is shown in figure 13(c); note that because of the antisymmetry of U(y), Y(Q) 
folds back onto itself perfectly. As with A ( Q , q )  in the previous subsection, here 
B(Q, q)  will be non-zero only when P = Q + q differs from Q, so that the integration 
in is across the jump in Q .  Consider first the contribution of B(Q,q)  due to 
undulations of the upper contour (originally at y = d) ,  for which Y, < 0. In regions 
with P = -r and Q = A - r ,  analogous to the vertically hatched regions in figure 
12(a),  the value of B(Q,q)  is simply the area of the vertically hatched region in 
figure 13(c), namely 

which is positive when r > A ,  since y < d necessari1y.t Similarly, in regions with 
P = A - r a n d  Q = - r, analogous to the horizontally hatched regions in figure 12 (a) ,  

t In  fact, (A 7a)  could be negative for an extremely large contour displacement with y < -d ,  
but in that case the lower contour would give an even larger positive contribution. 

AQ A Y = - A { + ( r -  A )  (yz - d 2)}, (A 7 a )  

11-2 
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Y(Q) [for P = - r]  

Y(Q)[forP=A-T] 

U Q 

(thick line) for the basic flow (A 6). 
FIGURE 13. (a )  The vorticity profile &(y), ( b )  the velocity profile U(y), and ( c )  the function Y(&) 

Q 

the value of B(Q,q) is the area of the horizontally-hatched region in figure 13(c), 
namely 

A& A Y  = A{+T(y2-d ') - Ad(y- -d) } ,  (A 7 b )  

which is also positive, since y > d necessarily and r > A .  It is obvious from 
symmetry considerations (and may be verified directly) that the contributions due 
to undulations of the lower contour -for which Yu > 0 -are exactly the same, 
though with ( y - d )  replaced by - ( y + d )  in ( A 7 b ) ,  which in this case applies to 
regions with y < -d.  

Note that if one chose a frame of reference in which U > 0 throughout the region 
of the vortex strip, then Yu < 0 for both the upper and lower contours, and the 
contribution to B(Q, q )  from undulations of the lower contour would be negative 
rather than positive. This situation is depicted in figure 14. Mathematically, the 
situation is entirely analogous to the continuous case ; one seeks a frame of reference 
for which variations in Yare always of the same sign as variations in Q, so that the 
pseudoenergy is positive definite, and this is true in figure 13 but not in figure 14. 

It is therefore evident that r> A is a sufficient condition for the positive 
definiteness of the pseudoenergy. Since the latter is a constant of the motion, this 
establishes nonlinear stability in the first sense discussed by McIntyre & Shepherd 
(1987, $6) ;  in particular, it rules out any temporally growing disturbance 
representable as a finite sum of modes having a prescribed spatial form (as is often 
assumed in linear and weakly nonlinear theories). Unfortunately, however, it is not 
a t  all clear how to derive a normed stability theorem analogous to (2.6) ; this would 
require introducing a disturbance norm which could be used to bound the 
pseudoenergy from both above and below. The technical obstacles appear to be two- 
fold. First, both ( y - d )  and ( y - d ) 2  appear in (A 7 b ) ,  and one will dominate a t  small 
amplitude while the other will dominate a t  large amplitude. Second, E(Q, q )  depends 
on the disturbance stream function $ while B(Q,q) depends on the contour 
displacement 7, and in order to obtain the homogeneity property required of a norm 
one would have to establish similar dependences of E and B on the disturbance 
amplitude - something which is far from self-evident. 
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Q 

FIGURE 14. (a )  The velocity profile U(y) and ( b )  the function Y(Q) for the basic flow (A 6), but 
in a shifted frame of reference for which the pseudoenergy is no longer of definite sign. 

Appendix B. Evaluation of the integral in (7.14) 
Making the substitution x = ey, the integral becomes 

(x2- 1)2 (x2- 1) I 4s 1: I1Co-{(C:--k:-1)+2- (x2+1)2 (x2 + 1)2 + 2c0 ___ (x2 + 1) 

x-2Co+5 - 2x-2C0+3 + x-2C,+l 

dx 
(x2+ 1 1 4  

+ 16(2c:-k:-i) 

+ 16 loOD X - 2 ~ ~ + 9 -  qX-2c,+7 + fjX-2C,+5 - 4X-2C0+3 + X-2C,+l 

dx. 
(x2  + 1)6 

Each of these separate integrals may be written in terms of gamma-functions, using 
the relation 

- T(&) f( 1 + n - $p) - 1; (x2y;l;n+l 2T(n+ 1) 

(Gradshteyn & Ryzhik 1980, equation (3.241.4)), which yields factors of the form 
T(n+c,) T(m-co) for 1 < n,m < 5. Then by using the recursion relation 

T(x+ 1) = X T ( X ) ,  

these factors may be expressed in terms of a polynomial in co times f(co) f(l -co), 
e.g. 

T(3 -c,) r(2 + c0)  = (2 - c 0 )  (1 -cO) (1 + co) ~0 r ( C 0 )  T(1 -co) ,  
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and finally one may appeal to  the relation 

T(co) r( 1 - co) = n cosec (mo). 

A rather complicated (but exact) expression in terms of co results; evaluating it for 
co = - 1 / 4 3  yields a value of approximately 5.76. 

Appendix C. Demonstration that any smooth extremum of Q, allows an 
improvement to the saturation bound 
By P. H .  Haynes 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, UK 

For a given initial (unstable) zonal flow (Go,P0) and initial wavy enstrophy 
Ji(V2@h)2dy, the object is to minimize the right-hand side of (3.4), 

'Qy'max I Qy I min { ~ i ~ d y + [ i ( p b ( y ) - Q ( y ) ) ' d y }  = GIPo, Q], 

which represents a rigorous upper bound to  the wavy enstrophy a t  any time t .  The 
problem of finding a basic flow Q(y) such that SG = 0 may be addressed using the 
calculus of variations, but some insight into the nature of the solution may be 
obtained by considering the change in G associated with a small change in the basic 
flow Q. In  particular, we take Q, > 0 for definiteness and suppose that Q, takes a 
maximum a t  a single point yo, and that Qy is continuously differentiable in a 
neighbourhood of yo. We now demonstrate by explicit construction that the 
saturation bound G associated with such a Q cannot be a minimum. 

I n  general, Q, can be represented near yo as 

Qg(y) = & ~ ~ , , - ~ ( Y - Y O ) ~ + O ( ( Y - Y O ) ~ ) ,  (C 2) 

with c > 0. We now consider the variation in G associated with a particular variation 
SQ to Q. We choose SQ to be a continuously differentiable function such that 

(i) SQ = 0 

for some A. For sufficiently small A ,  condition (ii) ensures that Qy+6Qy < Q,,,, in 
the interval [yo-A, yo+A]. A suitable choice for S Q  is the function 

for y$[yo-A, yo+A] and 
(ii) SQ, < ~ ( y - ~ o ) ~  for Y E  [YO- A ,  YO + A1 

SQ = -$x(y-yo) exp{ - ( y - ~ ~ ~ ) ~ / 2 e } +  O(EA e-d2/2t), 
SQ, = - +cce(~ - ~ : - ~ ( y - y ~ ) ~ )  exp{-(y- yo)2/2~}+0(42e-d~'2"), 

while max{&,+SQ,} = Q y m a x - ~ ~ + O ( e 2 ) + O ( 4 2 e - d 2 / 2 e ) ,  (C 4) 

(C 3a )  
(C 3 b )  

in the interval [yo-A, yo+A], and SQ = 0 outside, with E a small parameter. In  
particular, let e < A 2 .  Then 
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Equation (C 4) shows that, under the variation 6Q, JQylmax decreases by O(s) ,  while 
(C 5 )  implies that the integral quantity in (C 1) increases by no more than O(s2) .  
Together these demonstrate that 

6G < 0 

for sufficiently small 6 ,  and GIPo, Q] therefore cannot be a minimum. 
A simple extension of this method deals with cases where c = 0 (and some higher 

and even derivative of Qy is non-zero), and with the behaviour near the minimum 
value of Qy. We deduce that G cannot be minimized by a choice of Q for which Qy is 
varying smoothly in a neighbourhood about the point where it attains its minimum 
or maximum value. I n  addition we see that G is decreased if Q is changed in such a 
way as to  flatten out Qy near its maximum or minimum points. This is a strong 
indication that the minimum value of G is attained by a Q that  has Qy taking its 
maximum and minimum values over finite intervals. 
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