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Abstract   

 

Phytophagous insects have to contend with a wide variation in food quality brought about by 

a variety of factors intrinsic and extrinsic to the plant.  One of the most important factors is 

infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may 

have contrasting effects on insect herbivores due to their different infection mechanisms and 

induction of different resistance pathways, although this has been little studied and there has 

been no study of their combined effect.  We studied the effect of the biotrophic rust fungus 

Uromyces viciae-fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the 

necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly 

and together on the performance of the aphid Aphis fabae Scop. (Hemiptera: Aphididae) on 

Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae 

development, survival and fecundity, while rust infection consistently enhanced individual 

aphids’ performance. These effects varied in linear relation to lesion or pustule density. 

However, whole-plant infection by either pathogen resulted in a smaller aphid population of 

smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity 

with infection.  When both fungi were applied simultaneously to a leaf they generally 

cancelled the effect of each other out, resulting in most performance parameters being similar 

to the controls, although fecundity was reduced.  However, sequential plant infection 

(pathogens applied five days apart) led to a 70% decrease in fecundity and 50% reduction in 

intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect 

on aphids than applying botrytis before rust.  Rust infection increased leaf total nitrogen 

concentration by 30% while infection by botrytis with or without rust led to a 38% decrease.  

The aphids’ responses to the two plant pathogens individually is consistent with the alteration 

in plant nutrient content by infection and also the induction of different plant defence 
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pathways and the possible cross-talk between them.  This is the first demonstration of the 

complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores. 

 

 

Key words: Vicia faba, Botrytis cinerea, Uromyces viciae-fabae, tripartite interactions, 

induced resistance 

 

Introduction 

 

An insect herbivore not only has to contend with the direct effects of a variable and often 

poor-quality food source (Mattson, 1980), the vagaries of climate and a range of parasites and 

predators, but also indirect effects caused by other organisms exploiting this food resource 

(Hatcher, 1995; Rostás et al., 2003; Stout et al., 2006).  One of the most important such 

groups of organisms are plant pathogenic fungi (Hawksworth, 1991).  These can cause a 

range of effects to their host plants: increasing or decreasing nutrient levels in infected leaves 

or uninfected leaves on the same plant, altering the concentration of defensive chemicals, and 

up- or down-regulating an array of resistance pathways (Hatcher et al., 2004; Bostock, 2005; 

Stout et al., 2006).  These changes to the plant can lead to insect herbivores having altered 

fitness when feeding on a plant infected by a pathogenic fungus (Hatcher, 1995). 

 Although there are now several well-studied model systems in which tripartite insect–

plant–plant pathogen interactions have been elucidated (Hatcher, 1995; Rostás et al., 2003; 

Stout et al., 2006) most of these have only considered the interaction between one insect and 

one plant pathogen.  However, in an attempt to bridge the gap between reductionist studies of 

pair-wise interactions and the holistic study of food webs and communities there is a need to 

study more complex consumer interactions on plants.  It is difficult to predict the outcome of 
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single insect–plant–fungus interactions (Hatcher, 1995), and more complex systems will be 

harder still to predict without some guiding empirical studies of these more complex 

interactions.  

 Recent studies on the defences induced by necrotrophic and biotrophic plant 

pathogens and the cross-talk between these pathways and the induced defence pathways 

affecting insect herbivores suggest that these two types of fungal pathogen may affect insect 

herbivores in a contrasting fashion.  For example, effective defence against biotrophic 

pathogens is largely due to programmed cell death (the hypersensitive response) and the 

associated activation of defence responses regulated by the salicylic acid (SA)-dependent 

pathway (Glazebrook, 2005; van Loon et al., 2006), whilst necrotrophic pathogens benefit 

from cell death, and thus activation of this pathway would only facilitate their infection (van 

Loon et al., 2006).  Instead, necrotrophic pathogens may induce activation of jasmonic-acid 

(JA) and ethylene (ET)-dependent defence signalling (Glazebrook, 2005), with SA-induced 

pathways only becoming important later if the necrotroph starts to behave as a hemi-biotroph 

(van Loon et al., 2006).  Similarly, insects with different modes of feeding may induce 

different pathways, with chewers often inducing the JA-dependent defence pathway, and 

sucking insects such as aphids the SA-dependent pathways (Walling, 2008; Thaler et al., 

2010). 

 The SA and JA-dependent pathways do not exist in isolation; rather there is cross-talk 

between them, with activation of the SA-dependent pathway often leading to a down-

regulation of the JA-dependent pathway and vice-versa (Bostock, 2005; van Loon et al., 

2006; Robert-Seilaniantz et al., 2011), and thus we may expect the interaction between a 

necrotrophic pathogen and a sucking insect to be different than that between a biotrophic 

pathogen and a sucking insect on the same plant, but will lead to unexplored complications if 

the insect is exposed to several different pathogens simultaneously. 
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 The broad bean, Vicia faba (L.) (Fabaceae) is attacked by a range of pests in Europe; 

among the most important are the aphid Aphis fabae Scop. (Hemiptera:Aphididae) (Banks & 

Macaulay, 1964), the necrotrophic pathogen Botrytis cinerea Pers. (Ascomycota: Helotiales: 

Sclerotiniaceae) (Davidson et al., 2004) and the biotrophic rust Uromyces viciae-fabae (Pers.) 

Schroet (Basidiomycota: Uredinales: Pucciniaceae) (Gaunt, 1983).  Although B. cinerea 

often infects plants early in the season and U. viciae-fabae infects later in the year, both often 

occur together on the plant at a time when A. fabae is also present. Alone, both U. viciae-

fabae and B. cinerea have been reported to increase aphid performance (Zebitz, 1988; Prüter 

& Zebitz, 1991; Zebitz & Kehlenbeck, 1991) most likely through increased mobilisation of 

carbohydrates and nitrogen through the plant and into infected leaves (Thrower & Thrower, 

1966; Farrar & Lewis, 1987; van Kan, 2006; Choquer et al., 2007).  However, we would 

predict from induced resistance studies that B. cinerea would enhance aphid performance by 

inducing the JA pathway and thus down-regulating the SA pathway (Bostock, 2005; Robert-

Seilaniantz et al., 2011), while U. viciae-fabae would decrease aphid performance by co-

stimulating the SA-dependent induced resistance pathway.  This is assuming that, as has been 

found for many species of aphids, A. fabae in this system is sensitive to the resistance 

induced by the SA pathway (Walling, 2008; Thaler et al., 2010)  The effect of dual infection 

on A. fabae is hard to predict, partly because of the lack of a predictive framework for such 

interactions (Thaler et al., 2010) and also due to the unknown effect of resource depletion 

caused by dual infection (e.g. Grueber & Dixon, 1988), but we would expect it to depend on 

the order of infection and thus the order of stimulation or inhibition of defence responses. 

 In this paper we first quantify the effect on A. fabae of individual infections of V. faba 

with B. cinerea and U. viciae-fabae, and then report the first experiments to determine the 

effect of concurrent or sequential infection of the two contrasting plant pathogens on the 

performance of the aphid. 
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Materials and methods 

 

Experimental organisms 

 

All experiments and plant rearing were carried out in a constant environment (CE) room at 

the University of Reading at 18–20°C and L16:D8 photoperiod. 

Botrytis cinerea was obtained from a culture (originally isolated from the University 

of Reading Campus, Whiteknights, Reading, UK), maintained at the University of Reading, 

subcultured every 10 days on 4% malt extract agar and potato dextrose agar and incubated at 

20±1ºC in constant darkness.  Conidia were harvested from 16-day-old cultures by flooding 

the plate with sterile distilled water and dislodging the conidia with a sterile rod, and 

subsequent filtration through four layers of cheesecloth to remove mycelial debris. A 0.1 ml 

suspension of a 1x10
4
 conidia ml

-1
 inoculum was applied to the adaxial surface of each leaflet 

with a paint brush. After 30 min the plants were enclosed in polythene bags containing a 

saturated atmosphere at 20±1ºC for 48 hrs to allow spore germination before aphids were 

confined in a clip cage on the leaves. 0.1 ml sterilised distilled water was used as a control.  

Uromyces viciae-fabae (originally isolated from the University of Reading Campus, 

Whiteknights, Reading, UK), was cultured permanently on V. faba at the University of 

Reading in a CE room at 20ºC and L16:D8 photoperiod. Uredospores were brushed from 

plants and stored at -20°C until use. Leaflets were evenly sprayed with a 1x10
5
 ml

-1
 

suspension of spores in distilled water using a modeller’s airbrush. The inoculated plants 

were incubated for 48 hrs in a saturated atmosphere in polythene bags in the CE room to 

allow germination and infection.  In the CE room U. viciae-fabae usually showed first signs 
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of infection after 6 to 7 days and sporulated after 10 days. Plants were challenged with aphids 

10 days after inoculation. 

Black bean aphids, Aphis fabae, were obtained from a population maintained at the 

University of Reading (originating from aphids collected from the wild in Reading, UK). 

This population was reared on V. faba L. cv ‘The Sutton’ at 18–20°C and L16:D8 

photoperiod in 51x69x69 cm perspex cages, with fan-assisted air circulation.  

 

Effect of one fungus on individual aphids 

 

Individual seeds of V. faba (cv ‘The Sutton’, Thompson and Morgan, Ipswich, UK – this 

cultivar was used in all experiments) were planted in 9-cm diameter pots of John Innes II 

compost. The plants were selected for treatment when five true leaves had appeared.  For 

each fungus 60 plants were used, split equally between infected and uninfected plants.  To 

measure local effects of infection, a leaflet on leaf 3 (‘old’) was infected with B. cinerea or U. 

viciae-fabae as above, and 2 or 10 days respectively after inoculation an aphid was placed in 

a clip cage on this infected leaflet.  This time difference was selected so that the aphid 

encountered each pathogen at the same stage of development, i.e. sporulating pustules. 

Aphids were also caged on an adjacent uninfected old (leaf 3) leaflet and an uninfected new 

leaflet (leaf 5) on that plant to test if infection led to systemic effects in leaflets close to the 

source of infection, or newer, more distant leaflets.  Aphids were also caged on an old (leaf 3) 

and young (leaf 5) leaflet on uninfected plants as a control.  

Aphids were caged using 20 mm diameter perspex clip cages (Van Emden, 1972), 

supported so that leaflets maintained their normal position.  First instar nymphs were 

transferred to the clip cages (one per cage) using a moistened paintbrush as soon as they were 

born.  They were then kept on the leaf until they had matured and produced offspring for 10 
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days.  The speed of aphid development was calculated as maturation time: the time in days 

between birth of an aphid and the birth of its first offspring.  The mean relative growth rate 

(MRGR) of individual aphids in clip cages was determined after measuring the fresh weights 

of first-instar nymphs at the beginning and after 4 days of the experimental period on an 

electrical microbalance (Sartorius Supermicro S4), and MRGR (µg/µg/day) calculated as 

(Log W2 – Log W1)/(t2 – t1), where W1 is weight at the first measurement (t1) and W2 weight 

at the second measurement (t2). MRGR provides a measure of performance of the aphid 

which is likely to be directly related to the nutrition of the aphid, and independent of maternal 

effects (Van Emden, 1969; Wojciechowicz-Zytho & Van Emden, 1995), and is a measure of 

the growth of the aphid relative to its weight. The intrinsic rate of increase (rm) (Wyatt & 

White, 1977) was calculated by recoding the number of nymphs produced by each individual 

during their first 10 days of reproduction (nymphs were removed from clip-cages as they 

were produced), using the formula  rm = [c ln(Md)] /D, where Md is the number of nymphs 

produced by the adult in the first 10 days (D) of reproduction after the adult moult, the 

constant (c) has the value of 0.738 and is an approximation of the proportion of the total 

fecundity produced by a female in the first (D) days of reproduction (Wyatt & White, 1977). 

 

Effect of two fungi on individual aphids 

 

The first experiment demonstrated that the fungi, individually, had a greater local than 

systemic effect.  In the second experiment this local effect was investigated in more detail, 

and the effect of the two pathogens combined, either applied at the same time or 5 days apart 

was studied.  Thus, 24- day-old V. faba seedlings were inoculated with B. cinerea and U. 

viciae-fabae singly or together on two leaflets of leaf 3, as described above. When 29 days 

old, further seedlings (and some already infected, depending on treatment) were also infected 
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with the two fungi singly and together. This gave the range of treatments illustrated in Figure 

2 (n = 20 for all treatments), encompassing single infection of both fungi at both times (24 

and 29 days), sequential infection (with 5 days gap) of B. cinerea followed by U. viciae-fabae 

and vice-versa, and simultaneous infection by both fungi on both infection days. When the 

plants were 36 days old, one aphid was caged on an infected leaflet of leaf 3, as described 

above, and growth and fecundity parameters were recorded. The number of B. cinerea lesions 

was recorded per cm
2
 10 days after inoculation and the number of U. viciae-fabae pustules 11 

days post inoculation. 

 

Effect of one fungus on aphid populations 

 

Individual seeds of V. faba were planted in 13.5 cm diameter plastic pots filled with John 

Innes II potting compost, and raised in the CE room as above.  To assess the effect of single-

fungus infection on aphid population development 45 V. faba plants were inoculated 4 weeks 

after germination (when the fifth leaf had appeared) with B. cinerea on all leaves as described 

above and 45 control plants were sprayed with distilled water. Four days after inoculation 

four newly-moulted adult A. fabae from the stock population were confined in a clip cage on 

each plant for 24 hours and allowed to reproduce. Five of the resulting offspring were 

retained on each plant; the mothers and any other offspring were removed, along with the 

clip-cages. The plants were covered individually with perforated plastic bags (as used in 

Keary & Hatcher, 2004). A preliminary experiment (data not shown) demonstrated that the 

bags prevented aphids from escaping and did not inhibit plant or aphid development in our 

CE room conditions. Plants were placed in the CE room with treatments randomised, and at 

3, 4, and 5 weeks after inoculation a subset of 15 inoculated and 15 control plants were 

randomly selected and destructively harvested, removing all aphids. The aphids were 
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counted, dried at 80°C to constant weight and weighed on an electrical microbalance 

(Sartorius Supermicro S4). The experiment was repeated using the same number of replicates 

with all leaves of infected plants inoculated with U. viciae-fabae spore suspension as above. 

 

Nitrogen analysis 

 

Vicia faba seedlings were raised as before in the growth room.  At 4 weeks after germination 

(when the fifth leaf had emerged), a leaflet on leaf 3 was inoculated with B. cinerea and U. 

viciae-fabae, singly and in combination, as given in Figure 5.  Two days after inoculation (for 

B. cinerea) and 10 days after inoculation (for U. viciae-fabae) infected leaflets were removed, 

oven-dried for 24 hours at 70°C, milled to a fine powder, and weighed (7–8 mg / sample). 

Percentage total nitrogen was determined by the Department of Soil Science at University of 

Reading, using the Roboprep /VG 622 system (Europa Scientific).  

 

Statistical analyses 

 

Three measurements, maturation time, fecundity and rm required that the aphid survived until 

the end of the experiment. Unfortunately, a few aphid replicates died before the 10 day count 

of fecundity was over. Hence, analyses of variance for completely randomised designs were 

carried out using Genstat (version 8) (Lawes Agricultural Trust), since this was able to 

accommodate treatments having an unequal number of replicates. The effect of a single 

fungus on individual aphids was analysed by two-factor ANOVA with an added ‘control’:  

local infection (aphids reared on the leaflet from leaf 3 (‘old’) infected with fungus), with two 

systemic ‘treatment’ factors age of leaflet (old and young) x presence or absence of infection 

by B. cinerea or U. viciae-fabae.  In this ANOVA design the factorial treatment structure age 
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x infection is nested within the factor control vs treatment (convstrt); the overall difference 

between control and treatment (i.e. between local infection and systemic or no infection) is 

calculated first and then the factorial effects of age and infection are calculated within this 

nested structure (Stern et al., 2001). 

The effect of two fungi on individual aphids was analysed by two-factor ANOVA 

with factors presence of B. cinerea x presence of U. viciae-fabae .  Each factor had three 

possible values: absence; presence at time 1 (24-day-old plant); or presence at time 2 (29-

day-old plant), giving a 3 x 3 structure with 9 treatment groups.  The number of lesions of B. 

cinerea and number of pustules of U. viciae-fabae were log transformed to meet the 

assumptions of ANOVA. Simple linear regression analysis was performed using Genstat 

(version 8.0) to determine the effect of the log number of lesions of B. cinerea and the log 

number of pustules of U. viciae-fabae on the mean relative growth rate (MRGR) of A. fabae. 

Repeated-measurements ANOVA (Genstat version 8.0) was used to determine the 

effect of inoculation with B. cinerea and U. viciae-fabae on the population size and dry 

weight of A. fabae  3, 4, and 5 weeks after inoculations, compared to healthy plants. 

Percentage nitrogen was analysed by a one-factor ANOVA (Genstat version 8.0). 

 

 

Results 

 

Aphis fabae feeding on Botrytis cinerea-infected Vicia faba leaflets had a slower growth rate 

(3 days longer maturation time and an almost 50% reduction in MRGR), a 65% reduction in 

fecundity and a halved rm compared to aphids feeding on similar-aged leaflets on uninfected 

plants (Figure 1, Table 1).  There was a lesser, but still significant systemic effect, with 

aphids reared on both young and old uninfected leaflets on infected plants having a 24% 
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reduction in MRGR, 35% reduction in fecundity and a 21% reduction in rm compared to 

aphids reared on similar-aged leaflets on uninfected plants.  There was less effect of leaf age 

on aphid performance, although aphids developed faster and had a higher rm on younger 

rather than older leaflets (Figure 1). 

 Aphids feeding on Uromyces viciae-fabae infected leaflets, by contrast, had an 

improved performance compared to those reared on similar-aged leaflets on uninfected 

plants: maturation time was shortened by 2 days, MRGR was increased by 25%, fecundity by 

39% and rm was increased by 48% (Figure 1).  No systemic effect of rust infection was 

observed, nor did leaflet age have an effect on aphid performance (Table 1). 

 The combined infection experiment (Figure 2) was concerned with local rather than 

systemic effects.  The effects of B. cinerea or U. viciae-fabae infection alone mirrored that 

found in the first experiment, with B. cinerea reducing performance and U. viciae-fabae 

increasing it (Figure 2, Table 2), so that aphids feeding on rust-infected leaflets had a 3.5- 

fold greater fecundity and over 100% increase in rm compared to those reared on B. cinerea-

infected plants.  When both fungi were applied simultaneously to a leaflet they generally 

cancelled the effect of each other out, resulting in most performance parameters similar to the 

controls, although combined infection reduced fecundity by a third (Figure 2).  Sequential 

infection, (with infection by the second fungus five days after the first) led to a reduction in 

performance compared to the controls; increasing maturation time, a 70% decrease in 

fecundity and 50% reduction in rm. The application of rust before botrytis had a greater 

inhibitory effect on aphids than applying botrytis before rust (Figure 2).  The inhibitory effect 

of botrytis and the stimulatory effect of rust varied in linear relation to the lesion or pustule 

density in this experiment (Figure 3). 

 Both botrytis and rust infection inhibited the development of aphid populations on V. 

faba (Figure 4, Table 3), with infected plants having smaller populations of smaller aphids. 
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 Botrytis reduced total nitrogen content in V. faba leaves by 48%, while rust increased 

nitrogen concentration by 30% (Figure 5).  Combined infection reduced nitrogen by a similar 

amount to botrytis infection, and the order of infection did not affect nitrogen concentration. 

 

 

Discussion 

 

The results of single plant pathogen infections on individual aphids were consistent between 

the two experiments (Figures 1, 2), but were the opposite of that predicted in the introduction 

from likely interactions between induced resistance pathways.  Rather than the predicted 

stimulation of Aphis fabae growth and development by Botrytis infection, the aphid had 

slower growth and lower fecundity when feeding on Botrytis-infected leaves.  Likewise, 

rather than the expected decreased performance of the aphid on Uromyces viciae-fabae 

infected leaves, the aphid actually had increased performance when feeding on these leaves.  

These results are, however, consistent with the decreased nitrogen content found in the 

Botrytis-infected leaves and the increased nitrogen concentration found in the rust-infected 

leaves (Figure 5): Aphis fabae is sensitive to changes in nitrogen levels in plants (Van 

Emden, 1966; Jaenike, 1990). 

 Previous studies have found a varying response of aphids to Botrytis infection. 

Contrary to our results, Zebitz & Kehlenbeck (1991) found an increase in aphid performance 

on B. cinerea-infected Vicia faba, and suggested that this was due to the increased 

availability of amino acids resulting from the degradation of mesophyll cells in the phloem 

during pathogen-induced senescence, while Mouttet et al. (2011) found that Rhodobium 

porosum feeding on rose was negatively affected by Botrytis infection. 
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Few studies have investigated the effect of biotrophic pathogens on aphids (Hatcher, 

1995; Rostás, 2003), although, similar to our experiment Prüter & Zebitz (1991) found an 

increase in Aphis fabae performance when reared on Uromyces viciae-fabae-infected Vicia 

faba, and this aphid also formed significantly larger colonies on Cirsium arvense plants 

infected with the rust Puccinia punctiformis (Kluth et al., 2002).  By contrast, infection of 

barley by Erysiphe graminis reduced the weight and fecundity of two aphid species, Sitobion 

avenae and Metopolophium dirhodium (Pesel & Poehling, 1988). 

 The effect of local pathogen infection on aphid performance on Vicia faba is 

correlated with changes in nitrogen concentration in the leaves following infection (Figure 5).  

Whilst there is little consistency in whether a plant species will respond to a pathogen by 

increasing or decreasing leaf nitrogen content (Hatcher ,1995), such changes in leaf nitrogen 

concentration have been correlated with phytophagous insect performance in several studies 

(Hatcher, 1995).  The amino acid composition of infected leaves can also be altered by fungal 

infection.  Botrytis fabae altered the amino acid profile of Vicia faba (El Beih et al., 1988), 

and decreases in glutamic acid, aspartic acid and increases in asparagine, glutamine, serine 

and arginine concentrations were found in peach leaves infected by Sphaerotheca pannosa 

(Raggi, 1976) and bean plants infected by Uromyces phaseoli (Raggi, 1974).  Given that 

aphids are sensitive to changes in composition of phloem amino acids (Douglas, 2006; 

Powell et al., 2006) it would be instructive to determine the effect of plant pathogens on these 

amino acids. 

 Apart from a change in nitrogen concentration, plant pathogens alter other chemical 

and physical aspects of leaves; some, such as carbohydrates and water are known to affect 

insects (Hatcher et al., 1995, 1997).  The spore concentration of both pathogens applied to the 

plants in our experiments was selected to produce a medium-strength infection, but not to 

cover the whole leaf.  The effect of the pathogen on the leaf tends to decrease as distance 
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from the pustule increases (Hatcher et al., 1995), and while it is unlikely that aphids, as plant 

suckers, would feed on the sporulating pustules they would have plenty of undamaged 

material on which to feed, and thus we suggest that gross morphological changes to the leaf 

are not responsible for the effects observed on aphid performance. 

  

 Although infection with plant pathogens can lead to an alteration in nutrient content in 

uninfected leaves on the plant, these systemic effects are usually weaker than the local effects 

(Hatcher et al., 1995; 1997) and are usually observed only when a significant leaf area has 

been infected (Hatcher, 1995). The infection of only one leaflet of V. faba with B. cinerea, 

however, is unlikely to lead to such changes in the physiology of the plant to account for the 

systemic effects observed on the aphids (Figure 1), and thus this is likely to be due to induced 

resistance.  Botrytis kills host cells at very early stages of infection and causes extensive 

tissue death (Govrin & Levine, 2000; Mengiste, 2012).  It is therefore unlikely to activate the 

hypersensitive response and associated activation of defence responses regulated by the SA-

dependent pathway, as this would only facilitate infection - as has been demonstrated in 

Arabidopsis (Veronese et al., 2004).  Rather, botrytis infection often induces the JA/ET 

signalling pathway in plants, which can be an effective defence against infection (Thomma et 

al., 1998; Ferrari et al., 2003; Glazebrook, 2005; Mengiste, 2012), and is insensitive to SA-

signalled induced resistance in Arabidopsis and tobacco (van Loon et al., 2006). 

Aphids appear to be able to induce both the SA and JA/ET pathways, can be affected 

by both (Cooper & Goggin, 2005; Tjallingii, 2006; Goggin, 2007; Thaler et al., 2010) and the 

induction of either pathway appears to have a variable effect upon them: aphids both being 

inhibited by necrotrophic fungus infection (Pratt et al., 1982; Moran, 1998) and stimulated 

(Prüter & Zebitz, 1991; Zebitz & Kehlenbeck, 1991; Johnson et al., 2003), depending on the 

species. 
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Biotrophic pathogens, such as the rust fungus U. viciae-fabae, induce the 

hypersensitive (HR) response by the SA-dependent pathway, leading to the activation of 

many defence activator genes (Glazebrook, 2005) and the development of necrotic lesions at 

the sites of pathogen entry. A few days after HR development systemic acquired resistance 

(SAR) can develop in uninfected parts of the plant, providing long-lasting resistance to a 

range of pathogens (Glazebrook, 2005; Vlot et al., 2009).  This has been confirmed in V. faba 

where the development and exogenous applications of SA can induce systemic acquired 

resistance to U. viciae-fabae (Sillero et al., 2012).  No systemic response of rust infection 

against A. fabae was observed in this experiment (Figure 1) and the increase in aphid 

performance on infected leaves is consistent with the increase in nitrogen observed in 

infected leaves (Figure 5), and has been reported also by Zebitz (1988) in this system.  Thus, 

we can conclude that this aphid shows no evidence of being affected by products of aSA-

dependent systemic pathway that could be induced by the rust fungus.  Furthermore, as the 

SA and JA pathways are often mutually antagonistic, with the stimulation of one pathway 

leading to the inhibition of the other (Bostock, 2005; van Loon et al., 2006; Robert-

Seilaniantz et al., 2011) this suggests that in this experimental system this aphid may induce, 

and is probably inhibited by, the defence products of the JA pathway (which is likely to be 

inhibited by rust infection and stimulated by botrytis infection) rather than the SA pathway. 

Although many aphids have been found to be affected by resistance induced by the SA 

pathway, some aphids can induce, and are affected by, the producets of the JA-mdiated 

induced resistance pathway (Cooper & Goggin 2005; Tjallingii, 2006; Goggin, 2007). 

However, the primary effect of both pathogens on the aphid seems to be via alteration in 

nitrogen concentration (Figure 5), supported by the significant positive correlation between 

pustule density and aphid performance (Figure 3)  .  
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The first two experiments examined the effects of local (Figures 1, 2) and systemic 

(Figure 1) infection of one leaf per plant on individual aphids.  The population experiment 

(Figure 4) examined the effect of whole-plant infection on the increase in aphid populations. 

The aphid population that developed on plants infected with either pathogen was significantly 

smaller (and composed of smaller individuals) than that which developed on the uninfected 

plants (Figure 4).  Whilst this supports the negative effect of botrytis on the individual aphids 

it may be seen to contradict the positive effect of rust on the aphid observed in our individual-

aphid experiments.  However, both pathogens can significantly reduce the size and yield of V. 

faba (Lapwood et al., 1984; Rashid & Bernier, 1991; Sahile et al., 2010) and our results 

suggest that whole-plant infection reduces resource availability for the aphids, and thus 

lowers the plant’s aphid carrying capacity.  This was also observed by Prüter & Zebitz 

(1991).  Furthermore, this experiment highlights the need to examine these interactions at the 

population level: interactions and mechanisms that may be important at the level of the 

individual may be unimportant at the population level.  

As far as we are aware this is the first experiment in which the indirect effect of the 

infection of two plant pathogenic fungi together on an insect has been examined.  Although 

the nitrogen concentration of dual-infected plants was as low as that in botrytis-only infected 

plants, in general the aphids performed better on dual-infected plants (when the two 

pathogens were applied simultaneously) than when fed on those infected with botrytis alone 

(Figure 2).  Although aphid performance is overall is likely to be inhibited by the lack of 

nitrogen, if we postulate that these aphids are affected by JA-signalled rather than SA-

signalled induced defences, then if the rust infection is able to inactive the JA-signalled 

defence, as suggested above, then the aphids will be able to perform better than on plants 

infected with botrytis alone.  Further evidence for this hypothesis will be gained from 

experiments in which the effect of the aphid on the two pathogens and the effect of the 



18 
 

pathogens on each other are investigated.  It is unfortunate that we were unable to measure 

concentrations of SA and JA in these experiments; this will be needed for confirmation of 

these effects.   

The nature and extent of cross-talk between the signalling pathways depends on the 

timing and magnitude of their induction (van Loon et al., 2006), and this could be reflected in 

this experiment.  Whether the pathogens were applied together or sequentially did not affect 

leaf nitrogen content, but it did affect aphid performance with greater inhibition of aphids 

when the pathogens were applied sequentially rather than at the same time (Figure 2). This 

suggests that concurrent infection may reduce the cross-talk between defence pathways and 

thus inhibition of defences effective against aphids. 

Further experiments are needed to elucidate the mechanisms for the observed effects 

in this system, but the results suggest that aphids experience a complex and changing food 

source, with the possibility of their foodplants being infected by a variety of pathogens with 

their own widely different individual effects, and also effects from their combinations.  The 

observation that these aphids are both significantly inhibited and also significantly enhanced 

by leaf pathogen infection raises issues for the control of these three pests of Vicia faba.  

There is the possibility that control measures against some of these pathogens could lead to a 

consequent increase or decrease in Aphis fabae performance and ultimately plant yield, and 

thus careful pest management will be essential.  This will be investigated in subsequent 

experiments. 
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Table 1 

Statistical analysis of the effect of Botrytis cinerea (A) or Uromyces viciae-fabae (B) on the 

growth and fecundity of individual Aphis fabae. n=23. ***, P<0.001; **, P<0.01; *, P<0.05, 

ns, P>0.05. Two factor ANOVA (age of leaflet x presence/absence of systemic infection; 

together called ‘treatment’) with separate ‘control’ (aphids reared on an infected leaflet of 

leaf 3).  Convstrt = overall difference between ‘control’ and ‘treatment’. See text for further 

details of analysis. 

A  

   Maturation time 

(days) 

MRGR  Fecundity rm 

Source df MS MS MS MS 

Convstrt 1 46.37 *** 0.0508 *** 5279 *** 0.155 *** 

Convstrt x Age 

of leaflet 

1 8.183 *** 0.0001 ns 0.14 ns 0.003 ** 

Convstrt x 

Infection 

1 62.81 *** 0.0351*** 3769 *** 0.116 *** 

Convstrt x age 

x infection 

1 3.594 ** 0.0001 ns 77.26 * 0.0001 ns 

Residual 87 0.3537 0.0014 15.82 0.0003 

Total 91     

 

 

 

 

 

 

 



27 
 

 

B 

 

   Maturation time 

(days) 

MRGR  Fecundity rm 

Source df MS MS MS MS 

Convstrt 1 143.3 *** 0.0245 *** 2358 *** 0.2658 *** 

Convstrt x Age 

of leaflet 

1 0.141 ns 0.0001 ns 41.3 ns 0.0001 ns 

Convstrt x 

Infection 

1 0.147 ns 0.002 ns 28.53 ns 0.0005 ns 

Convstrt x Age 

x Infection 

1 1.356 ns 0.008 ns 72.80 ns 0.0025 ns 

Residual 112 1.100  38.89 0.0012 

Total 116     
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Table 2 

Statistical analysis of the effect of Botrytis cinerea or Uromyces viciae-fabae infection, 

individually or combined on the growth and fecundity of individual Aphis fabae reared on 

infected leaves.  Two-factor ANOVA (infection with B. cinerea x infection with U. viciae-

fabae).  ***, P<0.001. 

  

  Maturation 

time 

MRGR Fecundity Intrinsic rate of 

increase 

Source df MS MS MS MS 

Botrytis 2 13.3 *** 0.01 *** 369 *** 0.03 *** 

Uromyces 2 195 *** 0.08 *** 8718 *** 0.42 *** 

Botrytis x 

Uromyces 

4 28.6 *** 0.01 *** 671 *** 0.049 *** 

Residual 144 0.89 0.002 14.9 0.001 

Total 152     
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Table 3 

Statistical analysis of the effect of Botrytis cinerea (A) or Uromyces viciae-fabae  (B) 

infection on the population growth of Aphis fabae on Vicia faba.  Repeated measures 

ANOVA calculated. ***, P<0.001. 

A 

  Number of aphids Dry weight of aphids 

Source df MS MS 

Time after infection 2 8617 *** 0.278 *** 

Infection 1 1193 *** 0.355 *** 

Time x infection 2 4746 *** 0.198 *** 

Residual 84 2713 0.002 

Total 89   

 

B 

  Number of aphids Dry weight of aphids 

Source df MS MS 

Time after infection 2 1394 *** 0.181 *** 

Infection 1 2595 *** 0.413 *** 

Time x infection 2 6631 *** 0.074 *** 

Residual 84 2025 0.002 

Total 89   
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Figure legends 

 

Figure 1  The local and systemic effect of Botrytis cinerea or Uromyces viciae-fabae 

infection of Vicia faba on the growth and fecundity of individual Aphis fabae.  Means + SE 

given.  See Table 1 for statistical analysis.  Solid bar, ‘old’ infected leaflet (on third leaf); 

hatched bars, ‘old’ uninfected leaflet (on third leaf); open bars, ‘young’ uninfected leaflet (on 

fifth leaf). Same letters signify no significant difference (P>0.05) between means, from LSD 

from ANOVA. 

 

Figure 2  The effect of Botrytis cinerea or Uromyces viciae-fabae infection, individually or 

combined on the growth and fecundity of individual Aphis fabae reared on infected leaflets.  

Means + SE given, n=20. X-axis legend key: Control, uninfected leaf; B, Botrytis infection; 

R, Uromyces infection; 24 or 29 days after plant germination; thus B24 indicates infected 

with B. cinerea 24 days after germination, and B24R29 indicates infected with B. cinerea 24 

days after germination, and infected with U. viciae-fabae 5 days later (29 days after 

germination). Singly-infected leaflets are hatched, doubly-infected leaflets are cross-hatched.  

Summary results of two-factor ANOVA given (see Table 2 for statistical analysis): B, 

Botrytis infection; R, Uromyces infection; B x R, interaction term. ***, P<0.001. Same letters 

signify no significant difference (P>0.05) between means, from LSD from ANOVA. 

 



32 
 

Figure 3  Regression of lesion/pustule density of Botrytis cinerea (A) and Uromyces viciae-

fabae (B) against aphid mean relative growth rate. A, F 1,102 = 268, P<0.001, r
2
 = 0.722. B,  F 

1,101 = 399, P<0.001, r
2
 = 0.798 

 

Figure 4  The effect of Botrytis cinerea or Uromyces viciae-fabae infection on the population 

growth (number and dry weight) of Aphis fabae on Vicia faba.  Mean + SE given, =15.  Solid 

line, uninfected plants; dashed line, infected plants. Summary results from ANOVA (see 

Table 3 for statistical analysis): I, infection; T, time; I x T, interaction term. ***, P<0.001. 

 

Figure 5  Percentage dry weight nitrogen content of Vicia faba leaves infected with Botrytis 

cinerea (B) and/or Uromyces viciae-fabae (R), 24 or 29 days after plant germination (see 

Figure 2 for details).  Mean + SE given, n=5, except for control where n=2. Same letters 

signify no significant difference (P>0.05) between means, LSD from ANOVA (F 5,24 = 89.01, 

P<0.001).  
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Fig 2 
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 Fig 3  
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Fig 4 
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Fig 5 
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