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Neural and Psychological Maturation of Decision-making
in Adolescence and Young Adulthood

Anastasia Christakou1,2, Samuel J. Gershman3, Yael Niv3,
Andrew Simmons2, Mick Brammer2, and Katya Rubia2

Abstract

■ We examined the maturation of decision-making from early
adolescence to mid-adulthood using fMRI of a variant of the
Iowa gambling task. We have previously shown that perfor-
mance in this task relies on sensitivity to accumulating negative
outcomes in ventromedial PFC and dorsolateral PFC. Here, we
further formalize outcome evaluation (as driven by prediction
errors [PE], using a reinforcement learning model) and exam-
ine its development. Task performance improved significantly
during adolescence, stabilizing in adulthood. Performance re-
lied on greater impact of negative compared with positive
PEs, the relative impact of which matured from adolescence
into adulthood. Adolescents also showed increased exploratory
behavior, expressed as a propensity to shift responding be-
tween options independently of outcome quality, whereas

adults showed no systematic shifting patterns. The correlation
between PE representation and improved performance strength-
ened with age for activation in ventral and dorsal PFC, ventral
striatum, and temporal and parietal cortices. There was a medial-
lateral distinction in the prefrontal substrates of effective PE
utilization between adults and adolescents: Increased utiliza-
tion of negative PEs, a hallmark of successful performance in
the task, was associated with increased activation in ventro-
medial PFC in adults, but decreased activation in ventrolateral
PFC and striatum in adolescents. These results suggest that
adults and adolescents engage qualitatively distinct neural and
psychological processes during decision-making, the develop-
ment of which is not exclusively dependent on reward-processing
maturation. ■

INTRODUCTION

Adolescence is characterized by disproportionately in-
creased risk-taking and novelty-seeking (Casey, Getz, &
Galvan, 2008; Spear, 2000). Current neurodevelopmental
models suggest that this profile depends on a hyperactive
reward system readily activating consummatory behav-
iors (Galvan, 2010), although there is evidence that a hypo-
active reward systemmay instead be promoting the pursuit
of disproportionately large motivating stimuli (Bjork et al.,
2004; Spear, 2000).
Substantial structural changes in the adolescent re-

ward system affect dopaminergic (Teicher, Andersen, &
Hostetter, 1995) and frontostriatal mechanisms (Galvan
et al., 2006; Giedd et al., 1999; Sowell et al., 1999). Accord-
ingly, there is interest in adolescent neural reactivity to the
anticipation or delivery of reward (Bjork, Smith, Chen, &
Hommer, 2010; Van Leijenhorst et al., 2010; Eshel, Nelson,
Blair, Pine, & Ernst, 2007; Bjork et al., 2004) as well as in the
way rewards are integrated into adolescent behavior
through prediction errors (PEs), that is, signals of mismatch
between expected and received outcomes (Cohen et al.,
2010).

These studies point largely toward nonlinear develop-
ment in ventral striatal reactivity to reward with a peak
during adolescence (Galvan, 2010; Ernst & Fudge,
2009), the impact of which is thought to be exacerbated
by the relative immaturity of prefrontal control systems
that have been shown to mature into adulthood (Rubia,
2012; Rubia, Hyde, Halari, Giampietro, & Smith, 2010;
Christakou, Halari, et al., 2009; Rubia, Smith, Taylor, &
Brammer, 2007; Rubia et al., 2000, 2006). Characteris-
tically, both ventral PFC activation (Cohen et al., 2010;
Galvan et al., 2006) and its functional connectivity with
the ventral striatum (VS) have been shown to increase
with developmental improvements in reward utilization
(Christakou, Brammer, & Rubia, 2011).

Reward-related decision-making has been studied widely
with the Iowa gambling task (IGT; Bechara, Damasio,
Damasio,&Anderson, 1994), a test of decision-makingwhen
faced with a mix of ambiguous positive and negative
rewards. The task requires forgoing highly rewarding
options that nevertheless lead to long-term losses (risky/
disadvantageous choices), in favor of moremodest rewards
that accumulate into long-term gains (safe/advantageous
choices). Adolescent performance in the IGT is indepen-
dent of working memory or motor inhibition development
(Hooper, Luciana, Conklin, & Yarger, 2004) and improves
with age (Van Duijvenvoorde, Jansen, Visser, & Huizenga,
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2010; Huizenga, Crone, & Jansen, 2007; Blair, Colledge, &
Mitchell, 2001). Specifically, in appropriate IGT variants,
adolescents show increased approach behavior (more safe
choices) compared with children or adults; however, avoid-
ance behavior shows linear maturation, as risky choices re-
duce into adulthood (Cauffman et al., 2010; Crone&Vander
Molen, 2007). Recent evidence describes a decrease in task
performance of peripubescent individuals relative to both
children and older adolescents, followed by a linear im-
provement into adulthood (Smith, Xiao, & Bechara, 2012).
The brain processes underlying this developmental perfor-
mance profile have been, to date, only indirectly inferred.

Less still is known aboutmechanisms that shape decision-
making but are only peripherally related to reward
processing. Enhanced exploratory drive and reduced
risk-related anxiety have been described in both human
and animal adolescents (Adriani & Laviola, 2004; Wills,
Vaccaro, & McNamara, 1994). These characteristics can
significantly affect real-world decision-making, by driving
exploration irrespective of available rewards or dampening
the effects of negative consequences in high-vigilance or
ambiguous situations. These considerations may enrich
simplistic developmental models restricted to the putative
conflict between regulatory and affective networks. This
line of thinking requires a dynamic systems approach to the
study of development and needs to be informed by the
evolutionary imperatives that drive maturational processes.

The immediate testable implication of the rationale
outlined above is that adolescent and adult decision-
making do not necessarily fall along a continuum of be-
havioral and neural maturation but are characterized by
qualitatively distinct neurocognitive mechanisms.

In this study, we examined whether considering an
enriched learning model, which accounts not only for
the reward-driven aspects of decision-making under
ambiguity but also for the increased generalized explora-
tory characteristics of adolescent behavior, enhances
our understanding of both the neural and psychological
underpinnings of decision-making maturation. We used a
reinforcement learning (RL) model to study the develop-
ment of decision-making between early adolescence and
adulthood in an fMRI-compatible IGT variant. Our model
parameterizes aspects of performance relating to sensitiv-
ity to previously experienced rewards (decision), reward-
independent choice variability (exploration), and the
impact of positive/negative PEs on behavior (outcome
evaluation). We used individual differences in these param-
eters to characterize performance age effects and map the
maturation of neural sensitivity to option value during
decisions and to PEmagnitude during outcome evaluation.

METHODS

Participants

Thirty-seven healthymale participants (mean age=19.6 years
[5.5 years], age range = 11.9–31.2 years) were recruited

through advertisement and word of mouth. The sample
included 19 adult participants (mean age = 24.2 years
[3.9 years], age range = 18.2–31.3 years) and 18 adoles-
cents (mean age = 15.3 years [2.1 years], age range =
11.9–18.0 years). Ages were normally distributed according
to a one-sample Kolmogorov–Smirnov test (Z= 0.798, p=
ns). Data from the adult sample in this task have been
described previously in a different analysis (Christakou,
Brammer, Giampietro, & Rubia, 2009). Given previous
evidence for significant sex differences in brain structure,
development, and function (including in related tasks
and brain regions; Smith, Halari, Giampetro, Brammer, &
Rubia, 2011; Rubia et al., 2010; Christakou, Halari, et al.,
2009; Tranel, Damasio, Denburg, & Bechara, 2005; Giedd
et al., 1999), only male participants were included in the
study to increase the homogeneity of the results. All
participants were right-handed, as assessed using the
Edinburgh Handedness Inventory (Oldfield, 1971; mean
laterality quotient = 90.69 [14.49]). Participant IQ was
estimated with the Wechsler Abbreviated Scale of Intelli-
gence (Harcourt Assessment; mean IQ = 116 [11]) and
was unaffected by age (r = −0.174, p = ns). Exclusion cri-
teria were psychiatric or neurological disorders, learning
disability, current or past drug abuse, head injury, and psy-
chotropic medication. Participants gave written informed
consent; adolescent participants were accompanied by at
least one parent or guardian who also gave their written
informed consent. All participants received £30 compensa-
tion for their participation and were reimbursed for travel
expenses. The study was approved by the local research
ethics committee.

Gambling Task

Our fMRI variant of the IGT (Figure 1) has been described
in detail previously (Christakou, Brammer, et al., 2009).
Briefly, participants were presented with four decks of
cards (labeled A, B, C, and D) on a computer screen
and were asked to select any one of the decks by pressing
with their right hand one of four buttons, arranged hori-
zontally on an MR-compatible button box to correspond
with the four decks, the position of which was fixed for
each participant for the duration of the session. They
were administered 80 presentations of the decks, with
the instruction to try to win as much money as possible
and lose as little as possible; the only explicit information
participants received about the structure of the task was
that after a choice sometimes they would win and some-
times they would lose. They were told that their final
score would determine how much out of a maximum of
£30 they would receive as compensation (in reality, they
all received £30 after testing). Participants were unaware
of how many trials they would perform or how long the
testing session would last. Decks A and B gave relatively
large gains (£190, £200, or £210) but even larger losses
(£240, £250, or £260), whereas Decks C and D gave small
gains (£90, £100, or £110) but even smaller losses (£40,
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£50, or £60). There was a 50% probability of winning or
losing on each deck. Consequently, Decks A and B were
disadvantageous (also referred to as “risky”) because they
led to a net loss on average, whereas Decks C and D were
advantageous (also referred to as “safe”) because they led
to a net gain.
Performance on the task is summarized by the sub-

jectʼs advantageous preference ratio, that is, the number
of cards picked from the advantageous decks (C + D)
divided by the total number of cards picked (A + B +
C + D; i.e., ratio = (C + D)/(A + B + C + D)). This ratio
is proportional to the “net score” ((C + D) − (A + B))
often used when quantifying performance in the IGT
(Bechara et al., 1994), without giving negative values. A
preference ratio above 0.5 denotes preference for the
advantageous relative to the disadvantageous decks. A
ratio below 0.5 denotes perseveration with disadvan-
tageous choices despite accumulating losses. The effect
of age on performance was assessed using Pearsonʼs cor-
relation tests (Age × Preference ratio).
In designing the task trials, we temporally separated

the choice response from its outcome, hemodynamically
decoupling the moment of decision and the moment of
outcome evaluation, allowing us to examine each sepa-
rately. Following each choice, the deck chosen by the
participant was superimposed with a wheel divided into
12 equal segments; every 0.5 sec each consecutive seg-
ment filled with color, counting down to outcome pre-
sentation. Each trial was consequently divided into (a)
the choice phase, from the moment of presentation of
the four decks until the execution of the choice (RT to
button-press); (b) a 6-sec delay between choosing a deck
and being presented with the outcome (win or loss); and
(c) the outcome evaluation phase, a 3-sec presentation of
the outcome on screen. Trials lasted 15 sec, ending with

a blank screen after outcome presentation, a period
which served as an implicit baseline in the fMRI analysis.
The maximum time allowed for a response was 6 sec. If no
responsewas registeredwithin that time, the trial progressed
directly to the blank screen for 9 sec (making up the total trial
time of 15 sec). Omitted trials were excluded from the anal-
ysis. The length of each intertrial interval was determined
by the RT, which jittered trial events so as to maintain a
15-sec trial duration. Because these manipulations signifi-
cantly lengthened the duration of trials and of the whole
task session compared with other behavioral variants, we
used 80 trials instead of the typical 100 (Lawrence, Jollant,
OʼDaly, Zelaya, & Phillips, 2009; Bechara et al., 1994).

Before testing, participants were acclimatized to the
scanner environment in a “mock” scanner, in which they
practiced the task they were going to perform in an envi-
ronment similar to the scanner facility. This practice ses-
sion consisted of 12 trials that presented equal payoffs
across all decks, and this difference between the training
and experimental sessions was made explicit to partici-
pants. After completion of the experimental session, par-
ticipants were asked whether they had picked more cards
from any particular deck(s) or whether they had avoided
any particular deck(s) and why. Nine of 19 adults (47.37%)
and 2 of 18 adolescents (11.11%) were considered aware
of the general contingencies of the task, as they could re-
port that Decks A and/or B would “mostly lose” or “made
you lose more money than you won” and/or that Decks C
and/or D would “mostly win” or “let you win more money
than you lost.”

Temporal Difference RL Model

Given trial-and-error learning in the task, previous evidence
of differential impact of positive and negative outcomes on

Figure 1. Task schematic. On
each trial, participants were
required to choose one of four
decks by pressing the spatially
corresponding button on an
MR-compatible button box. The
choice (RT) was followed by
an anticipation period (6 sec)
before the outcome of the
decision was revealed
(feedback), staying on screen
for 3 sec. The trial ended with a
blank screen that took the total
trial duration to 15 sec. Just as in
the original IGT, participants
started off with a “loan” of 2000
points on which they could
build; this allowed the
accommodation of consecutive
losses. The loan (red bar) and
the current running total (green
bar) were present at the bottom
of the task display.
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performance (Christakou, Brammer, et al., 2009) and the
hypothesized impact of adolescent exploratory behavior
on decision-making, we constructed a temporal difference
(TD) RL model (Sutton & Barto, 1998) that included sepa-
rate learning rates for positive and negative PEs (Niv,
Edlund, Dayan, & OʼDoherty, 2012; Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007) as well as a choice
kernel (“stickiness” parameter) that captured individual
choice variability independently of reward history.

We denote the chosen deck on trial t by ct and the re-
ward feedback by rt. We posit the following “softmax” prob-
ability distribution over choices (Sutton & Barto, 1998):

Pðct ¼ cÞ ¼ emtðcÞP
j e

mtðjÞ ð1Þ

where we refer to mt(c) as the preference for c and j
enumerates over all four possible choices. The prefer-
ence is decomposed into two contributing factors, the
value vt(c) (reflecting the reward history) and the sticki-
ness ut(c) (reflecting the immediate choice history inde-
pendently of reward; Gershman, Pesaran, & Daw, 2009;
Lau & Glimcher, 2005):

mtðcÞ ¼ βvtðcÞ þ ωutðcÞ ð2Þ

where β and ω are inverse temperature parameters that
control the influence of each factor on the preference
function. We refer to β as outcome sensitivity and ω as
choice sensitivity.

The value function is updated according to the follow-
ing TD rule:

vtþ1ðctÞ ¼ vtðctÞ þ αþδt if δt > 0
vtðctÞ þ α−δt if δt < 0

�
ð3Þ

where δt = rt − vt(ct) is the PE and α+ and α− are learning
rate parameters for positive and negative PEs, respectively.

The stickiness captures residual autocorrelation be-
tween choices that cannot be explained by reward history
and is defined as follows:

utþ1ðcÞ ¼ 1 if ct ¼ c
0 otherwise

�
ð4Þ

Thus, the model has four parameters: z= {β, ω, α+, α−}.
In psychological terms, β parameterizes the influence

of past decision outcomes on future behavior (which we
refer to as outcome sensitivity), and ω parameterizes the
extent to which each participant tended to stay with or
shift responding between decks regardless of the out-
comes of decisions (we refer to this as choice sensitivity).
The learning rates parameterize the extent to which
learning from better than expected (α+) or worse than
expected (α−) outcomes drives future individual choice
behavior.

Model Fitting

We found the maximum a posteriori parameter estimates
for each participant separately using gradient ascent on
the posterior score:

PðzjDÞ ∝ PðDjzÞPðzÞ ð5Þ

where D = {c, r} is the observed choices and rewards.
The likelihood P(D|z) is the softmax probability of the
observed choices (Equation 1). To avoid degenerate
parameter estimates due to the small number of trials
and the noisiness of the data, we used the following as
the prior P(z):

β ∼ Gamma ð2; 1Þ ð6Þ

ω ∼ N ð0; 1Þ ð7Þ

αþ ∼ Beta ð1:2; 1:2Þ ð8Þ

α− ∼ Beta ð1:2; 1:2Þ ð9Þ

In fitting the model with stickiness, we aimed for the
choice stickiness parameter to capture residual variance
not explained by reward history. To this end, we fit the
model in two stages, first fitting the reward sensitivity and
learning rate parameters (with choice stickiness set to 0)
and then holding these fixed while fitting the choice
stickiness.
To test whether the enhanced RL model (Model 1) was

justified by the data, we compared its fit with that of two
simpler models: a model that included a single learning rate
and stickiness (Model 2) and a simple TD model that in-
cluded a single learning rate and no stickiness (Model 3).
Furthermore, we also examined the relative fit of our
model in the adult and adolescent subgroups separately
to ensure that comparisons of model parameters between
groups and across the age range were justified.
Model fit was assessed by calculating, for each model,

the log Bayes factor (Kass & Raftery, 1995) relative to a
chance (null) model in which each deck is chosen with
equal probability. The log Bayes factor balances data fit
against model complexity. Under a uniform prior over
models, the log Bayes factor is directly proportional to
the log posterior probability of a model. Log Bayes factors
greater than 2.3 (a 10:1 ratio) are conventionally con-
sidered strong evidence for a model ( Jeffreys, 1961).
Because the log Bayes factor involves an intractable inte-
gral over parameter values, we used the Laplace approxi-
mation (Kass & Raftery, 1995), which assumes that the
posterior over parameters is Gaussian around the mode
(using the Bayesian information criterion approximation
instead did not qualitatively change the results).
To allow for individual variability in model fit, we treated

the log Bayes factors across participants as random effects
(for examples of this approach, see Simon & Daw, 2011;

1810 Journal of Cognitive Neuroscience Volume 25, Number 11



Stephan, Penny, Daunizeau, Moran, & Friston, 2009). Dif-
ferences across groups and models were assessed using
nonparametric statistics (Wilcoxon rank sum and signed
rank tests, respectively; Table 1).
Model comparison showed that participantsʼ choice

behavior was best explained by Model 1, the full model
that included both choice stickiness and two separate
learning rates for learning from positive and negative
PEs. Table 1 details the model comparison statistics for
all participants and for each group on its own. Moreover,
when examining the modelsʼ fit on the level of each
individual participant, Model 1 resulted in the best fit

for 30 of 37 participants (15 of 19 adults and 15 of 18 ado-
lescents). We therefore used Model 1 for all subsequent
analyses of behavioral and neural data.

Use of Model Parameters to Characterize
Individual Performance

Correlations between performance or brain activation
and model parameter estimates as well as the effect of
age on parameter estimates were assessed with Pearsonʼs
correlation tests. For categorical comparisons between
adults and adolescents (i.e., age < 18 years), we used

Table 1. Model Comparisons

All Participants Adults Adolescents

A. Model Log Bayes Factors versus Chance

Model 1

Median 4.71 6.81 5.64

25th–75th percentile 0.81–9.83 0.40–12.52 0.39–10.04

p <.001 <.001 <.001

Signed rank 63 12 9

Z −5.92 −3.34 −3.33

B. Model Comparisons

Model 1 versus Model 2

Median 4.71 6.81 5.64

25th–75th percentile 0.81–9.83 0.40–12.52 0.39–10.04

p <.001 <.001 <.001

Signed rank 63 12 9

Z −5.92 −3.34 −3.33

Model 1 versus Model 3

Median 5.66 7.56 4.19

25th–75th percentile 1.73–12.10 2.75–18.21 1.08–10.21

P <.001 <.001 <.001

Signed rank 52 10 7

Z −6.02 −3.42 −3.42

Model 1 Model 2 Model 3

C. Adults versus Adolescents

p .19 (ns) .28 (ns) .10 (ns)

Signed rank 298 378 288

Z −1.32 1.08 −1.63

(A) Assessment of model fit for the winning model (Model 1) for the whole sample and across the two age subgroups (adults and adolescents). (B)
Comparison of the three models considered. (C) Model fit comparisons between adults and adolescents for all three models considered, ensuring
that comparisons of model parameter estimates between groups and across the age-range are justified.

Christakou et al. 1811



ANOVA; deviations from zero were assessed with one-
sample t tests.

fMRI

Acquisition

Gradient echo echo-planar MRI data were acquired on a
GE Signa 3-T system (General Electric, Milwaukee, WI) at
the Centre for Neuroimaging Sciences, Kingʼs College
London, using a semiautomated image quality control
procedure. A quadrature birdcage head coil was used
for radio-frequency transmission and reception. We ac-
quired 800 T2*-weighted MRIs depicting BOLD contrast
in each of 22 noncontiguous planes, covering the whole
brain (echo time = 30 msec, repetition time = 1.5 sec, flip
angle = 60°, in-plane resolution = 3.75 mm, slice thick-
ness = 5.0 mm, slice skip = 0.5 mm). We also acquired
a 43-slice, whole-brain, high-resolution structural scan
(gradient-echo EPI; echo time = 40 msec, repetition
time = 3 sec, flip angle = 90°, slice thickness = 3.0 mm,
slice skip = 0.3 mm), on which we superimposed the
activation maps. Quality control was carried out using
an automated analysis tool to ensure high quality images
(Simmons, Moore, & Williams, 1999).

Data Analysis

fMRI data were analyzed with the XBAM software (XBAM
v4.1) developed at the Institute of Psychiatry (www.brainmap.
co.uk). The software uses a nonparametric permutation-
based strategy (rather than normal theory-based inference)
to minimize assumptions and uses median rather than
mean-based statistics to control for outlier effects. Its most
commonly used test statistic is computed by standardizing
for individual differences in residual noise before second-
level multisubject testing using robust permutation-based
methods. This allows a mixed-effects approach to analysis,
an approach that has been recommended following
detailed analysis of the validity and impact of normal theory-
based inference in fMRI in a large number of subjects (Thirion
et al., 2007). Individual and group-level analyses have been
described in further detail elsewhere (Christakou, Brammer,
et al., 2009).

The fMRI data were realigned to minimize motion-
related artifacts and smoothed using a Gaussian filter
(FWHM 8.82 mm; Bullmore et al., 1999). Time-series anal-
ysis of individual participant activation was performed
with a wavelet-based resampling method previously de-
scribed (Bullmore et al., 2001). We first convolved the task
epoch of each event of interest (decision and outcome),
with two Poisson model functions (delays of 4 and 8 sec).
We used trial-by-trial V values (for the decision) and PE
values (for the outcome), interpolating values across trial
time points, to convolve each resulting function with the
model of the hemodynamic response. Individual activa-
tion maps were recalculated by testing the goodness of

fit of this convolution with the BOLD time series; the
goodness-of-fit calculation used the ratio of the sum of
squares of deviations from the mean intensity value due
to the model (fitted time series) divided by the sum of
squares due to the residuals (original time series minus
model time series). This statistic, the sum of squares
(SSQ) ratio, was used in further analyses. Individual
maps then represent brain areas where BOLD activation
during decisions or outcomes scaled with the magnitude
of V or PE, respectively (for convenience, we shorthand
this statistic as the fidelity of the V or PE neural represen-
tation). Using rigid body and affine transformation, the
individual maps were registered into Talairach standard
space.

Whole-brain regressionwith age. Whole-brain regression
analysis using cluster-level permutation statistics was
carried out, identifying brain regions where the fidelity of
the representation of V (during decision) or PE (during
outcomes) in the BOLD time series correlated with age.
The Pearsonʼs product–moment correlation coefficient
was first computed at each voxel in standard space between
age and SSQ over all participants. The correlation co-
efficients were recalculated after randomly permuting the
participantsʼ age (but not the fMRI data). Repeating the
second step many times (1000 times per voxel, then com-
bining over all voxels) gives the distribution of correlation
coefficients under the null hypothesis that there is no
association between specific age and specific SSQs. This
null distribution was then used to assess the probability of
a correlation between age and the fidelity of V or PE rep-
resentation under the null hypothesis. The critical value
of the correlation coefficient at any desired Type I error
level in the original (nonpermuted) data can be determined
by reference to this distribution. Statistical analysis was
extended to cluster level as described by Bullmore et al.
(1999). The cluster level probability under the null hypoth-
esis was chosen to set the level of expected Type I error
clusters to <1 per whole brain.

Regressionof age-correlated datamaskswith performance.
We were interested in brain maturation processes that
underlie individual differences in performance as indexed
by the preference ratio. Therefore, to identify brain areas
where age-dependent increases in the fidelity of the rep-
resentation of V or PE were associated with increased per-
formance, we first extracted 3-D masks of age-correlated
SSQs (see Whole-brain Regression with Age section) and
then used these masks to confine a voxel-wise regression
analysis with performance (preference ratio) using the
same method. This analysis yielded areas where individual
differences in age and performance interacted in their
impact on brain representation of value during decisions or
PE during outcomes. Given differences in the relationship
between age and performance in adults and adolescents
(Results section, Maturation of Task Performance) we also
performed this analysis for each age group separately.

1812 Journal of Cognitive Neuroscience Volume 25, Number 11



To further characterize age effects on the relationship
between neural PE representation and performance, we
examined age group differences in the coefficient of cor-
relation between PE-modulated brain activation and pref-
erence ratio. For each group independently, the average
Pearsonʼs product–moment correlation coefficient be-
tween preference ratio and SSQs was computed, and the
difference in correlation between the two groups was cal-
culated. To determine the significance of this difference,
the appropriate null distribution was generated by ran-
domly permuting participants and their preference ratio
between the groups (without replacement) and scram-
bling any group differences. For each of the 1000 per-
mutations, the difference in correlation between the
scrambled groups was calculated, and the resulting
values were combined over all voxels to produce a mask-
wide null distribution of differences in correlation. Test-
ing was then extended to cluster level, with the cluster
probability under the null hypothesis chosen to set the
level of expected Type I error clusters at less than one.

Correlations of brain activation with model parameters.
To test for correlations between V- or PE-modulated BOLD
activation and model parameter estimates, we extracted
the cluster-wise goodness of fit statistic (SSQ ratios) for
each participant. This statistic represents the fidelity of
neural V or PE representation in the given cluster (and
not magnitude of activation per se). We then performed
Pearsonʼs correlations with model parameters correcting
for multiple comparisons.

RESULTS

Behavioral Results

Maturation of Task Performance

There was a significant improvement with age in task per-
formance (proportion of safe or advantageous choices
made across the whole testing session, the preference
ratio), r(35) = 0.448, p < .005, consistent with previous
studies showing developmental improvements in perfor-
mance of the IGT (Smith, Xiao, et al., 2012; Cauffman
et al., 2010). On the basis of previous evidence that matu-
rational improvements in performance peak by early adult-
hood (Cauffman et al., 2010), we examined the possibility
that adolescents (age < 18 years) contributed to the ob-
served age-related improvement of performance more than
adults. Indeed, this improvement was significant in adoles-
cents, r(16) = 0.541, p < .05, whereas in adults there was
no longer a relationship between age and performance,
r(17) = 0.083, p = ns (Figure 2).
As can be seen in Figure 2, adult participants showed

significantly increased preference for the advantageous
options across the four 20-trial blocks of the task, whereas
adolescent participants showed no changes in preference
across the testing session (Block × Group repeated-
measures ANOVA: significant main effect of Group, F(1,

35) = 7.285, p < .05; no main effect of Block, F(3,
105) = 1.779, p = ns; significant Block × Group inter-
action, F(3, 105) = 2.865, p < .05).

We finally note that there was no difference in (the
very few) omission errors between the groups, t(35) =
−1.997, p = ns. Omitted trials were excluded from the
analyses.

Influence of Model Parameters on
Performance and Effects of Age

Both outcome sensitivity and choice sensitivity increased
with age across the whole sample, r(35) = 0.360, p < .05
and r(35) = 0.455, p < .01, respectively, and the two age
subgroups (adults and adolescents) differed significantly

Figure 2. The main performance measure, preference ratio, refers to
the ratio of advantageous (or safe) choices over all choices made across
the testing session, here plotted against participant age. Performance
improved with age during adolescence and stabilized in adulthood
(two-tailed Pearsonʼs r coefficient reported for the adolescent and
adult subgroups; *significant at the p < .05 level).
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in both parameters, F(1, 35) = 4.303, p < .05 and F(1,
35) = 4.855, p< .05, respectively. Increases in both param-
eters across the sample were associated with improved
performance, r(35) = 0.704, p < .001 and r(35) = 0.359,
p < .05, respectively (Figure 3A and C). The effect of out-
come sensitivity on performance survived correction for
age (tested with a correlation entering age as a covariate:
r(34) = 0.650, p < .001), indicating that developmental
influences on sensitivity to the nature of reward outcomes
account for only some of the variance in performance in
this population (notably there were no differences be-
tween the adolescent and adult subgroups in the relation-
ship of outcome sensitivity and age; comparison of Fisher
z-transformed correlation coefficients: z=−0.26, p= ns).
However, the effect of choice sensitivity on performance
did not survive correction for age, r(35) = 0.195, p = ns,
emphasizing the developmental nature of its relationship
with increased advantageous choices. Specifically, adoles-
cent participants as a group showed negative choice sensi-
tivity, indicating a tendency to shift from previous options
regardless of outcome, t(17) = −3.735, p < .005. In con-
trast, adult participants showed no deviation from choice
sensitivity of zero, t(18) = −0.120, p = ns, indicating that
their choices were governed primarily by the outcomes of
previous choices (Figure 3; see Methods section for de-
scription of the model parameters).

Individual sensitivity to positive and negative PEs
(quantified by the learning rate, an indication of the
strength of the impact of current rewards on future behav-
ior) had opposite effects on performance: high sensitivity
to positive PEs (that is to better than expected outcomes)
was associated with low ratios of advantageous choices,
r(35) = −0.446, p < .01, whereas high sensitivity to nega-
tive PEs (to worse than expected outcomes) was associated
with high ratios of advantageous choices, r(35) = 0.800,
p < .001. This result indicates that learning from worse
than expected outcomes is beneficial whereas learning
from better than expected outcomes is detrimental in this
task. Both associations were weakened but survived after
correction for age, r(34) = −0.354, p < .05 and r(34) =
0.789, p < .001, respectively, indicating a partial devel-
opmental contribution. The maturation profile of both
parameters echoed their relationship with performance:
sensitivity to positive PEs decreased with increasing
age across the whole sample, r(35) = −0.328, p < .05.
Conversely, sensitivity to negative PEs increased with age,
but only across adolescence, r(16) = 0.567, p< .05, not in
adulthood, r(17) = 0.093, p = ns, echoing the pattern of
developmental improvement in performance.

The summary measure of the difference in learning
rates (Δα = α+ − α−) is shown in Figure 3E across the
whole sample. More negative Δα was predictive of better
choice performance in the task, r(35) = −0.844, p <
.001. More negative Δα was characteristic of adult partici-
pants, t(18) = −4.17, p < .001, whereas adolescents did
not show differential sensitivity to positive and negative
PEs, t(17) = −0.99, p = ns (Figure 3F).

In a parallel analysis to further probe qualitative differ-
ences in the performance of adults and adolescents, we
split each age group into performance subgroups on the
median of their preference ratio. Low-performing adults
(n = 9) showed significantly decreased outcome sen-
sitivity compared with high-performing adults (n = 10),
t(17) = 4.46, p < .001, and did not exhibit increased
sensitivity to negative compared with positive PEs as
indicated by a Δα that was not significantly lower than
zero, t(9) =−0.61, p= ns. However, even low-performing
adults demonstrated neutral choice sensitivity (ω was not
significantly different to zero: t(8) = −1.17, p = ns).
Conversely, high-performing adolescents (n = 9) showed
increased sensitivity to negative PEs (Δα was significantly
lower than zero: t(8) = −5.46, p < .01), whereas low-
performing adolescents (n = 9) showed increased sen-
sitivity to positive PEs (Δαwas significantly lower than zero:
t(8) = 4.05, p < .005). High-performing adolescents did
not benefit from increased outcome sensitivity compared
with low-performing adolescents, t(17) = −0.17, p = ns,
nor, importantly, did they show reduced exploratory
tendencies (choice sensitivity was significantly lower than
zero in both high- and low-performing adolescent sub-
groups: t(8) = −2.60, p < .05 and t(8) = −2.55, p <
.05, respectively).

Neuroimaging Results

We used trial-by-trial regressors of decision values and
PEs with a whole-brain voxel-wise correlation with age (as
described in the Methods section). This analysis identified
brain areas where the utilization of decision values (during
the decision phase) and PEs (during the outcome evalua-
tion phase) matures linearly with age across the sample.
Although significantly more complex dynamics determine
structural and functional brain maturation, we note that,
in this sample and experimental setup, there were no dif-
ferences in the activation maps thus derived when exam-
ining non-linear (quadratic) effects of age.
We further interrogated these age-correlated areas

(“age mask”) to identify regions associated with improve-
ments in task performance. Given the difference in the
relationship between performance and age in the adult
and adolescent subgroups, we repeated the voxel-wise
correlation of the age mask with preference ratio sepa-
rately for the two age groups and compared the voxel
wise correlation coefficient with preference ratio.

Decision Phase: Representation of Value

During the decision phase, activation in dorsal PFC, ven-
tromedial PFC (vmPFC), and ventrolateral PFC (vlPFC),
temporal and postcentral parietal cortex, and cerebellum
showed increased sensitivity with maturing age to the
value of upcoming decisions (Table 2A). A voxel-wise cor-
relation of the age mask with preference ratio showed
that value representation in dorsolateral premotor cortex
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Figure 3. The relationship between parameter estimates and performance (correlation with preference ratio, left) and group mean parameter
estimates for adults and adolescents (right). Two-tailed Pearsonʼs r coefficient reported for the correlation between model parameter and preference
ratio (A, C, and E). Between group ANOVA (B) and t tests of deviations from zero (D and F) reported as follows: ns, not significant; *, significant at
the p < .05 level; ***, significant at the p < .001 level.
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(BA 6) was predictive of improvements in performance
(Table 2B), but this effect was only contributed by the
adult participants and was not significant in the adoles-
cent subgroup.

Outcome Phase: Representation of PE

During the outcome evaluation phase, two large contig-
uous clusters showed age-related changes in their sensi-
tivity to the magnitude of PEs during outcome evaluation
(Table 3A). They included vmPFC, dorsolateral PFC
(dlPFC), VS, precentral cortex, inferior temporal cortex,
superior parietal cortex, and cerebellum.

Across the whole sample, age-related changes in PE
representation in overlapping dorsolateral, precentral,
parietal, occipital, and cerebellar clusters were associated
with improvements in performance. In addition, adults
showed a positive correlation between performance and
activation in the vmPFC, whereas adolescents showed a
negative correlation between performance and activation
in vlPFC, VS, putamen and subgenual ACC (Table 3B).

Statistically significant differences between the groups in
the correlation coefficient between PE-modulated activa-
tion and performance were found in vmPFC, subgenual
ACC, VS, and visual cortex (Figure 4).

Association of Model Parameters with
Frontostriatal Activation

We showed above that the difference in sensitivity to
positive and negative PEs (Δα) matures with age and pre-
dicts performance. In addition, we showed that vmPFC
and dlPFC activation, previously implicated in perfor-
mance of the task (Christakou, Brammer, et al., 2009),
matures to reflect the magnitude of PEs during outcome
evaluation in parallel to developmental improvements in
performance (Table 3B, Whole Sample). Consequently, we
sought to test the predicted association between Δα and
PE representation in the vmPFC and dlPFC during outcome
evaluation. As predicted by our previous work, there was
a weak but significant negative correlation between PE
representation in the vmPFC and Δα, r(35) = −0.315,

Table 2. Neural Representation of Value during Decisions

Cluster Location (BA) Side

Talairach Coordinates

Probability Sizex y z

A.

Superior frontal gyrus (BA 6) L −14 33 53 .000 25

Middle frontal gyrus (BA 6) L −29 11 64 .000 58

Superior frontal gyrus (BA 9) R 14 52 37 .000 13

Medial frontal gyrus (BA 11) R 11/2 63/55 −40/−18 .000 107

Inferior frontal gyrus (BA 44) R 58 11 15 .001 11

Inferior frontal gyrus (BA 47);
superior temporal gyrus (BA 38)

L −43/−43 33/25 −29/−17 .000 108

Inferior temporal gyrus (BA 21) L −65 −4 −18 .001 11

Superior temporal gyrus (BA 39) L −43 −52 20 .000 16

Parahippocampal gyrus (BA 35) L −29 −22 −18 .000 19

Postcentral gyrus (BA 1) L −54 −22 53 .000 27

Cuneus (BA 18) L −7 −100 9 .004 11

Cerebellum, posterior lobe,
inferior semilunar lobule

L −25 −63 −40 .000 43

Cerebellum, posterior lobe, declive R 36 −74 −18 .000 18

B.

Superior frontal gyrus (BA 8) L −11/−23 41/31 59/51 .009 21

Superior frontal gyrus (BA 6) L −4/−10 11/8 64/65 .001 48

(A) Clusters where the strength of the representation of V during decisions was correlated with age across the whole sample. (B) Age-correlated clusters
that were also correlated with performance (preference ratio). Only clusters comprising more than 10 voxels are presented. Talairach coordinates shown
for the peak of each 3-D cluster; where two coordinates are shown they refer to the peak and the geometric center of the cluster, respectively. Probability:
cluster-wise probability correlation of correlation with (A) age or (B) preference ratio. Size: number of activated voxels per 3-D cluster.
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p < .05 one-tailed (Figure 5), with an even stronger
correlation in dlPFC, r(35) = −0.534, p < .001. These
correlations indicate that the higher the fidelity of the PE
representation was in the vmPFC, the more behavior was
affected by negative PEs as compared with positive ones.
Although the causal direction of this association is not
testable in our data, it suggests a close relationship be-

tween neural and behavioral maturation in the utilization
of PEs. We further note that this relationship was only sig-
nificant in the vmPFC for adult participants, r(17) =
−0.449, p < .05 one-tailed (Figure 5), and not for adoles-
cents, r(16) = 0.182, p = ns one-tailed (Figure 5), but was
significant for both groups in the dlPFC (adults: r(17) =
−0.548, p < .05; adolescents: r(16) = −0.528, p < .05).

Table 3. Neural Representation of PEs during Outcome Evaluation

Cluster Location (BA) Side

Talairach Coordinates

Probability Sizex y z

A.

Cerebellum (pyramis, declive, culmen);
lingual gyrus (BA 18, 17); middle occipital
gyrus (BA 18, 19); posterior cingulate
(BA 30); cuneus (BA 18, 7); precuneus
(BA 31, 19, 7)

R 18 −74 31 .002 972

Cerebellum (inferior semilunar lobule, uvula,
tuber); medial frontal gyrus (vmPFC/BA 11);
precentral gyrus (BA 6); insula (BA 40); inferior
frontal gyrus (BA 44, 9); postcentral gyrus
(BA 40, 3); inferior parietal lobule (BA 40)

L −54 −22 20 .001 946

B.

Whole sample

vmPFC (BA 11) L −4 44 −24 .068 25

dlPFC (BA 9); precentral gyrus (BA 6) L −40 7 31 .017 55

Cerebellum; occipital cortex R 4 −74 −13 .000 776

Postcentral gyrus (BA 40) L −40 −30 53 .000 279

Adults

vmPFC (BA 11) L −4 41 −24 .000 11

dlPFC (BA 9); precentral gyrus (BA 6) L −51 0 26 .000 17

Postcentral gyrus, parietal cortex (BA 3) L −40 −26 59 .000 143

Cerebellum L −18 −67 −29 .000 400

Cerebellum R 25 −85 9 .000 35

Cerebellum R 11 −70 26 .000 32

Adolescents

vlPFC (BA 47) L −25 33 −24 .000 20

VS L −14 11 −13 .000 14

Subgenual ACC/OFC (BA 25) R 11 26 −18 .000 34

dlPFC (BA 9) L −40 7 31 .000 31

Precentral gyrus (BA 6) L −25 −19 59 .000 107

Primary visual (peristriate) cortex (V2, V3) L −7 −85 −7 .000 586

(A) Clusters where the strength of the representation of PE during outcome evaluation was correlated with age across the whole sample. (B) Age-
correlated clusters that were also correlated with performance (preference ratio) for the whole sample and for each of the adult and adolescent
subgroups. Only clusters comprising more than 10 voxels are presented. All clusters showed positive correlations with performance, except for the
last three clusters in the adolescent subgroup (vlPFC, VS, putamen). Talairach coordinates shown for the peak of each 3-D cluster. Probability:
cluster-wise probability correlation of correlation with (A) age or (B) preference ratio. Size: number of activated voxels per 3-D cluster.

Christakou et al. 1817



In the previous Results section, we described a quali-
tative difference in the association between neural PE
representation and performance in adults compared with
adolescents: adult individuals with higher PE represen-
tation fidelity in the vmPFC performed better, whereas
adolescents with higher PE representation fidelity in
the vlPFC, VS, putamen, and subgenual cingulate per-
formed worse. We therefore sought to examine whether
this age-specific neural PE representation pattern mapped
onto different model parameters. Table 4 shows the asso-
ciation of PE representation in each of these clusters with
each of the model parameters. The vmPFC cluster in
adults was positively correlated with α− as well as outcome
sensitivity, whereas the ventrolateral and subgenual PFC/
VS clusters were negatively correlated with α−.

In a final, more exploratory analysis, given prior im-
plication of the dorsolateral frontal cortex in the task
(Christakou, Brammer, et al., 2009), we found a positive
correlation between the performance-predictive neural
representation of decision value in dorsolateral premotor
cortex (which also matured with age) and choice sen-
sitivity, r(35) = 0.41, p < .05, suggesting that the fidel-
ity of value representation during decisions in this area
was predictive of individual regulation of non-contingent
exploration.

DISCUSSION

Using both psychological and neuroimaging measures,
we investigated the maturation of reward-driven decision-

Figure 5. The fidelity of PE
representation in the vmPFC
was associated with the
difference in learning rates from
positive and negative PEs in
adults but not in adolescents
(*significant at the p < .05
level). Specifically, adults who
showed increased PE fidelity
in the vmPFC relied more
on negative compared with
positive predictions errors in
driving future performance.
BOLD signal for this analysis
was extracted from a vmPFC
cluster, which showed age-
and performance-correlated
changes in PE representation
across the whole sample.

Figure 4. Significant
differences between the
adult and adolescent
subgroups in the correlation
of performance (preference
ratio) with the fidelity of
neural PE representation
during outcome evaluation.
A and B depict significant
positive (red palette) and
negative (blue palette)
correlations in adults and
adolescents respectively.
C additionally shows regions
where the correlation
coefficients were significantly
different between the two
groups: correlation coefficients
were significantly more positive
in vmPFC and cerebellum for
adults and occipital cortex for
adolescents and more negative
in subgenual ACC and VS in
adolescents. See Table 3 for
full cluster descriptions.
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making between early adolescence and young adult-
hood with an fMRI-compatible IGT variant (Christakou,
Brammer, et al., 2009). We applied a TD model of RL to
parameterize individual differences and age effects on
performance and brain activation, including sensitivity
to the quality of decision values (V) and the impact of
positive and negative PEs (α+/α−).
Task performance (preference ratio for safe or advanta-

geous compared with risky or disadvantageous decks)
improved with age through adolescence stabilizing in
adulthood, in line with previous behavioral studies with
the IGT in this age range (Cauffman et al., 2010; Hooper,
Luciana, Wahlstrom, Conklin, & Yarger, 2008). Accordingly,
sensitivity to the subjective value of the chosen option
was predictive of performance and increased with age.
The neural representation of decision values was shown
to mature in ventromedial/ventrolateral and dorsal PFC,
premotor, parahippocampal, and parietal cortex, suggest-
ing the maturation of a network that integrates action
values with memory and executive/attentional processes,
as predicted by observed structural and functional matura-
tion in this age range (Rubia, 2012; Somerville & Casey,
2011; Casey et al., 2008; Paus, 2005).
At the same time, the neural representation of PEs

during outcome evaluation matured in the vmPFC and
dlPFC (in line with prior evidence, e.g., Van den Bos,

Cohen, Kahnt, & Crone, 2012; Cohen et al., 2010), in a
manner predictive of performance. We have previously
shown that performance in this task depends on vmPFC
and dlPFC sensitivity to worse than expected outcomes
(Christakou, Brammer, et al., 2009). Here, we borrow
from classical learning paradigms to examine approach
and avoidance behavior (Cauffman et al., 2010) by sepa-
rating the learning rates for positive and negative PEs
as has been applied in other decision-making tasks
(Van den Bos et al., 2012; Frank et al., 2007). We show that
sensitivity to PE+ and PE− had opposite effects on perfor-
mance: high sensitivity to PE+ was predictive of increased
risky choices, whereas high sensitivity to PE− was pre-
dictive of increased safe choices. This is in line with our
previous work with the same task, where performance
was shown to depend on successfully tracking negative
outcomes (Christakou, Brammer, et al., 2009), as well as
equivalent findings with the original IGT and related tasks
(Van den Bos et al., 2012; Wheeler & Fellows, 2008; Wood,
Busemeyer, Koling, Cox, & Davis, 2005).

In our task, therefore, differential responsivity to posi-
tive and negative PEs was predictive of performance and
moreover matured with age. Specifically, although adults
showed significantly increased sensitivity to PE− compared
with PE+, adolescents showed no difference in the rate
of learning from PE+ and PE−. This result expands on

Table 4. Association between Model Parameters and Neural Representation of PE

Outcome
Sensitivity (υ)

Choice
Sensitivity (ω)

PE+ Learning
Rate (α+)

PE− Learning
Rate (α−)

Learning Rate
Difference (Δα)

Adults

vmPFC

Pearsonʼs r .525* −.147 −.161 .523* −.542*

Sig. (2-tailed) .021 .548 .511 .022 .017

Adolescents

vlPFC

Pearsonʼs r .014 .308 .292 −.671** .643**

Sig. (2-tailed) .954 .213 .239 .002 .004

VS/Putamen

Pearsonʼs r −.314 .302 .324 −.347 .411

Sig. (2-tailed) .204 .223 .19 .158 .09

Subgenual ACC; VS

Pearsonʼs r −.198 .287 .375 −.407 .479*

Sig. (2-tailed) .432 .248 .125 .094 .044

Matrix of correlation between model parameters and the strength of PE representation in clusters associated with performance unique to each of the
age subgroups. The adult cluster was positively correlated with preference ratio, whereas the adolescent clusters were negatively correlated with
preference ratio. Only the vlPFC correlation with α− survives correction for multiple comparisons.

*Correlation is significant at the 0.05 level (two-tailed).

**Correlation is significant at the 0.01 level (two-tailed).
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previous findings showing a difference in approach and
avoidance behavior between adults and adolescents in
the IGT (Cauffman et al., 2010).

Importantly, there was a negative correlation between
sensitivity to PE+ and performance across the sample.
This indicates that reduction in individual sensitivity
to better than expected outcomes (at least in similar
decision-making situations) is a steady characteristic of
development beyond the adolescent years and may
therefore rely on experience as much as life-span devel-
opmental brain changes. By contrast, the relationship
between sensitivity to PE− and performance strengthened
with age only during adolescence, indicating that indi-
vidual sensitivity to worse than expected outcomes may
be a more sensitive marker of adolescent-specific develop-
mental events.

This finding specifically suggests that differences be-
tween adolescent and adult behavior may be due to differ-
ences in responsivity to worse-than-expected outcomes,
rather than hyper-responsiveness to better-than-expected
outcomes, as has been suggested previously (Cohen
et al., 2010). Likewise, this finding also contrasts the prior
description of decreases in the sensitivity to negative
feedback from adolescence into adulthood ( Van den Bos
et al., 2012). Our observation of a beneficial developmental
increase in sensitivity to worse-than-expected outcomes
may be restricted to situations of ambiguous contingen-
cies, such as those in the IGT and its current variant, com-
prising a complex mix of positive and negative rewards.
Together these observations suggest that adults and
adolescents may differ in the utilization of reinforcement
signals in a context-specific manner, that is, not in a matter
of degree.

The wider implication of this analysis, however, is that
neural and cognitive handling of outcome PEs shows a
maturational profile that goes beyond reactivity to reward
presentation or availability, in line with enriched models of
adolescent risk-taking development (Pfeifer & Allen, 2012;
Reyna & Farley, 2006). Accordingly, there was a qualita-
tive difference in the way regional PE representation was
associated with performance between adults and adoles-
cents. In adults, higher PE representation fidelity in the
vmPFC was associated with better performance; by con-
trast in adolescents, higher PE representation fidelity in
the vlPFC, VS, putamen, and subgenual cingulate was asso-
ciated with worse performance. This dissociation may re-
flect qualitative differences in the cognitive organization
of decision-making in the two age groups. vmPFC repre-
sents the value of stimuli or actions as benchmarked
against the motivational state and current context of the
individual. By contrast, vlPFC has been suggested to spe-
cialize in credit assignment, a fundamental aspect of
associative learning, which, however, lacks contextual
sophistication (Rushworth, Noonan, Boorman, Walton, &
Behrens, 2011; Walton, Behrens, Buckley, Rudebeck,
& Rushworth, 2010). Analyzed in this framework, our re-
sults suggest that adolescents may lack as yet the benefit

of the sophisticated contextualization of reward in-
formation provided by the vmPFC. Relying instead on
vlPFC to assign outcome quality to events and on phylo-
genetically older limbic regions such as the subgenual
ACC and VS to provide motivational information may
prove counterproductive in situations where immediate
values need to be discounted in favor of longer-term
motivational goals.
Characteristically, the finding of maturation of PE rep-

resentation in vmPFC and VS are in line with findings
of increased vmPFC–VS connectivity in adults relative to
adolescents in a similar context (Van den Bos et al.,
2012) and during temporal discounting (Christakou et al.,
2011). They likely reflect top–down control of vmPFC
over striatal VS regions, which was supported in our data
by the positive correlation between performance and PE-
modulated vmPFC activation in adults and the negative
correlation between performance and PE-modulated VS
activation in adolescents.
Our findings then point to the need for context-

dependent balance of cognitive and affective processes as
a driver for the maturation of motivated behavior through
adolescence (Van Leijenhorst et al., 2010; Crone & Van der
Molen, 2004). This complexity needs to be addressed
in studies of the development of reward-driven decision-
making.
To this end, our current design and analysis investigated

the impact of noncontingent exploration tendencies (ex-
pressed as individual sensitivity to choice history or sticki-
ness ω) to the developmental profile of performance, in
light of observed increases in novelty-seeking and ex-
ploratory behaviors during adolescence (Steinberg, 2010;
Spear, 2000). These behavioral characteristics are only
indirectly related to reward processing but may shape the
idiosyncratic decision-making strategies of adolescents,
contributing to the typically observed, complex impulsive
phenotype characteristic of this age group (Somerville &
Casey, 2011; Galvan, 2010; Casey et al., 2008; Reyna &
Farley, 2006; Spear, 2000). Absence of systematic non-
contingent exploratory tendencies on the one hand and
of noncontingent perseveration on the other (i.e., neutral
choice sensitivity, as shown by adults) represents a sub-
stantial advantage in our task, which involves trial-and-
error learning. In adolescent participants, however, we
observed a striking pattern of increased noncontingent
exploration, expressed as negative choice sensitivity, in
line with evidence of nonspecific exploratory behavior
characteristic of the age range (Adriani & Laviola, 2004;
Laviola, Macri, Morley-Fletcher, & Adriani, 2003; Spear,
2000). This observation demonstrates that the power of
the model to quantify the behavior of the two groups is
significantly enhanced by incorporation of the choice
sensitivity parameter. Importantly, choice sensitivity was
the only model parameter for which the relationship with
performance was explained entirely by age effects, tapping
into a purely developmental aspect of behavior that would
have been inaccessible to traditional behavioral analyses.
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Specifically, we demonstrate a qualitative difference in
the factors that drive superior performance in adults versus
adolescents. The principal feature of this dissociation was
an increased, noncontingent tendency to move away
from previously experienced options (negative choice
sensitivity). Importantly, this tendency persisted as an
adolescence-specific characteristic regardless of perfor-
mance levels, demonstrating that individual levels of
this sort of exploratory behavior are orthogonal to goal-
directed behavior, in line with the theoretical assumptions
of the model. This analysis further suggests that it is
likely, although untestable in the current sample, that
our model would also dissociate individuals who show
naturally positive choice sensitivity, that is, a tendency to
perseverate with actions or choices regardless of their
adaptive value.
Neural sensitivity to the value of upcoming decisions in

dorsolateral premotor cortex (BA 6) was predictive of
performance and was correlated with individual levels of
choice sensitivity. Although the choice sensitivity param-
eter is reward independent, this association suggests that
to achieve neutral choice sensitivity in an environment of
fluctuating rewards, one may need to effortfully regulate
(possibly inhibit) individual exploratory tendencies. This
is in line with evidence for the involvement of dorsolateral
premotor cortex in the spatial representation of future de-
cisions; it suggests that the influence that the memory of
prior choices has on future behavior is regulated by the
ability of premotor cortex to represent the value of these
choices (Tanaka, Honda, & Sadato, 2005; Tanji, 1996; Tanji
& Shima, 1994).
In the case of the current study, importantly, our results

suggest that value representation during decisions me-
diates improvements in performance with maturing age
by reducing exploratory behavior (specifically by “neutral-
izing” choice sensitivity from negative to zero) and not by
reducing the hedonic impact of reward on behavior. This
is an important observation, further emphasizing the com-
plexity of the maturational profile of decision-making. It
further provides a new avenue of investigation related to
adolescent vulnerability to pathological impulse control,
such as in ADHD (Sonuga-Barke, 2005; Sagvolden &
Sergeant, 1998), as well as conditions in the opposite side
of the spectrum, such as autism, where behavioral rigidity
is instead a key feature (Baron-Cohen & Belmonte, 2005).
We note, however, that further research will need to ad-
dress limitations of the current study, for example, by
including both males and females to consider the dif-
ferences between the sexes and taking into account the
effects of puberty. Furthermore, larger sample sizes will
be required to clarify the effects of putatively identifiable
phases of adolescent development.
In summary, we used a TD RL model to explain matu-

ration in performance of our IGT variant. We demonstrate
the multidimensional nature of decision-making differ-
ences between adolescents and adults and disentangle
some of the psychological and neural substrates of matur-

ing performance. Accordingly, we propose the expansion
of current models of adolescent development of reward-
driven processes (Pfeifer & Allen, 2012) to include charac-
teristics beyond the assumed hypersensitivity to reward
presentation, such as individual differences in exploration
and perseveration traits. This strategy has the potential to
describe age-typical behaviors in increasingly complex,
real-world decision-making situations. This ability, in
turn, will help understand in more detail the neuropsycho-
pathology of developmental conditions, such as affective
disorders, ADHD, and autism.
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