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JOURNAL OF THE ATMOSPHERIC SCIENCES

A Spectral View-of Nonlinear Fluxes and Stationary-Transient
Interaction in the Atmosphere

" THEODORE G. SHEPHERD*

Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139

(Manuscript received 24 June 1986, in final form 3 November 1986)

ABSTRACT

Nonlinear spectral transfers of kinetic energy and enstrophy, and stationary-transient interaction, are studied
using global FGGE data for January 1979, It is found that the spectral transfers arise primarily from a combination,
in roughly equal measure, of pure transient and mixed stationary-transient interactions. The pure transient
interactions are associated with a transient eddy field which is approximately locally homogeneous and isotropic,
and they appear to be consistently understood within the context of two-dimensional homogeneous turbulence.
Theory based on spatial scale separation concepts suggests that the mixed interactions may be understood
physically, to a first approximation, as a process of shear-induced spectral transfer of transient enstrophy along
lines of constant zonal wavenumber. This essentially conservative enstrophy transfer generally involves highly
nonlocal stationary-transient energy conversions.

The observational analysisdemonstrates that the shear-induced transientenstrophy transfer is mainly associated
with intermediate-scale (zonal wavenumber m > 3) transients and is primarily to smaller (meridional) scales,
so that the transient flow acts as a source of stationary energy. In quantitative terms, this transient-eddy rectification
corresponds to a forcing timescale in the stationary energy budget which is of the same order of magnitude as
most estimates of the damping timescale in simple stationary-wave models (5 to 15 days). Moreover, the nonlinear
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interactions involved are highly nonlocal and cover a wide range of transient scales of motion.

1. Introduction

Synoptic-scale transient disturbances have long been
recognized as a crucial ingredient in the circulation of
the extratropical troposphere. It is also accepted (e.g.
Lorenz, 1967, Hoskins, 1983) that any theoretical
framework for understanding the behavior of these
features must inevitably come to terms with their strong
nonlinearity and apparently random evolution. For this

reason, a natural mathematical idealization of the

transient synoptic-scale atmospheric flow has been to
treat it as a field of two-dimensional homogeneous iso-
tropic turbulence.

The well-known property of two-dimensional tur-
bulence which distinguishes it from three-dimensional
(homogeneous) turbulence is the former’s inability to
cascade kinetic energy to small scales of motion (Tay-
lor, 1917; Lee, 1951), a feature which is due physically

" to the absence of the vortex stretching mechanism, and
which is reflected mathematically in the fact that two-
dimensional inviscid flow possesses the quadratic in-
variant of domain-integrated enstrophy (V%) as well
as that of integrated kinetic energy 4|Vy/|? ( being the
streamfunction). These two conservation constraints,
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Theoretical Physics, University of Cambridge, Silver Street, Cam-
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together with a statistical assumption giving an “arrow
of time”—such as the broadening of spectral lines
(Batchelor, 1953, p. 186), or more generally the increase
of a suitable measure of entropy (Carnevale, 1982)—
imply net nonlinear spectral transfers of energy to larger
scales, and of enstrophy to smaller scales (Fjortoft,
1953). These features are indeed qualitatively in accord
with atmospheric observations (e.g., Chen and Wiin-
Nielsen, 1978; Boer and Shepherd, 1983).

‘The fact that the large-scale tropospheric flow ap-
pears to behave quasi-two-dimensionally is perhaps not
too surprising, given the large ratio of horizontal to
vertical length scales involved. But the reasons are
probably rather more subtle (Charney, 1971) and in-
volve the fact that the extratropical flow tends to be in
a state of near geostrophy. Within a framework of
stratified quasi-geostrophic turbulence theory (Rhines,
1977, 1979; Salmon, 1980, 1982; Haidvogel and Held,
1980; Herring, 1980; Hoyer and Sadourny, 1982), it
can be argued that the (equivalent) barotropic com-
ponent of atmospheric transient motion may be treated
as two-dimensional turbulence forced at the scale of
the first internal Rossby radius of deformation—with
the forcing arising physically from the process of baro-
clinic instability. '

Other idealized aspects of the two-dimensional the-
ory have been critically studied: effects of Rossby-wave,
propagation (Rhines, 1975; Holloway and Hender-
shott, 1977) and of more general anisotropy (Herring,



15 APRIL 1987

1975), of topography (Bretherton and Haidvogel, 1976;
Herring, 1977; Rhines, 1977; Holloway, 1978), and of
weak horizontal divergence (Holloway, 1983; Farge and
Sadourny, 1986), have been introduced in the context
of planar geometry. Effects of spherical geometry have
also been examined (Tang and Orszag, 1978; Basdevant
et al., 1981; Boer, 1983).

All these studies, however, have retained the crucial
simplifying assumption of horizontal spatial homo-
geneity, and it is clear that in the atmospheric context
this assumption is highly problematical. Moreover, one
can only expect turbulence theory to be relevant—if
it is relevant at all—to motions which are “free” in the
sense of Lorenz (1979), and which are “mixing” in the
dynamical systems sense (e.g., see Salmon, 1982; or in
a more general context Prigogine, 1980, pp. 33 ff.), for
otherwise the statistical assumptions required to predict
cascade directions become untenable. (The assump-
tions can indeed fail to hold: for example, two-dimen-
sional flow on a beta-plane is provably non-ergodic—
and therefore non-mixing—for sufficiently small wave
steepness (Shepherd, 1987a).) These conditions would
suggest that homogeneous turbulence theory should
not be applied to quasi-stationary flows forced by to-
pography and heating, for example (perhaps to state
the obvious).

Yet the observational studies cited above do lump
together all resolved atmospheric motions, irrespective
of their dynamical origin and despite their patent in-
homogeneity, and still find qualitative agreement with
homogeneous turbulence theory. One is naturally led
to ask why this is so; this paper attempts to explore
precisely that question. It turns out (section 2) that the
observed spectral transfers are dominated by two dy-
namically distinct components. The first is that due to
nonlinear self-interactions within the transient flow,
and the nature of this part of the spectral dynamics
does seem to be attributabie, in a gross sense, to two-
dimensional homogeneous turbulence. But the second
component—which accounts for about haif of the
maximum spectral fluxes of kinetic energy and of en-
strophy and which indeed dominates the pure transient
fluxes at the largest scales of motion—arises from cou-
pled interactions between the stationary and transient
parts of the flow, and cannot be sensibly understood
within the context of classical (homogeneous) two-di-
mensional turbulence theory.

Not to put too fine a point on it, one cannot even
consider a stationary flow within the context of ho-
mogeneous two-dimensional turbulence; such theory
makes statements only about the statistical behavior
of the flow over timescales longer than the nonlinear
mixing timescale (where mixing is used in the dynam-
ical systems sense referred to earlier), for which the
time-mean flow must vanish. Homogeneous theory can
therefore say nothing about stationary-transient inter-
action. The reason why an investigation of stationary-
transient interaction may be physically meaningful for
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the atmosphere is that, unlike the (weak) time-mean
flow one would obtain from a low-pass filter of two-
dimensional homogeneous turbulence, the time-mean
atmospheric flow does not disappear as the averaging
period is lengthened. This is because of the importance
of forcing and dissipation, and suggests that the large-
scale atmospheric flow is essentially “non-mixing”.
An important clue for understanding the nature of
these mixed stationary-transient interactions comes
from the study of Boer and Shepherd (1983; hereafter
B&S), who showed that one may consider the transient
flow as being embedded within a larger scale, essentially
zonal, stationary flow. It is argued here that this sep-
aration in scale, although modest, is nevertheless of
great significance, as it allows a rather simple spectral
interpretation of the mixed interactions (section 3).
Specifically, the interactions may be characterized, to
a first approximation, as a shear-induced spectral
transfer of transient enstrophy along lines of constant
zonal wavenumber, the transfer arising from the shear-
ing of transient vorticity by the stationary flow. In this
transfer transient energy is generally not conserved, and
there is a net stationary-transient energy conversion.
Indeed, analysis of the spectral observations along
the lines suggested by the theory (section 4) provides
a determination of the nature and extent of stationary-
transient interaction. It is found—at least for the FGGE
observing period of January 1979—that the transients
act, in the main, so as 1o strengthen the stationary flow,
and that this “forcing’ operates on a timescale com-
parable to presumed viscous timescales (5 to 15 days).
Moreover the interactions responsible for this forcing
of the stationary flow are highly nonlocal, and they
involve a wide range of transient scales. These findings
have serious implications for the modeling of low-fre-
quency variability in the atmosphere (section 5).

o

2. Observations I: Spectra and nonlinear transfers

a. Observational data and diagnostic representation

The global dataset used is essentially that described
in B&S, and covers the special FGGE observing period
of January 1979 with samples taken twice daily. The
spectra were computed from the NMC FGGE-IlIa da-
taset (resolving two-dimensional wavenumbers #n < 32),
while the transfer terms were computed from the more
recently available ECMWF FGGE-IlIb dataset (re-
solving n < 40). [It is known that the various FGGE
datasets can give quantitatively differing results, es-
pecially at high wavenumbers and for sensitive quan-
tities such as the nonlinear transfers (Kung and Tanaka,
1983); but it is only the qualitative features which are
of interest here, and these seem to be fairly robust (e.g.,
Holopainen and Fortelius, 1987).] As in B&S, kinetic
energy and enstrophy spectra and nonlinear transfer
terms are produced on each pressure level for each
wavenumber (z, m), with » the total spherical harmonic
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index (analogous to = (k? + /%) in planar geometry),

" m the zonal wavenumber, and (n — m) the meridional
wavenumber. Then the various diagnostics are verti-
cally integrated over the 12 pressure levels from 1000
to 50 mb, although this will not be shown explicitly in
the formulae below. The resulting diagnostics are not
the “barotropic” contributions to the various terms, to
be sure, but such a projection is problematical (e.g.,
seec Baer, 1981); the approach adopted here and in B&S
seems to be optimal, if imperfect, although Baer’s study
suggests (as indeed does Blackmon et al., 1979) that
most of the atmospheric kinetic energy does in fact
reside in (equivalent) barotropic motion.

The flow may be decomposed into “stationary’’ and
“transient” components, with stationary. representing
a monthly mean and transient the fluctuations with
periods between one day and one month. The latter
certainly includes the important band-pass range char-
acteristic of synoptic-scale eddies (e.g., Lau, 1978). On

the other hand, low-frequency motions contribute to -

both components. The energy contribution may then
be written as

E(n,m)= Es(n,m)+ Er(n, m)
1 - 1 S
=32t D"+ 22t DR, (1)

with the overbar representing the time average, and
the prime the deviation therefrom. Here a is the radius
of the earth, and ¢, is the spherical harmonic coeffi-

- cient of the streamfunction field for a given pressure
level.

Furthermore, the contribution to the energy from
meridional and zonal components of motion may be
distinguished by defining these respectively (Tang and
Orszag, 1978) as

Ey(n, m)

P (2n + 1)y, (2a)

En,m) =55 200+ D)= @n+ DI} 7T. (2b)

It should be noted that these definitions differ from
those adopted by Baer (1972). For a discussion of the
differences, see Tang and Orszag or B&S. -

If the flow is homogeneous and isotropic, then
ly,™? is independent of 7 and E(n, m) is a function
of n alone (Boer, 1983). (Here the time average is
deemed to replace an ensemble average.) A simple two-
point measure of the degree of anisotropy is obtained
by comparing the meridional and zonal components
of energy (2) summed over m at fixed n, namely

Exn)= 2 Exn,m). (3)

m=—n

E¢(n)= Z E¢(ns m)’

m=—n

When Ey(n) > E,(n) the flow is “meridionally aniso-
tropic”, meaning that meridional motions dominate
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- zonal ones at that scale; and when Ey(n) < Ex(n) the

flow is instead “zonally anisotropic”. Whenever a
spectral term is written as a function of a single index
alone, summation over the complementary index (as
in (3)) is implied. Hence E(n) = E,(n) + E\(n) is the
energy spectrum associated with total wavenumber 7.

The contribution to the enstrophy spectrum G(»,
m) is given simply by G(n, m) = n(n + 1)a 2E(n, m),
and the above decompositions go through accordingly.
All the spectral information is therefore provided by
the energy spectrum, unless the spectrum is projected
onto anisotropic single indices m or (n — m).

The spectral budget equation for kinetic energy at
each wavenumber may be written as

2 B, m) = I, -+ St m, @

where

I, m) =¥ (I, VL Foe. ()
is the nonlinear interaction term involving other re-
solved wavenumbers [the braces denoting the spherical
harmonic transform and J (-, -) the two-dimensional
horizontal Jacobian operator], and S(n, m1) represents
all other effects—including interactions with unre-
solved motions. The enstrophy equation is simply n(n
+ 1)a™? times (4). If the flow is forced and dissipated
only over localized parts of the spectrum, then one
may hypothesize an equilibrium state where dE(n, m)/
at = 0 = S(n, m) over other parts. These latter are then
known as “inertial subranges” of the spectrum, and
various theoretical approaches are available to treat
them (Kraichnan, 1967; Leith, 1968). It has been ar-
gued that the atmosphere may have such an inertial
subrange connecting forcing and dissipation of enstro-
phy, but the evidence for this is still inconclusive (see
B&S and refs.; and Shepherd, 1986). '

The fact that the interaction terms only redistribute
energy and enstrophy among the various resolved
wavenumbers is expressed in the fact that !

Z Z I(n,m)=0= 2 Z n(n+'1)a‘21(n,m), )

n=0m=-n n=0m=-n

N being the truncation wavenumber (Platzman, 1960).
As a consequence of (6), one may define nonlinear
spectral fluxes of energy and enstrophy following pro-
jection of the interaction terms onto a one-dimensional
representation; for example,

F(n)=-—a ‘21(»)——a ‘z 2 Iv,m) (7a)
=0 »=0 m=—p
H(n)=—a"? z v+ DKp)
»=0
=—q3 2 2 vy + DIy, m) (7b)

v=0 m=—v
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represent, respectively, the fluxes of energy and en-
strophy in terms of the two-dimensional index n. A
positive value of the flux denotes net transfer to smaller
scales or to larger », a negative value the reverse. Note
that H(n) does not generally equal n(n + 1)a *F(n).

Since I(n, m) is a triple correlation term, its time
average can be decomposed into three distinct parts.
One may define

Is(n,m) = 395 (U@, V)" +ec.,  (8a)

Ir(m,m) =3 (JW, V)b +ce,  (8b)

Isz(n,m) =4 (0" (I, V)

YU VO + (I, V)L +ec., (8c)

and it is evident that I = I + I + Isr. Furthermore,
each of these terms is a true interaction term in the
sense that (6) holds for it, and the relevant flux func-
tions Fg, Hg, etc. may therefore be defined as in (7).

b. Kinetic energy spectra

One of the principal findings of B&S was that the
resolved atmospheric motion, when represented in
terms of n, consists of two quite distinct regimes. For
n < 5, the flow is essentially stationary (which in this
context means monthly mean) and appears to be zon-
ally anisotropic, while for #n > 8 the flow is principally
transient and is approximately isotropic. The evidence
for this is provided by Figs. 1a, b, which show the de-
composition of the energy spectrum E(n) respectively

E(n)(J kg')
E(n)(J kg')

00s E
a ’ b

A A I . L

005
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into stationary and transient, and into zonal and me-
ridional, components. (These data were shown also in
B&S.) B&S argued that while the high-wavenumber
regime exhibits several of the characteristics of ho-
mogeneous isotropic two-dimensional turbulence (in-
cluding spectral power law behavior not obviously un-
like E(n) ~ n~3), the existence and behavior of the low-
wavenumber regime must be explained in other ways.
Given the evident scale separation, one might be
tempted to assume that the interaction between the
stationary and transient components of the flow is
small. This turns out not to be the case, however, as
will become clear when the nature and extent of the
stationary-transient interaction is critically examined
in section 4. : »

Figure Ic shows the zonal-meridional decomposi-
tion of the transient energy, and reveals something not
recognized in B&S; namely that the transient energy
appears to be approximately isotropic even at the largest
scales of motion. This is indeed surprising, because
beta-plane turbulence theory (Rhines, 1975; Holloway
and Hendershott, 1977) predicts definite zonal anisot-
ropy in the nonturbulent, large-scale regime. Of course
the large-scale transients are embedded within the sta-
tionary flow and must be affected by it rather strongly;
but the naive guess would presumably be that a quasi-
zonal stationary flow would induce zonal anisotropy
in the transient flow, in the same sense as beta.

To investigate the observational evidence a little
more, Fig. 2 shows the two-dimensional (#, 1) spectral
representation of the transient energy at the larger
scales; this figure is complementary to Fig. 5 of B&S,
which emphasized instead the structure of the rotal
spectrum in the high-wavenumber regime. For isotropy

E(n){J kg")

005l

0 A i s i 5

1 2 S 10 20 30 1 2
n

AL

10 20 30 1 2 5 10 20 30
n n

P?G. 1. Spectra of (a) stationary (solid) and transient (dotted) energy, Eg(n) and E(n); (b) zonal
(solid) and meridional (dotted) energy, E\(n) and Ey(n); and (c) zonal (solid) and meridional
(dotted) components of transient energy, En{n) and Ery(n).
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10

15

20

15

10

Er(n.m)(16°J kg")

FIG. 2. Two-dimensional spectrum of transient energy, Er(n, m), for the larger scales,
in units of 1072 J kg™!, quasi-logarithmic contouring. The m # 0 components include

contributions from positive and negative m.

to hold, it is necessary—but not sufficient' —that E(n,
m) be a function of » alone; comparison of Er,(#n) and
Epn(n) only provides a simple two-point estimate. On
the basis of Fig. 2 it must be concluded that the tran-
sient flow can be truly isotropic only for n > 12—one
may say that these scales are locally isotropic (this is
also confirmed by Fig. 5 of B&S). While all the contours
of Fig. 2 tend to run along lines of constant # so that
there is approximate isotropy, as suggested by Fig. ic,
there is evidently a considerable amount of anisotropy
in the spectrum at the larger scales. The double-peak
structure apparent in Ex(n, m) around 5 < n < 8 pre-
sumably corresponds to thé bimodal distribution of
transient-eddy energy between low-frequency (m ~ 2)
and high-frequency (m =~ '5) components (e.g., Lau,
1978). As will be seen in section 4 (esp. Fig. 8), these
two components interact with the stationary flow in
quite different ways (cf. also Wallace and Lau, 1985).
If the averaging period were extended beyond a month,
one would expect the low-frequency energy at small m
to increase, but the high-frequency, intermediate-m

! On the sphere, isotropy and homogeneity are equivalent (Boer,
1983). Proof of isotropy therefore requires a demonstration that

U™ Y™ is essentially zero for (n, m) # (n', m’). This turns out to
be nontrivial, but recent work on the question supports the hypothesis
of homogeneity and isotropy at small scales (Boer, 1987).

energy characteristic of the band-pass eddies to remain
unchanged.

c. Nonlinear fluxes of kinetic energy and enstrophy

As mentioned in the Introduction, the most striking
resemblance between two-dimensional homogeneous
turbulence theory and observed atmospheric behavior
is the theory’s prediction of net up-scale transfers of
energy and down-scale transfers of enstrophy. The only
relevant scalé involved here is a%/n(n + 1), as this is
the ratio of energy to enstrophy at a given wavenumber.
If the turbuience is homogeneous and isotropic then
the same picture would emerge when viewed in terms
of m (as is traditional in atmospheric spectral energetics:
e.g., Saltzman, 1970; Tomatsu, 1979) or (n — m), but
this need not be so in general.

The fluxes F(n) and H(n) defined by (7) are shown
in Figs. 3a, b, together with their breakdown according
to (8a—c). Given the fact that the greatest part of the
transient eddy field is approximately locally isotropic,
it is perhaps no surprise that the nonlinear interactions
between different transient motions, represented by Fr
and H7, are in the sense predicted by turbuience theory.
However there is no reason to expect either of the other
pairs of fluxes to behave in this way; and while the pure
stationary contributions Fs and Hy are evidently small,
the mixed stationary~transient fluxes Fsr and Hgr are
comparable in strength to the pure transient ones. In-
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FIG. 3. Nonlinear fluxes (solid) of (a) energy and (b) enstrophy, for a truncation of N = 40,
decomposed respectively into pure stationary (dot-dashed), Fs(n) and Hg(n), pure transient (dashed),
F1(n) and Hy(n), and mixed stationary-transient (dotted), Fsr(n) and Hsr{(n), components.

deed, Fsr dominates Fr at the largest scales, and the
apparent penetration of the reverse energy cascade to
n = 3 is seen to be due entirely to the stationary-tran-
sient interactions.

3. A simple picture of stationary—transient interaction
for a zonal stationary flow

The observations of the previous section suggest that
one may think of the transient eddy field as evolving
in the presence of a larger-scale, principally zonal, sta-
tionary flow. It is certainly true that the atmosphere
has a strong nonzonal quasi-stationary component, €s-
pecially in the Northern Hemisphere, and ultimately
one would wish to address the problem of its interaction
with the transient flow. Indeed an exact theory for fi-
nite-amplitude disturbances to nonparallel basic flows

now exists (McIntyre and Shepherd, 1987), but its re-
lation to stationary-transient interaction is as yet un-
clear. The approach followed here is more elementary
and proceeds by taking advantage of the fact that most
of the stationary energy lies in zonally symmetric (m
= 0) modes, which are of larger scale than the energy-
containing transient eddies.

An extensive treatment of planar two-dimensional
turbulence in the presence of a large-scale zonal flow
has recently been given elsewhere (Shepherd, 1987b;
hereafter S87), and the reader is directed there for de-
tails of the theory. The principal result is two-fold: first,
the stationary-transient interaction may be character-
ized, to a first approximation, as a shear-induced
spectral transfer of transient enstrophy along lines of
constant zonal wavenumber m, with transient energy
generally not conserved; and second, the transient self-
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interactions, provided they are sufficiently turbulent,
act in the first instance to spread the transient enstrophy
(and energy) along lines of constant total wavenumber
n. Insofar as the observed transient flow is indeed ap-
proximately isotropic for scales smaller than the most
energetic ones (Fig. 2), the second part. of the result
appears to be relevant to the atmosphere. The same
applies to the first part, as will be shown in section 4.
But first the general arguments of S87 are reviewed
briefly here, in order that the result may be under-
stood—for it is in fact exceedingly simple. "

The first point to note is that, for transient eddies
in the presence of a stationary shear flow, transient
energy and enstrophy are not generally conserved by
the nonlinear interactions, Integrating over a domain
for which boundary terms vanish (such as the surface
of a sphere), barotropic theory gives

2 [ [iwvas= [ [ 307900+, 0

2 [ [\&Vaa=-[ [Fwiwas+s.,
(9b)
with Sg and S; appropriate source-sink terms. The
nonlinear source of transient energy in (9a) arises out

of shearing of the transient vorticity by the stationary
flow, and when positive is the mechanism behind the

“Orr effect” of temporary amplification which has been -

the object of much recent attention in the literature
(e.g., Farrell, 1982; Boyd, 1983; Shepherd, 1985).

For a separation in scale between the stationary and
transient flow measured by a small parameter 5, scale
analysis of the terms in (9) shows that the relative source
of transient energy due to the stationary-transient in-
teraction is 62 times as large as the relative source of
transient enstrophy. Under such conditions, then, the
transient enstrophy is approximately conserved (apart
from the effects of S¢, of course). It is interesting to
note that this is the opposite situation to that usually
considered for weakly-dissipative homogeneous two-
dimensional turbulence, where one imagines a contin-
ual loss of enstrophy due to the down-scale enstrophy
cascade to viscous scales while the energy remains ap-
proximately constant {e.g., Batchelor, 1969; Bretherton
and Haidvogel, 1976).

In planar geometry, nonlinear interactions between
different scales of motion of a general flow may be
decomposed into wavenumber triads (Lorenz, 1960).
In spherical geometry the interactions are no longer
quite so simple (cf. Tang and Orszag, 1978), but it is
nevertheless true that interactions between a zonal flow
(m = 0) and a nonzonal disturbance with wavenumber
(n, m) may be represented as a sum of triads coupling
waves with the same zonal wavenumber m. In partic-
ular, stationary-transient interactions may be decom-
posed in this fashion for a zonal stationary flow. Figure
4 shows this decomposition schematically for the case

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 44, No. 8
4 i
! (n+v,m)
n (n+2,m) m
(n.m)
(n-2,m)

(n-4,m)

FIG. 4. Possible triad interactions in spherical geometry between
a zonal basic flow (v, 0) and an arbitrary disturbance component (n,
m), represented in terms of positive wavenumbers. Here v = 4, and
s0 is even, and n — m is presumed to be odd. The basic flow couples
disturbances along the vertical line of constant m.

of a. zonal flow having a single meridional scale ». In
contrast to the planar case, such interactions in spher-
ical geometry may involve nonlocal transient scales,
even if v is small, for large values of n — m.

Now, it was argued above that the transient enstro-
phy is approximately conserved in the stationary-
transient interaction when a scale separation exists be-
tween the two flow components. Therefore the simple
geometrical constraint depicted in Fig. 4 implies that,
in this case, the stationary-transient interaction may
be characterized as a shear-induced spectral transfer of
transient enstrophy along lines of constant zonal
wavenumber . In the case of planar geometry, S87
was able to apply the spectral aspects of ray-tracing
theory to deduce the sense of this transfer under certain
conditions. The details would be different for spherical
geometry, but the basic result is the well-known one
that a Rossby wave packet propagating into increas-
ingly westerly zonal flow necessarily has phase lines
which lean into the basic shear, and thus increases its
wave energy and its meridional wavelength as it prop-
agates, while a packet propagating into increasingly
easterly flow will decrease both quantities. This process
is the mechanism whereby an initially spectrally-lo-
calized Rossby-wave disturbance, under the influence
of a zonal shear flow, will spread its enstrophy spectrally
along lines of constant zonal wavenumber 1.

For example, consider a unidirectional shear-in-
duced transfer of transient enstrophy from scale 7, to
n, > n, taking place along a single zonal wavenumber
m,;. The signature of this process in terms of the di-
agnostics of section 2 would be approximately as shown
in Fig. 5. The enstrophy transfer term n(n + 1)a*Isy{(n,
m) would be essentially zero for m # m,; considered
as a function of (n — m) for fixed m = m,, it would
indicate conservative down-scale transfer from scale n,
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n(n+1)a_2137(n;m=m,)

Fgr(nm ,————I
v =

b

FIG. 5. Schematic of (a) induced down-scale enstrophy transfer,
with (b) the associated energy fluxes. Arrows denote the sense of the
fluxes. )

to n, (Fig. Sa). On the other hand the energy transfer
term Ig7(n) would have a significant positive compo-

nent at the scale of the stationary as well as the transient -

flow, and the energy flux Fgsr(n) would represent
strengthening of the large-scale flow due to straining
throughout the induced enstrophy transfer (Fig. 5b).
It is noteworthy that when analysed in terms of n
alone, this process would look very much like the cas-
cades of two-dimensional homogeneous turbulence
from an initial scale n,. The similarity would however
be deceptive, as the nonlinear transfer so envisaged is
rather different from that obtained by turbulent inter-
actions (although it must of course obey the same

overall constraints, which are a property of the gov-.

erning equations). In the first place, the nonlinear in-
teractions involved are necessarily highly spectrally
nonlocal and of a very distinct, anisotropic sort. Sec-
ond, no statistical assumption analogous to those in-
voked for turbulent interactions is relevant here, since
the mechanism is fundamentally non-mixing; rather,
it is systematic, predictable, and dependent on persis-
tence of phase correlations. In particular, for certain
parameter regimes (corresponding to an absence of
critical lines) ray-tracing theory predicts a reversible
vacillation in the sense of the shear-induced spectral
transfer.

All this suggests that one may usefully view the non-
linear dynamics of the transient flow as consisting of
two distinet, though coupled, elements. The interaction
with the stationary flow, to the extent that the latter is
large-scale and zonal, may be characterized as a shear-
induced transfer of transient enstrophy along lines of
constant m associated with highly nonlocal spectral in-
teractions. When this transfer is predominantly to
larger (n — m)—that is, to smaller scale—then energetic
forcing of the stationary flow is implied; when it is to
larger scale, then the stationary flow acts instead as a
source of transient energy. The second dynamical ele-
ment is the self-interaction of the transient flow, which
may be anticipated—though not assumed—to act in
the sense predicted by homogeneous turbulence theory,
and which will act in the first instance to spread the
transient energy and enstrophy along lines of constant
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7 (and hence across lines of constant 7). As compared
with the stationary-transient interaction, this inter-
action should be relatively local in wavenumber space.
The two dynamical elements will generally interact.
For example, the first mechanism by itself inevitably
leads to a shear-induced down-scale transient enstrophy
cascade and to net energetic forcing of the stationary
flow; but S87 demonstrated that the transient self-in-
teractions, if sufficiently turbulent, can force the net
stationary-transient interaction to act in quite the op-
posite sense. Generally the balance appears to be a
somewhat sensitive matter (Shepherd, 1984).

4. Observations II: Stationary—transient interaction

a. Diagnostic representation

Before discussing the observations in the light of sec-
tion 3, the spectral representation of the budgets of
stationary and transient energy and enstrophy must be
considered. Equation (4) splits naturally into the two
parts

a
&Es(n, m) = Is(n,m)+ Cs(n,m) + Ss(n,m), (10a)
d
EET(’% m) = IT(ns m) + CT(na m) + ST(na m)s (IOb)
where the “conversion” terms are given by
Cstn,m) =5 (I, V)" +ee., (11a)

Cr(n,m)
= (U@, VLT + (T, TR + e (11b)

As with (4), the associated enstrophy budgets are ob-
tained simply by multiplying (10) by n(n + 1)a~2. Here
the symbol I denotes an interaction term in the sense
that (6) holds for it, so that it leads only to a spectral
redistribution of stationary or transient energy and en-
strophy; while C denotes conversion in the sense that
2 C(n) and T n(n + 1)a~2C(n) need not vanish. Ob-
viously there is an essential ambiguity in any such sep-
aration, because any part of I itself satisfying (6) can
be transferred to C, and vice-versa. Note however that
Cs + Cr = Igr, so that the stationary and transient
budgets may be reconciled at a given wavenumber by
writing

F)
-a—tEr(n, m) = Ir(n,m)+ Isy(n,m)

~Cs(n,m)+Sr(n,m) (12)

in place of (10b), if one so desires. (This is essentially
the decomposition advocated by Boer, 1987.) But the
arguments in favour of this are purely formal. What is
important is that whatever formalism one chooses
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highlights the important physical processes in the most
clear-cut way. If this be the criterion, then any partic-
ular choice can only be preferred on physical grounds
for a specific problem.

When there exists a separation in scale between the
stationary and transient flows, however, which is indeed
the situation here, then a definite physical interpreta-
tion of these terms is possible. For in that case, ap-
proximate conservation of transient enstrophy implies
that 2 n(n + Da2Cr(n) =~ 0 and T n(n + 1)a"2Cs(n)
~ 0 separately, so that n(n + 1)a~%Is7(n) may be seen
as the shear-induced spectral transfer of transient en-
strophy described in section 3. Similarly, insofar as the
distributions of Cs(n) and Cr(n) tend to be correlated
with the distributions of Eg(n) and Er(n) [a simple
consequence of the definitions (11)], and are therefore
separated spectrally, Fsr(n) represents the stationary-
transient energetic exchange associated with straining
by highly nonlocal interactions; Fgr(n) < 0 must then
imply net energy- transfer from the transient flow and
is necessarily associated with a net down-scale shear-
induced enstrophy transfer (this is the situation de-
picted in Fig. 5), while Fsr(n) > 0 must imply the op-
posite.

In this view, Fgr(n) should not be interpreted so
much as a flux of transient energy (which would be the
suggestion from the form (12))—indeed in the case of
Fig. 5 the transient component at » = », the apparent
recipient of such a flux, plays no role whatsoever in
the process—but rather as representing the nonlocal
stationary-transient energy conversion linking Cgs(#)
and Cy(n) at different #n. On the other hand, in the
enstrophy budget Hsr(n) can be consistently inter-
preted as a (local) flux of transient enstrophy, albeit
induced by the stationary flow.

b. Stationary-transient interaction and conversion
terms :

If the conceptual picture presented in section 3 is at
all relevant to the atmosphere, then one should be able
to identify in the data the signature of shear-induced
spectral transfer of transient enstrophy along lines of
constant zonal wavenumber m. Previous spectral
transfer studies have not been in a position to identify
this fundamental process, for a few reasons: first, they
have typically not performed the stationary-transient
decomposition; and second, the diagnostics have nor-
mally been projected onto a single index by summing
over the complementary index. Zonal spectral transfers
(as functions of m) will miss the effect entirely, of
course, and isotropic ones (as functions of »n) will
“smear”’ the effects of different m-lines together. What
is needed is rather the examination of Isr(n, m) at fixed
m, considered as a function of (# — m). Inasmuch as
the degree of averaging is much reduced thereby as
compared with 1-D transfer representations, one should
not expect the diagnostics to be terribly smooth for
only one month of data.
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Nevertheless the results are remarkably suggestive,
despite the evident noise. They are shown in Figs. 6
and 7 for two values of m, 2 and 7, which represent
respectively low-frequency and high-frequency tran-
sients. Figure 6 shows the energy and enstrophy sta-
tionary-transient interaction terms /sy (n; m = 2) and
n(n + 1)a*Isr (n; m = 2). The latter term gives only
a small average residual when summed over all (n
— m), demonstrating that it may truly be seen as rep-
resenting essentially conservative induced transfer of
transient enstrophy. This transfer is principally away
from the range 10 < (n — m) < 20, and is roughly
symmetric with respect to (n — m). Figure 6a verifies
that the up-scale transfer is associated with growth of
transient energy (the “Orr effect”), and the down-scale
transfer with decay; in the net effect, growth dominates
decay at m = 2.

The same diagnostics are shown for m = 7 in Fig.
7. Again the transient enstrophy is approximately con-
served by this process; in contrast to 7 = 2, here the
transfer is essentially one-way, from (n — m) < 10 to
smaller scales, and there is a significant loss of transient
energy to the stationary flow. It would appear that no
other outcome was possible, if there was to be any in-
duced transfer at all, because for m = 7 the principal
energy-enstrophy input apparently takes place at the
gravest meridional scales.

Figures 6 and 7 characterize the behavior at other
m. The m = 1, 2 (which are dominated by low-fre-
quency transients) both involve roughly symmetric

" shear-induced enstrophy transfer and net increase of

transient energy; 3 < m < 12 (which are dominated
by high-frequency transients) are very much like m

2)(1G3Wm?)

IST(n;m

n(n+Na’lg (n;m=2)(10" kgri?s?)

-25 L

FIG. 6. Stationary-transient interaction terms (a) of energy, Isr (n;
m = 2), and (b) of enstrophy, n(n + 1)a~*Isr (n; m = 2), both for
fixed m = 2 as functions of » — m. The sum for (b) is 6.8, so the
average enstrophy conversion per mode is 0.18.



15 APRIL 1987

7)(10°Wri?)

Igr{nm

7)(10kgm?s3)

. A...“\\\\\\“\\\\\\\\\\\\\\\‘N_

-2 .
n(n+1)a“Ig(n;m

FIG. 7. As in Fig. 6 but for m = 7. The sum for (b) is —12.0,

the average enstrophy conversion per mode —0.35.

= 7, with net down-scale induced enstrophy transfer
and corresponding forcing of the stationary flow. The
sense of the energy conversion in the two cases is con-
sistent with the results of Wallace and Lau (1985). It
. may also be noted that the nature of this behavior is
qualitatively very similar to that seen in the jet-tur-
bulence simulations of S87. The picture is summarized
by the net energy conversion terms Cs(m) and Cr(m)
in Fig. 8, with Cr(m) essentially corresponding, at least
for m > 1, to the sum of Isr(n, m) over all (n — m) for
a given value of m. The fact that Cg(m) is dominated
by the contribution at 1 = 0 is consistent with the fact
that the stationary flow consists principally of zonal
(m = 0) modes. It is seen that there is significant ener-
getic forcing of the stationary flow, which arises from
quasi-conservative shear-induced transfer of transient
enstrophy to small meridional scales—this transfer
taking place mainly in the range 4 < m < 8. For small
m there is considerable energy transfer from the sta-
tionary flow to large-scale transients. For these data
this only reduces the net forcing by a small amount,
but for a longer averaging period one would expect an

enliancement of the small-m conversion (Wallace and -

Lau, 1985).
300
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FIG. 8. Energy conversion terms Cs(m) (solid) and Cr(m) (dashed),
as functions of zonal wavenumber m, shown only up to m < 15.
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It is instructive to consider the energy and enstrophy
conversion terms represented as functions of #, as in
Fig. 9. As expected, the net conversion of enstrophy is
fairly small as far as the transient flow is concerned,
and the transient enstrophy is primarily redistributed
by the stationary-transient interaction. This redistri-
bution is essentially to smaller scales, with the transfer
arising principally from two distinct ‘source’ regions:
one around »n = 8, and the other around n =~ 15. The
first corresponds to the transient energy peak (Fig. 1a),
the second roughly to the primary energy input (pre-
sumably from baroclinic instability) as inferred from
Fig. 3a (strictly from I(n), shown explicitly in Fig. 9a
of B&S). It is the transfer from the n = 8 transient
energy peak which is apparently responsible for most
of the energetic forcing of the stationary flow (Fig. 9a).
It should be pointed out that the enstrophy conversion
may well be significant from the perspective of the sta-
tionary flow, while being negligible in terms of the
transient flow; nevertheless it is convenient to speak of
energetic forcing,

Viewed simply in terms of the net stationary-tran-
sient interaction, the present results demonstrate that,
at least for the January 1979 FGGE observing period,
the transients act as a source of kinetic energy (and of
enstrophy) for the stationary flow—particularly into
the mode (n, m) = (3, 0). To estimate the importance
of this effect in the overall stationary kinetic energy
balance, the following simple calculation is instructive.
In the absence of all other effects, the e-folding time 7
for the n = 3 component due to the stationary-transient
interaction is given by

300 r
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FIG. 9. (a) Energy conversion terms Cs(n) (solid) and Cr(n)
(dashed), and (b) enstrophy conversion terms n(n + 1)a~2Cs(n) (solid)
and n(n + 1)a~2Cr(n) (dashed), as functions of total wavenumber n.
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Es(n=3)
Cs(n= 3)

15Jkg™
3X107°J/(kgs)

Tpe3 = ~5 days. (13)

This timescale is of the same order as the spindown
timescale normally taken for frictional damping (5 to
15 days) in simple models. (If the same estimate is
performed for the stationary flow over all scales # > 2—

= ], 2 being apparently uninvolved in this whole
process—one gets instead 7,5 =~ 15 days, which is still
significant.) While the calculation is only rough, it does
suggest that nonlinear interactions with transient eddies
should not be neglected in any quantitative theory of
the (quasi-) stationary flow which includes frictional
effects—as virtually every such theory necessarily does.

Furthermore, Fig. 9a emphasizes that the nonlinear
stationary-transient interactions involved in this eddy
forcing are spectrally highly nonlocal; this insight in-

deed merely reflects the physical process which is re-'

sponsible for the stationary-flow forcing, namely the
straining of intermediate-scale transient vorticity by the
shear in the stationary flow. It is difficult to reconcile
this systematic up-scale energy transfer with the reverse
energy cascade of classical two-dimensional homoge-
neous turbulence, and the superficial resemblance be-
tween the two in the-atmosphere must be considered
fortuitous. (For example, S87 investigated dynamical
regimes where the stationary-transient interaction was
in the opposite sense to that of the turbulent transient

interactions.) Apart from this matter, nonlocalness has
" another, very practical implication; namely that se-

verely truncated models cannot properly study the

(quasi-) stationary flow unless they adequately param-
- eterize the effects of a wide range of transient scales.

5. Discussion

This paper began by considering the observed non-
linear spectral transfers of kinetic energy and enstrophy
in the atmosphere. The qualitative similarity between
the sense of these transfers and those predicted by two-
dimensional homogeneous turbulence theory is strik-
ing, despite the fact that many assumptions required
by the theory are not satisfied by the atmospheric flow.
It is therefore important to determine the extent to
which the observed transfers may reasonably be attrib-
uted to the processes encompassed by two-dimensional
turbulence, as well as to provide a theoretical basis for
understanding the difference.

It has been argued here that two-dimensional ho-
mogeneous turbulence theory may be considered to
account for the spectral transfers associated with non-
linear interactions between different transient waves,
viz. I'-(n, m). Interactions between stationary and tran-
sient waves—viz. Igr(n, m)—cannot be so explained,
but are understandable, to a first approximation, as a
process of shear-induced spectral transfer of transient
enstrophy along lines of constant zonal wavenumber
m—this transfer involving concomitant stationary-—
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transient conversions of kinetic energy. There is also
a component of the spectral transfers due to interac-
tions between different stationary waves, viz. Is(n, m),
but it is relatively small and is in any case probably
not best studied in a spectral context.

Putting the diagnostics of section 4 together with
Fig. 3, a tentative explanation of the observed spectral
transfers may be deduced. Transient enstrophy (and
energy) is produced at scales around # ~ 15 by the
process of baroclinic instability. (Recall that, taking a
Rossby deformation radius of 1000 km, linear theory
predicts most unstable waves of m ~ 6-8 in midlati-
tudes and thus of n ~ 15 for isotropic disturbances.)
Baroclinic instability theory suggests that these distur-
bances will tend to be slightly meridionally anisotropic
and that they will tend to have phase lines leaning along
the horizontal shear (e.g., Mclntyre, 1970; Simmons,
1974; Killworth, 1980). Consequently the transient self-
interactions, acting as they will to spread enstrophy
along lines of constant # (a process which may be called
“turbulent isotropization”), produce enstrophy at small
mand n ~ 15 with essentially random phase structure.
(This process is clearly evident in Fig. 10 of Haidvogel
and Held, 1980, for example.) This latter, when acted
upon by the shear in the stationary flow, is transferred
symmetrically in (n — m1) (Fig. 6b), and associated with
this enstrophy transfer is an amplification of transient
energy (Fig. 6a). Since the larger-m waves forced by
baroclinic instability will have preferential phase struc-
ture however, the shear-induced transfer from those
scales will be essentially down-scale, and this indeed
dominates over the band n =~ 15 (Fig. 9b).

Acting together with the stationary-transient inter-
actions are the transient self-interactions, and indeed
the latter are much more ‘robust’ than the former in-
sofar as rather than relying on persistence of phase
structure, they in fact thrive on phase disruption. (See
S87 for a fuller discussion.) These interactions appear
to be consistently understood in terms of two-dimen-
sional (or, more generally, geostrophic) turbulence
theory; not only are the transfers in the correct sense
(Fig. 3), but the associated spectra show strong evidence
of local homogeneity and isotropy (Figs. 1c, 2). The
transient reverse energy cascade is halted rather
abruptly around . n ~ 8, a scale which also—perhaps
not surprisingly—corresponds to the spectral peak of-
transient energy. At this point the phase structure of
the waves has presumably been scrambled by nonlin-
earity, but a significant portion of the spectrum is close
enough to the (n — m) = 0 axis that the shear-induced
enstrophy transfers, which pick up when the turbulent
transfers weaken, are essentially down-scale (Fig. 7).
This is less true for small-m waves, of course, but the
net effect of the stationary-transient interactions from
these scales is still down-scale enstrophy transfer
and associated forcing of the stationary flow (Figs. 8
and 9).

An important question concerns the cause of the
transient energy cascade arrest at n = 8. One is tempted
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to attribute this to the effects of rotation (as described
by Rhines, 1975), and indeed there is evidence in Fig.
2 for some accumulation of zonally anisotropic energy
around (# = 8, m = 2). But S87 demonstrated that, on
the beta-plane, the blocking effects of «4 are easily over-
come by shear-induced transfers associated with a zonal
jet—transfers which are indeed evident in these data—
and there is no reason to doubt that the same conclu-
sion would apply in spherical geometry. (It should be
said however that S87 found the transient self-inter-
actions to be weak for x < «g, and this feature is con-
sistent with the estimate n; ~ 8 here.) On the other
hand, it was found in Shepherd (1984, 1986) that, for
a zonal flow consisting of several meridional modes,
spectral transfers were arrested at the smallest scale (or
largest n) of the basic flow. This result was purely phe-
nomenological and was not explored in detail, but it
seems likely that the same effect may very well play a
role here. The subject of the cause behind the transient
energy cascade arrest is very much open and demands
further investigation.

~ As for the apparent cascade arrest at n = 3, seen in
the total energy flux (Fig. 3a), it has been shown here
to be just a manifestation of the forcing of the (n, m)
= (3, 0) stationary mode by shear-induced down-scale
transfer of transient enstrophy. As such it does not
really correspond to a classical homogeneous ‘turbu-
lent’ reverse energy cascade; indeed the term “cascade”
is probably rather inappropriate for this part of the
spectral transfer. In fact, one expects the sense of the
transfer to n = 3 to reverse as the averaging period is
extended. This is because the interaction with inter-
mediate-m (high-frequency) transients acts so as to
strengthen the stationary flow, while the interaction
with small-m (low-frequency) transients acts to weaken
it. This distinction is consistent with the results of Wal-
lace and Lau. For these data, covering one month, the
former interaction is the stronger; but as the averaging
period is extended it is expected that the latter will
eventually dominate (Wallace and Lau, 1985). In this
context, it would be of interest to extend the present
study to an entire season, and to isolate the interactions
between the stationary, low-pass, and band-pass com-
ponents of the flow.

The results presented in section 4 demonstrate that '

the interaction with the transients is strong enough to
be quantitatively significant for the stationary flow. This
has important implications for the study and modeling
of quasi-stationary motions and low-frequency vari-
ability, because it suggests that in such studies the effects
of a wide range of transient scales of motion must be
accounted for—either explicitly, or through a param-
eterization. It may be noted that a similar conclusion
regarding the importance of transients to the stationary-
flow balance has been reached from quite independent
approaches: by Opsteegh and Vernekar (1982) and by
Vallis and Roads (1984) in modeling studies, and by
Lau and Holopainen (1984) from an investigation of
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observed geopotential tendencies; see also Wallace and
Lau. An enhancement of the enstrophy cascade and
of eddy straining seems also to be linked with northern
European blocks (cf. Shutts, 1983).
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