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An exact local conservation theorem for 
finite-amplitude disturbances to non-parallel shear 
flows, with remarks on Hamiltonian structure and 

on Arnol’d’s stability theorems 

By M. E. McINTYRE AND T. G. SHEPHERD 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 20 September 1985 and in revised form 15 August 1986) 

Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed 
to be steady and either (a) two-dimensional, homogeneous, and incompressible 
(rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over 
shallow topography is allowed in either case. The basic flow, as well as the 
disturbance, is assumed to be subject neither to external forcing nor to dissipative 
processes like viscosity. An exact, local ‘ wave-activity conservation theorem ’ is 
derived in which the density A and flux F are second-order ‘wave properties’ or 
‘disturbance properties’, meaning that they are O(aa) in magnitude as disturbance 
amplitude a+O, and that they are evaluable correct to O(aa) from linear theory, to 
O(aS) from second-order theory, and so on to higher orders in a. For a _ _  disturbance 
in the form of a single, slowly varying, non-stationary Rossby wavetrain, &‘/A reduces 
approximately to the Rossby-wave group velocity, where (-) is an appropriate 
averaging operator. F and A have the formal appearance of Eulerian quantities, but 
generally involve a multivalued function the correct branch of which requires a 
certain amount of Lagrangian information for its determination. It is shown that, 
in a certain sense, the construction of conservable, quasi-Eulerian wave properties 
like A is unique and that the multivaluedness is inescapable in general. The 
connection with the concepts of pseudoenergy (quasi-energy ), pseudomomentum 
(quasi-momentum), and ‘ Eliassen-Palm wave activity ’ is noted. 

The relationship of this and similar conservation theorems to dynamical funda- 
mentals and to Arnol’d’s nonlinear stability theorems is discussed in the light of recent 
advances in Hamiltonian dynamics. These show where such conservation theorems 
come from and how to construct them in other cases. An elementary proof of the 
Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, 
with explicit attention to the boundary conditions. The connection between Arnol’d’s 
second stability theorem and the suppression of shear and self-tuning resonant 
instabilities by boundary constraints is discussed, and a finite-amplitude counterpart 
to Rayleigh’s inflection-point theorem noted. 

1. Introduction 
Andrews (1983) has recently presented a local conservation theorem for small 

disturbances to a certain class of steady, non-parallel shear flows. The theorem is 
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expressed purely in terms of Eulerian quantities, and has potential application inter 
alia to the study of Rossby waves (vorticity waves) in the atmosphere and oceans. 
For instance, the flux whose divergence appears in the conservation theorem may 
be used to quantify the amount of Rossby-wave activity propagating from one place 
to another, provided that the waves have non-vanishing phase speed relative to the 
steady basic flow ; for further discussion see Plumb (1985a, b). Propagation in a highly 
inhomogeneous, moving medium is involved, so that standard concepts like energy 
flux, or group velocity and wave-action flux for slowly varying wavetrains, may fail 
to apply. 

However, Andrews’ result is restricted to disturbances of infinitesimal amplitude, 
and this may be a severe limitation in practice. For instance, atmospheric Rossby 
waves typically attain large amplitudes; indeed they may ‘break ’ in a certain sense 
which seems fundamentally significant (e.g. McIntyre & Palmer 1983, 1984, 1985) 
and which includes the breaking of waves on the boundaries of vortex patches 
previously remarked on by Deem & Zabusky (1978). Examples are shown in figure 
4 below. Recognition of the dynamical linkages associated with Rossby-wave 
propagation and breaking appears to be important for an improved understanding 
of the large-scale atmospheric circulation. As a further step towards developing the 
theoretical tools needed to quantify these ideas, this paper points out the exact, 
finite-amplitude generalization of Andrews’ result ($$ 2 4 ) ,  discusses the extent to 
which it may be regarded as an Eulerian result ($5) and sets i t  in the context of related 
theoretical work (g6 ,  7). 

The results involve the functional relation between the basic-state stream function 
Y and vorticity & which arises from the condition a(Y, &) = 0 for an inviscid, 
unforced, two-dimensional, incompressible, steady basic flow. Here a(. , .) is the 
Jacobian with respect to position in two dimensions. Some of the geophysically 
interesting generalizations (flow on a rotating sphere, quasi-geostrophic baroclinic 
flow, flow over shallow topography, etc.) are included, as in Andrews’ paper, by taking 
& to be an appropriate potential vorticity. Whenever the function Y(Q) is single- 
valued-we may speak of ‘unifunctional’ basic flows-it is found that the 
finite-amplitude conservation theorem may be expressed solely in terms of Eulerian 
quantities. But in the more general case of ‘multifunctional’ basic flows, for which 
different functions Y(Q) apply in different parts of the flow domain, Lagrangian 
information is needed in order to evaluate the conserved density and its flux for a 
finite-amplitude disturbance. The amount of Lagrangian information then required 
is discussed in $5. The need to specify Lagrangian information, in what a t  first sight 
appears to be a purely Eulerian result, is reminiscent of other cases in which general 
theorems of analytical mechanics have resisted attempts to express them in terms 
of Eulerian quantities alone, the case of Hamilton’s principle and the ‘ Lin constraint ’ 
being perhaps the best known (e.g. Penfield 1966; Bretherton 1970; Salmon 1982). 

The related theoretical work discussed in $56, 7 sets the present results in a wider 
perspective, and shows how they may be generalized to more complicated fluid 
systems. It comprises, first, the nonlinear stability theorems of Arnol’d (1965,1966~) 
and their recent extensions to other fluid systems by, among others, Holm et al. 
(1983, 1985) and Abarbanel et al. (1986) - see also the related work of Benjamin 
(1972) - and, second, the generalized Hamiltonian formulation of incompressible 
vortex dynamics in the Eulerian description (e.g. Kuznetsov & Mikhailov 1980; 
Morrison 1982; Olver 1982; Marsden & Weinstein 1983; Benjamin 1984, 1986; 
Marsden 1984; Lewis et al. 1986). The key steps towards this Eulerian Hamiltonian 
formulation were again taken by Arnol’d (19663, 1969). The resulting body of theory 
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not only clarifies where Andrews’ wave-activity conservation theorem comes from, 
and its finite-amplitude counterpart presented here, but also reveals the origin of the 
(analytically similar) finite-amplitude ‘ available potential energy ’ and ‘ generalized 
Eliassen-Palm ’ conservation theorems noted by Holliday & McIntyre (1981) and 
Killworth & McIntyre ( 1985) from elementary considerations. The latter conservation 
theorem was used to place rigorous bounds on the wave absorptivity of nonlinear 
Rossby-wave critical layers ; a finite-amplitude theorem was essential for this purpose 
since the critical layer can be regarded as a narrow region of wave breaking, in the 
sense already alluded to. 

The above-mentioned work on nonlinear stability theorems (see Holm et al. 1985 
for a comprehensive review) is noteworthy in that it offers systematic methods for 
obtaining stability results like Arnol’d’s, where they exist, using the ‘ Casimir 
invariants’ which arise in the generalized Hamiltonian theory (e.g. Schiff 1968, 
p. 209; Sudarshan & Mukunda 1974, pp. 321ff.). These methods have already led, 
for example, to some profoundly interesting answers to longstanding questions 
about the nonlinear stability of stratified shear flows (Abarbanel et al. 1984, 1986). 
Moreover, it is straightforward to extend the methods to find exact, local, quasi- 
Eulerian conservation relations, of the kind exemplified here, in many other problems 
involving finite-amplitude disturbances to stable or unstable basic flows. For instance 
the restriction to quasi-geostrophic motion assumed in Andrews’ paper can be lifted 
(although the details are complicated). The basic procedure is illustrated in $7. 

The essential ideas leading to all these conservation and stability theorems are 
contained in Arnol’d’s (1966a) paper, in which two fully nonlinear stability theorems 
are established. It is a curious fact that, until very recently, this paper seems to have 
been largely overlooked in the Western fluid-mechanical literature. The methods used 
in Arnol’d’s (1966a) paper are not to be confused with the closely related, but less 
powerful, variational method given in his earlier and more widely quoted 1965 paper, 
which by itself proves only linear stability albeit pointing clearly towards the 
finite-amplitude results (Arnol’d 1978, p. 335; Holm et al. 1985). 

2. Vorticity, potential-vorticity and wave-energy equations 
We begin by considering two-dimensional, incompressible flow ; the extensions to 

the spherical and the baroclinic quasi-geostrophic cases are straightforward and are 
given in Appendices A and B. The model system is governed by Conservation of 
potential vorticity P: 

DP 
Dt - = 0, (2.1) 

i.e. p,+a(o,p) = p t - t q , ~ ~ + ~ ~ ~ ~  = 0, 

where x and y are horizontal Cartesian coordinates, t the time, the stream function, 
and where we take 

P = VW+f(x, y). 

Classical two-dimensional, inviscid flow is included as the special case f = 0, P then 
being vorticity in the usual sense. By takingf to be a prescribed function of x and 
y we obtain one of the usual ‘ barotropic models ’ of flow in the atmosphere or oceans, 
in which f approximately represents the combined effects of variable Coriolis 
parameter and shallow topography. For remarks about more general models, see 
Appendices A and B. We may postpone a discussion of the boundary conditions until 
$6, since $92-5 are concerned only with local conservation relations. 
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Now consider a steady flow (@, P) = (Y,  Q), called the 'basic flow ', where 

Q = V2Y+f(Z,  y ) .  (2.3) 

a(Y, Q )  = 0. (2.4) 

@EY+$,  P = Q + q ,  (2.5) 

so that q = V2$, (2.6) 

(Y, Q )  is itself a solution to (2.1), so that 

Defining the disturbance ($, q) ,  depending on x, y and t ,  by 

and substituting (2.5) into (2.1), one obtains the exact equation for the disturbance 
potential vorticity , 

!7t+a(1G.,Q+a)+a(y,q) = 0 ,  (2.7) 
using (2.4). We shall also need an exact equation for the disturbance energy 

l? = tIV$l2, (2.8) 

which is an O(a2) quantity as disturbance amplitude a+O. To derive the disturbance- 
energy equation, multiply (2.7) by $ and then note that 

a 
$at = $ V2$t = v (9 V$J -5JR 

while 

and 

where u and U are the velocity fields corresponding to $ and Y respectively, namely 

$ a($, Q + !7) = a{$, (Q + q)  $1 = V.{(Q + !?I $4 
$aa(Yu,!z) = $-v-(!?v, = v*(q$v,-!7a(Yju,), 

u = ( u , v )  = (-$&) = LxV$; u= LXVY. 
Here, by definition, L x V = (-a/ay, a/ax). The result can be written in the form 

a 
-P+v.{-$v$t-qlG.(u+u,+:lG.-"L at XVQ) = qa($, Iy), (2.9) 

where the fact that 

V*{t$-"L x VQ) = -V*{@2 x V($-")) = -V-{Q$u) (2.10) 

has been used. We note that the right-hand side of (2.9) can be manipulated into the 

(with summation over repeated indices), exhibiting the appropriate form of the 
Reynolds stress source term for disturbance energy. 

If the basic-flow strain rate +(8Ui/ax, + aU,/ax,) vanishes, then the disturbance 
energy density l? becomes a conserved density, with flux given by the difference 
between the quantities within braces whose divergences appear in (2.9) and (2.11), 
viz. 

-q$( u+ u )  - $-V$ ++$-"L x VQ- (uu-tlulV) u, ( 2 . 1 2 ~ )  

where I is the two-dimensional identity tensor. In the case of zero basic-flow strain 
rate this last expression may also be written as 

a 
at 

(2.12 b)  D I?( U+ U) - $6 V$ + t$-"i x VQ 
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plus an identically non-divergent term. When the basic flow has weak shear and 
nearly constant VQ, then #is approximately conserved, and its flux as given by either 
of (2.12a, b) can be shown to have the 'group-velocity property' for a slowly varying 
train of purely progressive Rossby waves. By the group-velocity property we mean 
that the wavelength or period average of the flux (2.12) divided by the corresponding 
average of P is equal to the group velocity of the waves, to a first approximation 
in which U, VQ, and wave amplitude are assumed constant. The alternative form 
of the flux suggested by (2.10), in which -Q+u replaces !$22 x VQ, does not possess 
the group-velocity property (cf. Longuet-Higgins 1964; Pedlosky 1979,§$3.21,6.10), 
a fact which is related to the generally large magnitude of Q, and the tendency of + and I( to be nearly out of phase, in an almost-plane Rossby wave. 

3. A finite-amplitude conservation theorem 
In  order to obtain an exact conservation theorem when the basic-flow strain rate 

t (aU,/axj++Uj/ax,)  is not zero, it suffices to turn the right-hand side of (2.9) into a 
term of the form D( ) / D t .  This is done by introducing the functional dependence of 
Y on Q implied by (2.4) : 

We assume at  first that Y is a single-valued function of Q. Consider the O(a2) function 

Y =  Y(Q). (3.1) 

where Q is held constant as the integration with respect to Q is carried out. This is 
of quadratic order for small disturbance amplitude. The following two properties are 
easily established from (3.2) : 

where Y(Q) denotes the derivative of Y(Q),  and 

Also (2.1), (2.5) and (2.7) yield 

Then (3.3)-(3.5) together imply that 

which is the form required. The finite-amplitude conservation theorem then follows 
immediately from (2.9) and (3.6): 

(3.7) 

where A = @x, y, t )  +B{Q(x, y), Q @ ?  y, 0 1 7  ( 3 . 8 ~ )  

(3.8b) and F = {B(Q,  q )  -&I (U+ U) - $ ~ V $ + i + ~ 2  x VQ. 

The device (3.2) was used by Arnol'd in his little-quoted second paper on stability 
(Arnol'd 1966a) as a preliminary to proving the two nonlinear stability theorems to 

a 
at 
- A + V . F  = 0, 

a 
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be discussed in $6 below. It was rediscovered by Holliday & McIntyre (1981) in a 
different context, that of constructing a finite-amplitude available-potential-energy 
theorem for incompressible, stratified flow, and used by Killworth & McIntyre (1985) 
to derive the finite-amplitude 'generalized Eliassen-Palm ' conservation theorem 
mentioned in the Introduction, which applies to disturbances on a translationally 
invariant basic state (see (7.11) below). We shall refer to A as (the density of) 
A m 1  'd's invariant. 

The form (3.8b) of the conserved flux F is not the only one possible. For instance 
a few lines of manipulation show that we may use in place of (3.8b) the expression 

D 
A( U+ U) - $ V$ + ?&."f x VQ + @($, Y) V$ + $,h(V$*V U -  V Y'VU), ( 3 . 8 ~ )  

which is closer to (2.12b) and which is equal to (3.8b) plus the identically non- 
divergent term 2 x V($l?+#Uu). Or again, we may take the flux to be 

(3 .8d)  

which is obtained by subtracting from (3.8 b)  the identically non-divergent quantity 
2xV(!jQ$.") or by using (2.10). More generally, (3 .7)  remains true if we add the 
divergence of any vector field to A and subtract its time derivative from F. The forms 
(3.8b, c )  are preferable to (3 .8d)  for some purposes since of the three forms only the 
first two possess the group-velocity property for a slowly varying Rossby wavetrain, 
as can easily be verified. They do so, in fact, even for finite-amplitude progressive 
wavetrains, both in the infinite-plane-wave and in the zonal channel cases, for which 
the basic sinusoidal solutions are exact. In the channel case one requires VQ constant 
and transverse to the channel, U constant and along the channel, and a$/ax = 0 on 
the boundaries y = constant; the group-velocity property applies to the double 
average across the channel and over a wavelength or period. It should be cautioned 
that the averaged values of A and F both vanish if the plane or channel waves 
are stationary (Plumb 1 9 8 5 ~ ) .  The conservation theorem is still true for a steady 
disturbance to a steady basic flow, but in that case appears incapable of conveying 
information about the propagation of (free) Rossby waves. 

For unifunctional basic flows (i.e. flows such that Y(Q) is single-valued), the 
function B(Q, .), and therefore the conserved density A ,  are uniquely defined in terms 
of the properties of the basic flow, since the integral in (3.2) is then determinate. One 
may then regard the inviscid conservation theorem (3 .7)  as an Eulerian result, in the 
sense that the conserved density A and its flux F can each be evaluated at  any given 
point x and time t ,  with no explicit reference to the positions, at earlier times, of the 
fluid element now at x in the disturbed flow. For multifunctional basic flows, by 
contrast, there is no means of determining which branch or branches of Y(Q)  should 
be used in (3 .2)  unless Lagrangian information is available. In  $ 5  we discuss how (3.2) 
is then to be interpreted, and how much Lagrangian information is then required. 

It might be asked why we do not simply use the difference 

AE = t lV(Y++)l"+lV~." (3.9) 

between the densities of total energy and basic-flow energy, rather than A ,  as our 
conserved density. The difference energy AE is equally a conserved density in the 
situation considered. One reason is that in some applications - such as quantifying 
wave propagation - it is useful to have a conserved density and flux which are 
second-order 'wave properties ' or ' disturbance properties ' in the sense that they can 
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be evaluated correct to O(a2) from a solution calculated on the basis of linearized 
theory, and so on to higher orders in disturbance amplitude a. (For example, this  
is a necessary condition for the group-velocity property to hold.) B, A and I; are 
evidently wave properties in this sense, for smooth Y(Q),  whereas AE is not. To 
evaluate AE even to leading order the disturbance @ must be known correct to O(a2). 

A further reason why A can be more useful than AE is that its integral over the 
flow domain may in certain cases have definite sign for arbitrary disturbances, unlike 
the corresponding integral of AE when U 8 0. For instance inspection of (3 .2)  and 
( 3 . 8 ~ )  shows that the sign is definite when !I"(&) is positive everywhere; this is the 
basis of one of Arnol'd's two stability theorems ($6). A conservable density of definite 
sign, if such exists, may also be useful in problems of wave propagation, since its 
spatial integral can then be regarded as a straightforward measure of thc 'amount 
of wave activity'. 

I n  $7 we show that, in a certain sense, the construction of conservable wave 
properties like A is a unique construction. In the process, the relationship between 
(3 .8a)  and (3.9) is clarified, together with the origin of expressions like (3.2). 

4. The small-amplitude limit 
To connect the finite-amplitude conservation theorem (3.7) with the small- 

amplitude theorem found by Andrews (1983), consider the limit of small q appropriate 
to linearized disturbance theory, assuming that Y(Q) is smooth. Then (3 .2)  bccomes, 
correct to leading order, 

B(Q, q)  X J* !P'(Q) QdQ = i!P'(Q) (12. (4.1) 
0 

This confirms that B and therefore A are second-order disturbance properties, in the 
sense already explained. Their positive definiteness when the derivative !P'(Q) is 
positive will again be noted; in such cases B might be thought of as a kind of 
'generalized enstrophy '. (In practice it may need to be sharply distinguished from 
the ordinary enstrophy b2, since !P'(Q) can exhibit strong spatial inhomogeneity 
across naturally occurring flows, e.g. Hoskins, McIntyre & Robertson 1985 and 
references therein.) 

Note also that even if Y(Q) is multivalued, there is now no ambiguity regarding 
which branch of the function Y(Q) to choose: the value of Y(Q) on the right-hand 
side of (4.1) must evidently be taken as the value belonging to the local streamline 
of the undisturbed flow. This is meaningful in the context of linearized theory, which 
assumes inter alia that fluid particles remain close to the basic-flow streamline from 
which they originated, and have therefore not crossed between regions of the basic 
flow corresponding to different branches of !P(Q). Of course no such assumption is 
possible in the finite-amplitude case. 

In  the limit of small q, the finite-amplitude velocity field (U+u) must be replaced 
by its small-amplitude approximation U in the expression (3.8b) for the conserved 
flux I;. Following Andrews, we define the quantity 

dQ 1 A(!P)  - = - 
d Y  !P'(Q)' 

Then substitution of (4 .1)  into the linearized form of (3.8a, b )  yields 

!I2 1 2 
A x I?+-, F x  - ( q - A @ ) * U - @ - V @ ;  

2A 2A 2t 
(4.3a, 6 )  
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(3 .7)  with (4 .3a,  b) inserted is the two-dimensional equivalent of Andrews' (1983) 
small-amplitude conservation theorem. The three-dimensional, quasi-geostrophic 
version is noted in Appendix B. Alternatively, from (3 .8c) ,  

F - A U x  -$-V$+#2f Db xVQ++3($-, !P)V$+@(V$*VU-VY*VU), ( 4 . 3 ~ )  Dt 
where Db/Dt = a/at + U.V. For a slowly varying Rossby wavetrain the right-hand 
side of ( 4 . 3 ~ )  is equal to A times the intrinsic group velocity, after suitable 
averaging. 

5. Multifunctional basic flows 
How is the integral in (3 .2)  to be interpreted in the general case of a finite-amplitude 

disturbance to a multifunctional basic flow ? To take a simple example, consider a 
flow parallel to the x-axis with velocity profile 

U(y) = sinh y + E log cosh y 

&(y) = - cosh y - E tanh y 
and vorticity profile 

(takingf = 0). The resulting Y(&)-curve folds back on itself in the manner illustrated 
in figure 1 (a), which shows the case E = 0.5 (heavy curve). Figure 1 (b) depicts the 
corresponding velocity profile. The flow is multifunctional, Y( &) having two branches, 
except when 8 = 0. A more complicated example, with non-zero f,  will be noted 
shortly (figure 2 below). 

Multifunctionality implies that knowledge of the values of & and q is insufficient 
to evaluate the integral in (3 .2) .  In the case of figure 1 (a), for instance, specifying 
the values of Q and q permits two choices for each limit of integration. The ambiguity 
would be resolved if the relevant segment, ab say, of the Y(&)-curve were specified, 
where a corresponds to the lower limit of integration and b to the upper limit. How, 
then, do we choose a and b such that the conservation law (3 .7)  always holds? 

A sufficient answer is to make a fixed for an Eulerian observer and b fixed for a 
Lagrangian observer. More precisely, 

(i) the point a is chosen to be (Y, &) where (Y ,  &) are the background values at 
the current position x of a given fluid element; and 

(ii) the point 6 is chosen such that it remains fixed in the (Y, &)-plane whenever 
we follow the motion of the fluid element (so that Q + q  is constant). 

These two conditions ensure that the intermediate steps (3.3)-(3.6) in the derivation 
of (3 .7)  make mathematical sense. The appropriateness of condition (ii), in particular, 
can be seen at once from continuity considerations. In order for (3 .7)  to hold true, 
the value of B, as defined by the integral in (3 .2) ,  must have a material rate of change 
which always agrees with the right-hand side of (3 .6)  as a fluid element moves across 
the background of undisturbed streamlines, making the point a move along the 
Y(&)-curve. The point b cannot be allowed to jump discontinuously from branch to 
branch of the Y(&)-curve as the fluid element moves; the resulting jump in the value 
of B would generally contradict (3 .6) .  

Once the segment ab is specified, the value of B is unambiguously defined. In the 
case illustrated in figure 1 (a), for instance, B is equal to the vertically hatched area 
minus the horizontally hatched area. The general rule, applicable also to more 
complicated cases like that of figure 2 below, is as follows. Drop a perpendicular from 
b to the horizontal (Y = constant) line through a, meeting it at the point c say; the 
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# /  
t /  In eq. (3.2) (4 

- -2 

P 

- -4  

-6 

FIGURE 1.  (a) The function Y(&) for the velocity and vorticity profiles given by (5.1) and (5.2), 
with E = 0.5; ( b )  the corresponding basic velocity profile. The vertically hatched area in (a) repre- 
sents a positive contribution to the integral in (3.2), and the horizontally hatched area a negative 
contribution. The dmhed line in ( b )  divides the domain of the basic flow into the two parts which 
correspond to the two branches of the Y(&)-curve. The ‘colour coding’ indicates which parts of 
the velocity profile belong to which parts of the Y(&)-curve. (Note that the stream function sign 
convention is the geophysical one with U = -aY/ay, V = aY/ax.) 

value of the integral in (3.2) is taken as the area within the closed curve abcu, counting 
as positive those parts lying to the right of the relevant segment ab of the !P(&)-curve, 
and as negative those lying to the left, looking from a towards b. 

Condition (ii) tells us not only that Lagrangian information is needed in order to 
make B determinate, but also how much Lagrangian information. In the example 
of figure 1, for instance, each fluid element must be tagged with just one ‘ bit’ of 
information, namely on which of the two branches to place the point b. If we wish, 
we may think of some of the fluid as coloured red, and some green, where red denotes 
the lower branch of the !P(&)-curve and green the upper branch, as indicated in figure 
1. Then the essential requirement is to keep track of where the red and green fluid 
goes as the motion evolves, and in particular to keep track of the moving boundary 
between the two colours. Although this represents far less information than a full 
Lagrangian specification of the fluid motion, it is by no means a trivial amount. The 
pattern of red and green can get very complicated, the red and green fluid becoming 
more and more intimately intertwined, into spiral and other highly convoluted 
patterns, in the familiar way characteristic of unsteady, nonlinear, vortical disturb- 
ances (such as may be associated with breaking Rossby waves). A notation which 
explicitly recognizes what B depends on might be 

(5.3) 

although it should be cautioned that not all the ‘arguments’ are independent. The 
third argument is needed only to enforce condition (i) (and in place of !P one could 
equally well write x). The last argument, enforcing condition (ii), may be thought 
of as the colour of the undisturbed streamline from which the fluid element originated. 
It should be noted that this entails a tacit assumption (which is logically unnecessary 
but which it is often natural to make) that the disturbance is dynamically ‘realizable ’ 
in the sense that it could, in fact, have evolved from the undisturbed basic state. 

B = B(&, q, !P, colour), 
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B 

FIGURE 2. &(y), Y(u, y) and Y(&) for a more complicated multifunctional basic flow (schematic). 
Corresponding portions of each sketch are indicated by the colours. The profile of &(y) a t  top left 
is taken along the section AB through the streamline pattern shown above; the sloping line on the 
left shows &(y) in the absence of flow. Y(&) is the multivalued function shown at bottom left. The 
fact that all five colours are needed to distinguish different streamlines with the same value of & 
can be seen by considering for instance the value of Q for the tip of the yellow ‘antenna’ on the 
Y(Q)-curve. 

If the Y(Q)-curve has n branches, then we need n colours. A multifunctional, 
non-parallel basic flow requiring five colours is sketched in figure 2. This case has 
non-zerof = f(y), indicated by the sloping straight line in figure 2 (a). In the basic-flow 
streamline pattern on the right, the boundaries between regions of differing colour 
are marked by the heavy streamlines. The graph on the left shows the profile of Q 
on a line x = constant, marked AB, passing through the left-hand region of closed 
streamlines. The Y(Q)-curve is placed at bottom left in order to facilitate comparison 
of Q-values by eye. The reader is invited to colour in the basic-flow streamline pattern, 
and the Y(Q)-curve, as indicated, and to imagine what might happen to the shapes 
of the boundaries between the colours if a disturbance were introduced. Apart from 
the green and blue regions, which were put in to show some of the theoretical 
possibilities (and which would make the flow extremely unstable), this corresponds 
to a type of basic flow of potential interest in connection with theoretical ‘ wave-mean ’ 
models of large-scale atmospheric circulations, as explained for instance by Andrews 
(1983) and Plumb (1985a, b). The orange and yellow regions represent subtropical 
anticyclones. The !?‘((&)-curve at the bottom left of figure 2 is simply connected (as 
is true in most examples of practical interest), and the integral (3.2) can still be 
rendered unambiguous, therefore, in the way described above, provided only that we 
keep track of the whereabouts of all five colours so that the position of the point b 
on the Y(Q)-curve is always known for any given x. 
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We now turn to the wider theoretical background, beginning with a review of the 
related stability concepts. 

6. Stability and instability 

basic flows. Consider the integral of A over the flow domain D, 
In this section we restrict attention, as did Arnol’d (1965, 1966a), to  unifunctional 

d = JJ Adzdy = JJ (B+B(Q,q))dxdy. 
D D 

The conservation relation (3.7) implies that 

- 0  
d d  
dt 
-- 

whenever conditions at the boundary aD are such that 

faDFRds  = 0, 

where s is arclength along aD and R is the unit outward normal to aD. The exact result 
(6.2) was noted as a lemma in Arnol’d’s second stability paper (1966a), where it was 
derived by a slightly different route. 

It is clear that in unifunctional cases where !P’(Q), and therefore B, A and d,  are 
positive definite, (6.2) has implications for the finite-amplitude stability of the basic 
flow. For instance Arnol’d (1966a) used (6.2), together with the hypothesis that Y(Q) 
is positive, finite and bounded away from zero, (6.9) below, to prove a stability 
theorem applicable to disturbances of arbitrary amplitude. This is to be sharply 
distinguished from the more widely quoted result presented in Arnol’d’s earlier 
(1965) paper, the proof of which was for small amplitude only (Arnol’d 1978, p. 335; 
Holm et al. 1985). 

Arnol’d further noted that in certain circumstances d can be negative definite, 
and proved a second stability theorem in that case, likewise applicable to disturbances 
of arbitrary amplitude. As will be explained, this second theorem is related to the 
suppression of certain inviscid instabilities by boundary constraints. They include 
ordinary shear instabilities, meaning those dependent on the existence of a non- 
monotonic cross-stream Q gradient, plus at least one kind of instability which can 
operate in certain non-parallel flows with monotonic cross-stream Q gradients. The 
first clear theoretical characterizations of this latter instability appear to have been 
given independently by Charney & DeVore (1979) and by Plumb (1979), with 
adumbrations going back to papers by Matsuno & Hirota (1966) and Hirota (1967). 
It may generally be called ‘self-tuning resonant instability’, for reasons to be 
explained, and cases of it have been studied in the recent meteorological literature 
under the headings ‘topographic instability ’, ‘ orographic instability ’ and ‘ form-drag 
instability ’, in connection with hypotheses about certain low-frequency fluctuations 
of the large-scale flow in the Earth’s atmosphere. 

The boundary condition (6.3) is important to what follows, and so we digress to 
examine it a little more closely before proceeding. It is automatically satisfied, of 
course, in doubly periodic rectangles, or in infinite domains in which IF1 decreases 
more rapidly than the inverse of distance. For the less obvious case of an enclosed 
domain D at whose boundary aD the normal components of U and u vanish, we have 

_ -  a$-, onaD. 
as 
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FIQURE 3. Sketch of a hypothetical doubly connected domain D ,  showing the orientations of 
arclength and normal assumed in the text. Inviscid, steady flow around such an annular domain 
can be unstable even for monotonic cross-stream Q profiles, because of the self-tuning resonant 
instability mechanism. 

In that case (6.3) is equivalent to 

Here (2.10) has been used to show that the normal component of the term ?#i! x VQ 
appearing in the definition (3.8b, c) of F integrates to zero, leaving only the term 
involving a$,lat. Alternatively, we may use (3 .8d) .  The condition (6.5) holds true, by 
Kelvin’s circulation theorem, for the inviscid, free motions under consideration. If 
the domain D is multiply connected, as illustrated in figure 3, then the same 
consideration shows that (6.5) holds separately on each connected portion of aD. 
One can, without loss of generality, impose the stronger boundary condition 

on each connected portion of aD, redefining the basic flow if necessary so as to absorb 
into it any non-zero (and constant) disturbance boundary circulations flr.ds. In that 
case we have r r  

recalling that q = Vz+. Note that (6.6) is automatically true of any disturbance which 
is dynamically ‘realizable’ in the sense of $5,  i.e. which could have developed from 
a state of zero disturbance a t  t = - 00. It is to such disturbances that Arnol’d’s 
stability theorems apply. 

It should be carefully noted that when D is multiply connected $ need not be zero, 
nor time-independent, on each separate portion of all .  For example the self-tuning 
resonant instability, which can manifest itself in annular domain geometries such as 
that shown in figure 3, generally gives rise to a disturbance for which (6.4) and (6.6) 
are satisfied on each wall but in which, at small disturbance amplitude, there is an 
exponentially growing difference All. between the values of @ on the two walls. This 
represents a change in the mass flow around the annulus, induced by the growing 
disturbance potential-vorticity field. The associated angular momentum change, 
which is generally non-zero, is supplied through pressure forces on the wavy 
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boundary. Such angular momentum changes are to be expected from the nature of 
the self-tuning resonant instability mechanism. As Plumb (1981) explains, that 
mechanism involves the excitation of forced, stationary Rossby waves by the 
boundary (or by anything else that forces the flow to be non-axisymmetric), and a 
tuning towards resonance brought about by the wave-induced changes in the flow 
around the annulus. 

The remainder of this section discusses what can be said about stability on the basis 
of (6.2); see also Holm et al. (1985). We can distinguish at least three useful senses 
in which a unifunctional basic flow may be said to be nonlinearly stable when d is 
positive or negative definite. None of them implies that interesting disturbance 
phenomena cannot occur and have important effects (e.g. figure 4 below), but each 
restricts the growth of a wide class of disturbances. 

The first sense is simply that temporal constancy, and therefore boundedness, of 
the definite functional d can itself be regarded as a statement about nonlinear 
stability, in the practical sense that it rules out most of the growing disturbances 
considered in instability theories - for example any temporally growing disturbance 
representable as a fhite sum of terms each having a prescribed spatial form, such 
as is often assumed in weakly nonlinear theories. Linear stability (to exponentially 
growing normal-mode disturbances) is implied a fortiori. (d might appropriately be 
called a Liapunov functional, by analogy with finite-dimensional systems ; cf. Hirsch 
& Smale 1974, 59.3.) 

The second sense is that used in the general functional-analytic theory of dynamical 
systems. In that theory stability is usually taken to entail boundedness of some norm 
11 11 measuring the size of the disturbance 9. More precisely, stability in this second 
sense, often referred to as ‘nonlinear stability’ or ‘Liapunov stability’, means that 
given any number 6 > 0, there exists a number S > 0 such that 

This definition of nonlinear stcbility , whose meaning depends on the particular choice 
of norm, is natural for mathematical purposes because of the central role of normed 
vector spaces in functional-analytic theory. It is the definition with which Amol’d 
was primarily concerned. We recall that a norm must, first of all, be a metric - i.e. 
it must be non-negative, non-zero for any non-zero function $, unaffected by 
multiplying the function by -1, and must satisfy the triangle inequality 
~ ~ $ 1 + $ 2 ~ 1  < 11$111 + II$-,II. Second, it must also be homogeneous in the sense that 
llc$II = Icl11$11 for any constant c. The square root of the functional d evidently fails 
in general to qualify as a norm, or even as a metric (in contrast with the square root 
of the integral of (4.3a), the O(a2) approximation to d, which qualifies as botht). 
The only exception (at finite amplitude) is the case where Y’(Q) is constant so that 
(4.1) is exact; examples are given in (6.29) and (6.31) below. It is clear that in order 
to prove stability in the second, Liapunov sense we must construct inequalities that 
throw away some of the information contained in (6.2), thus restricting the growth 
of a given disturbance less sharply than before. 

Liapunov’s theorem guarantees that stability in the first sense implies stability in 
the second sense for finite-dimensional systems (e.g. Hirsch & Smale 1974). It is 

t Ball & Marsden (1984) give an example from elasticity theory which illustrates the dangers 
inherent in a naive use of O(a*) approximations like (4.3a) in discussions of stability in infinite- 
dimensional systems. 

18 I L X  181 
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because we are dealing with infinite-dimensional systems that we need to distinguish 
between the two senses. 

There is a third sense of stability which includes, but is stronger than, the second 
sense, and which is also relevant here albeit not often discussed. In some problems 
one not only has Liapunov stability - that is, given any B ,  some 6 can be found such 
that (6.8) holds - but one may also have that, given any 6, some B can always be 
found such that (6.8) holds. Stability in this third sense implies that the disturbance 
can always be bounded, no matter how large it may be initially (the bound going 
to zero as the initial disturbance amplitude goes to zero). An elementary example 
of stability in the second but not the third sense is the case of a particle in static 
equilibrium in a shallow potential well on a hilltop. To be stable in the third sense 
the particle would have to be contained in an infinitely deep potential well. 

Arnol'd's two theorems actually prove stability in both the second and third senses, 
as we now show. The hypothesis required by the first theorem is that the basic flow 
be unifunctional and satisfy 

Putting this together with (6.2) and ( 3 . 8 ~ )  we get the following a priori estimate for 
all t (Arnol'd 1966a, theorem 1):  

O<c<!P ' (Q)<C<m.  (6-9) 

JJ (IV11.12+c(V211.)2)dxdy < 2 6  < JJ (IV11.012+C(V211.0)2)dxdy, (6.10) 
D D 

where 1Cr0 = $t-o. Define 

1111..11+ = {JJ (lv11.12+c(v211.)2) dxdy}! 2 0. (6.11) 

Because c is positive and independent of +, and because the square root is taken, 
this qualifies as a norm. To prove stability under the hypothesis (6.9), given any B > 0 

(6.12) 
choose 

Then if I l $ o l l +  < 6, (6.10) implies that 

D 

62 = C€2/C. 

(6.13) 

This proves nonlinear stability both in the second (Liapunov) and in the third, 
stronger sense, with B given in terms of 6 by e2 = Ca2/c, and provides a bound on 
the norm of a disturbance of any initial amplitude whatever. 

We note in passing that stability in both the second and third senses holds with 
respect to the norm defined by taking C rather than c in (6.11). The proof is essentially 
the same, with a slight re-ordering of the inequalities and with e2/a2 again taking the 
value C/c. Other variants are possible. 

Now consider the negative definite case. If the basic flow is unifunctional and if 
positive constants c, C exist such that 

(6.14) 0 < c < - Y(Q) < c < m, 

then (6.10) is replaced by the a priori estimate 
r r  r r  
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(Arnol’d 1966a, theorem 2). If moreover the functional 
*.. 

(6.16) 

is negative definite, for the given domain and boundary conditions, then both the 
right- and left-hand sides of (6.15) are positive definite and we can again make 
deductions about stability (Arnol’d 1966a). Stability in both the second and third 
senses is again implied, as we show next. 

There are two points to be noted about (6.15) and (6.16) which make this case 
slightly less straightforward than the positive definite case (and which Arnol’d did 
not explain in great detail). First, in order for either SB or (6.16) to be negative 
definite, for given Y(Q), it  is necessary that the domain D be small enough, in one 
or more directions, to restrict the scale of the disturbance. In the case of (6.16) this 
can be made precise as follows. If we define the scale of the disturbance to be K ; ~  > 0, 
where 

JJ (V2W dX dY 
(6.17) 

{Km(‘)’2 J ’ s p @ I 2  dx dy ’ 

and if @ satisfies the boundary conditions (6.4) and (6.6) - here it is essential to use 
(6.6) and not (6.5) - then we have the Poincar6 inequality 

(6.18) 

where k, is a positive number whose square is the lowest non-trivial eigenvalue of 
the problem posed by the equation 

V2@+k2@ = 0 (6.19) 

in a given domain, together with the boundary conditions (6.4) and (6.6). The 
inequality (6.18) can be obtained by expanding @ and V2@ in terms of the 
eigenfunctions of the boundary-value problem just stated and then substituting 
the expansions into (6.17), after using the relation 

(6.20) 

which again depends on the boundary conditions (6.4) and (6.6). Prom (6.17) and 

JJD(V2@)zdxdY 2 k:JJDIV@lzd5dY. (6.21) 

(6.18), 

This shows that the hypothesis required to make (6.16) negative definite is just 

Ck: > 1 .  (6.22) 

The hypothesis is necessary, as well as sufficient, because equality holds in (6.21) in 
the case where @ is proportional to the lowest non-trivial eigenfunction, as can be 
seen by using (6.20) and then (6.19). For given c this makes it essential that the 
boundaries restrict the size of the domain D in at least one direction : if the boundaries 
were to recede to infinity in all directions, then k, would tend to zero. 

The second point about (6.15) and (6.16) is that, even after negative definiteness 
of (6.16) is established, stability in the second or third senses will not follow from 
a simple majorant argument like (6.13). In manipulating the inequalities we must, 
make further use of the hypothesis (6.22) and the Poincar6 inequality, (6.18) or 

18-2 
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(6.21). Following Arnol'd (1966~)  we may choose, for instance, the square root of the 
(relative) enstrophy 

11$Il- = { JJ ( V W d z d Y ) l .  2 0 (6.23) 
as the norm, and take 

6 2  = (6.24) 

D 
( c k : - l ) s 2  

Ck: ' 

which is positive by virtue of (6.22). Then, if II$,II - < 6, 

(6.25) 

where (6.21) and (6.22) have been used to yield the first inequality in the middle line, 
and (6.15) to yield the second. Again, (6.25) establishes stability in both the second 
(Liapunov) and the third sense. Note that, in contrast with the positive definite case, 
the relation (6.24) between B and 6 now depends explicitly on the domain geometry 
through k,. 

Stability in the second and third senses can also be proved with respect to the norms 

the relation between s and 6 then being sharpened to 

(6.27) 

in both cases. The proof is very similar and again makes use of (6.18) or (6.21). These 
versions of the stability theorem are significantly more powerful than (6.25) in cases 
where Cki - 1 is numerically small. 

In the special case of a parallel or axisymmetric basic flow, the disturbance problem 
is Galilean-invariant ; thus one may add a constant flow (U,, 0) of arbitrary strength 
to the basic flow without affecting the latter's stability properties. If Q(y) is 
monotonic, then Arnol'd's first theorem is valid in the limit U, sgn Qv + - ~ 0 ,  

!?"(Q)+ co, and the norm 11 Il+ in (6.13) goes to 11 1 1 -  as defined in (6.23). In  this limit, 
c and C can be taken to co in such a way that the ratio C/c + IQylmax/lQylmin in (6.13), 
giving the rigorous bound 

(6.28) 

valid for monotonic Q(y). This is a nonlinear extension of Rayleigh's ' inflection-point ' 
stability theorem, for disturbances of arbitrary magnitude. It may equally well be 
derived directly using the generalized Eliassen-Palm or ' impulse-Casimir ' invariant 
J (cf. $7) ,  using a priori estimates in the same way as here. 

We end this section with four examples. First, a simple and well-known example 
of stabilization by boundary constraints is parallel flow in a channel 
- AY/2 < y < AY/2, with profiles 

U =  (siny,O), &=-cosy. (6.29) 
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We have k, = ( x / A Y )  and can take c = C =  1, so that the ‘sandwich’ (6.14) is 
infinitely thin. Arnol’d’s second theorem implies that this flow will be nonlinearly 
stable to inviscid disturbances of any amplitude, despite the presence of an inflection 
point in the velocity profile, whenever the channel is narrow enough that 

A Y < x  (6.30) 

(cf. Arnol’d 1965, example 2, figure 2). It will be noticed that in this particular case 
(4.1) is exact. A is constant, so that ( 4 . 3 ~ )  is an exact quadratic invariant, and no 
information need be thrown away in order to express stability in terms of a norm: 
in fact both expressions in (6.26) are just (-d)i and are exact constants of the 
motion, unlike the enstrophy norm (6.23). The latter can grow, to an extent limited 
only by the looser bound (6.24). Note that €/&from (6.27) is unity whereas from (6.24) 
it may be numerically large. 

A second example of stabilization by boundary constraints is provided by the 
‘orographic ’ or self-tuning resonant instability, for instance in a channel with slightly 
wavy walls. The existence of the instability (when Y(Q) < 0, and for certain values 
of the channel width) can be demonstrated analytically following Plumb (1981). The 
analysis (omitted here) verifies what is already evident from Arnol’d’s second 
theorem, namely that this instability is also suppressed if, for given basic-flow profiles 
of both velocity and potential vorticity, the channel walls are sufficiently close 
together. The analysis also makes clear the physical reason for the suppression of the 
instability (Plumb 198l), namely that for given Y and Q the upstream phase speed 
of a Rossby wave diminishes with the channel width, so that if the channel is too 
narrow then the system will be too far from any stationary Rossby-wave resonance 
for the self-tuning mechanism to operate. 

In fact the first example, stabilization of shear instabilities in a non-wavy channel, 
can also be shown to be related to the notion of upstream Rossby-wave propagation 
in a somewhat similar way (Lighthill 1963, p. 93; Bretherton 19663; Hoskins et al. 
1985, 96b). The main difference is that the shear instability involves two or more 
counterpropagating Rossby waves, each propagating upstream so as to be able to 
be brought to rest by the local basic flow and to remain stationary relative to  the 
other. Since Y(Q) = - U / Q ,  in this case, Y(Q) < 0 implies that the propagation is 
upstream in each half of the channel, towards - z when y > 0 and towards + z when 
y < 0. The boundary constraint can reduce the intrinsic phase speed of this upstream 
propagation, destroying the ability of the two Rossby waves to keep in step and hence 
suppressing the instability. 

A third example is that of a (wavy) basic flow having a single lengthscale K;’, for 
instance 

Y =  Z a ( ~ )  exp(iK*x), (6.31) 

where the summation is over an arbitrary number of wavenumbers K with the same 
magnitude but different directions, and wheref in (2.2) is constant. Arnol’d’s second 
theorem implies stability if the disturbance @ is constrained to be of smaller scale 
than the basic flow, in the sense that 

K ~ ( @ )  > K, for all ~, (6.32) 

where K, is defined, as before, by (6.17). The Poincarh inequality (6.18) shows that 
the condition (6.32) will be satisfied whenever 

ko > KO, (6.33) 

IKI=Ko 



544 M .  E .  McIntyre and T .  G. Shepherd 

which can be forced to hold true by introducing (wavy) boundaries which lie along 
two streamlines of (6.31) and which are sufficiently close to each other. For the basic 
flow (6.31) (of which (6.29) is a special case), the ‘sandwich’ (6.14) can again be taken 
infinitely thin , with 

c = c = l / K &  

All the foregoing statements are true also in the beta-plane case (f = by+constant), 
provided that a constant zonal flow U = @/K& 0) is added to the basic flow (6.31). 
Once again, no information need be thrown away in order to express stability in terms 
of a norm, and both norms in (6.26) are exact constants of the motion. 

A fourth example is the exact Kelvin cat’s-eye solution of Stuart (1967). As 
recently pointed out by Holm et al. (1985), Arnol’d’s second theorem proves that this, 
too, is stable - provided that it is constrained by wavy boundaries sufficiently close 
to the cat’s eyes. The basic flow is like that of figure 2, except that it is unifunctional 
with f = constant and Y(Q) < 0, so that the ‘Loch Ness monster’ of figure 2(c) 
collapses to a single (logarithmic) curve extending from bottom right to top left of 
the (Q, !P)-domain. 

The scale restriction implied by the stability condition (6.33), equivalently (6.22) 
in the case of (6.31), suggests a connection with Fjerrtoft’s (1953) celebrated 
‘anti-cascade’ theorem. The theorem (e.g. Charney 1973, p. 296; Merilees & Warn 
1975) implies that in nonlinear interactions involving different scales of a two- 
dimensional, inviscid flow, the total kinetic energy and enstrophy (which are 
separately conserved) cannot be transferred either to larger scales exclusively, or to 
smaller scales exclusively. Indeed Fjrartoft’s paper goes on to deduce that a stream 
function Y proportional to the gravest spherical harmonic represents a nonlinearly 
stable flow on a sphere, in a certain sense (although his definition of disturbance 
amplitude is not, strictly speaking, a norm for the disturbance). But it should be 
cautioned that the connection between stability and the anti-cascade theorem is not 
so simple in general, because in most cases where (6.33) holds the basic flow and the 
disturbance are not orthogonal to each other in terms of either energy or enstrophy, 
so that Fjerrtoft’s arguments about energy and enstrophy transfers in infinite or 
spherical domains cannot be used directly. Rather, as already emphasized, the 
simplest results are obtained from conservable disturbance properties like A .  Another 
such disturbance property is the ‘ Eliassen-Palm ’ or ‘ impulse-Casimir ’ invariant J 
defined in (7.11) below, which leads to the generalized Rayleigh theorem (6.28). The 
usefulness of conservable disturbance properties has recently been emphasized by 
Held (1985) in a discussion of stable, linear, normal-mode disturbances to shear 
flows. 

The mathematical elegance of Arnol’d’s results should not be allowed to distract 
attention from three further points which may be significant in applications. The first 
is that there are clearly cases, of which figure 1 is an example, especially if E is small, 
which are probably stable but not provably so by Arnol’d’s method. The second is 
that nonlinear stability, in any of the senses discussed, does not necessarily provide 
a sharp constraint on quantities which may be of interest like the disturbance energy 

J =  JJ Edxdy. 
D 

For instance it has been known since the work of Kelvin (Thomson 1887) and Orr 
(1907) on ‘sheared disturbances’ that initial conditions can be chosen such that 8 
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FIGURE 4. Two examples of breaking Rossby waves, (a) on the free boundary of a vortex patch, 
from a numerical simulation by Dritschel (1986), and (b) on the stratospheric polar-night vortex 
a t  an altitude of about 30 km, from Clough et al. (1985). In (6) the quantity plotted is the 
Rossby-Ertel potential vorticity on the 850K isentropic surface. The small arrows show the 
associated velocity field. In both cases the undisturbed, axisymmetric basic flows are nonlinearly 
stable; for case (a) see Wan & Pulvirenti (1985). 

grows as large as we please for initial values (of 6) as small as we p1ease.t Since & 
itself qualifies as a norm, this illustrates the well known fact that a given flow may 
be Liapunov stable with respect to one norm, but not with respect to another. 

The third point is that stability, in any of the foregoing senses, does not rule out 
the possibility that disturbances may bring about significant irreversible changes in 
dynamical systems with an infinity of degrees of freedom, such as the fluid systems 
under consideration here. For instance, the breaking of Rossby waves propagating 
on a stable basic flow having a monotonic (potential) vorticity gradient will generally 
rearrange vorticity or potential vorticity irreversibly (e.g. Deem & Zabusky 1978; 
Stewartson 1978; Warn 6 Warn 1978; McIntyre & Palmer 1984,1985; Haynes 1985, 
1987; Killworth 6 McIntyre 1985; Juckes & McIntyre 1987). A simple case is 
illustrated in figure 4 (a) (from Dritschel1986), showing an early stage in the process. 
Fundamentally similar phenomena have recently been recognized as being important 
in large-scale, nonlinearly stable stratospheric flows, both for dynamical and for 
tracer-transport purposes (McIntyre & Palmer 1983, 1984; Grose 1984; Al-Ajmi, 
Harwood & Miles 1985 ; Clough, Grahame k O’Neill1985; Leovy et al. 1985; Butchart 
& Remsberg 1986; Dunkerton & Delisi 1986). An example from the real stratosphere, 
derived from modern satellite data, is shown in figure 4(b). 

t Further illustrations in the case of constant basic shear have recently been given by, e.g., 
Farrell (1982), Boyd (1983), and Shepherd (1985); the essential phenomenon is the ‘opening of a 
Venetian blind’ when a short-wave vorticity pattern is initially tilted against the shear of the basic 
flow. 
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7. Symmetries, conservation relations and Hamiltonian structure 
Finally, we show how the conservation relation (3.7), together with the generalized 

Eliassen-Palm and exact available-potential-energy theorems mentioned in $ 1,  are 
related to the symmetries of the problem and to the concepts of Hamiltonian 
structure and Casimir invariant. This is the basic insight which makes i t  clear how 
to construct conservation relations of the type under discussion in other, more 
complicated problems. 

As noted in $3, the difference energy AE defined by (3.9) or by 

AE = VY‘.V$++a)V11/)2 = V Y * V $ + E  

H = - Yq-‘$ 2 q  

(7.1) 

(7.2) 

AE-H = V . { ( Y + + $ ) V $ } .  (7.3) 

is conserved, and vanishes for zero disturbance. The quantity 

is yet another such conserved density, since i t  is evident from the relation q = V2$ 
that 

Furthermore, there are many such conserved densities which differ from each other 
in a less trivial sense, i.e. not simply by a divergence. This is because we can add to 
any conserved density an expression of the form 

C(Q + q )  - C ( Q ) ,  

where C( . )  is an arbitrary function, since (2.1) implies that DC(Q+q)/Dt = 0, or 
equivalently 

(7.4) 

if we use the relation V . ( U + u )  = 0. That is, the arbitrary function C(Q+q) is itself 
a conserved density, with flux (U+ u )  C(Q+q) .  Since (Y, Q )  is by definition a solution 
of (2.1), C(Q)  is also a conserved density, with flux UC(Q). 

As is well known, the conservation of total energy, and therefore of the difference 
energies AE and H ,  are related to the time invariance of the total-flow problem. By 
contrast, C(Q + q )  is an example of what is known in theoretical physics as (the density 
of) a Casimir invariant, or Casimir for short, as we shall see below. Such an invariant 
has the characteristic property of being conserved whether or not the given 
formulation of the problem, in this case the Eulerian description of vortex dynamics, 
possesses any symmetry whatever. A symmetry is, in fact, involved, but one which 
is invisible ’ in the formulation because certain generalized coordinates are ignorable, 
and have been ignored in arriving a t  the formulation. In the present case the ignored 
generalized coordinates are Lagrangian particle positions (or the equivalent 
information contained in a Clebsch-potential description, e.g. Salmon 1982, 1988). 

a 
-C(Q+q)+V. { (U+u)C(&+q) }  = 0 at 

It follows immediately from the preceding statements that, for example, 

H+ C(Q + q )  - C(Q)  (7.5) 
is a conserved density for any function C( . ) whatever. Following Holm et al. (1985), 
we might call the expression (7.5), or equally its counterpart with H replaced by 
AE, (the density of) an ‘energy-Casimir invariant’. Now there is just one choice 
of the arbitrary function C(  .)  (unique, at  least, up to an additive constant) which 
makes the expression (7.5) into a second-order wave property (cf. Arnol’d 1965). That 
choice is 

(7.6) 
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its uniqueness will be proved shortly. Not only does (7 .5)  then become a second-order 
wave property, but it is then nothing other than the density A of Arnol’d’s invariant 
defined in (3 .8a) ,  apart from the divergence of a vector wave property. Explicitly, 
substitution of (7.6) into (7.5) yields 

H+C(Q+q)-C(Q)  = A--V*~i@V$},  (7.7) 

as the reader can easily verify upon referring back to (3 .2)  and ( 3 . 8 ~ ) .  Note that 
the second term of (3.2) comes directly from the first term on the right of (7 .2) ,  
that the first term on the right of (3.2) is just C(Q+q) -C(Q) ,  and that the relation 
q = V2@ has again been used. As already emphasized, Y(Q) and therefore (7.6) need 
not be single-valued, with the consequences noted in $5.  The possibility of choosing 
C( . )  in the manner just described depends on the time symmetry of the basic state, 
since in order to be equal to the left-hand side, the right-hand side of (7.6) must be 
a function of 7 alone. 

Andrews (1983) remarks on the relation between the small-amplitude approxi- 
mation to A, (4.3a), and the concept ofpseudoenergy or, as some authors prefer to call 
it, quasi-energy. A pseudoenergy or quasi-energy may be generally defined to be a 
conservable second-order wave property, in the sense defined in $3,  whose conserva- 
tion is linked to time symmetry of some mean or basic reference flow. A is evidently 
a case in point. (It is to be sharply distinguished from energy, total or difference, 
whose conservation is linked to time symmetry of the total-flow problem and is 
indifferent to whether or not the basic flow is steady.) It is known that such 
steady-flow-related wave properties arise automatically, and in a very general way, 
in formulations where the disturbance is described by Lagrangian particle displace- 
ments about a reference state (e.g. Bretherton & Garrett 1968; Andrews & McIntyre 
1978b; Ripa 1981). The foregoing shows how they can also arise within the Eulerian 
description, subject to certain conditions, the main requirement being that Casimir 
invariants are available having enough arbitrariness to allow choices like (7.6) to be 
made. Holm et al. (1985) and Abarbanel et al. (1984,1986) give several other examples 
in the course of their interesting work on stability. The concepts of ‘stability’ and 
‘wave property’ are related by the fact that a priori estimates like (6.10) evidently 
cannot be constructed unless the conserved functional d behaves quadratically for 
small disturbance amplitude. 

It is arguable that the Lagrangian description is still involved in the construction 
of quantities like A, albeit implicitly. From the present example, together with the 
examples given in the works just cited, we may surmise that the requirement of 
sufficient arbitrariness in the available Casimirs is equivalent to requiring that the 
basic state have non-vanishing gradients of materially conserved quantities (such 
as specific entropy or potential vorticity) such that the disturbance fields carry 
the needed Lagrangian information about disturbance particle displacements (cf. 
Andrews & McIntyre 1978a, appendix C). This for instance seems to be the essential 
clue to understanding an otherwise mysterious limiting process invoked by Abarbanel 
et al. (1984, 1986) in their analysis of stratified shear instability, in which a small 
spanwise isentropic gradient of potential vorticity is introduced into what at first 
sight seems to be a spanwise-independent, two-dimensional problem. A case where 
insufficient Casimirs exist to obtain a conserved, second-order, quasi-Eulerian wave 
property is that of a three-dimensional, incompressible homogeneous fluid (Holm 
et al. 1985). 

This way of constructing conservable wave properties, exemplified by (7 .5)  and 
(7.6), need not be restricted to the case of time symmetry alone. For instance, if 
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the total-flow problem is also translationally symmetric in the x-direction, then the 
density of Kelvin's impulse ( Q + q )  y is conserved (e.g. Lamb 1932, 8 152; Batchelor 
1967, p. 529; Benjamin 1984). Defining the disturbance contribution to the impulse 
density as 

we can construct conserved ' impulse-Casimir ' densities 

(7.8) 

(7.9) 

analogous to  (7.5). Once again, this expression can be made into a second-order wave 
property by just one choice, up to an additive constant, of the function C( .), namely 

I = qy, 

I +  C(Q + q )  - C(Q)  

(7.10) 

where yo( .) represents the functional dependence of the coordinate y upon Q in an 
x-invariant basic state. As before (cf. (7.6) ff.), the symmetry property of the basic 
flow is a necessary condition for this choice to  be possible, and therefore for the 
existence of a second-order disturbance invariant; and as before yo(&) may be 
multivalued. The resulting conservable wave property, I + C(Q + q )  - C(Q)  = J ,  say, 

J(Q3q) = -J (Y,(Q+q")-Yo(Q))dq", (7.11) 

which apart from sign convention is just the density of 'EP wave activity ' appearing 
in the exact generalized Eliassen-Palm theorem noted by Killworth & McIntyre 
(1985), and used by them to place bounds on Rossby-wave critical-layer absorption. 
The foregoing shows that the 'EP wave activity' -J(Q,  q)  x +(dQ/dy)-'q2 + O(q3) 
may be regarded as (the negative of) an Eulerian pseudomomentum, or quasi- 
momentum (cf. Held 1985), as well as directly exhibiting its relation to Kelvin's 
impulse. In  the same way it  can be shown that the 'available potential energy' of' 
an incompressible, stratified fluid, for which an exact formula of the type (3.2) or 
(7.11) was found by Holliday & McIntyre (1981, equation (2.15)), is the potential- 
energy-associated contribution to a pseudoenergy or yuasi-energy for which the 
time-invariant basic state is taken to be a motionless reference state in hydrostatic 
equilibrium. Thc relevant Casimir density takes thc form of an arbitrary function of 
the fluid mass density, which is materially conserved. Y in (3.2) then represents the 
basic gravitational potential and &+q the mass density; both can vary thrcc- 
dimensionally. The corresponding compressible formula was found by Andrews 
(1981), in which case the materially conserved quantity is potential density or 
potential temperature, and the results are special cases of niore general encrgy- 
Casimir formulae found by Holm et al. (1985) and Abarbanel et ul. (1986) in their 
studies of the stability shear flows. We note that thc fluxes associatcd with these 
energy-Casimir and impulse-Casimir densities, e.g. the flux (3.86), can bc directly con- 
structed by adding the appropriate difference energy or impulse flux to  the difference 
Casimir flux (U+ u )  C(Q + q )  - UC(&) ; details are omitted for brevity. 

It remains to prove the uniqueness of (7.6) and (7.10) and to explain how the 
link between symmetries and conservation relations can be simply expressed in 
Hamiltonian form within the Eulerian description and how it  follows, in particular, 
that  C ( Q + q )  does represent the density of a Casimir invariant, as that term is 
understood in theoretical physics. 

To prove the uniqueness of (7.6) and (7.10) (up to an additive constant) we must 
prove that no other choices of the arbitrary function C( . ) would make (7.5) and (7.9) 

may be written as P 

0 
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into second-order wave properties. This will show in particular that if C( .)  is 
multivalued then the multivaluedness, together with its consequences noted in $5, 
is inescapable. We continue to regard Y and Q as fixed functions of (z, y), and define 

r r  
(7.12) 

(7.13) 

(7.14) 

regarding these expressions as functionals of q ( .  ). In  the last expression, we define 
the dependence upon the function q( .)  to be that implied by rewriting (7.2) as 

H = - Yq -&V-’q, (7.15) 

with the understanding that the boundary conditions (6.4) and (6.6) are used to make 
the inverse Laplacian unambiguous (up to an additive constant), and that q satisfies 
(6.7). These definitions will also be used in connection with the discussion of 
Hamiltonian structure. Now consider the functionals 

%+%, Y+V.  (7.16) 

If the corresponding densities H +  C(Q + q) - C(Q) and I +  C(Q + q) - C(Q)  are to be 
second-order wave properties then so must the functionals %+W and Y + W  just 
defined. But then those functionals must be O(q2) for small but otherwise arbitrary 
q. This is possible only if their functional derivatives with respect to q vanish when q 
is identically zero (cf. Arnol’d 1965) : 

(7.17 a,  b )  

Note incidentally that the use of functional derivatives, rather than ordinary partial 
derivatives, is a necessary device here : the presence of the non-local operator V-’ in 
(7.15) makes it meaningless to speak of a local derivative ‘aH/aq’ .  A sufficiently 
general definition of the operator 6/6q is given in Appendix C;  see (C 1) and (C 12). 
Inspection of (7.12)-(7.15) shows that 

and 
!E = - Y+O(q). 
4 

(7.18a, b) 

(7.19) 

Substituting these results into (7.17a, b )  we get 

- Y+Cl(Q) = 0, y+@(Q) = 0, (7.20) 

which imply (7.6) and (7.10) respectively. 
Of course (7.17 a,  b )  are only necessary conditions for the corresponding densities 

to be wave properties; e.g. ( 7 . 1 7 ~ ~ )  does not guarantee that the density (7.5) is locally 
second order. A divergence may have to be removed in general. 

We now show that the disturbance problem defined by (2.7), (6.4) and (6.6) is 
Hamiltonian, with the set XI of Eulerian disturbance (potential) vorticities q(x, y, t )  
at a given time t playing the role of the phase or state space. n i s  evidently a ‘reduced ’ 
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phase space, in that a large amount of Lagrangian information about particle 
positions is ignored; such reduction of the phase space is generally possible in the 
presence of symmetries (e.g. Abraham & Marsden 1978, p. 298; Arnol'd 1978, 
appendix 5), in this case the particle-label symmetry. The present proof follows ideas 
that are freely available in the recent literature (e.g. Arnol'd 1969; Kuznetsov & 
Mikhailov 1980; Morrison 1982; Marsden & Weinstein 1983), although not all the 
details for the case of two-dimensional vortex dynamics seem to have been put on 
record before. The proof uses the appropriate non-canonical Poisson bracket and is 
presumed to be essentially equivalent (Olver 1983, 1984) to the less direct and more 
technically difficult proof given previously by Olver (1980, 1982) in terms of the 
corresponding symplectic differential two-form. The fact that the Hamiltonian 
structure carries over to the disturbance problem has previously been pointed out 
and exploited by Benjamin (1984, $5.3). The present proof has the advantage of 
making the role of the boundary conditions explicit, particularly (6.4). An indepen- 
dent, and more general, investigation of the boundary conditions has recently been 
presented by Lewis et al. (1986). 

To demonstrate Hamiltonian structure it is sufficient to find expressions for a 
Hamiltonian functional and Poisson bracket equivalent to (2.7), and to demonstrate 
that they have the requisite properties. The functions q( . ) do not comprise a canonical 
representation of the phase space, and so the Poisson bracket (equivalently, the 
'co-symplectic two-vector') will not be in classical, canonical form. Like the Dirac 
quantum-mechanical bracket it will be a generalized Poisson bracket, recognizable, 
as will be shown, by its abstract-algebraic properties. 

The Hamiltonian functional may be taken as the difference energy JJAEdzdy 
expressed as a functional of q. Under the boundary conditions (6.4) and (6.6), and 
the restriction (6.7), this is just X(q).t  We shall need to know its functional derivative 
when q is not zero, extending (7.19). This follows from (7.15), (7.19) and the relation 

(7.21) 

which, as Benjamin (1984) points out, is proved most readily by using the symmetry 
of the operator V-2, viz. 

JJDqlV-'q2dzdY = JJDq2V-'qld2.dY9 (7.22) 

another consequence of (6.4) and (6.6), and differentiating q1 and q2 separately. Thus 

(7.23) 

The generalized Poisson bracket [. , .] for the disturbance problem (2.7) will be 
defined in the first instance to operate on pairs of functionals .F(q), Y(q) whose 
functional derivatives with respect to q satisfy the same kinematical boundary 
condition as Y and $, namely (6.4), i.e. a/& = 0 on a l l  for any function q( .). For 
convenience we call these 'admissible functionals' ; they include %(q), by (7.23). The 

t If the restrictions implied b (6.6) and (6.7) were lifted, the Hamiltonian jj AEdsdy would 
be equal to .# = .W +xYn yn +I @,, yn, where yn is the circulation u-ds around the nth connected 

S' must then be generalized to mean the collection of ( N +  1)  entities {8.@/8q, 
. . , , a A / $  N}-(e.g. Marsden & Weinstein 1983; Lewis ei al. 1986), so that the general 

variation 8 2  = j (6.#'/6q)6qdxdy+~,(aX/@,)dyn. 

portion aD, of aD (ds positive 3 with the fluid on the left). The no f ion of functional derivative of 
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kinematical boundary condition enters because the properties of the Poisson bracket 
express, inter alia, the fact that the kinematics of the system can be described in terms 
of Lie groups and Lie algebras; see, e.g., Arnol’d (1978, $40) and Marsden & Weinstein 
(1983, $2). The admissibility condition is satisfied if and only if 9 ( q )  and Y(q) are 
functionals of state in a certain sense (see Appendix C). The generalized Poisson 
bracket is defined (for such admissible functionals; cf. Lewis et al. 1986) as 

(7.24) 

As before, a(. , .) denotes the Jacobian with respect to x, y. Note that, since 

for any three functions f, g, h two of which are constant on each connected portion 
of a l l ,  we can make the corresponding cyclic permutations in (7.24) provided that 
9 ( q )  and Y(q) are both admissible. The expression (7.24) has the abstract-algebraic 
properties characteristic of all classical and quantum-mechanical Poisson brackets, 
viz. bilinearity together with 

[S, $1 = - [Y, 9 I, ( 7 . 2 6 ~ )  

[ 9Y ,  XI = [9, XI Y +9[Y, XI,  (7.26 b )  

“9,591, XI + “Y, XI, 9 1  + “K 9 1 ,  $1 = 0, (7 .26~)  

i.e. anticommutativity, the derivation property (applying to both arguments by 
(7.26a)), and satisfaction of Jacobi’s identity. Here 9 ( q ) ,  Y(q) and X(q) are any three 
admissible functionals. It can also be shown that the bracket of any two admissible 
functionals is itself an admissible functional. All these properties except the admis- 
sibility of [.,.I, and Jacobi’s identity (7 .26~)’  are obvious from the definition (7.24). 
The latter two properties are proved in Appendix C, where an extension of the class 
of admissible functionals, needed below, is also discussed. 

As Marsden & Weinstein (1983) explain, the expression (7.24) and its properties, 
including (7.26c), are formally deducible from a basic result originally proven by Lie 
for finite-dimensional systems (although the question of admissibility requires some 
attention to the boundary conditions, as already implied). The expression (7.24) can 
also be deduced directly by transformation from the canonical representation of the 
dynamics using the Lagrangian description of fluid motion (Lewis et al. 1986), in a 
manner that is straightforward apart from the treatment of the incompressibility and 
boundary constraints (discussed further in McIntyre 1987). The explicit expression 
(7.24) has previously been presented by Kuznetsov & Mikhailov (1980)’ Morrison 
(1982) and Marsden & Weinstein (1983), among others, and the essential idea can be 
traced back to Arnol’d (1969). Our contribution is merely to set on record the proof 
of (7 .26~)  given in Appendix C, using direct methods not dependent on a knowledge 
of the abstract theory. 

It remains to show that the Hamiltonian functional X and the Poisson bracket 
(7.24) are equivalent to the equation of motion (2.7), which in turn is equivalent to 
(2.1) with P = Q + q  and Q> = Y+$,  by (2.4). The result of multiplying (2.1) by 
6Y/6q, for arbitrary admissible Y, and integrating over D, is 

dY 
- = [ Y , W ,  dt 

(7.27) 
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by (7.23), (7.24) and (7.25). Conversely, we may recover (2.1) and (2.7), at any point 
(xo, yo) within aD, by taking 

in (7.27), where b( . )  is the Dirac delta function. (On the right of (7.27) we again 
use (7.25), as well as (7.24), together with 69/6q = S ( x - x o )  S(y-yo), from (C 12).) 
Thus (7.27), which is manifestly in Hamiltonian form, is equivalent to (2.7). Together 
with Appendix C this completes the proof that the disturbance problem (2.7) is 
Hamiltonian, under the boundary conditions (6.4) and (6.6). 

We can now exhibit the relation between symmetries and conservation relations 
in what is perhaps its neatest general form covering the cases of interest here. Suppose 
that the admissible functional B(q) in (7.27) is the domain integral of a conserved 
density, not depending explicitly on the time, whose net flux across the boundary 
vanishes. Then Y(q) is a constant of the motion, so that (7.27) becomes 

[Y, &'I = 0. (7.29) 

But this statement has a dual meaning, as is well known. It can equally well be read 
as saying that B generates an infinitesimal symmetry operation, i.e. an infinitesimal 
change of state 6,q under which &' is invariant (e.g. Dirac 1958, p. 115; Goldstein 
1980, $9-5; Whittaker 1937, $144; Benjamin 1984, eq. (1.4)). Thus (7.29) neatly 
expresses the fact that  symmetries and conservation relations are virtually the same 
thing. I n  the present problem, (7.24) and (7.25) show that the operator [Y, .] can be 
written, after multiplication by an  arbitrarily small number e ,  as 

- -  
where 6, q is defined by 

(7.30) 

(7.31) 

The last relation makes i t  clear that, in the present problem, the change of state 6, q 
generated by Y is nothing but the infinitesimal virtual motion of fluid elements whose 
stream function is proportional to 69/6q ,  keeping Q +q constant on particles. 

The cases Y = &' and Y = 9 are of special interest here. We see from (7.23) and 
(7.18b) that the symmetry operations generated by &' and by 9 have stream 
functions 6&'/6q and 69/6q equal to Y+ ~ and y respectively, ignoring signs. The 
corresponding virtual motions are, respectively, translation in time and translation 
in the x-direction, as expected. Note that in order for 9 to  qualify both as a constant 
of the motion and as an admissible functional of state (so that  6 9 / 6 q  = constant on 
aD) the boundary geometry as well as the rest of the problem must be translationally 
invariant, that  is to say the boundaries must be parallel to the x-axis, since 
63/6q = y. This is to be expected, since the pressure forces a t  any boundary not 
parallel to the z-axis can cause changes in the impulse 9. 

Now a Casimir invariant may be generally defined to be a functional V which is 
always annihilated by the generalized Poisson bracket (e.g. Schiff 1968, p. 209) : 

[F, W ]  = 0 for all admissible 8. (7.32) 

I n  quantum-mechanical language one says that '3 ' Poisson-commutes ', or just 
'commutes', with any (admissible) 8. The dual implications of (7.32) are, first, that  
V is a constant of the motion (since in particular we can take 8 = &'), and, second, 
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that the operation [U, .] generates zero change in any functional of state. This means 
that it cannot represent any symmetry operation that is visible in the phase space 
in which we are viewing the system. 

A closer look at how this works in our case proves instructive. In order for (7.32) 
to be true, it is necessary that the function 6,q in (7.30) should vanish identically 
when a Casimir U is substituted for $9. As can be seen at  once from (7.31), this 
requires that W / S q  be a function of Q+q alone. It follows, therefore, not only that 
the functional U(q)  defined in (7.12) is indeed a Casimir according to the definition 
(7.32), but also that all Casimirs in the present problem must have the form (7.12) 
(additive constants such as the second term, -JjC(Q) dzdy, being immaterial here). 
This in turn enables us to see directly why the symmetry operation associated with 
any Casimir '3' is invisible in the Eulerian formulation, i.e. in the phase space l7. The 
stream function 6U/6q of that symmetry operation, being a function of (Q + q) alone, 
moves fluid particles along contours of constant Q + q, keeping Q + q constant on each 
particle, and so does not change the vorticity field. 

There is one remaining technicality. Many of the problems of present interest will 
have both Q and Q+q constant on the boundary aD, making U an admissible 
functional in the sense defined above. However, this is not always the case. For 
example, one might be interested in a rotating-fluid problem in which the basic state 
is one of rest relative to a beta plane, with Q varying along aD. Then the stream 
function of the invisible symmetry operation generated by V violates the kinematical 
boundary condition (6.4). 

To include such cases we must extend the space of admissible functionals to include 
functionals of the general form (7.12); that is to say the admissible functionals are 
now considered to be those whose functional derivatives either satisfy a boundary 
condition of zero tangential derivative on aD corresponding to (6.4), or are functions 
of Q+q alone as in (7.18a), or are the result of adding the two types (in accordance 
with the elementary rules for function spaces spanned by more than one category 
of function). It is straightforward to verify that the bracket (7.24) still has all 
the required properties in this extended function space; this, also, is done in 
Appendix C. 

It can now be seen that the conservable wave properties 
r r  r r  

d =  JJ Adzdy, $ =  JJ Jdzdy  (7.33) 
D D 

generate, respectively, time and space translations (across the fixed background givcn 
by the basic flow), just as &' and 9 do. This follows immediately from the 
corresponding statements for &' and 9 together with the fact that d and 9 are 
special cases of (7.16), as we saw earlier. By (7.32), only the first term of each 
expression d = &'+U and 9 = Y + U  in (7.16) contributes to the symmetry 
operators [d, .] and [$, .], and so the symmetry operations are the same as for i# 
and 9. Together with the fact that d and $ are second-order wave properties, and 
the fact that adding U has introduced no explicit time-dependence into d and 9, 
this confirms their status as an Eulerian pseudoenergy or quasi-energy, and an 
Eulerian pseudomomentum or quasi-momentum respectively. 

We are grateful to T. B. Benjamin who first drew our attention to the explicitly 
Hamiltonian structure of the Eulerian description of vortex dynamics, to J. Pedlosky 
for raising the issue of nonlinear stability in the third sense discussed in $6  and 
to J. E. Marsden and his collaborators for showing us several of their interesting 
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J. E. Marsden, R. T. Pierrehumbert, R. Salmon and T. Warn for helpful discussions 
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Appendix A. Barotropic flow on a rotating sphere 

potential vorticity equation (2.1) takes the form 
For incompressible, two-dimensional flow on the surface of a rotating sphere, the 

with 

where A is longitude, q5 latitude, a the (constant) radius of the sphere, @ the stream 
function and f has the same significance as in (2.2). The manipulations of $82, 3 go 
through to yield the same formulae as before, (3 .7 )  and ( 3 . 8 a d ) ,  but with the 
appropriate interpretation of symbols such as V 2  and V: 

and similarly for the gradients of other scalars, where 2 and q? are the unit vectors 
in the longitudinal and latitudinal directions. ‘Sphericity ’ terms arise in the spherical 
version of ( 3 . 8 ~ )  but cancel each other. Note that when calculating D(V@)/Dt  in 
(3.8c),  care must be taken to use the correct curvilinear form of [ (V+u)*V]V$ .  

Appendix B. Baroclinic, quasi-geostrophic flow 
Here we generalize the results of $ 5 2 4  to the case of a three-dimensional, 

baroclinic, quasi-geostrophic fluid on a beta plane. The governing equation (2.1) still 
applies, but now does so at each vertical level z (where z is a log-pressure vertical 
coordinate), and P is the quasi-geostrophic potential vorticity 

here p(z) is the reference-state density stratification and N(z)  the reference-state 
buoyancy frequency (see e.g. Pedlosky 1979, $6.5). Then the steady basic flow 
satisfies (2.4) at each z, and the functions Y(Q) and B(&, .) introduced in (3.1) and 
(3.2) are functions also of z .  Following manipulations which are closely analogous to 
those of $$2, 3, we may immediately write the generalized form of the conservation 
theorem (3 .7 ) ,  namely 

(B 1) 
a 
--A +V;F = 0, 
at 
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(B 2 a )  

where 
A = ' y l V , $ 1 2 + ~ ( ~ ~ $ : + P B ( Q , Q ;  4 = p ( E + B ) ,  

say, and where (cf. (3.8b)) 

a 
F = p[B(Q, Q; z)-q$l (u+ 4 - p 4 ~ (  V2 $+($r $z 2) +@P22 x V2 &, (B 2 6 )  

or alternatively (cf. (3.8~)) 

Here V3 = (az, a,, a2), V, = (az, a,, 0) and 2 is the unit vertical vector. Note that in 
quasi-geostrophic theory, the advecting velocity field (U+u) is purely horizontal. It 
may be verified that the forms (B 2b,  d )  of the conserved flux both possess the 
group-velocity property when the notion of group velocity applies. Equation (B 2 d )  
is equal to (B 2b)  plus the identically non-divergent term 2 x V,($#+f$U.u). 

In the special case of constant N ,  one may re-scale the vertical coordinate via 
y = Nz/f,,; then (B 1) holds with V3 = (az, au, a(), and (B 2 a ,  b) are simplified to 

A =+lv3$12+PB(&,Q; 51, 

F =  p[B(Q, q ;  C)-q$l ( U + U ) - P $ % V ~  $ +@p2e x V2 &* 
a 

To take the small-amplitude limit of (B 2 a ,  b) we follow the same procedures as 
in $4. Additionally we restrict attention to a Boussinesq fluid, to facilitate direct 
comparison with Andrews (1983), whence p can be taken constant and removed 
from (B 2 ) ,  and z becomes the height coordinate. The quasi-geostrophic analogue to 
(4.3a, b) is then 

(B 3a) 

which is precisely Andrews' (1983) small-amplitude conservation theorem. The 
small-amplitude form of (B 2 4 ,  analogous to (4.3c), is 
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Recently Plumb (1985 b) has presented an alternative small-amplitude expression for 
the flux (B 3 b, c) (the flux being, of course, determinate only to within a non-divergent 
vector), which may be more useful in certain applications. 

The derivation of a linear stability criterion for the case of positive Y(Q),  following 
the variational method of Arnol’d ( 1965), was performed for quasi-geostrophic flow 
with surface potential-temperature gradients by Blumen (1968) and by Dikiy & 
Kurganskiy (1971), and further extended to include (smooth) topography by Charney 
& Flier1 (1981). Holm et al. (1985) have given the nonlinear treatment analogous to 
Arnol’d’s (1966a) first stability theorem (i.e. positive Y’(Q)) for the case of multilayer 
flow over topography, without surface potential-temperature gradients. In  the 
present, continuous case, i t  is formally a simple matter to include any surface 
potential-temperature gradients and topography within a &function potential vor- 
ticity distribution just inside the boundaries, in the manner of Bretherton (1966a) ; 
this eliminates explicit boundary terms and makes the baroclinic problem essentially 
equivalent in analytical structure to the barotropic one. (This technique is reviewed 
in Hoskins et al. (1985, $5b).) However, since the nonlinear stability conditions for 
the continuous, positive definite case have not previously been noted, we shall give 
their explicit form here. We also note a somewhat restricted theorem for the negative 
definite case. 

Returning to the non-Boussinesq form of the equations, the lower boundary 
condition is taken to be 

D 
-(0+8+Ah,) Dt = 0 at z = zl, (B 4a) 

where 0(x,  y, z )  + B(z, y, z, t )  is the deviation from a (prescribed) reference potential- 
temperature distribution OS(z ) ,  hB(x, y) is the surface topographic height, assumed 
to be much smaller than any height scale of the flow, and A = d@,/dz. We write Q + 8 
to indicate the basic flow plus disturbance, as elsewhere and recall that in quasi- 
geostrophic theory 

@ = -  0 s  fo yZ, e = - $ z .  0 s  f o  
9 9 

An upper rigid boundary may exist, in which case 

D 
Dt 
- p + e )  = o at z = z2, 

or the domain may be semi-infinite, in which case an exponentially-growing dis- 
turbance is evanescent and in particular the vertical disturbance energy flux and the 
vertical flux of Arnol’d’s invariant must vanish as z + CO, e.g. 

lim JJp($y  $$zt dxdy = 0 
Z+W 

(see Charney & Pedlosky 1963; Pedlosky 1979, $6.7; McIntyre & Weissman 1978). 
If (B 4c) can be assumed then all ‘upper-boundary ’ effects vanish, so we give the 
treatment here assuming (B 4a, b ) .  

A steady ‘basic’ flow, with 8 = q = 0, is characterized by (Y, Q )  satisfying (2.1) (or 
(2.4)) in the interior of the fluid, and by (Y ,  0) at the upper and lower boundaries 
satisfying the steady versions of (B 4a, b). This allows the treatment of surface 
potential-temperature gradients and of smooth, shallow topography. And just as a 
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functional relation exists between Y and &, namely Y = Y(Q), for each z, so we 
have 

(B 5 a )  

Y = Y,(@) at z = zz. (B 5 b )  

Y =  Y,(@+Ah,) st Z = Z,, 

Consequently we may defme functions B,(@ + Ah,, .) at z = z1 and B,(@, .) at z = z2, 
just as B(&, .) is defined in the interior according to (3.2) (at each z ) ,  only in this 
case the functional relations (B 5a,  b) are used in place of (3.1), and the functional 
argument is B rather than q. It is readily verified that, analogously to (3 .6) ,  

(B 6 a )  
D 
Dt 
--,(@+Ah,,@) = -ea($, ul) at Z = Z,, 

D 
Dt --B,(@,e) = -ea($, ul) at z = z,. 

Then integrating (B 1 )  over the domain, using (6 .4)  and (6.6) to eliminate the 
horizontal boundary terms, and (B 4a,  b) and (B 6 a ,  b) to rewrite the vertical ones, 
it follows that 

i{ dt JJj-4 dz dy dz+j[*Bl(@ +AhB, 0 )  hdyl,-,l - /1*B2(@, 6)  dzd~l,-,~} = 0. 

(B 7) 
As with B(&,q),  the sign of B, or B, in the boundary terms is the same as the sign 
of Yi(@+Ah,)  or %(@), whenever the latter are definite. Thus we may immediately 
state the extension of Arnol’d’s first stability theorem to cover the present context 
of quasi-geostrophic flow: a basic flow (Y, &, 8)  is stable if there exist constants c ,  C ,  
c l ,  C, and c,, C, such that 

0 < c < ”(Q)  < c < 00 V Z €  [z,, z,], 

0 < c, < Yi(@+Ah,)  < C, < 00 a t  z = z l ,  

0 < c2 < - !Pi(@) < C, < a at z = z2. 

(B 8 a )  

(B 8b)  

(B 8 4  and 

The stability which then follows is stability in the third, strongest sense discussed 
in $6 ,  and is with respect to the norm which is the natural quaai-geostrophic extension 
of (6.11), including boundary terms. Rather than (6.12)’ we have instead that 

The extension of Arnol’d’s second theorem in the general case is, by contrast, far 
from trivial. The difficulty is that the Poincad inequality (6.22), on which the proof 
of the second theorem depends in the two-dimensional case, fails to generalize 
straightforwardly in the presence of non-vanishing boundary terms. If, however, 
attention is restricted to the special case of homogeneous boundary conditions, 
namely 

8 = 0, i.e. $, = 0, at z = z,, z = z2 

rather than (B 4a,  b) ,  then the generalization is straightforward. Then the boundary 
integrals of (B 7 )  vanish, and Arnol’d’s second stability theorem takes the following 
form: a basic flow (Y,  &) is stable if there exist constants c and C such that 

o < c <  -”(&) < c <  00 VZ€[Z,,Z,] (B l l a )  

and ck:> 1, (B 1 1  b )  

(B 10) 
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where k, is the positive number whose square is the lowest non-trivial eigenvalue of 
the problem 

in the interior, subject to (6.4), (6.6) and (B 10). It iseasily verified that the non-trivial 
eigenvalues of this problem are indeed positive. As in $6, here (B l l b )  ensures the 
negative definiteness of the functional 

which is what is needed to make the proof of stability go through. Using the obvious 
quasi-geostrophic extensions of the disturbance norms (6.23) or (6.26) (without 
boundary terms, of course), the s-&relations (6.24) or (6.27) are again obtained. One 
can similarly extend the generalized Rayleigh theorem (6.28). 

Some of the foregoing stability results have been noted independently by Swaters 
(1986). The Hamiltonian structure of the baroclinic quasi-geostrophic problem has 
been discussed by Holm (1986). 

Appendix C. Functionals of state, Casimir functionals and Jacobi’s 
iden ti ty 

We write (2, y) = XED for brevity, and suppress reference to the t-dependence in 
q(x, t ) .  First recall that if 9 { q ( .  )} is any suitably well-behaved functional which maps 
real-valued functions q(x) into real numbers, then 6 9 / 6 q ,  the functional derivative 
of 9, is defined to be that function of x for which the change in 9 due to a small 
variation 6q in the function q is given by 

F ( q + 6 q ) - 9 ( q )  = 15 E6q(x)d2x+0(6q2) .  
D ‘9 

In  the present problem the function 6 9 / 6 q  is defined only up to an additive constant, 
since jj  6qdex = 0 under the restriction (6.7). As well as being a function of x for any 
given q ( .  ), 6 9 / 6 q  can also be considered to be a functional of q ( .  ) for any given x. 
It will be convenient to indicate both dependences explicitly by writing 

We shall also need to make use of the second functional derivative, in the general 
sense involving two independent variations 6q,(x), 6q2(x) : 

9 ( q +  6% +&?,I -9(!?+ &I,)--(!?+ a!?,) +FF(d 

As the notation is meant to suggest, the second functional derivative appearing inside 
the integral is a function of two independently chosen points x,, x, E D ,  and is also, 
of course, a functional of q( . ) for fixed x, and x,. It can be regarded as the result of 
operating with 6/6q(x,) upon the functional dependence, i.e. the {q( .)) dependence, 
of 6F{q(. )}/6q(x,), holding x, fixed. By the symmetry of the first line of (C 3) we may 
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equally well operate in the reverse order. Thus the second functional derivative has 
the symmetry property analogous to the symmetry of mixed partials in ordinary 
calculus : 

(C 4) 
6 2 w q (  * )I - * )I 

&Z(Xl) 6dx2)  - Wx,) &Ax,) ’ 
again to within an additive constant in our case. This property will be needed in the 
proof of Jacobi’s identity. 

The concept of ‘functional of state’ used in $7 is motivated and defined as follows. 
In  classical dynamics (and in connection with the classical Poisson bracket in 
particular), the state of a system is considered to be specified when the positions and 
velocities of all the material particles comprising the system are specified. Thus a 
function or functional of state means a real-valued quantity that depends on the 
same information, i.e. depends only on the positions and velocities of the material 
particles. However, in the fluid system under consideration here, any two material 
particles are physically indistinguishable, in the sense that if they are interchanged, 
without altering the velocity field, then the state of the system is not observably 
different from what it was before. With this in mind, we define a functional of state 
in the present problem to mean a real-valued quantity which depends on the velocity 
field alone.? 

It was asserted in $7 that P ( q )  is a functional of state in the foregoing sense if, 
and only if, it  is admissible in the sense defined below (7.23). That is, 9 ( q )  is a 
functional of state if, and only if, 

Here a/& (8  = arclength) operates on the x-dependence of 6 P / 6 q .  Equivalently, 9 
is a functional of state if, and only if, 

for all functions q( . ) and for any two points xl, x, on the same connected portion aD, 
of aD. (As mentioned in $7, these conditions are not necessarily satisfied by the 
Casimir functionals U(q), which are dealt with separately below.) 

The assertion may be verified as follows. To begin with, note that the expression 
on the left of (C 6), when multiplied by a small parameter 8, is equal to the first-order 
change 6 9  in S when 6q is taken as 

6q = €{(a(x-X1)-(a(x-Xz)} (C 7) 

on the right of (C 1). Here S denotes the two-dimensional Dirac delta function, and 
the expression is to be considered in the limit as xl, x, approach positions on aD,. 
The corresponding change 6u(x) in the velocity field has stream function 

6$ = €V-2(S(x-x1) --S(x-x,)}. (C 8) 

As before, the boundary conditions (6.4) and (6.6) are used to make the linear operator 
V-, uniquely defined up to an additive constant. Now consider the circulation 6y, 

t The same definition is implicit in Arnol’d’s view of two-dimensional vortex dynamics, which 
can be expressed entirely in terms of the Eulerian velocity field, with no direct reference to 
Lagrangian particle labels (e.g. Holm et al. 1985, p. 17). 
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of 6u around a closed contour enclosing x,,x, and drawn arbitrarily close to aDn. 
Stokes’ theorem and the boundary conditions (6.4) and (6.6) imply that 6yn = 0. 
Therefore the velocity-field change 6u(x) is a potential flow with vanishing circula- 
tions around all the aDn, and must therefore itself vanish identically. It follows that 
if f depends on the velocity field alone, then the change in 9, E times (C 6), must 
likewise vanish. In other words if 9 is a functional of state in the foregoing sense, 
then (C 6) must indeed hold true, and so therefore must (C 5). 

We must also demonstrate the converse, i.e. demonstrate that if 9 is not a 
functional of state then there must exist a function q( . ), and points x, x, and x2 lying 
somewhere on aD, such that (C 5) or equivalently (C 6) is violated. Now if 9 is not 
a functional of state, then there must exist (generalized) functions q ( x )  and 6q(x) such 
that the corresponding S f  defined by (C 1)  does not vanish, whereas the change in 
the velocity field, 6u(x),  induced by 6q(x), does vanish identically so that 

V-2{6q(x)}  = constant. (C 9) 

Now (C 9) implies, first, that the 6q(x) in question must be concentrated wholly on 
the boundary aD, either as point vortices in the manner exemplified by (C 7) or as 
a vortex sheet, or both. For (C 9) would certainly be contradicted if 6q(x) + 0 at any 
location away from the boundary aD. (Equivalently, a soap film or stretched elastic 
membrane cannot remain flat when a non-zero normal force is exerted on it anywhere 
away from the supporting boundaries.) Second, (C 9) implies that the vortex strength 
associated with 6q(x) must add to zero on each connected portion aD, of aD, again 
as exemplified by (C 7). For otherwise (C 9) would again be contradicted, the problem 
of inverting the Laplacian being equivalent to finding potential flow under the 
boundary condition (6.4) but this time with a non-vanishing circulation 6yn around 
a t  least one aDn, implying a non-vanishing irrotational velocity field. (In terms of 
the membrane analogy one may imagine the membrane being attached to rigid wires 
having the shape of each aD,, the wires being free to move normal to the equilibrium 
plane of the membrane in response to externally applied normal forces 6yn while 
remaining parallel to that plane. Again, the membrane evidently cannot remain flat.) 
It follows, then, that the 6q in question must be such that there is non-vanishing sheet 
or point vorticity distributed around at least one of the aDn, but also such that this 
vorticity takes both positive and negative values, so as to add to zero. But we are 
given that the corresponding 6 9  + 0. The only way in which these statements can 
be consistent with (C 1) is for the value of 6f/6q also to vary as we move around 
do,, i.e. for (C 5) to be violated on at least one of the aD,. In summary, we have 
shown that f is admissible, i.e. satisfies (C 5 ) ,  if and only if it is a functional of state 
in the sense defined above. 

We note in addition that this statement still holds if (6.6) is relaxed to constancy 
of circulation on aDn, implying (6.5), since only changes 6u in the induced velocity 
field enter the argument just given, and 6t,b still satisfies (6.6). 

Next, i t  is required to show that the Poisson bracket of any two admissible 
functionals f ( q ) ,  9 ( q )  is itself admissible, that is to say 

-(-[9,9]) a s  = 0 on aD. as 6q 

But this is an immediate corollary of what has just been said, since if 9 ( q )  and Y(q) 
depend only on the velocity field induced by q then so must [9,9]. Alternatively, 
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we may prove (C 10) directly as follows, at the same time preparing the way for 
the proof of Jacobi’s identity. Writing P(x) for &(x)+q(x), the basic-flow plus 
disturbance vorticity field, we first note from (7.24) that 

where 8 denotes the Jacobian with respect to the dummy variable 2. The first term 
on the right is the result of varying the function q( .) in the first factor of (7.24) only, 
using the rule 

for an arbitrary functionf(x). This follows from (C I ) .  The second and third terms 
on the right of (C 11) come from using (7.25) to move 6F/6q(2) and 6$9/6q(2) 
successively outside the Jacobian in (7.24), the dummy variable of integration in 
(7.241 being re-written as 2, and then applying 6/6q(x). If both 9 and $9 are 
admissible then the first term on the right of (C 11) vanishes when x lies on aD, by 
(C 5) and the properties of Jacobians. In the second and third terms we have 

and similarly for $9, by (C 4). But if x is now restricted to lie on one of the aD,, then 
(C 5), or (C 6), implies that 6F{q(. )}/6q(x) depends only on the function q( . ) and not 
on the position of the point x on aD,. It follows that the right-hand side of (C 13) 
is then a function of 2 alone, and not of x, and hence that the second term on the 
right-hand side of (C 11) is constant as required, when x varies over aD,. The third 
term is similarly constant, and so the whole expression (C 11) is constant on aD,. 
Therefore (C 10) is true. 

To prove Jacobi’s identity (7 .26~)  for three admissible functionals 5, $9 and X 
we need to substitute (C 11) into the expression 

add the result to its two cyclic permutations, and show that the sum of all three 
expressions is zero. Now the contribution from the first term on the right-hand side 
of (C 11) vanishes separately, because the Jacobian itself satisfies its own Jacobi 
identity 

a ( ( f ,g ) ,  h)+a((g,h) , f )+a((h,f) ,g)  = 0, (C 15) 

for any three functionsf@), g(x) and h(x) ,  as is easily verified. For the remaining 
contribution it is easier to rewrite (C 14) as 
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again using (7.25) and the admissibility of [9,Y]. Substitution from the last two 
terms of (C 11) shows that the remaining contribution can be written 

where the dots denote two further pairs of similar terms produced by cyclicly 
permuting 9, Y and X .  It can now be seen from (C 4) that the six terms cancel 
in pairs. 

It remains to show that both (C lo), and Jacobi’s identity (7.26c), still hold if the 
space of admissible functionals is extended to include Casimirs. Because of bilinearity , 
and the fact that all Casimirs were shown to have the form (7.12), i t  is sufficient to 
verify (C 10) and (7 .26~)  when one, two, or all three of 9, Y and X are such that 

-- - func {P(x)}, 6 9  
6!?(x) 

etc., ‘func’ denoting an ordinary function, and the others, if any, satisfy the 
admissibility condition (C 5) .  First, it  is straightforward to verify that in all three 
cases, (7.25) still holds when, say,f(x) = P(x) and g, h are selected from 69/6q,6’3/6q 
and 6X/6q. Thus cyclic permutation in (7.24) is still permissible, and it follows 
immediately that [T, Y] vanishes if either or both of 9, Y satisfy (C 18). This can also 
be seen directly by changing variables in (7.24). It follows similarly that each term 
in (7 .26~)  vanishes, in all three cases of interest. Thus both (C 10) and (7 .26~)  are 
satisfied trivially. 

A still wider extension of the class of admissible functionals is considered in the 
recent paper of Lewis et al. (1986). Their extension is important in problems where 
the boundary aD is not rigid, e.g. a free surface, in which case certain boundary- 
integral terms must be added to (7.24). 
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