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ABSTRACT: Understanding the metabolic processes asso-
ciated with aging is key to developing effective management
and treatment strategies for age-related diseases. We
investigated the metabolic profiles associated with age in a
Taiwanese and an American population. 1H NMR spectral
profiles were generated for urine specimens collected from the
Taiwanese Social Environment and Biomarkers of Aging Study
(SEBAS; n = 857; age 54−91 years) and the Mid-Life in the
USA study (MIDUS II; n = 1148; age 35−86 years).
Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite
profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites4-cresyl
sulfate (4CS) and phenylacetylglutamine (PAG)were positively associated with age. In addition, creatine and β-hydroxy-β-
methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10−6). These age-associated gradients in
creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using
ultraperformance liquid chromatography−mass spectrometry (UPLC−MS). Both are products of concerted microbial−
mammalian host cometabolism and indicate an age-related association with the balance of host−microbiome metabolism.
KEYWORDS: age, sex, metabolic profiling, NMR spectroscopy, 4-cresyl sulfate, phenylacetylglutamine

■ INTRODUCTION

The chronic nature of most diseases associated with aging,
coupled with the increased probability of elderly individuals
presenting with multiple pathologies requiring complex
therapeutic management strategies, makes analysis of age-
related conditions challenging. Aging is associated with a
general decline in physiological function, particularly in the
intestine, where a decrease in intestinal motility, a reduction in
the capacity of the immune system and changes in the
beneficial and hostile gut microbiota contribute to the general
decline in health. Many elegant studies in short-lived model
organisms such as the nematode worm Caenorhabditis elegans
and the mouse have contributed to our current understanding

of the aging process.1,2 However, the true complexity of aging
in human populations cannot be fully characterized in these
animal models, given the diverse exposure of humans to a
myriad of physical, environmental and social stressors.3,4 Thus,
in parallel to exploring experimental models of aging, there is a
need for research into the mechanisms and consequences of
aging in human populations. Epidemiological studies inves-
tigating population differences in the prevalence of diseases
across countries5−7 and between men and women8 offer a
particularly useful resource for studying aging.

Received: January 5, 2013

Article

pubs.acs.org/jpr

© XXXX American Chemical Society A dx.doi.org/10.1021/pr4000152 | J. Proteome Res. XXXX, XXX, XXX−XXX

pubs.acs.org/jpr


Metabolic phenotyping and metabolome-wide association
studies (MWAS) offer a powerful new means for discovering
molecular biomarkers and metabolic pathways that underlie
disease risk.9,10 This approach uses high-resolution spectro-
scopic techniques and mathematical modeling to generate a
molecular fingerprint of a biological specimen11 and can
provide a novel framework for identifying appropriate
therapeutic intervention strategies at the individual and
population level. A particular strength of metabolic phenotyp-
ing lies in its ability to reveal a representative overview of host,
extra-genomic and environmental contributions to metabolism.
Metabolic profiling approaches have been applied to studies

on age-associated diseases in both nonhuman2,12 and human
populations, with a focus on identifying age-related changes in
the biochemical composition of serum or plasma. Several
groups have reported decreased serum carnitines, acylcarnitines
and amino acids with age and increased free fatty acid levels in
aging rodents.13,14 In contrast, other studies have found an
increase in free serum carnitine with age in humans.15 While
plasma provides a useful system-level readout of the
physiological status of an organism at a given point in time,
urine provides time-averaged information on the metabolic
events that have occurred throughout the whole animal. The
metabolic signature of urine is influenced by the host’s genome
and physiology but also provides a window on extrinsic input
from dietary factors and the gut microbiome.
Here we apply a spectroscopic profiling approach to define

the metabolic signature of aging in two distinct human
populationsthe Taiwanese Social Environment and Bio-
markers of Aging Study (SEBAS)16 and the Mid-Life in the
USA (MIDUS II)17 cohortsusing 1H nuclear magnetic
resonance (NMR) spectroscopy and ultraperformance liquid
chromatography−mass spectrometry (UPLC−MS) of urine
specimens. Through this approach we identify the global
sources of metabolic variation and sex-specific elements within
the metabolic signatures of these geographically and culturally
distinct populations. In addition, we identify clear metabolic
correlates of biological aging in relation to declining muscle
metabolism and also age-related variation in the functionality of
several pathways involved in gut microbial−host metabolic
regulation.

■ METHODS AND MATERIALS

Description of Populations and Specimen Collections

SEBAS Study. A total of 857 urine specimens from the 2000
SEBAS study (age range 54−91; mean 68 years) were shipped
from the Lombardi Comprehensive Cancer Center, George-
town University to Imperial College London. This specimen set
comprised urine from 368 females and 489 males. Specimens
were stored at Imperial College at −80 °C prior to analysis.
MIDUS Study. A total of 1148 urine specimens from the

MIDUS II study (age range 35−86; mean 57 years) were
shipped from the Harlow laboratory, University of Wisconsin
and stored at −80 °C at Imperial College prior to analysis.
Participants included 651 females and 497 males. Both sample
sets were 12-h overnight urine collections.
The demographic characteristics of the SEBAS and MIDUS

participants are summarized in Table 1.
1H NMR Spectroscopic Analysis

Quality control (QC) aliquots for NMR analysis were prepared
by combining aliquots of urine from randomly selected
subgroups of individuals. For each cohort, SEBAS and

MIDUS, specimens were randomized and interspersed with
QC aliquots (using a total of 129 QC aliquots) in order to
assess data quality and variation over the analytical measure-
ment period. Specimens were prepared and spectra acquired
using in-house protocols18 adopting a standard one-dimen-
sional pulse sequence with suppression of the water resonance.
Briefly, urine specimens were prepared by the addition of
phosphate buffer made up in deuterium oxide containing 1 mM
3-(trimethylsilyl)-[2,2,3,3-2H4]-propionic acid sodium salt
(TSP) as an external reference and 2 mM sodium azide as a
bacteriocide. For each specimen, a standard one-dimensional
NMR spectrum was acquired with water peak suppression
using a standard pulse sequence (recycle delay (RD)-90°-t1-
90°-tm-90°-acquire free induction decay (FID)). A mixing time
(tm) of 100 ms was used and the RD was set at 2 s. The 90°
pulse length was approximately 12 μs and t1 was set to 3 μs. An
acquisition time per scan was 2.73 s and, for each specimen, 8
dummy scans were followed by 128 scans. The spectra were
collected into 64K data points using a spectral width of 20 ppm.
Preprocessing and Modeling of the NMR Spectral Data

Spectra were phased, corrected for baseline distortions and
referenced to the TSP signal at δ 0.00. The region between δ
4.70 and 6.20 containing the residual water resonance and the
urea peak was removed for all spectra. For the MIDUS spectral
data, the region containing the methyl resonance of acetate (δ
1.92) was removed owing to pretreatment of these aliquots
with acetate. The remaining spectral variables between δ 0.70−
4.70 and δ 6.20−10.00 were normalized to the sum of the
spectral integral prior to analysis using principal components
analysis (PCA). Data were analyzed with and without peak
alignment using the algorithm defined by Veselkov et al.19 The
main sources of variation in the data were identified and further
explored. Partial least-squares discriminant analysis (PLS-DA)
was applied to the data with and without the application of an
orthogonal filter to remove extraneous variation and to
establish metabolic patterns relating to a variety of participant
variables including age and sex. The predictive performance of
the models was assessed using a 7-fold cross-validation
approach and the Q2Y (goodness of prediction) values are
provided. Permutation testing (1000 permutations) has been
performed to ensure the validity of the PLS models. Linear
regression was used to measure the statistical significance of the
metabolic variations. A cutoff of p < 4 × 10−6 was used based

Table 1. Study Participant Information for SEBAS and
MIDUS

SEBAS MIDUS

Total specimens NMRa 857 1148
Total specimens MS 725 1196
Age range 54−91 35−86
Sex (female/male) 368/489 651/497

aThe number of urine specimens for NMR and MS differ due to the
number of specimens excluded based on the differing analytical
constraints of the two techniques. For NMR analysis, specimens were
excluded if the glucose levels or ethanol concentrations were too high,
which caused bias in the models. For MS specimens were excluded
where there was insufficient specimen volume or where specimens
contained a polyethylene glycol contaminant, possibly leached from
the storage vials. Outliers in the PCA scores plots of the NMR data
were evaluated using the Hotellings T ellipse and discarded where
appropriate in order to remove undue influence of artifacts on the
models.
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on the method described by Chadeau-Hyam et al.20 for
selecting a suitable level of significance in metabolome wide

association studies (MWAS) with an expected family wise error
rate of 5% for 13 000 variables.

Figure 1. PCA model of the urinary profiles of all SEBAS participants. Scores plots for (A) PC1 vs PC2 and (B) PC1 vs PC3 (% variance explained
in parentheses). Product of PC loadings with standard deviation of the entire data set, colored by the square of the PC shown for (C) PC1, (D) PC2
and (E) PC3.
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UPLC−MS Spectral Analysis

UPLC−MS analysis was performed to validate the NMR-
detected correlation of PAG and 4-cresyl sulfate with age and to
explore other possible age related variation in the urinary
metabolome using optimized protocols for urine metabolite
profiling.21 Briefly, urine specimens were prepared by dilution
(1:1) with water (Sigma, LC−MS grade), vortexed for ten
seconds, and centrifuged at 16 000× g for 10 min. Two
hundred microliters were aliquoted into 96-well 350 μL plates
(Waters Corporation, Milford, MA) with cap mats (VWR,
U.K.). A composite quality control (QC) aliquot was prepared
by combining 50 μL from 775 randomly selected SEBAS and
MIDUS specimens. The QC aliquot was subaliquoted to
minimize freeze−thaw cycle effects and stored frozen until
required for the analysis. Ten analyses of the QC aliquot were
performed at the beginning of the analytical run for system
conditioning. A single QC aliquot injection was performed at
10-aliquot intervals throughout the subsequent data acquisition
to provide data for the assessment of analytical reproducibility
including peak retention times and detector response. Addi-
tionally, five blanks were injected prior to the injection of QC-
conditioning aliquots in order to ensure that there was no
contamination from the UPLC system, and again at the end of
the experiment to ensure that specimen carryover was not
observed.
Metabolic profiling was performed on an Acquity UPLC

system (Waters Corp., Milford, MA) coupled to an LCT
Premier time-of-flight mass spectrometer (Waters Corp.,
Manchester, U.K.). UPLC−MS conditions were optimized in
terms of peak shape, reproducibility and retention times of
analytes. Chromatography was performed using an Acquity
HSS T3 column, 2.1 × 100 mm column (Waters Corp.,
Milford, MA) held at 40 °C. Separation was performed using
gradient elution with 0.1% (v/v) formic acid in H2O (A) and
0.1% (v/v) formic acid in ACN (B) at a flow rate of 0.5 mL/
min. Starting conditions were 99.9% A and 0.1% B for 1.0 min,
changing linearly to 15% B over the next 2 min, and then to
50% B over the next 3 min, and finally to 95% B in the next 3
min and kept for 1 min. Afterward the solvent composition
returned to starting conditions over 0.1 min, followed by re-
equilibration for 2 min prior to the next injection.
Mass spectrometry was performed using electrospray in both

positive and negative ionization modes (ESI+ and ESI−). The
capillary voltage was 3.2 kV (ESI+) and 2.4 kV (ESI−), cone
voltage was 35 V, desolvation temperature was 350 °C, and
source temperature was 120 °C. The cone gas flow rate was 25
L/h, and desolvation gas flow rate was 900 L/h. The LCT
Premier was operated in V optics mode with a scan time of 0.2
s and interscan delay of 0.01 s. For mass accuracy, a LockSpray
interface was used with a 20 μg/L leucine enkephalin
(555.2645 amu) solution (50/50 ACN/H2O with 0.1% v/v
formic acid) at 70 μL/min as the lock mass. Data were
collected in centroid mode with a scan range of 50−1000 m/z,
with lockmass scans collected every 15 s and averaged over 3
scans to perform mass correction.

Preprocessing and Modeling of the UPLC−MS Data

Since the system is not generally stable during the first
injections, the first 10 QC samples were used to ensure that
stability had been attained, after which the QC-conditioning
aliquots were excluded from further data processing. The rest of
the raw data (i.e., the target specimens plus the remaining QC
aliquots) within the run were converted to netCDF format

using the DataBridge tool implemented in MassLynx software
(Waters Corporation, Milford, MA).
The data were preprocessed using the freely available XCMS

software. The Centwave algorithm was used for peak picking
with a peak width window of 3−15 s, the m/z width for the
grouping was changed to 0.1 Da, the bandwidth parameter was
kept to default (30 s) for the first grouping and was
subsequently determined from the time deviation profile plot
after retention time correction. An output table was obtained at
the end comprising m/z, RT and intensity values of the
detected metabolite features in each specimen.
The data were then normalized in R with an in-house

script.22 The coefficient of variation (CV = standard deviation/
mean) values were calculated for all the intensities of
metabolite features (mz_Rt) in the QC samples analyzed
within the run (see Supporting Information for details). In the
generated data sets features with a CV higher than 30% in
replicated injections of the QC aliquots interspersed within the
run were removed. The output table was exported into SIMCA-
P+ 12.0.1 software (Umetrics, Umea,̊ Sweden) for multivariate
analysis. Principal component analysis (PCA), partial least-
squares-discriminant analysis (PLS-DA) and orthogonal
projection on latent structures-discriminant analysis (OPLS-
DA) were performed on all data.
Adjustment of Data Sets for Differential Age Ranges
between the SEBAS and MIDUS Studies

Owing to different age ranges between the two study
populations (SEBAS 54−91 years, mean 68 years; MIDUS
35−86 years, mean 57 years), auxiliary models were
constructed using a restricted age range that comprised the
overlap between the two studies (ages 54−86 years); the results
are reported in Supporting Information (Figures S3−S5).

■ RESULTS
The analytical platforms and methods were robust and reliable,
as indicated by the coefficients of variation for the quality
control specimens. Moreover, the analytical quality of the data
was good across both the NMR spectroscopy and the UPLC−
MS data, obtained for both the SEBAS and the MIDUS data
sets, with the one exception of ESI negative mode data for the
MIDUS cohort. No adjustment of the MS data for run order
was necessary. For the UPLC−MS in ESI+ ion mode, the
coefficients of variation for the QC samples were 25.2 ± 19.1
and 23 ± 17.7 for SEBAS and MIDUS, respectively. ESI− ion
mode gave similar results with CV values 31.8 ± 19.3 for the
SEBAS study. For the MIDUS study, the CV ESI− ion values
were high (50 ± 53.3); therefore, we refrained from further
analysis of the negative ionization mode data set.
Global Analysis of the 1H NMR Urine Data

The scores and loadings plots from the global PCA model for
the SEBAS data set (Figure 1) show that the first component
was dominated by creatinine and trimethylamine-N-oxide
(TMAO), which represented the greatest sources of variation
across the specimen set. Creatinine is a crude indicator of
muscle mass and can vary with sex and age. TMAO is
associated with consumption of certain fish and shellfish, where
it functions as an antifreeze agent and an osmolyte and has
been shown to be elevated in urine after consumption of diets
rich in phytoestrogens, for example, soy or miso. The variance
in the second component was dominated by metabolites related
to acetaminophen, namely acetaminophen glucuronide and
acetaminophen sulfate. Methylamines and a singlet (δ 4.41)
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tentatively assigned as dihydroxyacetone exerted the greatest
influence on the third principal component.

Similarly to the SEBAS data set, the first component of the
PCA model calculated for the MIDUS data set was strongly

Figure 2. PCA model of the urinary profiles of all MIDUS participants. Scores plots for (A) PC1 vs PC2 and (B) PC1 vs PC3 (% variance explained
in parentheses). Product of PC loadings with standard deviation of the entire data set, colored by the square of the PC shown for (C) PC1, (D) PC2
and (E) PC3.
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influenced by creatinine (Figure 2). In addition, acetaminophen
metabolites also made a substantial contribution to the first
component. Although the principal components are linear and
orthogonal, creatinine also dominated the second component.
When a metabolite is influential in the loadings explaining more
than one component, it is generally because the variance of that
metabolite is determined by more than one major source of
variation in the data set. The mammalian−microbial comet-
abolite hippurate accounted for the majority of the variance in
the third component of the MIDUS II model.
Since methylamines contributed strongly to the variation in

the SEBAS but not the MIDUS II data set, the urinary
concentrations of trimethylamine (TMA) and dimethylamine
(DMA) were calculated from the integrals at δ 2.88 and δ 2.72
respectively and found to be significantly different for the
Taiwanese (mean concentration TMA = 0.11 ± 0.11 mM and
DMA = 0.44 ± 0.46 mM) and American populations (mean

concentration TMA = 0.02 ± 0.01 mM and DMA = 0.15 ± 0.1
mM). Because of overlap with taurine and other metabolites,
the integral values for the TMAO signal were not calculated but
visual inspection of the data suggested that TMAO was found
in higher concentrations in the urine of Taiwanese participants.

Sex-related Differences in Urinary Metabolic Phenotypes

Because creatinine was one of the major sources of variation
found in both the SEBAS and MIDUS cohorts, and is known to
differ with both age and sex, the influence of sex on the NMR
derived metabolic profiles was characterized prior to focusing
on age-related metabolic differences. Using an unsupervised
PCA approach, no clear discrimination of specimens according
to sex could be seen for either the SEBAS or the MIDUS
cohorts (Supporting Information Figure S1) indicating that the
major sources of variation in urine composition across the
populations were not sex-related.

Figure 3. Linear regression analysis correlating 1H NMR spectral profiles of urine with sex. Covariance plots derived from linear regression analysis
for (A) SEBAS and (B) MIDUS, color-coded by significance. Significance determined by p < 4 × 10−6, the metabolome-wide significance level
(MWSL).
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OPLS-DA and linear regression analysis were used to
establish that systematic differences in the metabolic
phenotypes of men and women existed and to extract the
sex-dependent metabolic characteristics. For the SEBAS
specimen set (Supporting Information Figure S2A) a model

with a predictive value (Q2Y) of 0.236 for a 1 orthogonal, 1
aligned component model was obtained. As expected, the major
discriminating metabolite between men and women was
creatinine, which was found to be at systematically higher
concentrations in male urine. Conversely, females excreted

Figure 4. Age-related variation in SEBAS urinary metabolic profiles using linear regression. Covariance plots derived from linear regression analysis
for (A) all SEBAS participants and stratified by sex ((B) females and (C) males). Covariance plots are colored by significance (p < 4 × 10−6). HMB,
β-hydroxy-β-methylbutyrate; PAG, phenylacetylglutamine; 4CS, 4-cresyl-sulfate.
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greater amounts of creatine and citrate than males. This
difference is illustrated in the linear regression plot (Figure 3A).
Men were also found to excrete greater amounts of a
methylmalonate. Similar findings were noted in the OPLS-
DA analysis between sexes in the MIDUS II specimen set

(Supporting Information Figure S2B) with a Q2Y = 0.207 for a
1 aligned and 1 orthogonal component model. As with the
SEBAS cohort, men had higher urinary excretion of creatinine
and methylmalonate and lower citrate and creatine than
women. Additional sex-related differences in the US specimen

Figure 5. Age-related variation in MIDUS urinary metabolic profiles using linear regression. Covariance plots derived from linear regression analysis
for (A) all MIDUS participants and stratified by sex ((B) females and (C) males). Covariance plots are colored by significance (p < 4 × 10−6). 4PY,
N-methyl-4-pyridone-3-carboxamide; NMNA, N-methyl nicotinic acid; NMND, N-methyl nicotinamide; HMB, β-hydroxy-β-methylbutyrate; PAG,
phenylacetylglutamine; 4CS, 4-cresyl-sulfate.
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set included higher taurine in male urine and higher glycine and
4-cresyl sulfate concentrations in female urine (Figure 3B). The
urinary concentration of creatinine was calculated from the
CH2 signal of creatinine at δ 4.06. The mean creatinine
concentrations for men and women in the SEBAS population
were 10.25 ± 5.83 mM and 7.26 ± 4.72 mM respectively and
the values for the MIDUS participants were 11.07 ± 6.68 mM
(men) and 10.55 ± 6.55 mM (women).
When the data sets were adjusted to align the age range for

the SEBAS and MIDUS studies, some of the metabolites
identified as being significantly different between men and
women in the MIDUS II cohort were not sustained and the
urinary metabolites differentiating between men and women
were more similar for the two populations (Supporting
Information Figure S3). Higher urinary concentrations of
citrate and creatine were present in female urine from both
SEBAS and MIDUS participants, whereas males excreted
higher creatinine and methylmalonate. Additionally, for the
MIDUS study, taurine was present in higher concentration in
urine specimens collected from men, even after adjustment for
age range.

Age-related Differences in Urinary Metabolic Phenotypes

PLS models were calculated for the SEBAS and MIDUS
specimen sets independently for both the complete data sets
and the age-restricted data sets as summarized in Supporting
Information Table S1. Both the univariate linear regression and
the OPLS regression models indicated that there was significant
variation in the NMR metabolite profiles with age (summarized
in Table 2). Mean signal intensities for each metabolite
significantly associated with age have been calculated for
youngest and oldest participants (n = 100) in the SEBAS and
MIDUS studies and are provided in Supporting Information
Table S2. Overall, for the SEBAS study, age was directly
correlated with excretion of phenylacetylglutamine (PAG), 4-
cresyl sulfate (4CS) and glutamate and was inversely correlated
with excretion of creatine, β-hydroxy-β-methylbutyrate (HMB)
and guanidinoacetate (GAA) (Figure 4). Further models were
calculated for this data set after stratification by sex. For both
sexes, the gut-microbially derived metabolites, PAG and 4CS,

were directly correlated with age. There were also a few
differences between the sex-specific models: HMB was
inversely correlated with age for males, whereas females
showed a similar trend in HMB with age but the age-related
variation in urinary concentration was not significant. Women
excreted lower amounts of creatine with age.
Similar patterns were observed in the MIDUS study, with

PAG and 4CS excretion increasing and creatine, creatinine and
HMB excretion inversely correlated with age (Figure 5A). In
addition, scyllo-inositol, dimethyl-sulfone, N-methylnicotina-
mide (NMDA), N-methylnicotinic acid (NMNA), N-methyl-
4-pyridone-3-carboxamide (4PY) and ascorbate excretion were
also directly associated with age. Lower amounts of several
amino acids (alanine, glycine and lactate) were excreted with
increasing age. When stratified by sex, the females excreted
higher PAG, 4CS, scyllo-inositol, NMNA, NMND and
ascorbate as they aged and lower levels of HMB, creatine,
creatinine, lactate and glycine (Figure 5B). Fewer metabolites
were correlated with age in the male participants (Figure 5C),
with PAG and 4CS positively correlated with age while HMB,
creatinine and glycine were negatively correlated with age.
When the data sets were restricted to the same age range in

both the MIDUS and SEBAS populations (Supporting
Information Figures S4 and S5), the metabolites related to
age in the complete data set persisted for SEBAS. For the
MIDUS participants, the narrower age range reduced the
sample size (females n = 365; males n = 297) and thus the
predictive strength of the models. When male and female
participants were considered together, PAG and 4CS were
positively correlated with aging. In males, the higher
concentration of urinary PAG was the metabolic feature most
strongly associated with age. The analyses of urine from only
MIDUS females yielded a model with poor predictive strength
(Q2Y = 0.008); the results from this linear regression are not
shown in Supporting Information Figure S5.
UPLC−MS data indicated that the most discriminatory

metabolite for both populations was PAG (Figure 6), followed
by 4CS in the SEBAS population, confirming the results
generated via NMR. These UPLC−MS metabolite findings

Figure 6. S-plots of the OPLS models identifying UPLC−MS derived-metabolic features associated with aging for (A) SEBAS and (B) MIDUS
cohorts.
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were identified by comparison with authentic standards. For
SEBAS, PAG was discriminatory in both the negative (p(corr)
range 0.68−0.79) and positive (p(corr) range 0.72−0.82) ESI
mode profiles with a mean coefficient of variation of 13 ± 2.8%
and 15.5 ± 4.9%, respectively. For MIDUS, the CV values of
PAG were similar (16.1 ± 6.3%) in ESI+, but as noted earlier,
the ESI− data were of insufficient quality. 4CS was a
discriminatory metabolite in urine samples of the SEBAS
population analyzed in ESI− with a mean coefficient of
variation of 19.1 ± 7.0%. The S-plots for the OPLS models
constructed from the SEBAS (ESI−) and MIDUS (ESI+)
UPLC−MS data are provided in Figure 6.

■ DISCUSSION

Human metabolism is influenced by a wide variety of genetic
and environmental factors, giving rise to extensive variation in
the composition of biological tissues and fluids. Understanding
the nature of this variation both between individuals and across
populations is critical to attributing systematic changes in
metabolism to physiological processes or disease and remains a
challenging aspect of biomarker research. In this study, we
characterized metabolic signatures associated with sex and age
in representative national populations from Taiwan (SEBAS)
and the USA (MIDUS). A combination of NMR spectroscopy
and UPLC−MS analysis was used to probe similarities and
differences in urine specimens obtained from a large number of
middle-aged and older participants. The most notable source of
variation associated with age in both populations was attributed
to metabolites derived from gut microbial transformation of
aromatic amino acids, specifically PAG and 4CS.

Global Sources of Metabolic Variation

Major sources of variation within each data set were found to
be similar and comprised a mixture of endogenous, dietary, gut-
microbial and xenobiotic signatures from human metabolite
profiles. The general overview of the metabolic profiles
provided by principal components analysis identified metabo-
lites of dietary origin contributing to variation in the metabolic
profiles and differing across the two samples. In SEBAS, the
excretion of methylamines was a strong source of variation
while hippurate concentrations were highly variable in the
MIDUS II data set. Urinary dimethylamine (DMA) and
trimethylamine (TMA) are predominantly gut microbial
products of dietary choline metabolism.23 The high concen-
tration of TMA in fish is responsible for the characteristic odor.
The significant findings in the Taiwanese data may be indicative
of greater variation in fish/choline consumption across this
cohort, although TMAO is also known to be a component of
foods that are high in phytoestrogens such as soy and miso.
This interpretation is reasonable given that no dietary
restriction was required prior to specimen collection and that
fish, seafood and soy are major components of the Taiwanese
diet. Alternatively, choline biotransformation capacity encoded
in the microbiome may vary widely in this sample. TMAO is a
hepatic oxidation product of dietary amines, specifically TMA,
and was noted to vary across SEBAS participants in a similar
manner to its metabolic precursor. Recent work has
demonstrated an association between gut microbial-produced
TMA and TMAO and cardiovascular disease risk in humans,24

where TMAO was demonstrated to be pro-atherogenic.
A further indication that gut microbial capacity may differ

between the American and Taiwanese populations is the
difference in the urinary variation and concentration of

hippurate, a gut microbial−mammalian cometabolite, which is
formed from glycine conjugation of dietary or microbially
produced benzoic acid in the liver mitochondria. Hippurate was
found in higher concentrations in the MIDUS cohort than the
SEBAS cohort (SEBAS mean hippurate 1.4 ± 1.51 mM;
MIDUS 2.15 ± 1.71 mM) and was also responsible for a large
part of the variation in the PCA scores plot in the MIDUS but
not the SEBAS data set (Figures 1, 2). Typical urinary
concentrations of hippurate in a predominantly Caucasian
population have been reported as 1.83 ± 1.24 mM.25

Differences in the excretion pattern of hippurate and
methylamines may simply reflect dietary variationfor
example in the consumption of fish, coffee and other sources
of benzoic acid (a precursor of hippurate)or may partially
relate to population differences in the gut microbiota and/or
their activities. It has been shown that gut microbial
transformations can be influenced or entrained by diet. For
example, certain porphyranases from marine Bacteroidetes have
been acquired by the gut microbiota of Japanese populations
where sushi is a stable part of the diet but are absent from the
metagenome of Americans.26

From the principal components analysis, creatinine was
identified as the metabolite with the greatest variation across
both the Taiwanese and US samples. Creatinine is known to
differ between sexes, with age, with meat consumption, and to
be proportional to muscle mass. It is expected, therefore, that
creatinine might vary widely across these two large-scale sets of
specimens. Urinary creatinine was also strongly influenced by
sex, with higher concentrations found in men, in keeping with
the known influence of muscle mass.
Other metabolites that exhibited a high degree of variation

across the two data sets included xenobiotics such as
acetaminophen metabolites, namely acetaminophen-glucuro-
nide and acetaminophen-sulfate, an interesting reflection of
prevailing medical practice and medication use across two
nations. Acetaminophen metabolites (predominantly glucur-
onide and sulfate) emerged as strong contributors to the
coefficients of the first principal component of the MIDUS
PCA model and the second principal component of the SEBAS
model.

Sex-dependent Metabolites in the SEBAS and MIDUS
Samples

Variation attributable to sex was a major component of both
the SEBAS and the MIDUS data sets. On the whole the sex-
dependent urinary signature was similar for both data sets. As
expected, differences in urinary creatinine proved to be the
strongest discriminator with higher levels of urinary creatinine
excretion in men, reflecting their greater muscle mass.
Creatinine has also been shown to be directly correlated with
body weight.27 Metabolic profiling studies in Swiss (n = 84
women and 66 men),28 American (n = 30 women and 30
men)29 and Greek (n = 61 women and 61 men)30 populations
using 1H NMR spectroscopy and multivariate statistics have
also reported that creatinine dominates the models. Metabolic
profiling studies in rats and mice have also reported higher
urinary creatinine concentrations in male animals.31

Urinary citrate levels were higher in women than men, in
both the SEBAS and MIDUS samples, a finding also reported
in prior studies of Swiss, American and Greek populations.28−30

Higher urinary citrate levels in females have also been found in
animal studies, and it is known that urinary citrate excretion
increases during pregnancy along with 2-oxoglutarate and
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lactate.32 Urinary citrate excretion in women rises during
ovulation and following the administration of estrogens.33 A
comparison of the age-restricted samples suggested that the
citrate variation between men and women was stronger in
SEBAS (r = 0.24; p = 1.21 × 10−12) than in MIDUS (r = 0.19; p
= 5.99 × 10−7). The higher levels of urinary citrate in women is
thought to account for their lower risk of kidney stone
formation due to citrate’s inhibitory influence on calcium salt
crystallization. Conversely, hypocitraturia is an important risk
factor for kidney stone formation.34

Amino acid excretion was found to differ between sexes in
the MIDUS sample only. Greater taurine excretion was
observed in male participants while higher glycine excretion
was noted in females. Taurine is an amino acid associated with
meat intake and could thus reflect dietary preferences for meat
consumption,35 but increased excretion is also a consequence of
increased tissue catabolism and protein turnover, which is
known to be higher in men. Glycine is required for the
biosynthesis of creatine, which was also observed to be greater
in females than males. The higher excretion of glycine may
therefore reflect a greater requirement for creatine synthesis in
these females.
Methylmalonate (MMA) was present in greater amounts in

male than in female urine. This sex effect was consistent across
both the Taiwanese and US samples. This malonic acid
derivative is a precursor for succinyl-CoA and its synthesis
requires the cofactor, cobalamin (vitamin B12). Hence, urinary
MMA is known to be elevated in cobalamin-deficient
individuals. Cobalamin deficiency is most common in elderly
white males36 and has been associated with cognitive
impairment, anemia and peripheral neuropathy.37

Characterization of Age-associated Metabolites in the
SEBAS and MIDUS Samples

Age-related variation was apparent in both data sets. Two
notable metabolitesphenylacetylglutamine (PAG) and 4-
cresyl sulfate (4CS)were positively correlated with age, even
when the samples were stratified by sex. Another variation that
was consistent across both samples was lower excretion of β-
hydroxy-β-methylbutyrate (HMB) and creatine in older
participants.
Associations with age that were unique to the SEBAS

population included a positive relationship between urinary
glutamate and age and an inverse relationship with guanidino-
acetic acid (GAA). For MIDUS participants, ascorbate, N-
methylnicotinamide (NMND), N-methylnicotinic acid
(NMNA), N-methyl-4-pyridone-3-carboxamide (4PY), dimeth-
yl-sulfone and scyllo-inositol were directly associated with age,
while creatinine, lactate, alanine and glycine were inversely
correlated with age.
Through this molecular epidemiology approach we have

identified potential metabolic windows into multiple age-related
processes and diseases. These have great potential for
understanding the biochemical basis of disease processes,
early diagnostics and health implications of such diseases.
Specifically, the results are relevant to the biochemical events
associated with sarcopenia, neurological dysfunction and the
susceptibility to gastrointestinal infection.
Creatinine, creatine and HMB are likely to be associated with

muscle turnover, which declines with age. As discussed with
respect to sex differences in creatinine excretion, creatinine is an
index of muscle mass27 and aging is associated with progressive
loss of muscle performance and lean mass.38 In a metabolic

profiling study of aging in Labrador retriever dogs, the level of
urinary creatinine rose during development through young
adulthood, reached a maximum at 5−9 years old and then
declined in later life.39 Differences in creatinine concentration
with age can also arise from the age-dependent decrease in
renal plasma flow and glomerular filtration rate.40 However,
since the proximal tubules are responsible for the excretion of
10% of creatinine then although reduced glomerular filtration
rate may contribute to the association between age and
declining creatinine, it is unlikely to be the main factor
influencing this event. Muscle holds a vital role in whole-body
protein metabolism serving as a repository for protein and
amino acids and maintaining systemic protein synthesis.
Reasons for the decline in muscle mass with age include
reduced exercise, poor nutrition and loss of muscle integrity.
However, a definitive mechanism for muscle loss with age has
not yet been established. Maintenance of muscle mass can
protect against various pathologies and diseases. Age-related
muscle mass atrophy (sarcopenia) can have adverse effects on
protein metabolism, immune function, organ function and
wound healing.41 Proposed reasons for sarcopenia stem from a
host of intrinsic and extrinsic factors including decreased
hormonal activity.42 The inverse association between HMB and
age is also consistent with the progressive loss of muscle mass
with age and has previously been reported as characteristic of
differences between young (19−40 years) and old (41−69) in a
metabolic profiling study in a small cohort of Americans.29

HMB is a metabolite of the amino acid leucine and has a
protective effect on muscle loss. It can serve as a precursor for
cholesterol synthesis in muscle tissue, which can then have an
important role in strengthening the cellular membrane of
muscle cells. Furthermore, HMB can attenuate protein
degradation and up-regulate protein synthesis in muscle tissue.
Research has shown that supplementing the elderly with HMB
can decrease muscle damage and increase lean body mass.43

Elevations in the excretion of several metabolites in the
nicotinic acid pathwayN-methylnicotinic acid (trigonelline or
NMNA), N-methylnicotinamide (NMND) and N-methyl-4-
pyridone-3-carboxamide (4PY)were positively associated
with age in the American cohort. This type of metabolic
dysregulation may be associated with age-related neuro-
degenerative conditions and cognitive dysfunction associated
with aging e.g. Parkinson’s and Alzheimer’s disease.6 Lower
urinary 4-PY concentrations have been found in stressed rats
compared with controls, and those exhibiting fatigue have
perturbed nicotinate and nicotinamide metabolism.44 Increased
NMND excretion has also been observed in individuals with
Parkinson’s disease45,46 and has been implicated as a
mechanism mediating the death of dopamine-generating
cells.47 Similarly, brain concentrations of inositol metabolites
have been linked to neurodegenerative diseases, specifically
Alzheimer’s dementia, and are present in greater amounts in
elderly than in young individuals,48 suggesting that the
regulatory integrity for maintaining intracellular inositol
concentrations may weaken with age.

Indices of Age-associated Variation in the Gut Microbiome

Mammals are now considered to be “superorganisms” or
“metaorganisms” whose processes represent the sum of both
genomic and microbiomic contributions. It is reasonable,
therefore, to consider how aging affects the symbiotic
relationship between the host and resident microbiota. Such
age-associated changes are likely to be reciprocal in nature with
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microbial modulations being both a cause and consequence of
structural and biochemical changes in the gastrointestinal tract,
immunosenescence and alterations in food consumption caused
by changes in appetite, taste and digestion. In addition, host
factors, including reduced physical activity, oropharangeal
dysphagia and changes in gut motility and immune competence
in the elderly can all impact on health and the microbiota.49

Conditions such as constipation and slow gut transit times are
also more prevalent in the elderly and may lead to increased
usage of various medications for chronic symptoms.50 Elderly
people are more likely than younger people to be the recipients
of drug therapy of many classes, including ones that affect the
gut microbiome (e.g., elderly, defined as >65 years, comprise
approximately 13% of the U.S.A. population, but are the
recipients of >40% of all prescription drugs51). Laxatives,
antibiotics, and calcium channel blockers commonly lead to
side-effects such as diarrhea, malabsorption and constipation.52

PAG and 4CS showed the strongest association with age for
both populations with a correlation coefficient (r) of 0.32 (p =
1.2 × 10−21) and 0.32 (p = 1.53 × 10−21), respectively, for
SEBAS and 0.29 (p = 6.55 × 10−23) and 0.23 (p = 9.83 ×
10−16) for MIDUS (Figures 4 and 5). PAG and 4CS are formed
from protein putrefaction of phenylalanine and tyrosine by the
gut microbiota. Phenylalanine is converted to phenylacetate in
the colon and subsequently conjugated with glutamine in the
liver and the gut mucosa,53 whereas 4CS is a product of
microbial tyrosine breakdown via hydroxyphenylacetate to 4-
cresyl, followed by conjugation with sulfate.54 Age-related
variations were also observed in the bacterial fermentation
product, lactic acid, being negatively associated with aging in
the American sample.
The marked age-associated alteration of PAG and 4CS

concentrations are consistent with known shifts in the
composition of the microbiome, including increased represen-
tation from enterobacteria and decreasing proportions of
anaerobes and Bifidobacteria.55 The ratio of Firmicutes to
Bacteroidetes has also been found to be lower in the elderly.56

Decreases in anaerobes and Bif idobacterium spp. and increases
in enterobacteria may increase susceptibility to gastrointestinal
infections, and changes in the composition of gut microbiota
have been implicated in many diseases such as Irritable Bowel
Syndrome (IBS), Ulcerative Colitis (UC) and Crohn’s disease
(CD).57 Moreover nosocomial infections such as Clostridium
dif f icile are known to have greater morbidity in the elderly. The
diversity of species comprising the dominant fecal microbiota
increase with aging.58 In addition to the composition changes,
the interaction between the microbiota and intestinal functions
likely shift with age. He et al. demonstrated that certain
Bifidobacterium strains isolated from healthy adults aged 30−
40 were able to bind better to the intestinal mucus than were
the same bacterial strains isolated from healthy seniors (>70
years of age).59 However, not all researchers have consistently
found these age-related differences. Other studies have shown
that there is a tendency for stability in the gut microbiome
throughout adulthood,60 and several studies suggest that age-
related alterations in microbial composition may be dependent
upon the population and geographic location.61 Aging has been
associated with an increase in enterobacteria and Clostridia in
particular, while health-promoting bacteria such as the
Bifidobacteria have been reported to decline in abundance
and diversity of species with age.58 Several bacteria can
synthesize 4CS such as members of the Clostridia including
Clostridium dif f icile.62

Other studies have reported associations between age and
mammalian-microbial urinary cometabolites. One 1H NMR-
based profiling study investigating lifelong changes in the
urinary metabolome of dogs under caloric restricted and
nonrestricted conditions found that hippurate and 3-HPPA
concentrations increased with age.39 Urinary levels of amines,
resulting from degradation of dietary choline by gut microbiota,
also changed with age. This increase in gut microbial
metabolites was enhanced by dietary restriction. Similar results
have been shown in a study in which rats fed with chow diets
were compared with rats fed with casein-rich diets.63 Moreover,
in both humans and nonhumans, clear differences in micro-
bially derived metabolites have been shown in the urinary, fecal
and plasma profiles from obese individuals with metabolites
such as hippurate and PAG being associated with leaner
phenotypes. Thus, it is possible that variation in the excretion
of 4CS and PAG seen with age in both the SEBAS and MIDUS
surveys reflect a general reduction in caloric intake by the older
participants.

■ CONCLUSIONS
In summary, this work reinforces the great potential of applying
metabolome-wide association studies to large-scale epidemiol-
ogy studies. Through this application we have identified
potential metabolic windows into later life diseases. These
windows point to an underpinning dysregulation of the
microbiota that may relate to increased susceptibility to GI
infection in the elderly. Additionally some of the changes are
suggestive of a decline in muscle mass. Specifically, we have
shown significant age-related differences in the urinary
metabolite profiles of Taiwanese and American populations,
with the strongest effects being attributed to 4-cresyl sulfate and
phenylacetylglutamine. These metabolite differences were
significant in both males and females and revealed a marked
shift in the functionality of the gut microbiome with age. In
addition, the bacterial fermentation product, lactic acid, was
negatively correlated with age in Americans. The age-related
variation in these gut microbial metabolites may reflect
increasing enterobacterial numbers and warrants further
investigation to directly link metabolic profiles to fecal
microbial composition. The appearance of functional aging
observed in the microbiome was consistent across both national
populations in spite of some cultural features.
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