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Nonlinear Wave-Activity Conservation Laws and Hamiltonian Structure
for the Two-Dimensional Anelastic Equations
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Department of Physics, University of Toronto, Toronto, Canada

(Manuscript received 10 January 1991, in final form 15 May 1991)

ABSTRACT

Exact, finite-amplitude, local wave-activity conservation laws are derived for disturbances to steady flows in
the context of the two-dimensional anelastic equations. The conservation laws are expressed entirely in terms
of Eulerian quantities, and have the property that, in the limit of a small-amplitude, slowly varying, monochromatic
wave train, the wave-activity density 4 and flux F, when averaged over phase, satisfy F = cgA4 where ¢, is the
group velocity of the waves. For nonparallel steady flows, the only conserved wave activity is a form of disturbance
pseudoenergy; when the steady flow is parallel, there is in addition a conservation law for the disturbance
pseudomomentum.

The above results are obtained not only for isentropic background states (which give the so-called “deep
form™ of the anelastic equations), but also for arbitrary background potential-temperature profiles 85(z) so long
as the variation in 6,(z) over the depth of the fluid is small compared with 8, itself. The Hamiltonian structure
of the equations is established in both cases, and its symmetry properties discussed. An expression for available
potential energy is also derived that, for the case of a stably stratified background state (i.e., dfp/dz > 0), is
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locally positive definite; the expression is valid for fully three-dimensional flow.
The counterparts to these results for the two-dimensional Boussinesg equations are also noted.

1. Introduction

In many fluid dynamical problems it is advantageous
to consider the fluid state as a disturbance to some
specified (and comparatively simple) basic state. Such
a decomposition is implicit in any linearized theory,
of course, but it may nevertheless be useful under more
general circumstances. ( Typically one would consider
basic states having particular symmetries, steady flows
and parallel flows as being especially common exam-
ples.) Having chosen to represent the problem in this
fashion, wave-activity conservation laws frequently turn
out to play a central role in the discussion (see, e.g.,
Bretherton 1971; Hoskins 1983; Held and Hoskins
1985; Andrews et al. 1987).

A wave activity may be defined to be a conserved
disturbance quantity that is quadratic (or of higher or-
der) in the disturbance fields in the small-amplitude
limit. An important consequence of this is that the
wave activity may be evaluated correct to leading order
from a solution calculated on the basis of linearized
theory, and so on to higher orders in disturbance am-
plitude; this property, together with the fact that it sat-
isfies a conservation law, facilitates the construction of
self-consistent theories. By contrast, the wave energy
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(i.e., the energy of the disturbance in a frame of ref-
erence moving with the basic flow) is frequently qua-
dratic but is not conserved, while the disturbance en-
ergy (i.e., the difference between the total energy and
the energy of the basic state) is conserved but is not
quadratic, and, thus, is not calculable even to leading
order from linearized theory. By a conservation law,
we mean a relation of the form

CZUR
at

where A is the density of wave activity and F its flux.

Until recently, wave-activity conservation laws have
been of one of three sorts. Either they have been re-
stricted to small-amplitude (though possibly weakly
nonlinear) disturbances under slowly varying, WKB-
like conditions (e.g., Garrett 1968; Bretherton 1969;
Young and Rhines 1980), in which case the conser-
vation laws can be explicitly linked to symmetry prop-
erties of the system (Whitham 1965; Bretherton and
Garrett 1968; Bretherton 1971); or they have been de-
rived by direct manipulation of the linearized equations
of motion (e.g., Andrews and Mclntyre 1976, 1978a;
Andrews 1983); or they have been finite amplitude
but expressed in terms of particle displacements (An-
drews and Mclntyre 1978b; Grimshaw 1984). What
one really desires for practical applications, however,
is a systematic method of deriving finite-amplitude
wave-activity conservation laws that are expressed in

(1.1)
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terms of Eulerian variables and do not require WKB
assumptions.

It has recently become apparent (Mclntyre and
Shepherd 1987, see also Shepherd 1990, section 5) that
the Hamiltonian formalism provides a natural way of
doing just that. Indeed, even if one seeks only a small-
amplitude result, the most direct way of deducing it
turns out to be by appealing to the Hamiltonian struc-
ture of the finite-amplitude problem, and then taking

_the appropriate small-amplitude limit of the resulting
wave-activity conservation law. In a recent application
of the method, Haynes (1988) was able to systemati-
cally derive finite-amplitude wave-activity conservation
laws for the hydrostatic primitive equations. (Haynes
also showed that the results could always be generalized
to forced dissipative systems, which may be important
for applications.) '

In this paper, finite-amplitude wave-activity conser-
vation laws are derived for the two-dimensional an-
elastic equations. Both pseudoenergy and pseudo-
momentum conservation laws of the form (1.1) are
obtained for disturbances to steady basic flows; in the
former case the basic flow may be nonparallel, while
in the latter it must be independent of the downstream
coordinate x. The corresponding forms of the conser-
vation laws are also recorded for the special case of the
Boussinesq equations. An important feature of the
forms derived here is that in the WKB limit, wherein
the disturbance consists of a small-amplitude, mono-
chromatic wave train, and the basic state is varying
slowly over the scale of the disturbance, we obtain the
physically sensible relation (F) = c,(A) (where the
angle brackets denote an average over the phase of the
waves). This condition ensures consistency between
the wave-activity densities and fluxes derived here
(which are valid even under non-WKB conditions),
and those that would be obtained under a conventional
small-amplitude WKB derivation. It may be noted that
the satisfaction of this condition for the two-dimen-
sional anelastic system, while in principle straightfor-
ward, turns out to require a considerable effort; in the
case of the full primitive equations the situation would
presumably be even more daunting.

An important intermediate step is the representation
of the two-dimensional anelastic equations as a non-
canonical Hamiltonian dynamical system. Such rep-
resentation ensures an energetically consistent for-
mulation, and enables an explicit link to be made be-
tween symmetries and conservation laws through
Noether’s theorem. The Hamiltonian formulation of
the dynamics is provided both for the so-called “deep
equations” of Ogura and Phillips (1962), where the
background potential-temperature profile 6, is taken
to be constant, and for the modified set proposed by
Lipps and Hemler (1982) when 6, is a nonconstant
function of z.

The plan of the paper is as follows. In section 2 we
briefly review the Hamiltonian formalism by which
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the wave activity will be derived. The anelastic system
is described in section 3. In section 4 the Hamiltonian
structure of the anelastic system is presented and then
exploited to derive Casimir and momentum invariants
of the system. The methods described in section 2 are
then applied to derive finite-amplitude expressions for
pseudoenergy (section 5) and pseudomomentum (sec-
tion 6), along with their corresponding fluxes, for dis-
turbances to steady—and, for pseudomomentum, par-
allel—but otherwise arbitrary basic flows. The paper
concludes with a discussion in section 7.

2. Hamiltonian theory

In this section we shall briefly describe the Hamil-
tonian theory employed in this paper. The interested
reader may refer to Goldstein (1980) for a thorough
treatment of finite-dimensional canonical Hamiltonian
dynamical systems. A mathematically rigorous discus-
sion of the extension of this theory to noncanonical
dynamical systems of infinite dimension may be found
in Arnol’d (1978), Abraham and Marsden (1978),
Marsden and Weinstein (1983), or Olver (1986). For
the purposes of this paper, however, the most appro-
priate references would be the reviews by Benjamin
(1984), Salmon (1988a), and Shepherd (1990).

a. Symplectic representation

The Hamiltonian formalism used in this paper re-
quires that the governing system of equations be cast
in the symplectic form

¥4

U=1J U
In (2.1), Uis a column vector of the dependent field
variables, while /7 is the total energy (or Hamiltonian)
of the system and as such represents a functional (i.e.,
a function of the functions contained in U). The sub-
script ¢ refers to partial differentiation with respect to
time. The term 6# /86U is a column vector and refers
to the variational or functional derivative of the func-
tional % with respect to the functions contained in the
vector U, and is defined for arbitrary functionals ¥ by

(2.1)

FU+U)—-F(U) = (z—z BU) + O(BUZ). (2.2)
Hére (-, ) refers to the inner product

where the integral is over all physical space and a sum-
mation convention is implied by repeated indices. Fi-
nally, J is a matrix operator that must satisfy

[F, a8 + bH] = a[F, 8] + b[F, #],
[33 9] = _[ga 7]7

(2.4)
(2.5)
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[F9, H]=F[8, H]+[F, #1F, (2.6)
[[#, 8], H1+ 1S, H1, F1+1[H, F], 8] =0,
(2.7)
where [+, -] is the Poisson bracket
0F 08
[g’ g]=(355']3-l-—])9 (2'8)

#, 8, and # are functionals, and a, b € &. Of the four
conditions on J, Jacobi’s identity (2.7) is by far the
most arduous to verify.

b. Integral invariants

If it is possible to express a set of governing equations
in the form (2.1), it then becomes a reasonably
straightforward matter to identify the integral invari-
ants of the system. By Noether’s theorem, a functional
L that satisfies

oU
is time invariant if /# is invariant under translations
in a. Thus, when a = ¢, for example, invariance of the
Hamiltonian under translations in time is seen to imply
conservation of energy, since comparing (2.9) with
(2.1) we have

(2.9)

L=-7. (2.10)

If, on the other hand, « is the spatial coordinate x, say,
then invariance of the Hamiltonian under translations
in the x direction implies conservation of the x-mo-
mentum 4, where M is defined by (2.9) with L = M

and o = Xx.
In addition to conserved quantities derived through
Noether’s theorem, one can identify Casimir invariants

. of the form

@=fC(,U)dx, (2.11)
where C is some function of the dependent field vari-
ables. These functionals € are defined to be the solu-
tions to

6@
J 30 0.
A comparison of (2.9) and (2.12) reveals that the
Hamiltonian and generalized momentum integral in-
variants may be defined only to within a Casimir of
the system.

For fluid dynamical problems, Casimir invariants
typically represent explicit Lagrangian symmetries in
the problem (e.g., particle relabeling ) that are invisible
in the Eulerian framework. As such, they convey valu-
able information that would otherwise be inaccessible
in the Eulerian representation of the problem. Ham-

(2.12)
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iltonian theory [i.e., expressing a system in the form
(2.1)] provides a systematic method by which these
mmportant Casimir invariants may be derived. The
constraint imposed by (2.12) is usually only of suffi-
cient strength to specify the function C in the most
general terms. It is the arbitrary nature of the function
C that one may then exploit to derive finite-amplitude
expressions for the pseudoenergy and pseudomomen-
tum of a system.

¢. Wave-activity conservation laws

A wave activity is defined to be a functional of a
disturbance to some given basic state U that is both
conserved (for conservative flow) and is of quadratic
or higher order in disturbance amplitude g in the limit
a = 0. The second condition ensures that the wave
activity may be calculated to leading order solely from
a linearized solution of the problem. Given the integral
invariants, derived from the Hamiltonian structure of
a system, it becomes a straightforward matter to con-
struct finite-amplitude forms of wave activity possessing
such qualities from either the energy (whenever U is
independent of ¢) or the momentum (whenever U is
independent of x) of the system.

In deriving the pseudoenergy (i.e., the wave activity
associated with energy), we construct the quantity

A=x#(U)-2U)+ C(U) - C(U) (2.13)

subject to the condition that the first variation of A,
6A, vanish when U = U. Now, given that

oA ’ 6U>
U=U0

U
L€
U=U oU

504|U=0=(

_ (%
oU

an A may generally be constructed such that

0A | y=g = 0 if U is a steady solution of (2.1), since

_ ¥4 o 6@
V=50 BT M

, 6U) , (2.14)
U=U

=0

U=U

(2.15)

U=U U=U

for some Casimir € (e.g., see Abarbanel et al. 1986).
Armed with the functional A, which defines the

global conservation of wave activity, we may now de-

termine local conservation laws of the form (1.1). Since

dA 04
—dx =0,
at

dt

1t is always possible to write the temporal variation of

wave-activity density 4 in the flux form

a4

— = -V F.

ot
It is obvious that the local flux of wave activity F so
defined is not uniquely determined. In particular, one
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may add any vector field with zero divergence to F, or
even the time derivative of any vector field so long as
the divergence of the same field is removed from A4
(since this will not affect A ). The problem now reduces
to determining appropriate forms of 4 and F. One may
eliminate a great deal of this arbitrariness by imposing
the constraint that the usual WKB result

(F) = c(4)

is recovered in the relevant limit of a small-amplitude,
slowly varying, monochromatic wave train. In (2.16)
the angle brackets denote an average over the phase of
the disturbance fields.

For the case of pseudomomentum, one merely em-
ploys the generalized momentum /1 in place of the
Hamiltonian # in (2.13). In sections 5 and 6 of this
paper the reader will find a more detailed account of
this method as we derive finite-amplitude wave activ-
ities for the anelastic and Boussinesq systems.

(2.16)

3. The two-dimensional anelastic system

If it is assumed that the pressure and density in the
real atmosphere depart little from their distribution in
an ideal atmosphere prescribed by a potential temper-
ature varying slowly in the vertical (Batchelor 1953;
Lipps and Hemler 1982), and that the fastest time scale
upon which dynamically significant fluid motions oc-
cur is set by internal gravity waves (Ogura and Charney
1962), then the fundamental hydrodynamic equations
for an ideal gas may be approximated by the anelastic
equations. The term anelastic (Ogura and Phillips
1962) refers to the fact that the fastest physics, primarily
associated with sound waves, is effectively filtered from
the equations; this is achieved by neglecting the local
time variation of density in the continuity equation.
In this respect the anelastic system is quite similar to
the set of equations obtained in the Boussinesq ap-
proximation. The primary difference between these two
approximations lies in the ability of the anelastic system
to describe an atmosphere incorporating a background
density profile that decreases strongly in the vertical.
As a result, the Boussinesq system may be seen as a
subset of the set of equations derivative of the anelastic
approximation.

In this paper we will consider the most general form

of the anelastic approximation. The system of equa-

tions that results from such approximation is

dv . dmo 5,
E+(v-V)v=—cp00V7r—cpd—;)ﬂz, (3.1)
90 . db,
— . = 2
6t+(v V)0+wdz 0, (3.2)
V- (pov) = 0. (3.3)
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In this system the thermodynamic fields have been
written

0(x, z, 1) = 0p(z) + O(x, z, 1),

W(x’ z, t) = 7l'0(Z) + %(x9 z, t)’

(3.4)
(3.5)

where the zero subscript refers to the background state
and the tilde variables represent (small ) perturbations,

20

is the Exner pressure, 6 the potential temperature, «
= R/c,, and py is the surface reference pressure. In
deriving this system we have also assumed that the
background thermodynamic fields are in hydrostatic
balance. All other variables and notation in (3.1)-(3.6)
have their conventional meaning.

If one employs the definition of potential tempera-
ture

(3.6)

6="Trx"", (3.7)
assumes that the background is in hydrostatic balance
d?l'o
o — = —g, 3.8
CP 0 dZ g ( )

and invokes the ideal gas law p = pRT, then all of the
background thermodynamic fields are uniquely deter-
mined in terms of the profile 65(z).

a. Energy conservation

In order to apply Hamiltonian theory, we require a
system of equations that is energetically closed. It is
well known that if 6,(z) = const the anelastic system
thereby obtained, usually referred to as the “deep
equations” of Ogura and Phillips (1962), is energeti-
cally consistent. If, however, 6, is allowed to vary in
the vertical, Wilhelmson and Ogura (1972) have shown
that the system (3.1)-(3.3) does not conserve total
energy. The resolution of this problem was first pre-
sented by Lipps and Hemler (1982). [See also Lipps
(1990).] If one assumes that 6, varies slowly in the
vertical, then to the same order of approximation, (3.1)
may be replaced by

av . dro ~.

™ + (v:V)v = —=V(c,07) — % 0z,
the only difference being that 6, has been brought under
the gradient operator in the first term on the right-
hand side of (3.1). The inner product of pgv and (3.9)
results in the kinetic energy equation

3 [po- 1 .
E(?O |v|2) + V~[pov(§ [v]? + cpﬂo‘lr)]

drmo «
=—c,,p0wd—z°0. (3.10)

(3.9)
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In a similar manner, if (3.2) is multiplied by ¢, pomo,
one obtains the potential energy equation

ad o .
Ey (cppomoll) + V- [ pov(c,mo(o + 0) + g2)]

drmg ~
= Cppowd—zo 6. (3.11)
In the derivation of (3.10) and (3.11) we have used
the continuity equation (3.3) and hydrostatic balance
relation (3.8). The total energy of the system is then
the sum of (3.10) and (3.11) integrated over all space.
Assuming simple boundary conditions, the result is

gz” (5’29 |v|2+c,,po1r00)a’xdz=0. (3.12)

Note that we have written the total § rather than 6 in
the potential energy term in (3.12). This involves no
loss of generality, since the two terms differ by a quan-
tity that is constant in time. The conservation relation
(3.12) suggests the Hamiltonian

X = ff( |v|2+c,,p01r00)dxdz (3.13a)

Now, (3.13a) is linear in the perturbation poten-
tial temperature 8, and the available potent1a1 energy
f c,,p01r(,0dxdz is therefore not of definite sign. This
makes interpretation of energy budgets less than sat-
isfactory. A remedy for this situation is available, how-
ever, whenever the background state is stably stratified,
namely, dry/dfy < 0. We first recall from section 2b
that the Hamiltonian is defined only to within a Ca-
simir, It is evident from the thermodynamic equation
(3.2) that integrals of the form

@ = J.f poC(0)dxdz

are conserved in time for arbitrary functions C, and it
will be seen in section 4b that these represent Casimirs.
Under stably stratified conditions 7y and 6, are both
monotonic functions of z, and the resulting depen-
dence 7 (6,) defines a monotonic function my( - ). Then
choosing

C0)=—¢ f mo(0)d0,

we may take as the Hamiltonian

H (v, 8) = #(0, 6o) + €(6) — C(bo)

ff( |V|2_Cppof [m0(80 + 1)

- 7r0(00)]dn)dxdz (3.13b)
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instead of (3.13a). This expression is of quadratic order
in the perturbation fields, and is moreover positive def-
inite under the assumption dmo/dfy < 0. The “amount”
of energy thus becomes a meaningful quantity, in the
sense that the energy as defined according to (3.13b)
may be used to provide a norm for the perturbation.
The form (3.13b) is analogous to that derived by Hol-
liday and MclIntyre (1981) for a Boussinesq fluid, and
by Andrews (1981) for a compressible fluid. It will be
seen in section 5 that (3.13b) represents the pseudoen-
ergy relative to the resting background state.

For the purpose of calculating energy conversions it
may be useful to note the leading-order approximation
to the available potential energy component of (3.13b),

which is
f f 1 pog?
2 Ny%6,?
where N, is the Brunt-Viisili frequency for the back-
ground state fy(z). It is worth emphasizing that the

expressions (3.13b,c) are valid for fully three-dimen-
sional flow.

8%dxdz,

(3.13¢c)

b. Steady-state and disturbance equations

For two-dimensional flow, the equations (3.2),
(3.3), and (3.9), which define the anelastic system,
may be written in a more compact form. If we define
the mass flux streamfunction y by

pov = § XV, (3.14)
so that
1
=i%, w=———§£, (3.15)
po 0z po 0x

then the continuity equation (3.3) is identically satis-
fied. Pressure may be eliminated from the system by
taking the curl of the momentum equation (3.9). This
results in the vorticity equation

dw dmg 90
—+ V- _— .1
o + V- (wv)=¢, iz o’ (3.16)
where
w=§-VXv=—L%3—¢+ V. (3.17)

The anelastic system, in two spatial dimensions, is
therefore uniquely determined by (3.16) and (3.2),
which may be written

L a(¢ “’) = —d(, c,m),  (3.18a)
ot Po
? +ia(¢, 8) = (3.18b)
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where the Jacobian d(-, +) is defined by

df dg df g
0 === .
8 dz dx Ox 9z
We reiterate that this representation is valid (and en-
ergetically consistent) for nonconstant 6y(z).
Consider now the new decomposition of the depen-
dent fields

0(x,z,t)=0(x,z)+0'(x,z, 1), (3.20)
wix, z, 1) = w(x, z) + o'(x, z, 1), (3.21)

where the overbar represents a steady-state two-di-
mensional background field and primed quantities de-
note deviations away from this state. The disturbance
fields need not be of small amplitude. (By this we mean
that a low-order Taylor series expansion about the
steady-state background fields may provide an inade-
quate representation of the disturbance.) The assump-
tion that (6, @) is a steady solution to (3.18) implies
the relations

(3.19)

6(@, 2) = —4(8, ¢, ), (3.22a)
Po
a(y, 0) = 0. (3.22b)
From (3.22b) it is clear that
¥ = ¥(0). (3.23)

Employing this functional relation between 8 and ¢,
(3.22a) may be rewritten as
Y@
ad6,—=—+c =0
( d6 po pwo)
so that
&) @ ' _
—=—+ ¢,mo = Zp(0
d0 Py pTO 0( )
for some function Z,. This equation is quite important:
it states that the particular combination of steady-state
and background fields that appears on the left-hand
side is a function only of the steady-state potential
temperature of the system. The function Z,(#) is anal-
ogous to Long’s function (Long 1953). In section 5
we shall see that Z, plays a crucial role in the construc-
tion of a pseudoenergy for the anelastic system.
Removing the steady-state component (3.22) from
(3.18) results in the exact disturbance equations

o 2)-os2)
Po Po

— 6(\#’, ﬂ,) — (0, ¢,mo), (3.25a)
Po

(3.24)

Lo
0, =~ (W', ) — — o(F, 8) — — AW, 0).
Po Po Po
(3.25b)
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At small disturbance amplitude, the linearized equa-
tions obtain on dropping terms quadratic in the primed
quantities.

¢. Transformation from the anelastic to the Boussinesq
system

Earlier it was stated that the Boussinesq system is a
subset of the more general anelastic equations. One
must take care, however, to qualify what is meant by
the term “Boussinesq approximation.” Benjamin
(1984, 1986) has discussed two versions of this ap-
proximation, which one may call the “strong” and
“weak” forms. The “strong” form is what is usually
meant by the Boussinesq approximation within the
meteorological literature. In this case one assumes

at

hydrostatic balance of the background fields, and, ex-
cept in the buoyancy term, a constant reference density
in all terms of the primitive equations. The system of
equations that results from such an approximation is
quite obviously a subset of the more general anelastic
system. In the “weak” form of the Boussinesq approx-
imation, however, only (3.26a,b) is assumed, and the
resulting system is not derivative of the anelastic equa-
tions. Therefore, in all subsequent references to the
“Boussinesq’ system or approximation in this paper,
we shall mean the “strong” form.

In order to obtain the Boussinesq counterpart of
expressions derived for the anelastic system, one must
first make the straightforward substitutions

8z

pYUr

(£+ V‘V)p =0, V-v=0, (3.26ab)

60— 0,, (3.27)

Po > Pr, ™o ~> —
(where the subscript r refers to some constant reference
state), the last relation following directly from (3.8)
in this case. For convenience we also make the replace-
ment

¥ = oY, (3.28)

so that ¥ now becomes the conventional streamfunc-
tion. Given that the corresponding Boussinesq system
is usually expressed in terms of vorticity and density
rather than vorticity and potential temperature, one
further elementary substitution may be performed in
order to cast the results in this more familiar form. If
one eliminates temperature between the ideal gas law
and the definition of potential temperature, and lin-
earizes the resulting equation, it is found that

6 b . b

bo po  *po’

where c is'the adiabatic sound speed. Since sound waves
have been filtered from both the anelastic and Bous-
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sinesq systems, the speed of sound may be taken to be
effectively infinite. Therefore, in the Boussinesq limit
we may write

§=-62.
pr
The conversion from the potential temperature to
density representation is thus most easily effected by
the mapping

6—>——"p
Pr

(3.29)

applied to both components in the decomposi-
tion (3.20).

All of the results presented in this paper may be
easily transformed into their Boussinesq counterparts
by a simple application of (3.27)-(3.29).

4. Momentum and Casimir integral invariants of the
anelastic system

In this section the Hamiltonian theory described
earlier (section 2) will be employed to derive integrals
that represent total horizontal momentum and Casimir
invariants specific to the anelastic system. The sym-
metries and associated conservation laws of the Bous-
sinesq equations have been previously discussed by
Ripa (1981) and Benjamin (1986).

a. Hamiltonian structure

In order to cast the anelastic system in the symplectic
form (2.1), we take
w
U=
(%)

and # as given by (3.13a) or equivalently

& = ff (—1— |Vy|2+ pocpwoa)dxdz. (4.2)
2p0

(4.1)

The functional derivatives appearing in (2.1) may be
determined by considering the first variation of #:

([ (@, oo
O = ff [po(ax ™ + o az)+pocp7r060]dxdz

= ff [—Mw + ponﬂ'oaB]dXdZ.

(4.3)
A comparison of (4.3) with (2.2) then yields
M 44
5 * 50 = PolpTo. (4.4)

The second equality in (4.3) is a result of an integration
by parts under the assumption of simple boundary
conditions (i.e., periodic boundary conditions or van-
ishing fields at infinity). Procedures exist by which
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more realistic boundary conditions may be incorpo-
rated into the problem (cf. Lewis et al. 1986; McIntyre
and Shepherd 1987; Shepherd 1990, §4.1). Our pri-
mary motivation for expressing the anelastic system in
Hamiltonian form, however, is merely to employ a
systematic method to determine the Casimir invariants,
Since a more sophisticated approach to the boundary
conditions would not affect the local form of the wave-
activity conservation laws (which are the principal re-
sults of this paper), such consideration has been ne-
glected for the sake of simplicity. This issue is discussed
further in section 7.

To complete the representation of (3.18) in the
Hamiltonian form (2.1), it only remains to determine
the appropriate form of the symplectic matrix J. It
may be easily verified that the substitution of

{-2) 4
=l Fo (4.5)

—a(-,0) 0

Po

together with (4.1) and (4.4) into (2.1) results in the
anelastic system (3.18). In order for a particular form
of J to be valid, however, it must be demonstrated that
(2.4)-(2.7) are satisfied. The first three conditions are
trivial and may be seen to be satisfied by inspection.
The final condition, however (Jacobi’s identity), is in
no way a trivial matter to verify. The fact that J as
given by (4.5) satisfies (2.7) is demonstrated for the
reader in appendix A.

By applying the transformation (3.27)-(3.29) to the
anelastic version of (2.1), we may determine the sym-
plectic form in the Boussinesq limit (cf. Benjamin
1986; Abarbanel et al. 1986). In this limit it is found
that

%”f=—p,¢, % g, (4.6)
W op
and
1(3(-, @) 8(-,p)
== . 4.7
d ,,,(a(.,,,) 0 ) (4.7)

The expressions (4.6) and (4.7), when substituted into
(2.1), result in the well-known vorticity—density rep-
resentation of the Boussinesqg system.

b. Integral invariants

Given the appropriate J of a system, one may invoke
Noether’s theorem (see section 3b) to determine in-
tegral invariants associated with explicit continuous
symmetries of the Hamiltonian. Through the time in-
variance of the Hamiltonian we have the usual result
that the Hamiltonian itself represents the total energy
of the system. In a similar manner, Noether’s theorem
may be employed to determine the form of total hor-
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izontal momentum conserved in problems where there
is x-translational symmetry of the Hamiltonian. From
(2.9) we have

oM
To~ U
where M is the total Xx momentum in the system. A
substitution of (4.1) and (4.5) into (4.8) results in the
following particular solution for the functional deriv-
atives of JM:

om oM
D G
As a result we have that the total x momentum in the
anelastic system can be taken to be

M= —ff [wfz po(n)dn]dxdz. (4.10)

It may be noted that in (4.9) we could have let 6.1/
68 = po. To do so would make no difference in the
end, however, since as we shall see below, the two re-
sulting invariants differ only by a Casimir. Under the
Boussinesq approximation, (4.10) reduces to

M=—p, ff zwdxdz.

(4.8)

(4.9)

(4.11)

In order to derive wave-activity conservation laws
from energy (4.2) or momentum (4.10), it is necessary
to determine the Casimir invariants of the system.
Substituting (4.1) and (4.5) into the defining relation
(2.12), namely,

oC
Jﬁ =,
it is found that
oC oC
— =(0), — =«f'(8) + pog(6) (4.12)
dw 56

for arbitrary functions f and g, the prime denoting
differentiation. It follows from (4.12) that the Casimir
invariants for the anelastic system can be put in the
form

e = ff [wCi(8) + poCa(0)])dxdz (4.13)

with f = C, and g = C5. Similarly, employing (3.27)-
(3.29) we find that the Casimir invariants in the Bous-
sinesq limit take the form

e = ff [wKi(p) + prK2(p)]dxdz. (4.14)

While it is not necessary to include the constant p, in
the second term of the integrand, it has been retained
for consistency with the anelastic system.
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In the next two sections, the specific forms of C,(8)
and C,(0), and of K;(#) and K,(8), are determined
for the wave activities associated with pseudoenergy
and pseudomomentum.

5. Finite-amplitude pseudoenergy conservation laws

We first consider the wave-activity conservation law
(1.1)as it applies to the case of energy. In this derivation
we consider the most general form of the problem,
which involves flow deviations from a two-dimensional
steady state.

a. Specific Casimir functions

Employing (4.2) and (4.13) in the definition of
pseudoenergy (2.13), the first variation of A evaluated
at U = U is found to be

0A | y=g = ff [(—¢ + Ci(8))dw + (pocpmo

+ @ C(8) + poC5(8))d6ldxdz, (5.1)

where primes on the Casimir functions denote differ-
entiation. The specific choices for the arbitrary Casimir
functions C,(#) and C,(#) that make (5.1) vanish are
quite obviously

Ci(9) =¥, (5.2)

- ® d _

Cy(0) = — ;—Od—g — ¢pmo = —Zp(0).
The result that y is a function of 8, which follows from
(5.2), is not a new constraint imposed by this proce-
dure; rather, it was already implied by the steady-state
relation (3.22b). Indeed, this shows that in order to
construct a pseudoenergy, the basic state must be a
steady solution of the dynamics. The appearance of
the generalized Long’s function Z, in the specification
of G, is likewise no accident: while it is not at all obvious
at first sight that the particular combination of quan-
tities that appears between the two equalities in (5.3)
is a function of 8 alone, it is guaranteed to be so by
(3.24). We have, therefore, that the specific form of
C2 is

(5.3)

Cy(0) = —f Zy(8)db. (5.4)

The functions C, and C, may be viewed as functional
relations between the dependent fields that comprise
the steady-state flow. Since the steady-state fields are
known a priori, however, we may also consider C; and
C, to be just known functions of some independent
variable 7. In the definition (2.13) of A it is these spe-
cific functional forms that are employed with n = 6
andn=0+9"
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b. Finite-amplitude wave activity

Given the specific form of the Casimir € we may
now write down the expression for pseudoenergy. Using
(5.2)and (5.4), a direct substitution of (4.2) and (4.13)
into (2.13) results in

A= ff [% polVI? + poV v + (& + ) ¥(6 + 8')

6+6"
— @W(0) + poc,mob’ — po ; Zo(ﬂ)dﬂ}dXdZ,

(5.5)

where ¥( - ) = y( - ) indicates the functional dependence
of ¥ on 8 represented by (3.23). Even though our par-
ticular selection of Casimir functions has ensured that
(5.5) is at least quadratic in the disturbance fields, it
is advantageous to make this fact explicit in the expres-
sion for A. To this end, consider the second term on
the right-hand side of (5.5). This term may be written

o _ (L[ W
””"V'de‘lz_ffpo(az 3z | ox ax)dxdz

= f f — Yu'dxdz

| =ff—\lf(5)w’dxdz,

where the equality between the first and the second
line is obtained through an integration by parts. Fur-
ther, employing the relation (3.24) for the generalized
Long’s function, the fifth term in the integrand of (5.5)
may be rewritten as

poC,mol’ = poZo(8)6' — > ¥'(6)0', (3.7)

where ¥'(6) = d¥/d@. Substituting (5.6) and (5.7)
into (5.5) we find that the integrand, or the local density
A of the wave activity, becomes

(5.6)

A= L VY |2+ (& + ) (T + 8
2po
— W(8) — V'(0)6') + V()0

8
f
0

which is explicitly of quadratic order in disturbance
quantities.

[Zo(8 + 1) — Zo(B)]dn, (5.8)

L 82 A | g = 1 6[ff [C1(0)6w + 1 VY -Voy + (pocpymo + wC1(0) + pOC’2(0))60]dxdz}
2 2 Po

1 - 1
=ff — |Véy |2 + C1(6)dwdb + =
2[)0 2
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In the special case where the steady basic flow is
chosen to be the resting background state mo, o, we
have ¥ =0, @ = 0, and Z,(8) = c,7o(8o). It follows
immediately that (5.8) reduces to (3.13b), verifying
that the latter is indeed the pseudoenergy relative to
the (resting) background state.

¢. Small-amplitude local wave-activity conservation law

Following the procedure outlined in section 2c, we
now wish to express the time derivative of the local
wave-activity density 4 in the flux form

94 _

—=-V.F. 5.9
3 (5.9)

In order to remove some of the arbitrariness in this
expression, we will impose the additional requirement
that, in the WKB limit, (5.9) reduce to the condition
(2.16). Toward this end we first consider the small-
amplitude counterparts of 4 and F and determine their
appropriate forms such that (2.16) is satisfied in the
relevant limit. We will then be in a position to derive
finite-amplitude expressions for these quantities that
are consistent with these small-amplitude expressions
and therefore with (2.16).

At small disturbance amplitude, an expression for
A may be determined in two manners. In the first, we
simply consider the lowest-order contribution to (5.8)
after performing a Taylor series expansion of (8 + 6')
and Zy(6 + n) about § = 6. The small-amplitude
expression for A4 is then determined to be

l (:) - Po -
A=—|Vy 2 + =y _ro ! "n2
3 V¥l (2 HORE zo(o))w )
+ V(0’0" (5.10)
A second way to realize this expression would be to
consider the expansion of A:

A = "QlU=[I+5~>4-IU=[}+%52.)4|U=U+ cen
(5.11)

By construction we have that the first two terms on
the right-hand side of (5.11) are zero. Therefore, the
leading contribution to A may be obtained by calcu-
lating its second variation. Performing this calculation
we have:

U=U

(poC5(0) + cBC’l'((_)))((SO)Z]dxdz. (5.12)
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A simple substitution of (5.2) and (5.4) into the above
expression reveals that the integrand is equivalent to
(5.10). The advantage of this second method is that
we need not explicitly consider the finite-amplitude
expression for 4 in order to derive its small-amplitude
counterpart.

Constructing now the small-amplitude form of (1.1),
from (5.10) we have

— poZ6(0)}6M)0; + V- (WV\//). (5.13)

In deriving this expression we have used the result that

Q_ 2 ¢I N NN
(50 1997) = v+ (£ v0t) - v

In this form, we need not explicitly deal with the local
time derivative of ¥’ since the term that contains this
quantity already appears in flux form in (5.13). How-
ever, as a consequence the flux F will contain the ex-
plicit time derivative of ', making it a more difficult
quantity to calculate. This parallels the situation
for barotropic and quasigeostrophic baroclinic flow
(Mclntyre and Shepherd 1987).

The local time derivatives of «’ and 6’ may be elim-
inated from the right-hand side of (5.13) by substitu-
tion from the linearized form of the anelastic distur-
bance equations (3.25). These are, respectively,

(5.14)

- (W,g) —a(i,ﬂ)‘a(a', c,m), (5.15a)
Po Po

1 - 1. -
0,=——9aW',0)——ad,0). (515b)
Po Po
Upon substitution of (5.15), the right-hand side of
(5.13) may be written (after some manipulation) in

the form
o4_ 1 (e Yo
Z 26(p0,<w))+a(¢, 0)
— 3(cymo, 6Y) — a(‘ “Y w@y) )

+ 6(\1/’(9) é , \If’(ﬁ)(()')z)
Po
+ d(cymo, W(8)(6')%)

- 16(3 (¥ (B))?, (,,,)2)
2 \po

(‘Vw): ~V.F. (5.16)
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The arbitrary nature of the pseudoenergy flux F is
clearly evident in (5.16). The flux form of any Jacobian
may be written as

a(f, 8) = 9.(f0:8) — 0.(fd.g),
af, g = —0.(g0xf) + 0x(g9.1),

or any normalized linear combination of these two
forms. This problem also arises when one attempts to
determine the form of the finite-amplitude flux from
the full A. It is for this reason that it is best to first
work in the small-amplitude limit to determine the
most appropriate decomposition of 4, into —V - F.

In order to satisfy (2.16), each Jacobian in (5.16)
is decomposed into flux form via (5.17b), and, in ad-
dition, the arbitrary nature of the local wave-activity
conservation law (1.1) is exploited as discussed in sec-
tion 2c. In particular, we append to the wave activity
the divergence of the vector

_ [z oy
2p0 6x’2p0 9z )’

(5.17a)
(5.17b)

(5.18)

while subtracting its time derivative B, from the flux.
In doing so, the conservation law (1.1)is left unaltered
and the small-amplitude relation (2.16) is then satis-
fied. This is demonstrated for the reader in appen-
dix B.

When the basic flow is nonparallel, (2.16) is only
valid for disturbances with vertical wavelengths A, re-
stricted according to

(5.19)

A <—(1 d”°)

po dz

For an isothermal atmosphere, this constraint reduces
to A, < 4H where H is the density scale height. In
practice, we may expect disturbances with wavelengths
of up to one scale height to still satisfy this restriction.
When the basic flow is parallel, on the other hand, the
condition (5.19) is not required.

As a result of imposing the constraint (2.16), there-
fore, it is clear that, in addition to modifying the flux
F, one must also alter the expressions for wave activity
derived in both the finite-amplitude (5.8) and small-
amplitude (5.10) regimes. The addition of V- B to (5.8)
results in the form for the finite-amplitude wave activity

_lplwl
A =
2

+ (@ + )X + 6") — W(@) — V'(§)6")

9’

+ ¥(9)w'8" — po A [Zo(8 + n) — Zo(8)1dh,

(5.20a)
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while its addition to (5.10) provides the appropriate
small-amplitude representation

A:

22 (Fro -2 zm)or
+ ¥'(0)w'0’. (5.20b)

In deriving these expressions we have made.use of the
fact that

—'w'

= + V-B.
290

It is important to point out that one may obtain
(5.20) through less elaborate means. A simple integra-
tion by parts, of the type performed in (5.6), on the
first term in (5.5) would result in forms identical to
(5.20) without the explicit introduction of the de-
vice B.

In deriving the analogous results under the Boussi-
nesq approximation, it turns out that there is no need
to modify A4 in any special manner in order to satisfy
(2.16); this is due to the fact that when averaging over
phase in the WKB limit, the quantity V + B vanishes.
Hence, we may simply use the transformation (3.27)-
(3.29) on (5.8) to obtain the Boussinesq representation
of the finite-amplitude pseudoenergy,

A= p,[; VY12 + (@ + &) (¥ + p7)
—W(p) ~ ¥(p)p") + V(p)wp
- [ [Zo(5+ﬁ)—Zo(7>)]dﬁ}- (5:212)

In deriving (5.21a), we have used the relation

T r -— r 1y = —_ 4
Zy(0) —> —p—Zo(p)= - & ‘1’(p)w+—g ,
6, 0, . Pr

which is obtained through the transformation of (3.24).
The corresponding small-amplitude local wave-activity
density under the Boussinesq approximation is then

w 1
= ,,,[ V|2 + (‘; ¥'(5) -3 Zb(b))(p’)z
+ \P’(Z))w’p’] . (5.21b)

This expression corresponds to those given in equations
(2.28) of Abarbanel et al. (1986) and (1.9) of Vladi-
mirov (1987).
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In appendix B it is demonstrated that the appropriate
form of the pseudoenergy flux at small amplitude in
the anelastic representation is

W)

F(x)——z a(po) uy'w ’——0\//’+u\I/'(0)w0’

+ = (0 ) ( V'(6) + uw¥'(8) — pouZO(G))

_¥ x¢;+£3x ', (5.22a)
2po
n2 p
Fey=— (¢2) 3X(P£) —wYw +w¥(8)uo
0
+ % (6)2(wa¥"(8) — powZs(8))
- 2¢_’ N+ & 6230' (5.22b)

Under the Boussinesq approximation we have the cor-
responding result

"2
Fuy=p [(\1/2)

o L o
+AVE) + 5 (o )2(—p§wp)

8,0 — uY'w ’+g gV
or

+uw¥(p)— ﬁZb(ﬁ)) - lﬁ’ax%] » (5.23a)

2
F(z) = pr[ (¢2)

+ % (0" (Wa¥"(p) = WZo(p)) — tl/’az\.b’t] .

0w —wo + w¥'(p)wp'

(5.23b)

d. Finite-amplitude local conservation law

In this section the finite-amplitude counterparts of
(5.22) and (5.23) are determined. In this endeavor it
is advantageous to perform the trichotomy

A= Al + Az +V-B
of (5.20a), where

:—V 2
T PRALAR

Ay = (& + )V + 0') — W(B) — V'(8)0)
”

+ ¥ (0)w'8' — po
0

(5.24)

[Zo(8 + 1) — Zo(8)1dn, (5.25)
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and B is given by (5.18). Considering A, first, we may
write using (5.14)

(¥
2 ( w) Vo

_ (\V v ) (wz')z,a + w')
Po
+ ¢’6($, ;)w—l) + ¢'3(0', c,m).  (5.26)
0

In (5.26) the second equality results from employing
the disturbance equation (3.25a). Terms appear in
(5.26) that do not easily transform into flux form—
namely, the last two. Any manipulation of this expres-
sion will always result in some such terms. We thus
seek identical terms of opposite sign in the correspond-
ing expression for 94,/ dt so that these terms will cancel
when the total 34/ is constructed.

The calculation of the local time derivative of 4, is
rather involved and is provided for the reader in ap-
pendix C. The result of this calculation is

04,

, A2
E‘——a(l,l/+t[/ po)

.
+§[—§ [‘I’(9+n)—\1’(5)]dn}
X 0() 0

— 3(cymo, ¥'8') + a(w; oY ) - ¢'a(¢, i"-')
Po Po
—y'a(d, c,,1r0).

Adding (5.26) and (5.27) yields

(5.27)

94

oo

i[g”'

ax " 8

+
000

(¥ +9)— ‘I’(ﬁ)]dn}

I‘p)
P

(‘Vw)w.n,

— d(cpmo, Y'0") + 3('.0,

&+ o (¢1)2
_ofete W)
( po 2 )

=-~V.F. (5.28)
As in the small-amplitude case, the arbitrary nature of
the flux is clearly evident in the expression above. Given
the manner in which each Jacobian has been written
in (5.28), a decomposition into flux form via (5.17b)
results in a flux that, at small amplitude, is identical
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to (5.22) and is therefore consistent with (2.16). The
finite-amplitude pseudoenergy flux is then

6'
Foy= (@1 + u') A, +0;‘; [+ )~ H(D)])dn

oy ’ n2
_§¢'0'*ﬁ¢'w’+6z(w+w)M
bo Po 2
¢ x¢, \p, ', (5.29a)
2
Foy=(W+w)d, — wo ~ ax(w-i-_w) (_u
Po 2
- L oY + & «W (5.29b)

2po

with A, given by (5.25). A similar calculation under
the Boussinesq approximation leads to

Foy=(a+u)4; - gfop [¥(p +p) — ¥(p)ldp

2
+gu'p = pitv'e’ + 0,05 + o) B~ pyay,
(5.30a)
F(z) = (W + WI)AZ - p,Wlﬁ' '
Wy yooo
8u(@ + o) X — o, (5.30b)

where A, is the Boussinesq counterpart to (5.25).

6. Finite-amplitude pseudomomentum conservation
laws

In this section we derive finite-amplitude wave-ac-
tivity conservation laws of the form (1.1) based on the
horizontal momentum. Implicit in this analysis is the
assumption that the disturbance Hamiltonian is in-
variant under translations in the x direction. As a result,
the most general steady-state configuration that may
be considered is the case of parallel flow, for which the
steady-state fields ¥, @, and 6 are functions of the ver-
tical coordinate z alone

a. Specific Casimir functions

In the definition of wave activity (2.13) we now sub-
stitute WM for # . Again, we require the first variation
of this quantity 6.4 to vanish so that the psecudomo-
mentum will be at least quadratic in the disturbance
fields. Imposing this condition, from (4.10) and (4.13)
we have

5->‘llu=z7=ff H—fz po(n)dn+Cn(9)]5w

+ {@C(8) + pOC'z(a)}(SB]dxdz =0. (6.1)
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The specific choices of the Casimir functions that satisfy
(6.1) are

Cn(9)=fpo(z)dz (6.2)
- [ r@a, (6.3)
where
= _ &Po
R(6) BN (6.4)
and
' (D __gi - _ g‘:’
2(0) = v po(z)dz N (6.5)
In deriving (6.3) and (6.5) we have used the definition
,_8db db
N 00 dZ

which is the square of the steady-state Brunt-Viisild
frequency. The Casimir C,(8) is then

Cy(0) = —f S(0)d8, (6.6)
where
Y
S(0) = B2 (6.7)

The right-hand sides of (6.4) and (6.7) are functions
of z, and therefore may be considered functions of 8
since z = z(0) for parallel flow.

b. Finite-amplitude wave activity

A direct substitution of (6.3) and (6.6) into the def-
inition of pseudomomentum results in the form

A = ff [(w+w) R(8 + 5)dn

6!
~ o ) S0 + n)dn]a’xdz. (6.8)
If we note that
0’ x 0’

& B)dn = £8P0 g1 3

), R(6)dn BV 6" = po S S(8)dn,
then the integrand of (6.8) may be written in the ex-
plicitly quadratic form

(6.9)

A=(o+ w’)fo [R(8 +7) — R(8)]dn

- Pon [S(8 + n) — S(8)1dn + R(B)0'w’. (6.10)
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In deriving the Boussinesq counterpart of (6.10) we
must be careful to employ the correct forms of the
specific Casimir functions. These are:

Ki(p)=pz=z=2Z(p), (6.11)
and
Y(5) = —a dzdf”)ﬁ K:(5) = - | %(5)ds,
(6.12)
where
%(p) = dzdf”). (6.13)

We have then that the local density of the finite-am-
plitude pseudomomentum in the Boussinesq approx-
imation takes the form

A4=plo0+ w’){Z(;‘) +p)—-Z(p)— 4Z(p) ,J

a5

ZG)
dp ¢
(6.14)

Apart from a factor of p,, this corresponds to the
expression (5.13) of Shepherd (1990).

- p,fo (%5 + 5) — %(3)1dp + p &

¢. Small-amplitude local wave-activity conservation law

As in section 5S¢ we may derive the small-amplitude
form of the wave activity by two methods. A Taylor
series expansion of R(6 + n) and S(6 + n) may be
substituted into (6.10) and terms of up to second order
retained, or one-half of the second variation of A may
be evaluated. The result of either of these calculations
yields the small-amplitude approximation to the wave
activity

8Po_
B N 8o N?

g Po
20,2N* dz

A= 0w’ — ( )(0 2. (6.15)
The corresponding form under the Boussinesq ap-
proximation is
2
g ,, g do
A= e =5 0,

If we now take the local time derivative of (6.15)
and eliminate local time derivatives of «’ and §' by the
linearized form of the disturbance equations (3.25),
we find

M__ 9 [gpoue ]

ot ax | BoN?
d [ &po poit d (o o'
+ — — ~” 21 2 Py
oo e () J o} 5
(6.17)

(6.16)
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This expression is ailmost in flux form already. All that
remains is the «’'d,¢' term. Now, the most natural way
to write this final term in flux form is

O _ 0 [l
Y oax 9z |p 0z Ox

“aiom (o) () )

this is, for example, the analog to the form used in
the barotropic case [ Killworth and MclIntyre 1985, Eq.
(5.17)]. A decomposition of the '3y’ term in this
manner does not, however, satisfy the group-velocity
relation (2.16). In order for the flux to be consistent
with this condition in the WKB limit, this term must
instead be written as

O _ 8 [(0 ¥ N\ ¥
“ox oz (62 po”z')(axp ‘/2)]

+ a ‘p/ 9 ‘pl 2
26x ax po'/? 3z po'’?

e 3 (dmp)
2p0 dz*  4po*\ dz Po

The only difference between these two expressions is
that in (6.18) a quantity with zero divergence has been
appended to the flux. Without the constraint imposed
by (2.16) we would have no reason to suspect that this
quantity was a necessary component of the flux.
Therefore, at small amplitude we have that the pseu-
domomentum flux is

gpoll
6, N?

_—1— _(9_ ‘pl 2_ a ,‘p/
2 |\ 8x po'’? 62,00”2

]. (6.18)

Foy = o' +

1 d%po 3 [dpo\*](¥)?
L e 3 (dro 6.19
* [200 dz*  4py? ( dZ) ] po |’ (6.192)
a %I a wl
F(z)=_(axp01/2)(62p 1/2). (619b)

The fact that (6.15) and (6.19) satisfy the group-ve-
locity relation (2.16) is demonstrated for the reader in
appendix B.

Under the Boussinesq approximation, we have the
corresponding result

= 2
_ 8 8 u do\, ,
F(x) N2 pw + 2 N2 (1 N2 )( )2
AN LAY
——== - = 2
2{(6x) (az) > (6.20a)
3 a¢la¢/
Fiy=— arviemg (6.20b)
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Again, apart from a factor of p, this is consistent with
the flux in (5.19) of Shepherd (1990).

d. Finite-amplitude local conservation law

As in the case of pseudoenergy, the derivation of the
finite-amplitude pseudomomentum flux has been in-
cluded for the reader in appendix C. The form of the
flux that reduces to (6.19) at small amplitude and is,
therefore, consistent with (2.16) is

9’ 8+n
Foy=(@+u)a+2 f [ i R(E)dE]dn
0o Jo | Vs

__l i ‘,II 2 _ —2 ¢I 2
2 ox pol/z 0z p()l/2
1 d’0. 3 [dpo\*](¥)?
[2[)0 de (dZ) } Po ], (6213)
- W 0 ¥ \(9 ¥
F(z)— WA“(axpol/z)(Epol/Z), (621b)

where R(£) is defined by (6.4) and 4 by (6.10). The
finite-amplitude flux of pseudomomentum in the
Boussinesq limit is then

Fo=(@+wd-g [ 1ZG+5)

"2 "2
—Z<p)1dp—5[(‘;ﬁ) (%%)] (6.22a)

N W
Pr

dx 9z
where Z(7) is defined by (6.11) and 4 by (6.14).

F(z) w4 — (6.22b)

7. Discussion

The anelastic and Boussinesq systems of equations
have played a prominent role in the formulation of
numerical models designed to simulate mesoscale phe-
nomena, such as deep moist convection, squall-line
life cycles, cloud dynamics, and airflow over complex
terrain. In order to derive some dynamical under-
standing of the wave-mean flow interactions that ensue
in such simulation, it is desirable to have wave-activity
conservation laws that are not tied to a WKB approx-
imation, are expressed entirely in terms of Eulerian
quantities, and generalize naturally to finite amplitude.
In this paper, such expressions have been derived for
the anelastic and Boussinesq systems in two spatial di-
mensions.

It is worth asking why one would choose to focus
on two-dimensional rather than three-dimensional
flow, since the latter is evidently more general than the
former. There are two reasons for this. First, the Ham-
iltonian formulation of three-dimensional incompres-
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sible flow appears to require the theory of constrained
Hamiltonian systems (e.g., sce Abarbanel et al. 1986,
pp. 383-384; Salmon 1988b), and this lies beyond the
scope of the representation (2.1) and the associated
theory presented in sections 2 and 4. It may neverthe-
less be possible to derive wave-activity conservation
laws directly if one knows the form of the various in-
tegral invariants, as Haynes (1988) did for the hydro-
static primitive equations, but in the absence of an
underlying Hamiltonian structure one would not seem
to be assured of success. A second, rather different rea-
son for focusing on two-dimensional flow in this paper
is that the resulting expressions, relying as they
do on the vorticity / potential-temperature representa-
tion (3.18)—note in particular the form of the integral
invariants in section 4b—are much simpler than those
that would obtain in a three-dimensional analysis.
Certainly two-dimensional modeling studies using the
anelastic or Boussinesq equations are common enough
that the present resuits should be of some intrinsic in-
terest. :

The conservation laws derived here are of the form
(1.1). For nonparallel steady basic flows, the conserved
wave activity is a form of disturbance pseudoenergy;
when the steady flow is parallel, there is in addition a
conservation law for the disturbance pseudomomen-
tum. The location of the most important results is
summarized for the reader in Table 1.

The small-amplitude forms of the wave-activity
densities and fluxes derived here are expressed solely
in terms of Eulerian variables (i.e., not in terms of
particle displacements), which makes them readily
calculable from model data. The same applies to their
finite-amplitude counterparts, with the following ca-
veat: the functions ¥(7), Zy(n), R(7n), and S(7) that
arise in the expressions will only be able to be evaluated
from Eulerian information alone if they are monotonic.
This should not be an especially onerous restriction in
practice, since when the finite-amplitude forms of the
conservation laws are employed, the basic flow is com-
pletely arbitrary, and may be chosen to guarantee
monotonicity of the functions in question. On the other
hand, given a modest amount of Lagrangian infor-

TABLE 1. Equation numbers corresponding to the various wave-
activity densities and fluxes derived in this paper.

Anelastic Boussinesq

Pseudoenergy,

finite amplitude (5.20a), (5.29) (5.21a), (5.30)
Pseudoenergy,

small amplitude (5.20b), (5.22) (5.21b), (5.23)
Pseudomomentum,

finite amplitude (6.10), (6.21) (6.14), (6.22)
Pseudomomentum,

small amplitude (6.15), (6.19) (6.16), (6.20)

SCINOCCA AND SHEPHERD 19

mation about the flow one might be able to consider
nonmonotonic functions. A discussion of this point
appears in section 5 of McIntyre and Shepherd (1987).

Another point to be made about the present results
is that the expressions involve no averaging. This high-
lights the fact that their validity is not restricted to
WKB-like conditions. It also means that even the
pseudomomentum conservation law should be useful
in conditions that are not homogeneous in the down-
stream coordinate x, where there is a nontrivial flux
F ). This is in contrast with the usual x-averaged re-
sults, for which there is essentially no distinction (at
least at small amplitude) between the vertical fluxes of
momentum and pseudomomentum in the absence of
rotation (see below). It is for problems that are inho-
mogeneous in x that the formulas derived here would
be expected to yield the most new insight.

It is important to note the connection between the
new pseudomomentum and pseudoenergy conserva-
tion laws and earlier “wave action” conservation laws
(Whitham 1965; Bretherton and Garrett 1968). The
wave action is defined under WKB conditions (i.e.,
slowly varying basic state ) for small-amplitude, mono-
chromatic wave trains, and is equal to the wave energy,
suitably averaged over phase, divided by the intrinsic
frequency ({ E)/). Under conservative conditions it
satisfies a conservation law of the form

3 ({E) (Ey \_
(L) ev(Le)-0 an
[Bretherton and Garrett 1968, Eq. (1.9)]. The exis-
tence of such a conservation law in the appropriate
small-amplitude, WKB limit was explicitly demon-
strated for stratified parallel shear flow in the Boussi-
nesq approximation by Garrett (1968), where

2
Pr i .12 1 g
E=—=|v|"+ 2
2 vl 2 N?p,
the corresponding expression for E in the anelastic case
is given by

p'% (7.2)

1 1 pog’
E=~5Wd+—pw

12
2 N2%§y? 6"

(7.3)

Under such conditions it may be easily verified that
the pseudoenergy and pseudomomentum invariants
are proportional to the wave action, having the values
Q(E)/Q and k( E)/, respectively (where k is the x
wavenumber and Q the absolute frequency, both of
which are conserved for wave trains in a steady parallel
flow).

The critical reader may well question the idealized
nature of the dynamics considered here; namely, con-
servative (unforced, inviscid) flow subject to simple
boundary conditions. One could, if desired, extend the
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conservation laws derived here to include forced dis-
sipative effects as a source-sink term on the right-hand
side of (1.1), as Haynes (1988) has shown is generally
possible. However, for essentially inviscid phenomena
such as hydrodynamical instabilities or wave breaking,
one would presumably be content with calculating
these effects as a residual. With regard to the boundary
conditions, they do not arise at all in the local form of
the conservation law (1.1); one need only consider the
boundary conditions when discussing global quantities.
Hence, one may use (1.1) as a diagnostic for problems
that are nonperiodic in x and for which the component
of F normal to the lower (or even upper) boundary
does not vanish, so that there is no global conservation
of wave activity. Indeed, the local form of the conser-
vation law provides a concise way of representing the
role of external influences on the dynamics.

We conclude by speculating about the possible uses
of the conservation laws derived here as diagnostics of
dynamical phenomena. One use is to characterize the
structure and growth mechanisms of normal-mode in-
stabilities. Whenever the dynamics of an instability is
such that wave activity is globally conserved—this will
always be the case for a local instability, but one must
be careful about boundary conditions for global insta-
bilities—it follows that a growing normal mode must
have zero total wave activity, and will therefore usually
consist of disturbance modes having opposite signs of
wave activity. This sort of viewpoint has been exploited
previously, with effect, to examine the instability of
stratified shear flows (Cairns 1979; Ripa 1990), irro-
tational water waves (MacKay and Saffman 1986), and
parallel flows in the shallow-water equations (Hayashi
and Young 1987). It has also been used by Acheson
(1976) to understand the overreflection of hydromag-
netic internal gravity waves incident on a vortex—cur-
rent sheet.

Another possible use is to quantify the drag asso-
ciated with gravity-wave breaking. For a complete un-
derstanding of the interaction of waves and mean flows
one requires a self-consistent theoretical framework
consisting of a wave-activity conservation law of the
form (1.1) together with an expression for the effect
of the waves on the mean flow. For two-dimensional,
nonrotating, stratified flow under conditions homo-
geneous in x, the x average of the x component of the
momentum equation (3.9) is well defined and leads
to the simple relation

_ 8, . 01 W

Potl, e (pou'w’) py (po 92 Ox ) , (7.4)
where now the overbar denotes the x average, and the
primes the departure therefrom. This expresses the well-
known effect of the vertical Reynolds stress divergence
to drive horizontal flows. On the other hand, using
(6.19) the x average of the small-amplitude pseudo-
momentum conservation law takes the form
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However, the second term in the final expression on
the right-hand side of (7.5) vanishes under the x av-
erage, leaving the result

oF, od
poily = — —— = —

0z o’ (7.6)
which is a concise statement of wave-mean flow in-
teraction. The use of this sort of relation in under-
standing the driving of mean flows by gravity-wave
transience and dissipation has been discussed by
Mclntyre (1973) and Grimshaw (1975), among others.
In three-dimensional problems involving rotation, the
situation is more complicated, but an analog of (7.6)
neveitheless remains [e.g., see McIntyre (1977) and
Andrews (1980)].

Unfortunately, the satisfactory situation represented
by (7.6) has not yet been extended to the most general
circumstances. For instance, when finite-amplitude ef-
fects are included, (7.4) remains as it is but the pseu-
domomentum flux F,) includes an additional term
w'd, and this breaks the connection between wave-
activity convergence and mean-flow driving. Also, even
for small-amplitude disturbances the tight relationship
of (7.6) depends upon most terms in the momentum
budget vanishing under the x average, and will therefore
break down when the problem is inhomogeneous in
x. It must be stressed that the wave-activity conser-
vation laws derived here nevertheless remain valid, and
express the torque exerted on the large-scale flow by
the waves; however, we still lack a general theory for
how that torque manifests itself in the mean-flow re-
sponse.

A final possible use of these formulas that we will
mention is the comparison of the small-amplitude with
the finite-amplitude forms of the conservation laws in
numerical simulations. This should provide a sensitive
criterion for determining whether the essential dynam-
ics of a given phenomenon is fundamentally linear or
nonlinear. In particular, in the case of an alleged nor-
mal-mode instability, one could test the hypothesis by
comparing the structure of the wave-activity flux di-
vergence pattern for the growing normal mode with
that realized in the nonlinear simulation. This sort of
analysis is used extensively in Scinocca (1991), and
will be presented in future publications.
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APPENDIX A
Jacobi’s Identity

Here we establish Jacobi’s identity (2.7) for the J
matrix (4.5), which is representative of the anelastic
system. In order to simplify the notation we shall let

0F 88 7{
f = w , &% w ’ and k= 6U

In terms of the inner product defined by (2.3), Jacobi’s
identity may be written

)
(m(f, Jg), Jk) +cyc =0,

where “cyc” denotes all cyclic permutations of the
expression. Now the first term in (A2) may be written

(5 4)-#)+((229-
(788

Because of the skew-symmetry condition (2.5), the
first and third terms in (A3) when taken together with
their cyclic permutations are identically equal to zero
(cf. Morrison 1982), so that Jacobi’s identity reduces

to
8J
((f 6U
Since the functional derivatives of f, g, and k have now

been taken care of, we may without loss of generality
take

(A1)

(A2)

) Jk) +cyc =0. (A4)

¥ o, By %_,

oU oU oU

in what follows, in which case the first term in (A4)
may be written as

0J
(7 55) =55 90 = 5 | sasaz, a0

where the subscript 1 refers to the w component while
2 refers to the 6 component. For the particular form
(4.5) of J, we may evaluate (A6) as follows:

ol Jlide-7)

(A5)

fe )
IS el
ol

=2 3(g1, 0)]dxdz

)] ]dxdz (A7)
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%(;f_)=[p 8 8), a(f Po) (fz )}

(A8)

The equality (A7) is a result of an integration by parts.
We have, then, that (A4) may be written

3(») () [of, ©
(—‘g]— Jk)+cyc ff[—aw—[a(kl’po)
+a(ﬁ o)] 1 5(')

Po Po
(e (30 OR
-ﬁﬂa4w’ﬂ+44w’m)

+ 6(6( ) kl)} + cyc]dxdz, (A9)

d(ky, 6) + cyc]dxdz

where the last equality is the result of an integration
by parts. It remains to show that the terms in the in-
tegrand of (A9) are zero. Toward this end, consider
the term multiplying w/po in (A9). Using (A8), this
term plus its cyclic permutations may be written

i (03, &), ki) + 9(3(er, ki), fi)
+ aCks, /1), g0)] + 3, g,)a(p—‘o , kl)

+d(g, k:)a( ﬁ) + a(kl,fn)a( n) . (A10)

Now the sum of the three terms in the square brackets
is zero because it satisfies Jacobi’s identity for partial
derivatives,

9(d(4, B), C) + cyc = 0. (All)
It may be easily verified, upon expansion of the Ja-
cobians, that the remaining terms in (A10) also sum
to zero.

Consider now the terms multiplying 6 in (A9). These
terms may be written:

;f? [0, 80), k) + 3B, ), k)

+ 3(8(f2, &), k1) + cyc]

+-1—[k28(8(f1,g1), 1)+f2 ( (‘ ,gl),k)
Po P
+ gza(a(ﬁ, —1“) N kl) + CYC]

Po

[a(fl,gl)a( k2)+a(ﬁ,gz)a(— k)
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+awzhw(?ﬁ)+aﬁ£n{i,h)
Po Po

1
+a(f, kl)a(_ , g.) + (A, gz)é(—l- , kl)
Po Po

+ (/2 gl)é(pi , kl) + cyC] . (A12)
0

Each of the three terms in the first set of square brackets
in (Al12), together with their respective cyclic per-
mutations, satisfies (A11). Therefore, the first two lines
of (A12) are identically equal to zero. If we cyclically
permute the indices of the explicit terms in the second
set of square brackets so that they are all in terms of
ks, fi, and g, then we have

o ) osafo ) 0

+ kza( (g,, —) f,) + cyc.
Po

An expansion of the Jacobians in the above expression
reveals that these three terms, and therefore their cyclic
permutations, sum to zero.
If we again cyclically permute the indices of the ex-
_plicit terms in the final set of square brackets so that
they are all in terms of k», f;, and g;, then (after some
cancellation) we have

Mﬁ&ﬂ%iJﬁ+6@ubﬁGnﬁ)
Po Po

1
+ a(kZafl)a(—' , gx) + cyc.
Po

It can be easily verified that these terms, and therefore
their cyclic permutations, sum to zero. We have then
that Jacobi’s identity is satisfied for J of the form (4.5)
associated with the anelastic system.

APPENDIX B
Group-Velocity Property

In this appendix we shall demonstrate that the con-
dition (2.16) is satisfied by the small-amplitude wave-
activity densities and fluxes presented for the cases of
pseudoenergy and pseudomomentum in this paper.

1. Pseudoenergy

In order to determine the dispersion relation for the
anelastic system we let

V' = po' %9 (BI)
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We have then that (3.17) may be written

U (Z) 1 ’
o= 7Y+t T Vi), (B2)
where
3 dpo 2 1 d2P0
=——3|>5 — B
while (5.15) take the form
ot _ ! 601
= —9| po!”? ',3)—6( ,9-)—5—, B4
Qo¢m b=l B8
1 _ 1 . -
0y = ——d(po'’?¢, 8) — —d(¢, 0'). (B5)
Po Po

If we assume a scale separation between the distur-
bances and the mean flow, then solutions to (B2), (B4),
and (B5) may be sought using the WKB ansatz

¢ = R{P(X, Z)e[i#“'A(X,Z)—-iQt]}’ (B6a)
=R {@(X, Z)e[iu-‘A(x,Z)—im]} , (B6b)
where
(X, Z) = u(x, z), length scale of perturbations

B length scale of steady-state flow =
(B7)
Substituting (B6) into (B2), (B4), and (BS), and re-

taining terms to zeroeth order in u results in the dis-
persion relation

(Q—- k-V)[(y(z) - k- mz)(Q — kit
— 3 dpo W
- mw[l — i Ympe dz ]) + pokd, (,00)
s 1 dpo N R
— pomdy (po)(l - 2mpo 2z ) +i . a(y, 7(2))]

1 dno
2mp0 dz

+ kN, — kmez(l +i ) =0, (B8)

where k = (k, m). In obtaining (B8) we have used
the definitions

JdA OA
(k, m) = ('&,gz"),
30
N2 = 0%@ , a€(x,z).

For basic flows that are independent of x, (B8) is purely
real and we need impose no restriction on the pertur-
bations other than u < 1. When the basic flow is non-
parallel, on the other hand, (B8 ) contains some imag-
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inary terms. Three of these terms may be eliminated
if we restrict the vertical wavenumber according to

(B9a)

This condition was discussed in section 5 and is iden-
tical to (5.19). The final imaginary term involves the
vertical derivative of y(z), and may be neglected
against ymw provided
s 147
v dz’
Insofar as the term on the right-hand side of (B9b) is
proportional to the rate at which the density scale height
varies in the vertical, the condition (B9b) is not par-
ticularly restrictive given the primary WKB ansatz u
< 1. We shall therefore neglect the imaginary terms in
(B8) from now on, bearing in mind that for nonparallel
basic flows the group-velocity relation (2.16) will only
hold under the restrictions (B9).
For notational convenience we define

(B9b)

Q=0-k-v, (B10a)

6=kd,< - mo. 2, (B10b)
Po Po

N = kN,2 — mN,2, (B10c)

v =k + m? + v(z). (B10d)

Using this notation, the dispersion relation may be
written

¥Q? = pQ + kN. (B11)

In the derivation that follows, for the general case of
nonparallel flow under the approximation (B9), it is
clear that we need not include v(z) in the definition
of ¥(z) since it is formally negligible. However, the
inclusion of this term extends the derivation to also
include the most general case of parallel flow in wh1ch
no such approximation is necessary.

The group velocity may now be easily obtained from
(B11). For this particular dispersion relation we have

o0 R . .
Cox = 2r = (pod$ + 2kN)~'[—2kQ?
+ p0d,(@ /po) Q% + (KN2 + N + poiid) + 2kaN],

(B12)
Cor = % _ (podQ + 2kN)~'[—2mQ?
om

— podx(®/po)Q2 + (—kN,2 + powd)$ + 2kwN] .
(B13)

In deriving (B12) and (B13) we have used the disper-
sion relation (B11) to eliminate ¥ from the final
forms.
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In satisfying the relation (2.16) we need to calculate
the average over phase of the disturbance fields in the
wave-activity density and flux. This average is denoted
by angle brackets. In performing these averages we have
to evaluate the term {y'y'). This is determined to be

<lplll/’>=po<¢'¢'>=%P0ﬁ{q”*q)’ =%p0|¢|2.

(Bl4a)
As a result one finds
16N :

oy = —5;35 1212, (Bl4b)

5 kN
(oY) = — (g )|<I>|2 (Bl4c)

16 N 5> kN
<0’w'> = 5 2 6 (% + W)Fblz (B14d)

In (B14) we have used the relations
=22V (®15)

0
W = - (3 Qz)‘p' (B16)
Po

which were determined from the linearized equations
in accord with (B9).

Given (B14) we may now evaluate the average over
phase of the wave activity (5.20b). This calculation
results in the expression

122

(4) = AN [92(poN,*@) + QAN.*N

+ 2poiN,*N& + N;*N?

— poii 3(® / po)N?) + 2kiiN,2N?]. (B17)

Similar averages over F,,, (5.22a), and F;,, (5.22b),
result in

<F(x)> 493 [94( —2kN. 4) + Q (P0N24a (w/PO)

- 2kzaN,4 — 2kmWwN,*) + Q2(2poiN,* + 2N,*N)
+ Q(2KkiaN,*N + 2poii *N,2N& + 2aN,2N?

— poii23.(&/ po) N?) + 2kii*N,2N?], (B18a)

2
<F(z)> 4]|V 493 [94( -2 N4)
+ Q3(—podx(® [ po)N;* — 2kmiN,* — 2m*WN.,*)
+ Q2(2p0WN40) + Q2kWN,N — 2poit *N2NG
+ poit 20x(® / po) N?) — 2kii’N2N?]. (BI8b)
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We first consider the z component of (2.16) and
evaluate

(Fy) = a(4). (B19)

If we multiply this expression by po®Q + 2kN and use
(B13), (B17), and (B18b) it is found that, after some
cancellation, (B19) reduces to

Q4(—2kmN,*N — 2pokmiiN,*%

— 2pgm*WN,*® + dpomiIN,*N&
+ 2mN,2N? — 2pomii 3,(& [ po) N?)

+ Q3(po®WN,*e? — pokdx(® /po) N:*N
— AmICAN AN — 4m*kw NN + dmkiaN,2AN?
+ 2p0%4 8x(& / po) NANé + podx(® / po) N;N?
— po?0x(@/p0)0:(®/ po)N? + pokN,2N.*%)

+ Q2(3pokWN,*N& — 2p02> NN G?
+ po’1 (& / po)N*® + 2pokii 0x(& / po) >N
+ k2N 2NN + 2pokiiN 2NN + kN, 2N,2N?
~ poki 8@/ po) Nx*N? — 2po”dWN,>N&?
= poWNN?& + po®iiw 9,(@ / po) NG )

+ QU —6pokii >N 2 N6 + 2k*WN,*N?
+ 2pokii>8.(@ / po) N? + 2k*IN2N,2N?
~ 2pokil WN,2 N — 4pokil wN,2N 2
— 2kwN,2N? + 2pokiiw 8,(& / po) N?)
~ (4k*7°N2N3 + 4k%awN,2N?)

multiplied by the common factor
|®|?
4AN*Q3 "

One can easily (but tediously) verify that each one of
the coeflicients in (B20) is identically equal to zero.
To do this, it is necessary to make use of the two iden-
tities

(B20)

~

Ny

N,?

Nx2 = —poWwd:(w/po) — poit Ix(w/po), (B22)
which are a consequence of the steady-state nature of

the background fields as expressed in (3.22).
Forming now the x counterpart to (B19) we have

(Fy) — cg(4). (B23)

Again, multiplying this expression by pe@Q + 2kN,
_and using (B12), (B17), and (B18a), it is found that,
after some cancellation, (B23) reduces to

w=- u, (B21)

Q4(—2pok*aN,*d — 2pokmWwN,*® — 2k*N,*N
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— 200°19:(&/po)N"N& — poN.*6:(& / po)N?
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+ Q2(3pokiIN,*N& + 2kN,*N?
— pokit 8,(& / po) NN? — k’N,°N
— 2p0tkN,*N& — N2N? + poii 9,(& / po) N

— poitN,*N?%®). (B24)

Once again, a liberal use of (B21) and (B22) in
(B24) demonstrates that the coefficient of each power
of Q vanishes independently. Therefore, we have the
result that the particular small-amplitude forms of 4
(5.20b) and F (5.22) for pseudoenergy indeed satisfy
the group-velocity condition (2.16).

2. Pseudomomentum

Since we are dealing with the conservation of x mo-
mentum in this case, the steady-state flow is assumed
to be parallel. As a consequence, we have the result
that, with no restriction on m (apart from u < 1), the
dispersion relation (B8) reduces to

02 = pokd,(®/p0) + k°N;>,  (B25)

where now w = 0 in the definition (B10a) of Q. The
group velocity in this case is then

Cox = (pokd(& [ po)Q + 2k*N,?)'[—2kQ?
+ pod:(&/po) 2% + (2kN. + pokitd (@ / po))Q
+ 2k*iIN,;%], (B26a)
—2m?3
@ T pokd(@ [ po) @ + 2PN

The average over phase of the wave activity (6.15) is
then

(B26b)

d|2 A
(ay = 2L (oa @ /o) + 20N (B27)

In a similar manner we have that the average over phase
of the flux (6.19) is

|2 . _ .
(Fay) = %3“ [—2k2Q3 + pokd, (& /po)O?
+ (2k23N,2 4+ pok*d(® [ po))Q + 2k3iN,?],
(B28a)
|®|? ~
(Fey) = 205 (—2kmQ3). (B28b)
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It is now a straightforward matter to show, by substi-
tution of (B26), (B27), and (B28), that (2.16) is sat-
isfied.

APPENDIX C
Local Flux Forms

In this appendix we provide the details of the cal-
culation of finite-amplitude wave-activity flux in both
the pseudoenergy and pscudomomentum cases.

1. Pseudoenergy

Here we provide a derivation of the expression (5.27)
for the local time derivative of 4,. In order to cast the
local time derivative of 4, in flux form, we first consider
the material derivative

DA2 6A2 D0 6A2 D0' OAZ Dw
Dt 90 Dt af’ Dt oo Dt
a4: D s Dpo
do' Dt dpy Dt
(a2 D0, (4o DG
a a0 0w A
_Odaf w doody | 890
0w’ poz dz dx 00 ox
04, 1 dpy 3
_%4%2 1 4P _‘1’ , (C1)
6p0 Po dz ax
where
D 9
—=—+v.V.
Dt oV
In (C1) we have used the fact that
Do Do’ Dé
—_— =)= —_— = - —
Dt Dt Dt
and
Do Dé _  dpodb g
Dt Dt po® dz ax 6,0x°
Now, in (C1) we have
Df 1 _
—=—09W, 8
o 5 WD),
Do 1
= — a P
e = 0 ),
04 - - -
6_52 = (0 + &)V +6)— V()] — 0¥ ()
— polZo(8 + 6") — Zo(B) — Z(6)6'],
Y - o
S = (@+ V(@ +0) - &V (@)

= polZo(8 + 8") — Zo(8)1,
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% = W(6 + 6") — ¥(B) — V'(6)9,
w

A,
i V(0 + 0y — ¥(),
o
= —fo [Zo(8 + ) — Zo(8)1dn.

A substitution of these expressions into (C1) results in

04,

2 —a(¢, ) {(Ww)— W(0) - V(@)

-[aa(i,i) + Lo, a)]
Po Po

— (B + ) - w)).éi%}

+ {—\I/’(E)O’[&)a(\l/’, i) + l ', 5))]
Po Po
+ ;1(; Y, 0)[—w¥"(8)0' + 9026(17)0']}

' - —
- —W¥(0)aW,0), (C2)
Po
after using
DA, 6A2
Dt at

6A2 A,
= el + —_—
ot 8(1[/, Po)

Using the steady-state balance (3.22a), the first term
in large braces on the right-hand side of (C2) may be
written

a(tl/, Az)

- Aza(¢, i) . (C3)
Po

g aa - " _ ay ey '
_B_O[Ec(q’(e-*_o) V(8) — V'(6)6")

o
+ 5 (W@ +6) \p(a))]

_i[ g ("

é)x_%o

[¥(@+m)— \I’(a)]dn] , (C4)
while the second term in large braces reduces to
(Y, cpmo) 0. (C5)

Using (C4) and (C5) to simplify (C2) then yields (5.27).
2. Pseudomomentum
In this section the finite-amplitude flux (6.21) is de-

rived from the pseudomomentum (6.10). As in the
pseudoenergy case we first write
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DA_04 D0 0400 34Da
Dt 80 Dt 99 Dt 9» Dt
34Dl | 4 Dpo
dw’' Dt dpy Dt
_(34_04\DI (o4 04\ Dd
98 80’/ Dt dw Odo' ) Dt
_ 94 (w dpody’ | g6\ 041 doody
0w \po® dz dx 69 dx] dpgpo dz Ox
(C6)
Now, in (C6) we have
Dé 1 -
==,
D o W, 8)),
DG 1 . _
D oY, w),
04 _ — _ a -
% =(w+ )[R0+ 0')— R(#)] — wR'(6)6'
— pol S(8 + 0") — S(8) — S'(8)0'],
A _ _
%; =(w+ )R+ 8)— R(6)] + R(H)ow’
— pol S(8 + 6) — S(B)1,
dA 6’ _ _
e [R(6 + 1) — R(8)]dn,
(6] 0
o
94 _ " R(@ + nydn,
Jw 0
0A4 0’ _ _
FySiai [S(8 +n) — S(0)1dn.
Po 0

Putting everything together then yields

94 A goo v _ '

—=-8l¢Y,=|-2=—| R@B+n)dn+ o —.

ot (¢ po) b ax Jo RUEFT M+ oo
(o7)

Finally, the second term on the right-hand side of (C7),
may be written

—a— —§ 8’ 6+1
32 ([ rcta

while the last term '3’ may be written in the form
(6.18); this then yields (6.21).
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