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Large-Scale Two-Dimensional Turbulence in the Atmosphere

G. J. BOER AND T. G. SHEPHERD
Canadian Climate Centre, Downsview, Ontario M3H 5T4 Canada
(Manuscript received 14 May 1982, in final form 13 September 1982)

ABSTRACT

Global FGGE data are used to investigate several aspects of large-scale turbulence in the atmosphere. The
approach follows that for two-dimensional, nondivergent turbulent flows which are homogeneous and iso-
tropic on the sphere. Spectra of kinetic energy, enstrophy and available potential energy are obtained for
both the stationary and transient parts of the flow. Nonlinear interaction terms and fluxes of energy and
enstrophy through wavenumber space are calculated and compared with the theory. A possible method of
parameterizing the interactions with unresolved scales is considered.

Two rather different flow regimes are found in wavenumber space. The high-wavenumber regime is

_dominated by the transient components of the flow and exhibits, at least approximately, several of the
conditions characterizing homogeneous and isotropic turbulence. This region of wavenumber space also
displays some of the features of an enstrophy-cascading inertial subrange. The low-wavenumber region, on
the other hand, is dominated by the stationary component of the flow, exhibits marked anisotropy and, in
contrast to the high-wavenumber regime, displays a marked change between January and July.

1. Introduction

The striking differences between two- and three-
dimensional turbulent flows in Cartesian geometry
have been discussed extensively in the literature (Fjor-
toft, 1953; Kraichnan, 1967; Batchelor, 1969; Leith,
1971; Tennekes, 1978). Although both phenomena
exhibit the properties of randomness and nonperiod-
icity due to nonlinear interactions, two-dimensional
turbulence is characterized by a tendency for “up-
scale” transfer of kinetic energy, i.e., from smaller to
larger scales, while three-dimensional turbulence is
characterized by “down-scale” energy transfer. The
so-called “negative viscosity” effect of two-dimen-
sional turbulence is a consequence of enstrophy con-
servation in a two-dimensional fluid which pre-
vents an energy cascade to smaller scales via vortex
stretching. ‘

Two-dimensional homogeneous isotropic turbu-
lence might seem to be of rather academic interest
in the study of the large-scale behavior of the atmo-
sphere. The atmosphere, however, seems to exhibit
at least some of the features which characterize tur-
bulent flows of this kind. This partial correspondence
may be made plausible by arguing that the very large
ratio of horizontal to vertical scale in the atmosphere
means that atmospheric flows are at least quasi-two-
dimensional and certainly eliminates the possibility
of three-dimensional homogeneous isotropic turbu-
lence, except at the smaller scales of motion.

A more sophisticated approach is that of quasi-
geostrophic turbulence developed by Charney (1971).
In this theory, the quasi-two-dimensional nature of
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the atmosphere as implied by the quasi-geostrophic
constraint is used to scale the vertical coordinate and
to develop a theory of three-dimensional isotropic
turbulence in the scaled coordinates.

In what follows, some of the basic results for two-
dimensional plane turbulence and for quasi-geo-
strophic turbulence are reviewed, the corresponding
results in terms of the spherical harmonic two-di-
mensional wavenumber n for flow on a sphere are
obtained and global atmospheric data for the months
of January and July 1979 are analyzed in the light
of these ideas. '

2. Two-dimensional plane turbulent flow
a. Equilibrium theory

In both two- and three-dimensional turbulent flow
the equilibrium theory of Kolmogorov (Kolmogorov,
1941; Batchelor, 1953) may be considered for inertial
ranges. Two particularly simple turbulence solutions
for nondivergent barotropic flow on a plane are char-
acterized by energy-cascading and enstrophy-cascad-
ing inertial subranges (Kraichnan, 1967; Leith, 1968).
In the first of these, a constant negative (i.e., upscale)
flux of energy is accompanied by a vanishing flux of
enstrophy through a wavenumber range where the
energy spectrum follows a —5/3 power law. In the
second case, a constant positive flux of enstrophy and
a vanishing flux of energy are associated with an en-
ergy spectrum which follows a —3 power law.

A model which is thought to have some resem-
blance to the atmosphere postulates an energy-en-
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strophy source localized in a certain wavenumber
range, with the removal of energy at large scales and
the removal of enstrophy at small scales. The source
and sink regions are connected by two inertial sub-
ranges, respectively transporting energy and enstro-
phy to their sink regions. Lilly (1972) has produced
this behavior in a numerical model.

Attention has focussed primarily on the enstrophy-
cascading subrange as a possiblé mechanism in large-
scale atmospheric turbulence. Observational studies
(Baer, 1972; Chen and Wiin-Nielsen, 1978) have sug-
gested that such a subrange might exist beyond the
baroclinic excitation scales.

Turbulent flows characterized by inertial subranges
are, of course, rather special cases. More general tur-
bulent flows involving sources and sinks of energy
and enstrophy at many scales are hardly implausible
in the real atmosphere. There is some indirect evi-
dence (Leith, 1971) to suggest excitation at wave-
lengths smaller than those expected from classical
baroclinic instability theories. Observational studies
such as those by Kung and co-workers (e.g., Kung
and Baker, 1975) may also be interpreted to support
such a possibility. The prospect that such sources may
extend past the resolution limits of synoptic-scale
observational networks and current general circula-
tion and numerical models has important ramifica-
tions for understanding and modelling atmospheric
flow.

b. Quasi-geostrophic theory

Charney (1971) has argued that the conservation
of “pseudopotential vorticity” in three-dimensional
quasi-geostrophic flow is analogous to the conserva-
tion of enstrophy in two-dimensional inviscid flow.
The kinetic energy and available potential energy
equations combined.give a total energy equation
which is analogous to the kinetic energy equation in
two dimensions. An inertial subrange is then possible
between a source region and a high-wavenumber en-
strophy sink region.

These results are obtained under a number of as-
sumptions, including that of isotropy with respect to
the horizontal and scaled vertical coordinates. This
in turn leads to the prediction of energy equipartition
between the two components of kinetic energy and
the available potential energy. In this system the en-
strophy-cascading subrange exhibits a —3 power law
for kinetic energy and available potential energy.

There are several difficulties in attempting to verify
these predictions from observations. The interpreta-
tion of global data in terms of quasi-geostrophic for-
mulas may not be everywhere applicable. The iso-
tropy with respect to the horizontal and scaled vertical
coordinates suggests that-the energy distribution
should be investigated in terms of a three-dimensional
spectral index. The choice of the vertical represen-
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tation is not obvious and has an effect on the results,
as discussed for instance by Baer (1974, 1981).

¢. Application to observed data

In the face of inhomogeneity, anisotropy, vertical
motions, and source-sink terms distributed through-
out the spectral domain, how can the real atmosphere
be expected to behave like a simple two-dimensional
turbulent fluid? The answer is that while not in pre-
cise agreement with the idealized system, the con-
straints on atmospheric motion may nevertheless lead
to qualitative behavior which is similar to that pre-
dicted by simple theory so that the physical mecha-
nisms of two-dimensional turbulence may play a role
in atmospheric dynamics.

The approach adopted here is to analyze meteo-
rological observations in a manner consistent with
two-dimensional theory, and to an extent with quasi-
geostrophic-theory, in an attempt to clarify the degree
to which large-scale atmospheric turbulence resem-
bles that of simple turbulence theory.

3. Two-dimensional Cartesian turbulence
a. Homogeneous and isotropic turbulence

Homogeneous and isotropic turbulence is char-
acterized by statistics which are independent of the
location and orientation of the coordinate axes. Tur-
bulence statistics are therefore expressed (Leith, 1967;
1968, 1971) as functions of a single-scale parameter,
namely the wavenumber k = (k> + k,?)"/2. For two-
dimensional, planar, homogeneous, isotropic, non-
divergent turbulent flows, where V = k X V¢ and
¢ =k-V XV = V%, it follows that

WBV.V = f E(k)dk

1/2F=fc(k)dk
?=?ﬁ=fE(k)dk,, (W
uw =0

E(k) = wk*[y(k)*
G(k) = k*E(k) )

where the overbar represents a probability average.
In other words, the energy and enstrophy spectra de-
pend only on the two-dimensional wavenumber & as
does the streamfunction. Energy and enstrophy are
simply related, there is an equal partition of energy
between the two velocity components, and the ve-
locity components are uncorrelated.
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b. Energy and enstrophy equations

The spectral kinetic energy equation for two-di-
mensional, homogeneous ‘isotropic turbulence may
be written as

aE(k)
at

where I(k) is the nonlinear transfer function repre-
senting the interchange of energy at wavenumber &
with all other wavenumbers, a(k) is a (presumed) iso-
tropic forcing term, and » is the kinematic viscosity.
The -associated spectral enstrophy equation is

G (k)
ot

The inertial transfer terms / and J serve only to
redistribute energy and enstrophy among the various
wavenumbers, not to change the total amount. This
property allows the definition of energy and enstro-
phy flux functions F and H, respectively, as

= I(k) + 2[a(k) — vk*)E(K),

= J(k) + 2[a(k) — vk*)G(k). 3)

oF
I==% A @
j=-4
ok
where it follows that
6H , OF
8k ok (5)

The requirement that

o=f°°1d1c=f°°1dk
1] V]

implies that the flux functions F and H vanish at
sufficiently large k. It follows also that F must satisfy
the constramt

9z 2 OF
0= f dk = J; k 9% dk
In an inertial subrange

oE
3t

so that I = —dF/dk = 0 and similarly J = —3H/dk
= 0. Such a subrange is characterized by vanishing
interaction terms and constant fluxes of energy and
enstrophy. Assuming that within such a subrange the
energy spectrum is determined solely by the wave-
number and the flux of energy or enstrophy, dimen-
" sional arguments lead to the possible existence of two
classes of subranges characterized by

Eo ¢Pk™?, F=-e, H=0
- ®

f * kFdk.
(1]

=0 = 2a — vk?)E,

and

Exnk3 F=0,H=n
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The first of these is the energy-cascading subrange
with —5/3 spectral power law, negative energy flux
of magnitude ¢ and zero enstrophy flux. The second
subrange is the enstrophy-cascading subrange with
—3 spectral power law, downscale enstrophy flux of
magnitude n and zero energy flux.

¢. Parameterization of unresolved scales

Both observational studies of atmospheric behavior
and attenipts to model large-scale atmospheric flow,
using general circulation and forecast models, are
made difficult by the finite resolution of the obser-
vations and of the models. One reason for studying
the turbulent behavior of the atmosphere is to gain
the knowledge required to develop paraimeterizations
of the effects of unresolved scales on the scales ex-
plicitly carried in numerical models.

If it is assumed that the data from the atmosphere
or the numerical model is truncated at some wave-
number k,, the energy equation corresponding to
(2) is written as

25

= JR U,
Y k) + IV(k)

A+ 2[alk) — vk E(k), k<k,, ()

where I(k) = I®(k) + IY(k) has been split into a term
mvolvmg interactions with waves explicitly resolved,
that is for which k < k,, and a second term J ”(k)
representing interactions with waves beyond the trun-
cation limit. Eq. (7) will be correct for k < k, and
expressible in terms of the resolved scales only if a
suitable parameterized expression for IY(k) in terms
of the resolved scales can be found.

One approach suggested by Leith (1971) is to as-
sume that the truncation wavenumber falls in the
enstrophy cascading subrange where

JE(k)
at

for

0= =IRKk) + 1 U(k) 2[a(k) — vk E(K).

Then

1%k) = —I%(k) ®

‘and if the resolved transfer rate is known, the effect

of the unresolved scales is just that necessary to make
the sum vanish as required in this subrange.

This relationship is formulated by Leith as an ef-
fective viscosity in the form

TY(k) = 2v k2E(k) = —IR(k),

so that '
— IR( k)
2k2E(k)
The form of the unresolved interaction term is taken
as

19k = —I%(k) =

va(k) =

L(k) = —2n'f(k/ks)E(K), (9)
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which is dimensionally consistent and depends on the
constant enstrophy cascade rate 5. The dimensionless
function f(k/k,) must be calculated in some manner.

In his paper, Leith (1971) calculated such a func-
tion, based on a presumed enstrophy-cascading in-
ertial subrange where the energy spectrum follows a
—3 power law, by evaluating the resolved interaction
terms I®(k) using the “‘eddy-damped Markovian ap-
proximation” and evaluating f from the expression
(9). This function may be estimated from atmo-
spheric data under various assumptions.

4. Two-dimensional turbulence in terms of spherical
harmeonics

a. Spherical harmonic representation

For large-scale turbulence in the atmosphere the
assumption of Cartesian geometry used in the pre-
vious section is no longer appropriate. The analogy
between Fourier decomposition on a plane and spher-
ical harmonic decomposition of turbulent flow on a
sphere has been pointed out by Baer (1972) and Wiin-
Nielsen (1972) among others. The characteristics of
homogeneous and isotropic turbulence on the sphere
are worked out in the accompanying paper (Boer,
1983), hereinafter referred to as B. In particular, spec-
tral and covariance relationships analogous to (1) are
obtained where the scale index 7 replaces the wave-
number k.

For application to atmospheric data where ho-
mogeneity and isotropy cannot be assumed a priori,
calculation of spectral quantities proceeds by aver-
aging in the horizontal and in time. In such calcu-
lations the time average replaces the probability av-
erage used in B. The two are equivalent only under
conditions of stationarity and homogeneity. -

For calculations from data, where the horizontal
average is represented by angular braces and the time
average by an overbar,

2(n + 1)

Gy =2 G, =% Z [6P =~ 2 Wal?
N
= Z Gn,
n=0
where
n n 2 2
G.= 3 G.=7 = "ELLGE o)

is the contribution to the enstrophy associated with

the two-dimensional scale n. Note that the radius of

the earth a is carried exphmtly in these calculations.
The kinetic energy is written as
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(AV-VYy =(V-(UVY) —yV¥) = 2 E,
_‘l nn+)=—0:s 1 a2
—4§ Wol? = ?n(nﬂ)l &l
N
=2 E,, (11)
n=0
where
> Ea=§ z et Digp
m= meon @ . (12)
G, = @:;_1) E,
a

The contribution to the available potential energy
at a pressure level is given by

A= (hCAT - (THP) = 2 A,
N
= Z An

n=1
where

(13)

b. Equipartition

As shown in B (Section 4a), the condition of ho-
mogeneity and isotropy of the streamfunction field
on the sphere implies that energy and enstropy spec-
tra are functions only of scalar wavenumber 7, that
kinetic energy is partitioned equally between velocity
components, and that the velocity components are
uncorrelated.

In this case, |¢7)? is independent of m and the spec-
tra of the streamfunction, energy and enstropy are

n

D,= 2 WrP = [2n + 1)2INEP,

m=-n

n(n+1
E, = (202 )Dm
nn+1
Gn=_(7~_2En‘

Although it is shown in B that homogeneity and
isotropy of the streamfunction implies equipartition
of energy between velocity components in the sense
that
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==+ 1) =E= 2 E,,

it is not clear how to express the spectra of the in-
dividual velocity components from data in order to
test this relationship.

Baer (1972) calculated the spectrum of kinetic en-
ergy by expanding the zonal and meridional velocity
components %, v in terms of spherical harmonics

(#, V) = 2 (4, V)Y
For this decomposition

WPy = 2 Efa) = 2 Efn),

En) = z E (o),

m=-n

Efa) = Yalu,P,
and similarly for E,. The total kinetic energy spec-
trum is the sum of the two components. Clearly the
-distribution of kinetic energy with wavenumber so
calculated is not the same as that of expression (11).
In his paper, Baer argued that (for hemispheric data)
the spectral amplitudes were approximately indepen-
dent of m at higher values of » and that there was
approximate equipartition of energy between the u
-and v components at these wavenumbers. The con-
dition of no correlation between components -{uv)
= ( was satisfied automatically because of the method
of representing the hemispheric data.
Tang and Orszag (1978) argue that the velocity
components should be expanded as

(u,v) = —@ 2 (tla Do) Y-

For the meridional velocity this results in a simple
connection between ¥, and the streamfunction,

namely
p, = i Mebe
a

Tang and Orszag then assign the energy in wavenum-
ber « in the meridional direction to the single wave
with streamfunction . The energy expression

E= ()= [

evaluated for the single wave gives, in terms of two-
sided spectral densities,

1 (n+ /z)ImI

/2
f 1207 cosPdNdP

—x/2

Ey(a) = fw.
The total energy at that wave number is

E )_ IM Ve
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and the difference is assigned to the zonal component

-of the energy

E\(a) = E(a) — E¢(@)

= Yag[n(n + 1) — (n + V)m|IY7P

For isotropic turbulence, where 7' is independent
of m, an equal partition of energy between the two .
components follows. Thus, summing E,(a) and E\(a)
over m under this assumption gives

Efn)= 3 1(n+ /2)|m|

m=—n 4

IrV”I2

= Yha ?[n(n + 1)2n + DI
and

E\(n) = E(n) — E«(n)

= Yea Yn(n + 1)(2n + DYm}Y™>= E(n).

The results above differ somewhat from those of
Tang and Orszag whose formulas imply only an ap-
proximate equipartition at large n. This manner of
assigning the energy to the velocity components, it
must be noted, is not without arbitrariness. The “sin-
gle wave” calculation, however, can be repeated di-
rectly with a complete spectrum since, under the as-
sumption of homogeneity and isotropy, cross-product
terms are uncorrelated (B, Section 3b). These various

- expressions are evaluated from the data in a following

section.

c. Energy and enstrophy equations
The equations of motion for the atmosphere may
be written as

ﬂ+(V V)V+ fk XV =D,

CpE+V°VCpT= 0,

where terms on the left-hand-side of the equations
apply to the non-divergent winds only and all diver-
gent effects together with source and sink terms are

. lumped together on the right-hand sides.

The transformed kinetic energy equation is written
as
’ dE,
ot

in parallel with (2) where a, is taken to be a source/
sink term including all divergent effects and sources
and sinks other than the explicit molecular viscous
dissipation term.

It follows that the enstrophy equation may be writ-
ten by analogy with (3) as

=I, + 2[e, — vi(n + 1)a 1E, (14)
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oG,

ot
where the interaction terms are obtained from the
non-divergent part of the flow as

—wn(n + Na 3G,

Jo= =Y 2 [E{V-V + 8 {V- V2]

1
-l _2_ WA I, D}a + VulJW, D321
(15)
and
a2
I= m Ja. (16)

[These relationships are useéd in Chen and Wiin-Niel-
. sen (1978) although the printed versions are incor-
rect.]

The transformed available potential energy equa-
tion is written symbolically as

04,
at

=M, + 2B,4,,
where M, is the non-divergent interaction term,

M, = -%UCyy X [T*{V-VT},+ T.{V-VT},

a7

and B, is taken to represent divergent effects and
source-sink terms. ,

Egs. (14)-(16) parallel those of B (Section 5) al-
though they are obtained in a rather different fashion.
In particular, these equations are obtained from the
atmospheric equations where non-barotropic terms
are lumped together with source and sink terms and
where the spectra and interaction terms are obtained
from data by spatial and time averaglng

In an inertial subrange

oF,
ot

0=

+1

=I,,=2[a,,—v

with similar relations for enstrophy. For atmospheric
scales where viscosity is small, «, is taken to represent
divergent effects including conversions from available
potential energy.

As previously, the inertial transfer terms, I,, J,;
M,, serve to redistribute energy and enstrophy be-
tween wavenumbers, not to change the total amount.
Flux functions are defined in analogy with the plane
turbulence case. In this case, however, the scale pa-
rameter is no longer continuous and a difference for-
mula is adopted.

The fluxes are defined by the equations
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I, = —a(F, — Fyy)
Jn = _a(Hn - H, —l) s
M, = —a(P, - P—l)

and are calculated from the interaction terms using

n
Fp=-a' 21, (18)
I=1
and similarly for H and P. The inértial constraint that
the effect of the interactive terms is to redistribute
energy only requires that

2hL=2J,=2M,=0.
n=0 n n

d. Parameterization of unresolved scales

The discussion of Section 3c passes over directly
to the case of spherical harmonic representation. The
total inertial term is thought of as being composed
of a resolved and unresolved part,

L=IR+1Y,

where IR is calculated using (16) where the stream-
function representation is truncated at some n = N,
The condition

o o

N
=X IR+ 2 1Y
n=0 n=0 n=0

- .
requires that 2 IY = 0 since in the non-divergent

n=0
N
case > IR = 0 algebraically (Platzman, 1960).
n=0

In an inertial subrange the resolved and unresolved
interaction terms must add to zero, i.e.,

If = =13,

Following Leith (1971) an estimate of the unresolved
transfer for an enstrophy cascading subrange is used
in the form

L,= Irltl = —277”3an»:- (19)

Similar expressions are used for enstrophy and avail-
able potential energy.

5. Analysis of observational data
a. Data sources

The data used in this study consist of the wind and
temperature fields for January and July 1979 from
the FGGE-IIIa global data set. These data are global
operational analyses produced by the National Me-
teorological Centre (McPherson et al., 1979). The
data are available on 12 pressure levels (1000, 850,
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700, 500, 400, 300, 250, 200, 150, 100, 70, 50 mb)
and at the two standard synoptic times. -

The streamfunction is obtained from the winds at
grid points by numerical quadrature. In terms of the
scaled velocity components

©
U, V)= o)==,

the vorticity is

g‘:

l (ﬂ{ — cos*P aU)
cos*P \aA ov

The spectral coefficients of ¢ are obtained by trans-
forming this expression in the manner of Bourke
(1972). The method combines the calculation of the
derivatives and the transformation in a manner that
is‘exact for grid data at Gaussiarn latitudes which are
consistent with a suitably truncated spherical har-
monic series. In this application the data are inter-
polated to the appropriate Gaussian latitudes. The
results présented all apply to January unless explicitly
noted otherwise. Results for July are qualitatively
similar to those for January except as noted and dis-
played for comparison.

b. Spectra dnd spectral slopes

The spectra of kinetic energy, enstrophy and avail-
able potential énergy are obtained in terms of the
two-dimensional scale parameter n using (10)—(13).
These spectra are obtained from data of global extent
whereas those of Baer (1972, 1974) and Chen and
Wiin-Nielsen (1978) were obtained from Northern
Hemisphere data only. Lambert (1981) also used
global data.

The spectra are further decomposed into statlonary
and transient parts under time averaging. In the case
of enstrophy, where the overbar represents the time
average (in this case a month) and the prime the de-
viation therefrom,

n

G(n) ="' > [$a?

m=-n

=Y 2 [P+ % 2

m=-—n

= Gs(n) + GT(H).

_ The vertically integrated spectra together with the
stationary and transient components for January are
displayed in Fig. 1. Spectra for both January and July
are compared in Fig. 2.

_ The vertically integrated spectra for January qual-
itatively resemble the hemispheric results of Chén and
Wiin-Nielsen. The most notable differences occur in
the low wavenumber regions of the spectra. For the

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 40

shorter wavelength region the qualitative correspon-
dence extends to the behavior of the spectra at about
n = 25 where a drop in spectral amplitudes is seen.
This is partlcularly noticeable in the enstrophy spec-
trum and is perhaps even more pronounced in the
present January case than was the case in the study
of Chen and Wiin-Nielsen. They attributed this be-
havior to smoothing of the initial data, and this is
certainly a plausible suggestion.

The decomposition of the spectra into stationary
and transient parts illustrates rather dramatically that
two rather different regimes exist in wavenumber
space. The high-wavenumber regime, n > 8-10, is
characterized by a spectral power-law of the form E
oc n~ and is dominated by the transient component.
The low-wavenumber regime lacks power-law behav-
ior and is dominated by the stationary component.
This stationary part of the flow at low wavenumbers
is in turn dominated largely by components with
zonal symmetry (i.e., the m = 0 components).

Fig. 2 shows that the spectrim of the high-wave-
number, power-law transient regime is remarkably
insensitive to the time of year, while the low-wave-
number stationary regime undergoes marked changes
between January and July. These results reinforce the
ideas, implicit in most discussions of large-scale at-
mospheric flow, that the stationary component, as-
sumed to be largely forced by topography and heat
sources, dominates the large-scale flow while smaller
scales are dominatéd by the transient component
which might be expected to behave in accordance
with the turbulence theory.

The insensitivity of the high-wavenumber region
of the spectrum to the time of year together with the
power-law behavior of the spectrum and the domi-
nance of the transient component suggests that this
wavenumber region might be characterized as a freely
interacting field of turbulent eddies and hence might
be expected to obey, at least to some extent, the con-
straints of simple turbulence theory.

If this range corresponds to the enstrophy cascad-
ing inertial subrange of two-dimensional or geo- -
strophic turbulence, —3 power laws arée expected for
kinetic and available potential energy while enstrophy
would exhibit a —1 power law. For the purposes of
comparison, the slopes of the kinetic- energy and
available potential energy spectra for the possible in-
ertial range 14 < n < 25 are shown in Fig. 3 together
with those from the studies of Baer (1972, 1974) and
Chen and Wiin-Nielsen (1978). These previous stud-
ies were based on hemispheric data and Baer’s kinetic
energy results were obtained by analysis of the wind
components themselves rather than the streamfunc-
tion.

The most obvious feature of the current analysis
is the lesser slopes obtained for this spectral region
at virtually all levels of the atmosphere. For kinetic
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energy the slopes obtained in this study show an in-
crease with height to a maximum near 200-250 mb
and a subsequent decrease. This resembles the results

1
FIG. 1. Integrated spectra of (a) kinetic energy E(n), (b) enstrophy G(n), and (c) available potential energy A(n), for January.
Stationary and transient components are also shown.

reported by Baer (1972), but the magnitudes of the
slopes are considerably smaller. Chen and Wiin-Niel-
sen, on the other hand, have a region of nearly con-

\
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stant slope throughout the range 500-200 mb. For
available potential energy, the shape of the curves are
similar below 200 mb in the three cases although the
slopes obtained in this study are again smaller than
those obtained previously. Above 200 mb, however,
the spectral slopes obtained in this study decrease,
while they increase in the results of previous studies.

While the “slope” of the spectrum over a restricted
wavenumber range is a rather sensitive parameter, it
is nevertheless clear that the results of this study differ
from those of previous studies. Further calculation
shows that these differences in spectral slope are not
attributable to the difference between global and
hemispheric analyses. They must therefore be as-
cribed to differences in the data used in the various
studies.

For the purposes of comparison with theory, the
spectral slopes obtained from the data are somewhat
shallower than the values of —3 suggested by simple
theory. It must be emphasized, however, the enstro-
phy-cascading inertial subrange is not really a pre-
diction for the atmosphere but is a possible solution
to the spectral equation in an unforced subrange
which may or may not have some correspondence
to the situation in the real atmosphere. Consequently,
the fact that the spectra obey power laws at all may
be considered to be a striking, although by now well
known, feature of the atmosphere.

In the low-wavenumber regime, on the other hand,
there seems to be nothing that suggests a correspon-
dence to the —5/3 power law, energy-cascading in-
ertial subrange. The transient component is compar-
atively weak in this regime, perhaps surprisingly so.
The stationary component dominates the flow and
the identification with large-scale forced modes is sup-
ported by the difference in the spectra between Jan-
uary and July corresponding, it is presumed, to dif-
ferences in forcing between the hemispheres. As
might be expected, the variation in the spectrum of
available potential energy is less marked than that
of kinetic energy.

The pressure-wavenumber cross section of kinetic
energy is displayed in Fig. 4. The contours are drawn
at roughly logarithmic intervals. A maximum of en-
ergy is found at the 200-300 mb level. This is in fact
the level for which the spectral slopes in the kinetic
energy are closest to —3. The slope of the spectrum
in the high-wavenumber region is apparently steeper
at levels where the kinetic energy is larger.

The kinetic energy displays a notable maximum
at all levels at wavenumber 3. A secondary maximum
at wavenumber 8 is also of note and occurs at the
wavenumber of the maximum of the transient com-
ponent, although the contribution to the total kinetic
energy from the stationary component is still appre-
ciable. One of the more interesting and important
aspects of the study of large-scale atmospheric tur-
bulence must be the nature of the interaction between
these two flow regimes.
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FIG. 2. Integrated kinetic energy spectra (a) and available potential energy spectra (b) for January and July.

¢. Homogeneity and isotropy

Two-dimensional turbulence theory is usually for-
mulated under the assumption of homogeneity and
isotropy. If the identification of the high-wavenum-

ber, transient-dominated region of the spectrum with
simple turbulent behavior is at all valid, this region
of the spectrum should also display the characteristics
of homogeneity and isotropy.

As pointed out in B, a necessary condition is that
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[¢7? is independent of m. Vertically integrated and  reasonably horizontal over most of the range of m,
time-averaged values of the one-sided energy spectral  although energy densities tend to drop off near the

densities edge of the triangle. A plot of available potential en-
1 n(n + Dies ergy is also shown. There is some evidence for
E7 = 3 V45 isotropy in this quantity, also,-at least in the high-

wavenumber regime, although it is not as convincing
are shown in Fig. 5. For n = 10, the isopleths are as for kinetic energy. Baer (1972, 1974) displayed sim-
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FIG. 5. Integrated kinetic and available potential energy spectra for January.

ilar diagrams obtained from hemispheric data where
the kinetic energy was expressed in terms of the ve-
locity components.

The partitioning of the kinetic energy between ve-
locity components may be accomplished at least in
two ways as discussed in Section 4b. Perhaps neither
of these approaches is truly satisfactory. Fig. 6 dis-
plays the velocity components spectra E,(n), E(n),
in the manner of Baer (1972) together with the co-
spectrum defined as

() = 2 vt = 2 Efn).

Fig. 7 displays the spectra of the velocity compo-
nents in the manner of Tang and Orszag. These spec-
tra together with that of available potential energy are
plotted for » = 10 in Fig. 8.

These figures demonstrate a number of features of
the flow and of the manner of calculating the spectra.
Both Figs. 6 and 7 illustrate that in the high-wave-
number regime there is approximate equipartition of
energy between components defined in either fashion.
The cospectrum term is small as well. Not only are
the kinetic energy components in approximate equi-
partition but so also is the available potential energy.
The meridional components E,(n) and E,(n) of ki-
netic energy calculated in either fashion are remark-
ably similar at all wavenumbers. That these necessary
conditions hold supports the existence of a regime of
approximately homogeneous and isotropic turbu-
lence at higher wavenumbers.

In the low-wavenumber regime equipartition no
longer holds even approximately. It is also clear that

E(n) # E,(n) at these wavenumbers illustrating the
different assignment of energy among wave numbers
in the two approaches.

d. Nonlinear interactions and fluxes of energy and
enstrophy :

The nonlinear interaction terms I,,, J,, and M, rep-
resent the interchange of energy and enstrophy be-
tween wavenumbers. They may be thought of as
being composed of two parts, as discussed in Section
4d. One part is calculable from the data and repre-
sents the “resolved” part of the interaction between
wavenumbers while the second part is unavailable
from the data and represents the effects on the re-
solved scales of scales of motion not contained in the
data.

The resolved part of the vertically integrated, non-
linear interaction terms for January are displayed in
Fig. 9. Values for July are quantitatively similar. The
associated flux functions for January and July to-
gether with the values for January using data from
the Northern Hemisphere only are plotted in Fig. 10.
The distribution with pressure of the resolved kinetic
energy flux function is shown in Fig. 11.

Values of the resolved interaction terms IX and
MPZ for January and July are given in Table 1. Dif-
ferences are largely though not completely, confined
to the low-wavenumber region. Using (18) the sum
of these values are the fluxes of Fig. 10. In a stationary
situation Eq. (14) implies that the net interaction term
is equal and opposite in sign to the source-sink terms.
If it is presumed that IV is relatively small, then IX
of Fig. 9a is just the negative of the source-sink term.
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associated cospectrum for January.

In this calculation the source-sink term includes the
effects of the divergent part of the ﬂow Similar re-
marks apply for J® and MZ.
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FIG. 7. Integrated zonal and meridional kinetic
energy spectra for January.

Interpreted in this way, the figures show a broad
source of energy and enstrophy at “intermediate”
wavenumbers and a strong sink of kinetic energy at
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low wavenumbers and of enstrophy at high wave-
numbers, in general agreement with the usual ideas
of atmospheric behavior. These source and sink re-
gions are connected by the (resolved) fluxes through
wavenumber space of energy and enstrophy, as shown
in Fig. 10. The maximum fluxes occur in the upper
troposphere (Fig. 11) at the level of maximum spec-
tral amplitude (Fig. 4). This is also the level at which
spectral slopes are steepest (Fig. 3). For available po-
tential energy MR (Fig. 9¢) is dominated by a large
value at » = 2. There is a large source of available
potential energy at this wavenumber and a broadly
distributed sink at higher wavenumbers. The asso-
ciated down-scale flux of available potential energy
is shown in Fig. 10c.

The results of the calculations for January are sim-
ilar to those of Chen and Wiin-Nielsen in a general
way but differ considerably in magnitude and detail.
The calculations for the Northern Hemisphere espe-
cially should be comparable. Considerably smaller
values of interaction terms and fluxes are calculated
here, differing from those of Chen and Wiin-Nielsen
by about a factor of 2. As well, the maximum value
of the interaction term IX (Fig. 9a) occurs at n = 2
in the Chen and Wiin-Nielsen calculation but at n
= 3 in the calculations performed here.

It is interesting to note that the energy flux to larger
scales (Figs. 10a, 11) decreases sharply for n < 5. It
is tempting to ascribe this feature of the observed flow
to the wave domain cutoff feature of geostrophic tur-
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FIG. 9a. Integrated values of the resolved part of the kinetic energy nonlinear
interaction term for January. Positive values indicate that energy is being transferred

to that wavenumber from other scales.
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bulence described by Rhines (1975) and produced in
numerical turbulence experiments by Rhines (1979)
and Basdevant ef al. (1981). Atmospheric conditions
at these scales do not clearly parallel those of the
theory, however, so the correspondence may be more
apparent than real.

e. Inertial subranges

One of the reasons for calculating the various tur-
bulence statistics presented in this study is in order
to weigh the evidence for the existence of an inertial
subrange, at least in the higher wavenumber regime.
The existence of an enstrophy cascading inertial sub-
range has a variety of consequences for understanding
and modellmg atmospheric flow. In partlcular the

200

existence of such a subrange would provide some in-
formation and justification for choosing a particular
density of the atmospheric observational network and
for choosing a particular truncation when modelling
atmospheric flow. The effects of unresolved scales in
observations and models could supposedly be prop-
erly parameterized if the existence of an inertial sub-
range could be demonstrated.

The requirements of a pure two-dimensional en-
.strophy-cascading subrange include isotropy, equi-
partition of energy, a —3 slope for kinetic energy, zero
flux of kinetic energy and constant flux of enstrophy.
It has been argued that at higher wavenumbers,
isotropy and equipartition do appear to be features
of the atmosphere, and while the kinetic energy slope
is somewhat less than —3 a clear power law regime
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F1G. 9¢c. As in Fig. 9a but for available potential energy.A
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of turbulent flow exists. The calculated fluxes of en- that these resolved fluxes are not inconsistent with
ergy and enstrophy include only the resolved part of the behavior expected in an inertial subrange and that
the total flux so they cannot exhibit the behavior ex- - FR is small enough that the effect of unresolved scales
pected in a subrange. Nevertheless, it can be argued could cancel it while HZ is large enough so that the
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FIG. 10b. As in Fig. 10a but for enstrophy.
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TABLE 1. Integrated and averaged values of resolved interaction
term (units 1073 W m™2).

b M

n January July January July

1 1 0 -93 —151

2 17 21 —-1627 -923

3 250 349 44 -50

4 60 -12 105 ~146

5 96 9 52 -15

6 -37 -6 26 70

7 9 —-74 60 105

8 -22 23 139 119

9 -33 -1 116 82
10 -24 -29 146 153
11 —43 -13 124 70
12 —43 -31 131 98
13 -98 -37 100 59
14 -24 -16 91 67
15 -33 —41 61 55
16 -29 —48 71 42
17 —~47 —43 51 45
18 —48 -34 52 29
19 -22 -10 46 24
20 ° -11 -17 . 27 26
21 -20 ~16 33 23
22 —-15 -10 26 26
23 -21 —4 27 17
24 6 -1 24 18
25 | 2 18 21
26 7. 10 22 16
27 7 9 21 15
28 15 14 20 26
29 20 17 22 15
30 24 15 20 25
31 31 22 22 i8
32 27 20 23 21

unresolved flux might be expected to maintain the
value at a constant. These kinds of statements are,
however, unproveable with the available data.

[ The low-wavenumber regime

The discussion of Section 2a suggested the possi-
bility of a source-sink region at intermediate wave-
lengths connected by energy and enstrophy cascading
turbulent subranges to a low-wavenumber sink of
energy and a high-wavenumber sink of enstrophy.
While it was argued above that the high-wavenumber
regime is not inconsistent with such a general picture,
the low-wavenumber regime certainly does not cor-
respond to the energy-cascading turbulent subrange
of simple theory. This region is dominated by the
stationary component, the spectral slopes are not
those of the simple theory, and isotropy and equi-
partition are notably lacking. There is a strong upscale
flux of energy and a weak enstrophy flux but these
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cannot be interpreted within the simple turbulence
picture. The manner in which this upscale energy flux
is accomplished, in the low-wavenumber regime, by
the transient and stationary components of the flow
and the nature of the interaction between the com-
ponents is an interesting area of potential study.

& Parameterization of the effects of unresolved scales

A difficult and important problem associated with
the limited resolution of atmospheric observations
and models is the problem of understanding and pa-
rameterizing the effects of unresolved scales on those
explicitly resolved. In the previous section, only the
“resolved” interaction and flux terms were calculated.

In Section 3c an approach suggested by Leith
(1971) and based on the presumption of the existence
of an inertial subrange of two-dimensional turbulence
was discussed. The high-wavenumber regime of the
data possesses at least some aspects of the turbulent
conditions on which Leith’s parameterization is
based. It is interesting to estimate the unresolved
fluxes of enstrophy and energy from Eq. (19) in order
to estimate the total spectral flux. The function f(n/
n,) is shown in Fig. 12.

Fig. 13 displays the resolved energy and enstrophy
fluxes FR, HE together with the estimates of the total
fluxes obtained by adding to them the estimated val-
ues of FU, HY as obtained using (19). The resulting
total energy flux estimate differs from the resolved
flux by a not inconsiderable amount. In particular,
in this case for n, = 32, it is interesting to note that
the negative region of f(n/n,), although small in
magnitude, multiplies the larger spectral amplitudes
and so gives a relatively large effect at lower wave-
numbers. The result is that upscale energy flux is
now found at almost all wavenumbers.

The resulting energy and enstrophy fluxes. may be
compared with the requirements of zero energy and
constant enstrophy flux for an inertial subrange.
While the conditions are not exactly fulfilled it can
be argued that the estimated net energy flux is quite
close to zero for higher wavenumbers while the en-
stropy flux shows a tendency at least to adopt a con-
stant value. ~

To perform these calculations a value of 75 is re-
quired. The proper choice is not completely clear. It
is not a very sensitive parameter however since it
enters the formula as '/, Ideally a “self-consistent”
value should be chosen so that the resulting constant
enstrophy cascade rate is just the value chosen. This
can only be the case when the various assumptions
under which (19) is obtained are satisfied. This is not
the case here. In particular, the slope of the spectrum

‘is shallower than —3 and this results in the enstrophy

flux increasing with wavenumber rather than becom-
ing flat. The value of # chosen for these computations
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is 7 = 300 X 1078573 corresponding to the maximum
of the resolved flux.

This question of the parameterization of unre-
solved scales is an important practical one. Numerical
models of the atmosphere, for instance, must include
some such parameterization if they are to be inte-
grated for long periods of time. If the fluxes of energy
and enstrophy are known from high-resolution data
or model output it is possible to calculate the values
of f, for which the high-resolution fluxes can be re-
covered based on a lower resolution calculation and
the parameterization of the unresolved scales. Thus
if I, is known in some fashion it is possible to calculate
fn from

I, = I? = 29’ E,,.

This is independent of any particular assumptions
about the nature of the flow. The function f, could
also be a function of pressure for instance. Of course
f« calculated in this way need not produce a universal
function which is the answer to the parameterization
problem. The shape of the function and its resem-
blance to the version obtained by Leith may throw
some light on this problem however.

6. Concluding remarks

FGGE Illa global data sets for January and July
1979 are used to calculate the spectra, interaction
terms and fluxes of kinetic energy, enstrophy, and
available potential energy in terms of the two-dimen-
sional spherical harmonic wavenumber n.

The calculation clearly reveals two rather different
regimes in wavenumber space. What is termed the
high-wavenumber regime is dominated by the tran-
sient component of the flow and exhibits, at least
approximately, several of the necessary conditions for
homogeneous and isotropic flow on the sphere. These
include the approximate independence of [{7[Z on m
and the equipartition of energy between the two com-
ponents of the kinetic energy and the available po-
tential energy. The spectra in this region display a
power law behavior with slopes somewhat shallower
than —3 for energy and —1 for enstrophy. Slopes are
steepest and energy densities largest in the upper tro-
posphere. The spectra are remarkably unchanged be-
tween January and July. This region in wavenumber
space is also associated with a strong flux of enstrophy
and relatively weak flux of energy to higher wave-
numbers.

The high wavenumber regime exhibits, in an ap-
proximate way, some of the features expected in an
enstrophy-cascading inertial subrange. It is difficult
to characterize the situation more precisely since only
the “resolved” interactions and fluxes may be cal-
culated.
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In view of this behavior in the high-wavenumber
regime, some consequences of the parameterization
of the effects of unresolved scales on the resolved
scales are considered. In particular the approach sug-
gested by Leith (1971) is shown to give a plausible
parameterization.

The low-wavenumber regime of the flow is quite
different from the high-wavenumber regime which at
least approximately exhibits behavior associated with
simple models of turbulence. By contrast, the low-
wavenumber regime is dominated by the stationary
component of the flow and exhibits marked an-.
isotropy as well as a lack of equipartition of energy.
The spectra do not exhibit power law behavior and,
in contrast with the case at high wavenumbers, show
marked changes between January and July. This
wavenumber regime displays a strong upscale flux of
energy and a weak enstrophy flux.

The low-wavenumber region does not approximate
any of the features of an energy-cascading inertial
subrange except the upscale flux of energy. It acts as
a sink of energy supplied from higher wavenumbers.
The nature of the processes which maintain this sta-
tionary part of the flow and, in particular, the way
in which both the transient and stationary parts of
the flow act and interact to provide the upscale energy
flux in this wavenumber region is an important area
of future study.
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