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A HIGH FREQUENCY hp BOUNDARY ELEMENT METHOD FOR
SCATTERING BY CONVEX POLYGONS∗

D. P. HEWETT† , S. LANGDON† , AND J. M. MELENK‡

Abstract. In this paper we propose and analyze a hybrid hp boundary element method for the
solution of problems of high frequency acoustic scattering by sound-soft convex polygons, in which
the approximation space is enriched with oscillatory basis functions which efficiently capture the
high frequency asymptotics of the solution. We demonstrate, both theoretically and via numerical
examples, exponential convergence with respect to the order of the polynomials, moreover providing
rigorous error estimates for our approximations to the solution and to the far field pattern, in which
the dependence on the frequency of all constants is explicit. Importantly, these estimates prove that,
to achieve any desired accuracy in the computation of these quantities, it is sufficient to increase
the number of degrees of freedom in proportion to the logarithm of the frequency as the frequency
increases, in contrast to the at least linear growth required by conventional methods.
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1. Introduction. Conventional numerical schemes for time-harmonic acoustic
scattering problems with piecewise polynomial approximation spaces become pro-
hibitively expensive in the high frequency regime where the scatterer is large com-
pared to the wavelength of the incident wave. For two-dimensional problems the
number of degrees of freedom required to achieve a prescribed level of accuracy grows
at least linearly with respect to frequency. On the other hand, approximation via
high frequency asymptotics alone is often insufficiently accurate when the frequency
lies within ranges of practical interest. These issues are very well understood; see,
e.g., [9, 10, 38, 31, 12] and the many references therein.

The problem of “bridging the gap” between conventional numerical methods and
fully asymptotic approaches has received a great deal of attention in recent years. Sig-
nificant progress has been made in developing numerical methods which can achieve
a prescribed level of accuracy at high frequencies with fewer degrees of freedom than
conventional approaches. A key idea underpinning much recent work is to express
the scattered field as a sum of products of known oscillatory functions, selected using
knowledge of the high frequency asymptotics, with slowly oscillating amplitude func-
tions, and to approximate just the amplitudes by piecewise polynomials (we call this
the hybrid numerical-asymptotic approach). Applying this idea within a boundary
element method (BEM) context is particularly attractive since in this case one need
only understand the high frequency behavior on the boundary of the scatterer, rather
than throughout the whole propagation domain. Computational methods implement-
ing this approach have been applied successfully to problems of scattering by both
smooth [8, 20, 21, 27] and nonsmooth [14, 19, 2, 30, 15] convex scatterers, the latter
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630 D. P. HEWETT, S. LANGDON, AND J. M. MELENK

building on previous work on hybrid h-version BEM methods for the special problem
of acoustic scattering in a half-space with impedance boundary conditions [29].

In this paper we propose an hp-version BEM for high frequency scattering by
sound-soft convex polygons based on this hybrid numerical-asymptotic approach, and
we study its properties and performance by numerical experiments backed up by rig-
orous numerical analysis. We show that our algorithm is exponentially convergent as
a function of

√
N , where N is the number of degrees of freedom, for fixed wavenumber

k (k = 2πf/c, where f is the frequency and c the wave speed). More importantly
(and it is for this property that the hybrid approach is key) our algorithm provably
achieves any desired accuracy, uniformly over all wave numbers k, provided N in-
creases logarithmically with k. These results improve on the h-version Galerkin BEM
for the identical problem in [14], which is only algebraically convergent, and we note
that the most sophisticated algorithm to date [20] for smooth two-dimensional convex
obstacles, while accurate for N and k large, is not convergent as N → ∞ for k fixed.

Our results go beyond those of previous authors in terms of analysis in a number
of important respects. First, these are the first numerical analysis results for a hybrid
approach which make explicit the dependence of all constants in the error estimates on
the wavenumber k and both the h and p discretization parameters. Second, this is the
first numerical analysis for a bounded obstacle scattering problem which establishes
that it is sufficient to increase N proportional to powers of log k to maintain accuracy
as k → ∞. The best previous result for smooth convex obstacles ([44]; refining results
in [20]) establishes that it is sufficient to increase N slightly faster than k1/9 to retain
accuracy, while the analysis in [14], when completed by the coercivity estimates of
[44] and the estimates in section 4 below, also requires a mild algebraic growth in N
as k → ∞ to maintain accuracy. (We note, however, that the hybrid h-version BEM
proposed in [29] for the special problem of scattering in a half-plane with impedance
boundary conditions is shown in [29] to achieve any required accuracy uniformly in
the wavenumber with N independent of k.)

We note that the hp-BEM we describe in this paper was briefly sketched in [37];
in this paper we describe the method in detail, provide a rigorous derivation of error
estimates in the Galerkin solution, and demonstrate that our theoretical estimates are
achieved by the BEM in practice. We also demonstrate theoretically and numerically
how the error in the BEM solution depends on the scatterer geometry. Our method
is based on the fact that on the boundary Γ of the polygon the normal derivative of
the solution u to the scattering problem can be decomposed as

∂u

∂n
(x(s)) = Ψ(x(s)) + v+(s)eiks + v−(s)e−iks,(1.1)

where x(s) represents a point on Γ, s ∈ [0, L] represents arc length around Γ, and L
is the length of Γ. In (1.1), the leading order term Ψ represents the so-called physical
optics approximation to ∂u/∂n; explictly, Ψ := 2∂ui/∂n on the sides of the polygon
illuminated by the incident wave ui (which is assumed to be a plane wave), and
Ψ := 0 on the shadow sides. The second and third terms in (1.1) represent diffracted
waves propagating around the boundary in opposite directions. It was shown in [14],
via bounds on derivatives of v±(s) for 0 ≤ s ≤ L, that the coefficients v±(s) are
slowly varying, except in the vicinity of the corners of the polygon, where they are
singular. Accordingly, they can be approximated by piecewise polynomials much more
efficiently than can ∂u/∂n, and this is the basis on which our hp approximation space
is designed. In this paper we extend these results significantly, showing that v±(s)
have analytic continuations into the complex s-plane, whose absolute values can be
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HYBRID hp-BEM FOR HIGH FREQUENCY SCATTERING 631

bounded explicitly in terms of k and the distance from the corner singularities. This
result plays a large part in our hp approximation theory but is of interest in its own
right as a result in high frequency asymptotics and for the analysis of other numerical
schemes; for example, it may be that this result provides tools necessary to analyze
boundary integral equation–based numerical methods which use quadrature rules that
require the path of integration to be deformed into the complex plane (e.g., [27, 3]).

Our analyticity assertions for the slowly varying parts v±(s) permit us to show
exponential convergence for the approximation by piecewise polynomial approxima-
tions on geometrically refined meshes. The reasons for the success of the geometric
mesh idea in the present hybrid hp-BEM are the same as those leading to the well-
known exponential convergence of the classical hp-FEM [22, 23, 24, 5, 43, 42] and
hp-BEM [4, 45, 33, 25] for elliptic problems in corner domains, namely, the analytic-
ity of the function to be approximated in conjunction with explicit control over how
higher order derivatives blow up as the singularity is approached.

This paper concentrates on the approximation theory of our scheme. Practical
implementation issues are addressed in [36], where in particular the question of how to
compute the stiffness matrix with a computational cost that depends only very mildly
on the frequency is considered in some detail. Compared to the classical hp-BEM,
highly oscillatory integrals have to be evaluated that arise from both the kernels of the
integral operators and the hybrid ansatz. This quadrature issue therefore differentiates
the present hybrid hp-BEM from the classical hp-BEM, for which the quadrature is
understood to a significant extent [40, 41].

An outline of the paper is as follows. In section 2 we state precisely the scattering
problem to be solved and review some key recent results relating to the reformulation
of the problem as a boundary integral equation (BIE). In section 3 we derive regularity
estimates for the solution of the BIE. These estimates involve the supremum of the
total field in the domain; in section 4 we prove a frequency-explicit bound on this
quantity. In section 5 we define our hp approximation space and derive rigorous best
approximation error estimates for the solution of the BIE. In section 6 we describe
our Galerkin method and prove error estimates for the Galerkin approximation to
the solution of the boundary integral equation, for the approximation to the resulting
solution in the domain, and for the approximation to the far field pattern. Numerical
results are presented in section 7.

In our implementation and analysis we focus on sound-soft convex polygons. Es-
sentially the same numerical method extends to convex polygons with other boundary
conditions, e.g., Neumann, impedance. Further, much of the analysis, in particular
our regularity and best approximation results, should be extendable to that case, and
our hp algorithms are also potentially adaptable to curvilinear polygons. (See [15, 30]
for h-version results in these directions.) More challenging is any extension to non-
convex polygons; see [13]. With possible extensions to nonconvex scatterers in mind,
some of the results in the current paper, in sections 2 and 4 in particular, are stated
and proved in more generality than is required for the convex case.

2. Problem statement. We consider the two-dimensional problem of scattering
of a time-harmonic incident plane wave by a sound-soft polygon. Let Ω ⊂ R

2 denote
the interior of the scatterer and D := R2\Ω the unbounded exterior domain. The
boundary value problem (BVP) we wish to solve is as follows: given the incident field

ui(x) := eikx·d,(2.1)

where k > 0 is the wavenumber, x = (x1, x2) ∈ R2, and d is a unit direction vector,
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632 D. P. HEWETT, S. LANGDON, AND J. M. MELENK

determine the total field u ∈ C2 (D) ∩ C (D) such that

Δu+ k2u = 0 in D,(2.2)

u = 0 on Γ := ∂Ω,

and us := u−ui satisfies the Sommerfeld radiation condition (see, e.g., [12, (2.9)]). It
follows from standard arguments connecting formulations in classical function spaces
to those in a Sobolev space setting (see, e.g., [17, Theorem 3.7] and [12, p. 107]) that if
u satisfies the above BVP, then also u ∈ H1

loc(D), and, from standard elliptic regularity
results, it follows moreover that u is C∞ up to the boundary of ∂D, excluding the
corners of the polygon [12, Lemma 2.35].

Next we state our integral equation formulation. From [34, Theorems 7.15 and 9.6]
(for details see [14]), we observe that if u satisfies the BVP, then a form of Green’s
representation theorem holds, namely, (cf. also [12, (2.107)])

u(x) = ui(x)−
∫
Γ

Φk(x,y)
∂u

∂n
(y) ds(y), x ∈ D,(2.3)

where Φk(x,y) := (i/4)H
(1)
0 (k |x− y|) is the fundamental solution for (2.2) and

∂u/∂n ∈ L2(Γ) [12, Theorem 2.12], with n the unit normal directed into D. Fur-
thermore, the BVP can be reformulated as a BIE for ∂u/∂n ∈ L2(Γ), taking the
form

A∂u

∂n
= f,(2.4)

where f ∈ L2 (Γ) and A : L2 (Γ) → L2 (Γ) are specified next (for details see [12,
section 2]).

Classical combined potential formulation. In the standard combined po-
tential formulation (e.g., [18], [12, (2.114) and (2.69)]),

A = Ak,η :=
1

2
I +D′

k − iηSk,

and f = ∂ui/∂n− iηui, where I is the identity operator,

Skψ(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y), x ∈ Γ, ψ ∈ L2(Γ),

is the single-layer potential,

D′
kψ(x) :=

∫
Γ

∂Φk(x,y)

∂n(x)
ψ(y) ds(y), x ∈ Γ, ψ ∈ L2(Γ),

is the adjoint of the double-layer potential and η is a coupling parameter. From
the results in [14] and [12, Theorem 2.27] for general Lipschitz domains we know
that Ak,η is invertible, and hence the BIE (2.4) is uniquely solvable, for all k > 0
provided η ∈ R\ {0}. Recent results [11, (6.10)], [6, Theorem 2.11] suggest that for
k diamΩ > 1, a good choice (in the sense of trying to minimize the condition number
of Ak,η and its boundary element discretization) is η = k.
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Star-combined formulation. Recently [44] a new formulation has been derived
for the case when Ω is star-like with respect to the origin. This takes the form (2.4)
with

A = Ak := (x · n)
(
1

2
I +D′

k

)
+ x · ∇ΓSk − iη̂Sk,(2.5)

the so-called star-combined potential operator, and f(x) = x ·∇ui(x)− iη̂ui(x). Here
∇Γ is the surface gradient operator. From [44] we know that (for Ω Lipschitz and
star-like) Ak is invertible for all k > 0 provided the choice η̂ = k|x|+ i/2 is made. We
assume henceforth this choice of η̂ in (2.5) and thus write the star-combined potential
operator as Ak, with no η̂ subscript, to differentiate it from the standard combined
potential operator Ak,η .

Properties of the boundary integral operators. For both formulations the
following lemma holds provided Ω is Lipschitz and |η| ≤ Ck for the standard formu-
lation. Here and for the remainder of this paper C > 0 denotes a constant whose
value may change from one occurence to the next, but which is always independent
of k, although it may (possibly) be dependent on the geometry of Γ. We use Cj , cj ,
kj , etc., for j = 0, 1, 2, . . . , to denote specific constants whose value remains the same
throughout the paper.

Lemma 2.1 (see [11, Theorem 3.6], [44, Theorem 4.2]). Assume that Ω is a
bounded Lipschitz domain and k0 > 0. For the case A = Ak,η assume additionally
|η| ≤ Ck. Then for both A = Ak and A = Ak,η there exists a constant C0 > 0,
independent of k, such that

‖A‖L2(Γ) ≤ C0k
1/2, k ≥ k0.

For the case that Ω is also star-like, we have the following result.
Lemma 2.2 (see [16, Theorem 4.3], [44]). If Ω is Lipschitz and star-like, then for

all k1 > 0, there exists a constant C1 > 0, independent of k, such that

(2.6)
∥∥A−1

∥∥
L2(Γ)

≤ C1, k ≥ k1,

for both A = Ak and A = Ak,η with η = k.
In certain cases A also satisfies the following assumption.
Assumption 2.3 (coercivity). There exist constants γ > 0 and k2 > 0, indepen-

dent of k, such that (where 〈·, ·〉L2(Γ) denotes the inner product in L2(Γ))∣∣∣〈Aψ, ψ〉L2(Γ)

∣∣∣ ≥ γ ‖ψ‖2L2(Γ) , ψ ∈ L2 (Γ) , k ≥ k2.

Remark 2.4. We note that if Assumption 2.3 holds, then so does (2.6) for k1 = k2
with C1 = γ−1. For the star-combined formulation with A = Ak, Assumption 2.3
holds with γ = (1/2) ess infx∈Γ(x·n(x)) > 0 for all k2 > 0 if Ω is Lipschitz and star-like
(in particular, if Ω is a convex polygon) and η̂ = k|x|+i/2 as specified above (see [44]
for details). By contrast, Assumption 2.3 has not been proved for the standard com-
bined potential formulation except in the special case when the scatterer is circular
[20, 44] and, for k sufficiently large, in the case when the scatterer is a strictly con-
vex C3 domain with strictly positive curvature [12, Theorem 5.25]. However, recent
numerical evidence [7, Conjecture 6.2] suggests it holds more generally (in particular,
for all convex polygons). We remark further that Assumption 2.3 is sufficient rather
than necessary for our analysis; it is not necessary for Assumption 2.3 to hold for all
k ≥ k2 but rather only for the specific wavenumber under consideration.
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3. Analyticity and regularity of solutions. Our goal is to derive a numerical
method for the solution of the BIE (2.4) (and hence of the scattering problem), whose
performance does not deteriorate significantly as the wavenumber k (which is propor-
tional to frequency) increases, equivalently as the wavelength λ := 2π/k decreases.
Specifically, we wish to avoid the requirement of conventional schemes for a fixed
number of degrees of freedom per wavelength. To achieve this goal, our numerical
method for solving (2.4) uses an approximation space (defined explicitly in section 5)
which is adapted to the high frequency asymptotic behavior of the solution ∂u/∂n on
each of the sides of the polygon, which we now consider. The results that follow in
this section are for the case of a convex polygon.

We first define some notation. We label the corners of the polygon counterclock-
wise by Pj , j = 1, . . . , ns, where ns is the number of sides. In addition, we set
Pns+1 := P1 and for j = 1, . . . , ns denote the side between the corners Pj and Pj+1

by Γj . We represent the point x ∈ Γ, whose arc-length measured counterclockwise
around Γ from P1 is s, parametrically by

x(s) = Pj +
(
s− L̃j−1

)(Pj+1 −Pj

Lj

)
for s ∈ [L̃j−1, L̃j], j = 1, . . . , ns,(3.1)

where Lj = |Pj+1 −Pj | is the length of the side Γj , and L̃j :=
∑j

m=1 Lm, j =

1, . . . , ns, denotes the arc-length distance from P1 to Pj+1. We also set L̃0 = 0 and

denote the total length of Γ by L := L̃ns . We say that a side Γj is illuminated by
the incident wave if d · n < 0 on Γj and is in shadow if d · n ≥ 0 on Γj . We denote
by Ωj the exterior angle at the corner Pj and remark that for a convex polygon,
Ωj ∈ (π, 2π) for all j = 1, . . . , ns. Finally, let c∗ > 0 be a constant such that kLj ≥ c∗
for all j = 1, . . . , ns (e.g., c∗ := minj=1,...,ns{kLj}), and let L∗ := maxj=1,...,ns{Lj}.
These constants will play a key role in many of the estimates that follow.

Arguing as in [14, pp. 621–623], on a typical side Γj we can write

∂u

∂n
(x(s)) = Ψ(x(s)) + v+j (s− L̃j−1)e

iks + v−j (L̃j − s)e−iks, s ∈ [L̃j−1, L̃j ],

j = 1, . . . , ns,(3.2)

where Ψ := 2∂ui/∂n if Γj is illuminated, and Ψ := 0 if Γj is in shadow. Here, for
j = 1, . . . , ns,

v+j (s) :=
ik2

2

∫ ∞

0

eik(t−L̃j−1)μ(k(s+ t))u(yj(L̃j−1 − t)) dt, s ∈ [0, Lj],(3.3)

v−j (s) :=
ik2

2

∫ ∞

0

eik(L̃j+t)μ(k(s+ t))u(yj(L̃j + t)) dt, s ∈ [0, Lj],(3.4)

where yj(s) := Pj +(s− L̃j−1) (Pj+1 −Pj) /Lj for s ∈ R, j = 1, . . . , ns, and μ(z) :=

e−izH
(1)
1 (z)/z for z > 0. We remark that the decomposition (3.2) is very similar

to [14, (3.9)], but here we have written the functions v±j (s) slightly differently, so
that the singular nature of ∂u/∂n at the corners of the polygon manifests itself in
singularities in v±j (s) at s = 0 (see (3.5) below).

Remark 3.1. The representation (3.2) can be interpreted in terms of high fre-
quency asymptotic theory as follows. The first term, Ψ, is the so-called physical
optics approximation to ∂u/∂n, representing the direct contribution of the incident
and reflected waves (where they are present). The second and third terms in (3.2)
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represent the contributions due to diffracted rays emanating from the corners Pj and
Pj+1, respectively (see [14] for details).

As will be described in more detail in section 5, our numerical method uses an
approximation space based on the representation (3.2), in which the factors v±j (s),
s ∈ [0, Lj], j = 1, . . . , ns, are approximated by piecewise polynomials, rather than ap-
proximating ∂u/∂n itself as in conventional methods. The advantage of our approach
is that the functions v±j (s) are nonoscillatory and can therefore be approximated much
more efficiently than ∂u/∂n. Specifically, we have the following regularity assertion,
which is the main result of the present section.

Theorem 3.2. The functions v±j (s), j = 1, . . . , ns, are analytic in the right
half-plane Re [s] > 0, where they satisfy the bounds

|v±j (s)| ≤
{
C±

j Mk|ks|−δ±j , 0 < |s| ≤ 1/k,

C±
j Mk|ks|−1/2, |s| > 1/k,

(3.5)

where δ+j , δ
−
j ∈ (0, 1/2) are given by δ+j := 1−π/Ωj and δ−j := 1−π/Ωj+1 and M by

(3.6) M := sup
x∈D

|u(x)|.

For j = 1, . . . , ns, the constants C+
j depend only on c∗ and Ωj, and the constants C−

j

depend only on c∗ and Ωj+1.
Remark 3.3. The dependence of the constant M on the wavenumber k is not

yet fully understood. In section 4 we prove that when Ω is a star-like polygon,
M = O(k1/2 log1/2 k) as k → ∞. However, it is plausible, and supported by numerical
experiments, that in fact M = O (1) as k → ∞ in this case (and, indeed, for a more
general class of polygons, see [13] for details).

Bounds on the derivatives of the functions v±j (s) for s ∈ (0,∞) have previously
been derived in [14, Theorem 3.2, Corollary 3.4]. Here we show that it is possible
to understand not just the behavior of v±j (s) for s > 0 but also the behavior of

the analytic continuation of v±j (s) into the complex plane. This will be an essential
component of our hp analysis, which follows in section 5, but may also be of wider
interest, as indicated in the introduction. The proof of Theorem 3.2 relies on a number
of intermediate results. We first note the following.

Lemma 3.4. The function μ(z) is analytic in the half-plane Re [z] > 0, with

|μ(z)| ≤ 2

π
|z|−3/2

(
|z|−1/2 +

√
π

2

)
, Re [z] > 0.(3.7)

Proof. By standard properties of the Hankel function H
(1)
1 (z) (see, e.g., [1,

(10.7.2), (10.7.8)]), μ(z) is analytic in the cut z-plane, with branch cut along the
negative real axis. By [39, equation (12.32)],

μ(z) =
−2i

π

∫ ∞

0

(t2 − 2it)1/2e−zt dt, Re [z] > 0,(3.8)

where the branch of (t2 − 2it)1/2 is chosen so that Re
[
(t2 − 2it)1/2

] ≥ 0 for t > 0.
The integral in (3.8) is a parametrization of the contour integral

I(z) :=

∫
γ0

(w2 − 2iw)1/2e−zw dw,
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Re [w]

Im [w]

γ0

γθ

2i

−θ

Fig. 3.1. The contours γ0 and γθ .

where γ0 runs along the positive real w-axis. Given z = reiθ with r > 0 and θ ∈
(−π/2, π/2) (so that Re [z] > 0), we may deform the contour of integration from γ0
onto the contour γθ illustrated in Figure 3.1. (This is justified by the fact that for
w = Reiφ with φ ∈ (−θ, 0] for 0 ≤ θ < π/2 and φ ∈ (0,−θ) for −π/2 < θ < 0, we
have |e−zw| ≤ e−rR cos θ, so that |e−zw| tends to zero exponentially fast as R → ∞,
uniformly in φ.) Parametrization of the integral over γθ, with w = Re−iθ, R > 0,
then gives

I(z) =

∫
γθ

(w2 − 2iw)1/2e−zw dw = e−iθ

∫ ∞

0

(R2e−2iθ − 2iRe−iθ)1/2e−rR dR,

so that

|I(z)| ≤
∫ ∞

0

Re−rR dR +
√
2

∫ ∞

0

R1/2e−rR dR =
1

r2
+

√
π√

2r3/2
,

and the result follows.
We now consider the solution behavior near the corners.
Lemma 3.5. Suppose that x ∈ D satisfies |x − Pj | =: r ∈ (0, 1/k]. Then there

exists a constant C > 0, depending only on Ωj and c∗, such that (with M given
by (3.6))

|u(x)| ≤ CM(kr)π/Ωj .

Proof. Let (r, θ) be polar coordinates local to a corner Pj , chosen so that the side
Γj−1 lies on the line θ = 0 and the side Γj lies on the line θ = Ωj . For R > 0 let
GR ⊂ D denote the set of points with polar coordinates {(r, θ) : 0 < r < R, 0 ≤ θ ≤
Ωj}. With Rj := min {Lj−1, Lj, π/(2k)}, it follows from [14, Theorem 2.3] and [14,
(3.14)] that for 0 < R < Rj ,

|u(x)| ≤ 2M(r/R)π/Ωj

cos kR
(
1− (r/R)π/Ωj

) , x ∈ GR.(3.9)

Now choose R = 3Rj/4, and suppose that 0 < r < Rj/2. Then, since min {c∗, π/2} ≤
kRj ≤ π/2, (3.9) implies that

|u(x)| ≤ 2M (3min {c∗, π/2}/4)−π/Ωj

cos(3π/8)
(
1− (2/3)π/Ωj

) (kr)π/Ωj , x ∈ GRj/2.
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For Rj/2 ≤ r ≤ 1/k we may estimate

|u(x)| ≤M ≤
(
kRj

2

)−π/Ωj

M(kr)π/Ωj ≤
(
min {c∗, π/2}

2

)−π/Ωj

M(kr)π/Ωj ,

and the result follows.
We are now ready to prove the main result of this section, Theorem 3.2.
Proof of Theorem 3.2. The analyticity of v±j (s) in Re [s] > 0 is clear from (3.3)–

(3.4) and Lemma 3.4. To prove the bounds (3.5) for v+j (the proof for v−j goes
analogously and will be omitted here), we first note that

|v+j (s)| ≤
k2

2

∫ ∞

0

|μ(k(s+ t))||u(yj(L̃j−1 − t))| dt.(3.10)

If 0 < |s| ≤ 1/k, then we split the integral in (3.10) into a sum of two integrals,
the first over t ∈ (0, 1/k) and the second over t ∈ (1/k,∞). For the second integral,
Lemma 3.4 implies that, since Re [s] > 0,∫ ∞

1/k

|μ(k(s+ t))||u(yj(L̃j−1 − t))| dt ≤ CM

∫ ∞

1/k

|k(s+ t)|−3/2 dt

≤ CM

∫ ∞

1/k

(kt)−3/2 dt = CMk−1.

For the first integral, we note from (3.7) that for |z| ≤ 2, Re [z] > 0, it follows that
|μ(z)| ≤ C|z|−2, and combining this with Lemma 3.5 we have∫ 1/k

0

|μ(k(s+ t))||u(yj(L̃j−1 − t))| dt ≤ CM

∫ 1/k

0

|k(s+ t)|−2(kt)π/Ωj dt

≤ CM

∫ 1/k

0

(k(|s|+ t))−2(kt)π/Ωj dt

= CMk−1|ks|−δ+j

∫ 1/(k|s|)

0

tπ/Ωj

(t+ 1)2
dt

≤ CMk−1|ks|−δ+j ,

where we recall that δ+j = 1− π/Ωj and we have used the estimates

|s+ t| ≥ |s|+ t√
2
, Re [s] > 0, t ≥ 0,(3.11)

and ∫ 1/(k|s|)

0

tπ/Ωj

(t+ 1)2
dt ≤

∫ ∞

0

tπ/Ωj

(t+ 1)2
dt =

π2

Ωj sin (π (1− π/Ωj))
.

The integral over t ∈ (0, 1/k) therefore dominates the integral over t ∈ (1/k,∞), so

that |v+j (s)| ≤ CMk|ks|−δ+j , as claimed.
If |s| > 1/k, then we do not need to split the integral in (3.10). Instead we simply

use Lemma 3.4 and (3.11) to estimate

|v+j (s)| ≤ CMk2
∫ ∞

0

|k(s+ t)|−3/2 dt ≤ CMk2
∫ ∞

0

(k(|s|+ t))−3/2 dt = CMk|ks|−1/2,

as claimed.
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4. Bounding M := supx∈D |u(x)|. In this section we investigate the depen-
dence of M := supx∈D |u(x)| on the wavenumber k. The main result of the section is
Theorem 4.3, which gives a bound on M for the case where Ω is a star-like polygon
(convex or nonconvex). This result appears to be new and could be used to improve
the estimates of [14] directly, as well as being crucial to the k-explicit error analysis
of our hp scheme which follows in section 6. We begin with the following estimate of
the norm of the single-layer potential operator in the domain.

Lemma 4.1. Let Γ be the boundary of an arbitrary polygon Ω and let Sk : L2(Γ) →
BC(R2) denote the single-layer potential in the domain,

(4.1) Skψ(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y), x ∈ R
2, ψ ∈ L2(Γ).

Then

‖Sk‖L2(Γ)→BC(R2) ≤ C2k
−1/2n1/2

s log1/2 (2 + kL∗), k > 0,

where C2 :=
√

5/(8 log 2)(1 + (2/π)(1− γE + e1/4)) ≈ 2.65 with γE ≈ 0.577 the Euler
constant.

Proof. By the Cauchy–Schwarz inequality,

|Skψ(x)| ≤ ‖Φk(x, ·)‖L2(Γ) ‖ψ‖L2(Γ) , x ∈ R
2, ψ ∈ L2(Γ).(4.2)

To estimate

‖Φk(x, ·)‖2L2(Γ) =

∫
Γ

|Φk(x,y)|2 ds(y) =
ns∑
j=1

∫
Γj

|Φk(x,y)|2 ds(y),(4.3)

we note that by the monotonic decay of |H(1)
0 (·)| on (0,∞) (see, e.g., [46, sec-

tion 13.74]), each of the terms in the sum (4.3) can be individually maximized by
taking x to be the midpoint of Γj , so that

‖Φk(x, ·)‖2L2(Γ) ≤
1

8

ns∑
j=1

∫ Lj/2

0

|H(1)
0 (kt)|2 dt = 1

8k

ns∑
j=1

∫ kLj/2

0

|H(1)
0 (z)|2 dz.

From [1, (10.2.2), (10.8.2), and (10.17.5)],

∣∣∣H(1)
0 (z)

∣∣∣ ≤
{
ĉ(1 + | log z|), 0 < z ≤ 1,

ĉz−1/2, z > 1,

where ĉ := 1+(2/π)(1−γE +e1/4) ≈ 2.09. Then for each j = 1, . . . , ns, if kLj/2 ≤ 1,

∫ kLj/2

0

|H(1)
0 (z)|2 dz ≤ ĉ2

∫ 1

0

(1 + | log z|)2 dz = 5ĉ2,

and if kLj/2 > 1,

∫ kLj/2

0

|H(1)
0 (z)|2 dz ≤ ĉ2

(∫ 1

0

(1 + | log z|)2 dz +
∫ kLj/2

1

z−1 dz

)
= ĉ2

(
5 + log

kLj

2

)
.
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These two possibilities are both covered by the estimate

∫ kLj/2

0

|H(1)
0 (z)|2 dz ≤ 5ĉ2

(
1 + max

{
0, log

kLj

2

})
≤ 5ĉ2

log 2
log (2 + kLj).

Hence

‖Φk(x, ·)‖2L2(Γ) ≤
5ĉ2

8 log 2
k−1

ns∑
j=1

log (2 + kLj) ≤ 5ĉ2

8 log 2
k−1ns log (2 + kL∗),

and, recalling (4.2), the result follows.
Next, we require a bound on the norm of ∂u/∂n.
Lemma 4.2. For a star-like Lipschitz scatterer,

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

≤ L1/2 (1 + 4k diamΩ)

ess infx∈Γ(x · n(x)) , k > 0.

Proof. By (2.4), ∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

≤ ∥∥A−1
∥∥
L2(Γ)

‖f‖L2(Γ) ,(4.4)

and applying Lemma 2.2 with A = Ak and recalling Remark 2.4, we have∥∥A−1
∥∥
L2(Γ)

≤ 2/ ess infx∈Γ(x · n(x)), k > 0.(4.5)

It remains to bound ‖f‖L2(Γ), where f(x) = x · ∇ui(x) − iη̂ui(x) and η̂ = k|x|+ i/2

(where Ω is star-like with respect to the origin of our coordinate system). Recall-
ing (2.1), we have ∇ui = ikdui, and hence

|f(x)| =
∣∣∣∣kx · d− k|x| − i

2

∣∣∣∣ ≤ 1

2
+ 2k|x| ≤ 1

2
+ 2k diamΩ,

so that

‖f‖L2(Γ) ≤ L1/2

(
1

2
+ 2k diamΩ

)
, k > 0.(4.6)

Inserting (4.5) and (4.6) into (4.4), the result follows.
We are now ready to state and prove the main result of this section.
Theorem 4.3. For all k3 > 0, if Ω is a star-like polygon, then

M := sup
x∈D

|u(x)| ≤ C3(kL)
1/2 log1/2 (2 + kL∗), k ≥ k3,

where the constant C3 > 0 depends only on k3 and Ω, specifically

C3 = (k3L)
−1/2 log−1/2 (2 + k3L∗) +

C2n
1/2
s

ess infx∈Γ(x · n(x))
(
k−1
3 + 4diamΩ

)
,

where C2 ≈ 2.65 is the constant from Lemma 4.1.
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Proof. Writing (2.3) as u(x) = ui(x) − Sk∂u/∂n(x), for x ∈ D, we estimate

M ≤ 1 + ‖Sk‖L2(Γ)→BC(R2)

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

,

so that by Lemmas 4.1 and 4.2,

M ≤ 1 +
C2n

1/2
s L1/2

ess infx∈Γ(x · n(x))
(
k−1 + 4diamΩ

)
k1/2 log1/2 (2 + kL∗), k > 0,

from which the result follows.

5. hp approximation space and best approximation results. We are now
ready to design an approximation space VN,k ⊂ L2 (Γ) to represent

(5.1) ϕ(s) :=
1

k

(
∂u

∂n
(x(s)) −Ψ(x(s))

)
, s ∈ [0, L],

based on (3.2). Here N denotes the total number of degrees of freedom in the method
(to be elucidated later), and the subscript k on VN,k serves to illustrate that our hybrid
approximation space depends explicitly on the wavenumber k. The function ϕ, which
we seek to approximate, can be thought of as the difference between ∂u/∂n and its
physical optics approximation Ψ (recall Remark 3.1), scaled by 1/k so that ϕ is nondi-
mensional (cf. [14]). Instead of approximating ϕ directly by conventional piecewise
polynomials, on each side Γj , j = 1, . . . , ns, we instead use the representation (3.2)

with v+j (s− L̃j−1) and v
−
j (L̃j − s), s ∈ [L̃j−1, L̃j], replaced by piecewise polynomials

supported on overlapping geometric meshes, graded toward the singularities at Pj

and Pj+1, respectively.
Definition 5.1. Given A > 0 and an integer n > 0 we denote by Gn(0, A) the

geometric mesh on [0, A] with n layers, whose meshpoints xi are defined by

x0 := 0, xi := σn−iA, i = 1, 2, . . . , n,

where 0 < σ < 1 is a grading parameter. Given a vector p ∈ (N0)
n we denote by

Pp,n(0, A) the space of piecewise polynomials on the geometric mesh Gn(0, A) with
degree vector p, i.e.,

Pp,n(0, A) :=
{
ρ : [0, A] → C : ρ|(xi−1,xi) is a polynomial of

degree less than or equal to (p)i, i = 1, . . . , n} .

In the case where (p)i = p for all i = 1, . . . , n, for some integer p ≥ 0, we write
Pp,n(0, A) for Pp,n(0, A).

A smaller value of σ represents a more severe grading. While the value σ =
(
√
2 − 1)2 ≈ 0.17 is in some sense optimal [43, p. 96], [22], it is common practice to

slightly “overrefine” by taking σ = 0.15; in our numerical experiments of section 7 we
take σ = 0.15.
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For each j = 1, . . . , ns let integers N±
j ≥ 1 and degree vectors p±

j ∈ (N0)
N±

j be
given. We then define the spaces

V +
j :=

{
ρ(s)eiks :ρ|(L̃j−1,L̃j)

(s)

= ρ̃(s− L̃j−1), ρ̃ ∈ Pp+
j ,N+

j
(0, Lj), ρ|(0,L̃j−1)∪(L̃j,L)=0

}
,

V −
j :=

{
ρ(s)e−iks :ρ|(L̃j−1,L̃j)

(s)

= ρ̃(L̃j − s), ρ̃ ∈ Pp−
j ,N−

j
(0, Lj), ρ|(0,L̃j−1)∪(L̃j,L)=0

}
.

As we shall show in Theorem 5.4, V +
j and V −

j are well-adapted to approximating

respectively the terms v+j (s − L̃j−1)e
iks and v−j (L̃j − s)e−iks in the representation

(3.2). Our approximation space VN,k is then defined explicitly by

(5.2) VN,k := span

⎧⎨
⎩

ns⋃
j=1

(
V +
j ∪ V −

j

)⎫⎬⎭ ,

and the total number of degrees of freedom is

N := dim(VN,k) =

ns∑
j=1

⎛
⎝ N+

j∑
m=1

(
(p+

j )m + 1
)
+

N−
j∑

m=1

(
(p−

j )m + 1
)⎞⎠ .(5.3)

The regularity results provided by Theorem 3.2 allow us to prove that under
appropriate assumptions on the choices of N±

j and p±
j , the best approximation error

in approximating ϕ by an element of VN,k decays exponentially as the maximum
degree of the approximating polynomials increases.

For simplicity of presentation we shall assume henceforth that the degree of poly-
nomial approximation is constant within each mesh, so that

(p±
j )m = p±j , m = 1, . . . , N±

j ,(5.4)

for some integers p±j ≥ 0, j = 1, . . . , ns, and (5.3) becomes

(5.5) N =

ns∑
j=1

(
N+

j (p+j + 1) +N−
j (p−j + 1)

)
.

However, we note that variations offering the same asymptotic convergence rates
with a reduced total number of degrees of freedom are also possible; in particular see
Remark 5.3 below. The following theorem shows that piecewise polynomial approxi-
mation on a geometric mesh leads to exponential convergence. For details of the proof
we refer the reader to [26, Appendix A] and also to the arguments preceding [5, The-
orem 2.5], where a similar exponential convergence result is shown without the aim
of sharp estimates for the constants involved. We also refer to [22, 23, 24, 43, 35, 42]
for related results.

Theorem 5.2. Suppose that a function g(z) is analytic in Re [z] > 0 and satisfies,
for some Ĉ > 0 and 0 ≤ δ < 1/2, the bounds

|g(z)| ≤
{
Ĉ|z|−δ, 0 < |z| ≤ 1,

Ĉ|z|−1/2, |z| > 1.
(5.6)

Then, for A > 0, and for integers n ≥ 1 and p ≥ 0,
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(i) there exists a constant C > 0, depending only on δ and σ, such that the best
L2 approximation error in Pp,n(0, A) satisfies

inf
v∈Pp,n(0,A)

‖g − v‖L2(0,A) ≤ CĈ
(
A1/2−δe−nϑ + log1/2(2 +A)e−pξ

)
,(5.7)

where ϑ = | log σ| (1/2− δ) and

(5.8) ξ = log

(
1 + σ1/2(2− σ)1/2

1− σ

)
> 0;

(ii) furthermore, if n is chosen such that n ≥ cp for some constant c > 0, then

inf
v∈Pp,n(0,A)

‖g − v‖L2(0,A) ≤ CĈ
(
A1/2−δ + log1/2(2 +A)

)
e−pτ ,(5.9)

where τ = min {cϑ, ξ} > 0.
Remark 5.3. It is possible to reduce the total number of degrees of freedom,

while maintaining exponential convergence as the maximum polynomial degree tends
to infinity, by relaxing the assumption (5.4) and using a lower degree approximation
near the singularity. For example, given p ≥ 1, suppose that we define a degree
vector p by

(p)i :=

{⌈
i−1
n∗
p
⌉
, 1 ≤ i ≤ n∗,

p, n∗ + 1 ≤ i ≤ n,

where n∗ is the largest i ∈ {1, . . . , n} such that xi−1

2 < 1. Then one can prove best
approximation estimates similar to (5.7) and (5.9) in the space Pp,n(0, A). For further
details see [26, Appendix A, Theorem A.3].

Combining Theorem 5.2 with Theorem 3.2 we can then deduce the following best
approximation result.

Theorem 5.4. Suppose that

N±
j ≥ c±j p

±
j(5.10)

for some c±j > 0. Then there exist constants Ĉ+
j > 0, depending only on σ, c∗, and

Ωj, and Ĉ
−
j > 0, depending only on σ, c∗, and Ωj+1, such that

inf
v∈P

p
±
j

,N
±
j
(0,Lj)

‖v±j − v‖L2(0,Lj)

≤ Ĉ±
j Mk1/2

(
(kLj)

1/2−δ±j + log1/2(2 + kLj)
)
e−p±

j τ±
j ,

where τ±j = min
{
c±j | log σ|

(
1/2− δ±j

)
, ξ
}
> 0.

Proof. Applying Theorem 5.2 to g(z) := v±j (z/k), which by Theorem 3.2 satisfies

the bounds (5.6) with Ĉ = C±
j Mk and δ = δ±j , and noting that

inf
v∈P

p
±
j

,N
±
j
(0,Lj)

‖v±j − v‖L2(0,Lj) =
1

k1/2
inf

w∈P
p
±
j

,N
±
j
(0,kLj)

‖g − w‖L2(0,kLj)
,

the result follows.
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We conclude this section with an estimate for the best approximation error asso-
ciated with the approximation of ϕ on Γ by an element of VN,k. We assume here that
(5.4) holds, but a similar result holds when the polynomial degree is reduced toward
the singularities, as outlined in Remark 5.3 above. Here and in what follows we make
the obvious identification between L2(Γ) and L2(0, L), via the parametrization x(s).

Theorem 5.5. Suppose that (5.10) holds for each j = 1, . . . , ns. Then, with
p := maxj,±{p±j }, there exists a constant C4 > 0, depending only on {Ωj}ns

j=1, σ, and

c∗, and a constant τ > 0, depending only on {Ωj}ns

j=1, σ, and {c±j }ns

j=1, such that

inf
v∈VN,k

‖ϕ− v‖L2(Γ) ≤ C4Mk−1/2G(k) e−pτ ,(5.11)

where

G(k) := (1 + kL∗)1/2−δ∗ + log1/2(2 + kL∗)

and δ∗ := minj,±{δ±j }.
Proof. Recalling (3.2) and (5.1), the result follows straight from Theorem 5.4,

with, e.g., C4 =
∑ns

j=1(Ĉ
+
j + Ĉ−

j ) and τ = minj,±{p±j τ±j }/p.
Remark 5.6. We note that the constants C4 and τ in Theorem 5.5 depend on

the corner angles {Ωj}ns

j=1 of the polygon. In particular, we expect that C4 → ∞ and

τ → 0 as Ωj → 2π (i.e., as δ+j , δ
−
j−1 → 1/2) for one or more j. This is because when

δ → 1/2 in Theorem 5.2, the constant C in (5.7) and (5.9) blows up like 1/(1/2− δ)
(for details, see [26, Appendix A]), and the constant ϑ tends to zero like 1/2−δ. Such
behavior is of course to be expected, since when δ = 1/2 in (5.6) we no longer expect
g ∈ L2(0, A). This issue has implications for the accuracy, measured in the L2 norm,
of the solution of our Galerkin BEM (described in the next section). Importantly,
however, and as we demonstrate in section 7 via numerical examples, this issue does
not seem to affect the accuracy of the solution in the domain, the far field pattern, or
indeed the boundary solution when measured in the weaker L1 norm.

6. Galerkin method. Having designed an approximation space VN,k which can
efficiently approximate ϕ, we now select an element of VN,k using the Galerkin method.
That is, we seek ϕN ∈ VN,k ⊂ L2 (Γ) such that (recall (2.4) and (5.1))

(6.1) 〈AϕN , v〉L2(Γ) =
1

k
〈f −AΨ, v〉L2(Γ) for all v ∈ VN,k.

The existence and uniqueness of the Galerkin solution ϕN is guaranteed by the
coercivity assumption, Assumption 2.3 (see, e.g., [28, Theorem 13.27]). Moreover,
Lemma 2.1, Assumption 2.3, and Céa’s lemma (e.g., [12, Lemma 6.9]) together imply
the quasi-optimality estimate

‖ϕ− ϕN‖L2(Γ) ≤
C0k

1/2

γ
inf

v∈VN,k

‖ϕ− v‖L2(Γ) , k ≥ k2,

where C0 is the constant from Lemma 2.1 (under the choice k0 = k2) and γ and k2
are the constants from Assumption 2.3. Combined with Theorem 5.5, this gives the
following.

Theorem 6.1. If Assumption 2.3 and the assumptions of Theorem 5.5 hold, then

‖ϕ− ϕN‖L2(Γ) ≤
C0C4M

γ
G(k) e−pτ , k ≥ k2,(6.2)

where C0, γ, and k2 are as above and C4, τ , and G(k) are as in Theorem 5.5.

D
ow

nl
oa

de
d 

07
/2

6/
13

 to
 1

34
.2

25
.4

0.
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

644 D. P. HEWETT, S. LANGDON, AND J. M. MELENK

Combining Theorem 6.1 with the bound on M established in Theorem 4.3, we
obtain an error estimate which is completely explicit in its k-dependence.

Corollary 6.2. Under the assumptions of Theorem 6.1 we have

‖ϕ− ϕN‖L2(Γ) ≤ C5k
1/2 log1/2 (2 + kL∗)G(k) e−pτ , k ≥ k2,(6.3)

where C5 := L1/2C0C3C4/γ and C3 is the constant from Theorem 4.3 (with k3 = k2).
An approximation uN to the solution u of the BVP can be found by inserting the

approximation (∂u/∂n)(x(s)) ≈ Ψ(x(s)) + kϕN (s) into the formula (2.3), i.e.,

uN(x) := ui(x)−
∫ L

0

Φk(x,y(s)) (Ψ(y(s)) + kϕN (s)) ds, x ∈ D,

where y(s) is defined exactly as x(s) was in (3.1). We then have the following error
estimate, which again is completely explicit in its k-dependence.

Theorem 6.3. Under the assumptions of Theorem 6.1 we have

‖u− uN‖L∞(D)

‖u‖L∞(D)

≤ C6k
1/2 log1/2 (2 + kL∗)G(k) e−pτ , k ≥ k2,(6.4)

where C6 = C0C2C4n
1/2
s /γ and C2 is the constant from Lemma 4.1.

Proof. For x ∈ D,

(6.5) |u(x)− uN(x)| = k |Sk (ϕ− ϕN ) (x)| ≤ k ‖Sk‖L2(Γ)→BC(R2) ‖ϕ− ϕN‖L2(Γ)

with Sk given by (4.1), and the result follows from Lemma 4.1 and Theorem 6.1.
An object of interest in applications is the far field pattern of the scattered field.

An asymptotic expansion of the representation (2.3) reveals that (cf. [17])

us(x) ∼ eiπ/4

2
√
2π

eikr√
kr
F (x̂) as r := |x| → ∞,

where the origin x = 0 is assumed to lie inside Ω, x̂ := x/|x| ∈ S1, the unit circle, and

F (x̂) := −
∫
Γ

e−ikx̂·y ∂u
∂n

(y) ds(y), x̂ ∈ S
1.(6.6)

An approximation FN to the far field pattern F can be found by inserting the ap-
proximation (∂u/∂n)(x(s)) ≈ Ψ(x(s)) + kϕN (s) into the formula (6.6), i.e.,

(6.7) FN (x̂) := −
∫ L

0

e−ikx̂·y(s) (Ψ(y(s)) + kϕN (s)) ds, x̂ ∈ S
1.

Theorem 6.4. Under the assumptions of Theorem 6.1 we have

‖F − FN‖L∞(S1) ≤ C5L
1/2k3/2 log1/2 (2 + kL∗)G(k) e−pτ , k ≥ k2,(6.8)

where C5 is the constant from Corollary 6.2.
Proof. By the Cauchy–Schwarz inequality,

(6.9) |F (x̂)− FN (x̂)| ≤ k

∫ L

0

|ϕ(s)− ϕN (s)| ds ≤ kL1/2 ‖ϕ− ϕN‖L2(Γ) , x̂ ∈ S
1,

and the result follows from Corollary 6.2.
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Remark 6.5. The algebraically k-dependent prefactors in the error estimates (6.2),
(6.3), (6.4), and (6.8) can be absorbed into the exponentially decaying factors by al-
lowing p to grow modestly with increasing k. Let us illustrate this point in the case
of (6.4). Clearly, (6.4) implies the weaker (but simpler) bound

‖u− uN‖L∞(D)

‖u‖L∞(D)

≤ C7(2 + kL∗)3/2 e−pτ , k ≥ k2,(6.10)

where C7 := 2C6/L
1/2. If we assume, in addition to the assumptions of Theorem 6.1,

that

p ≥ 3 log(2 + kL∗)
2c0

,(6.11)

for some 0 < c0 < τ , then (6.10), and hence (6.4), can be replaced by

‖u− uN‖L∞(D)

‖u‖L∞(D)

≤ C7 e
−pκ, k ≥ k2,(6.12)

where κ = τ − c0 and both κ and C7 are independent of k. Recalling (5.5), it
follows from (5.10), (6.11), and (6.12) that in order to maintain a fixed accuracy of
approximation, we need only increase the number of degrees of freedom like O (log2 k)
as k → ∞.

7. Numerical results. We now present numerical results for the solution of (6.1).
We consider two different polygonal scatterers, an equilateral triangle and a regular
pentagon. In each case the sides of the polygon are of length 2π, so the number of
wavelengths per side is equal to k. The scatterers, the incident direction vectors d (re-
call (2.1)), the corresponding total fields for k = 10, and a circle of radius 2π on which
we compute the total field (see Figures 7.3 and 7.4 below), are plotted in Figure 7.1.
For both scatterers we demonstrate exponential decay of the L2 norm of the error
on the boundary as p increases, with only very mild dependence on the wavenumber
k, as predicted by (6.2) and (6.3). We also demonstrate how these results extend to
the computation of both the solution in the domain and the far field pattern, error

Equilateral triangle Regular pentagon

Fig. 7.1. Scattering configurations and plots of the real part of u = ui + us for k = 10.
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Fig. 7.2. Relative L2 and L1 errors in boundary solution.

estimates for which are given in (6.4) and (6.8), and we investigate how the accuracy
of our results depends on the geometry of the scatterer. The results presented here
are computed using the standard combined potential formulation with A = Ak,η;
we make this choice because we wish to demonstrate that our numerical results are
entirely consistent with our theoretical predictions, even though we do not yet have a
complete theory for this case (since, as discussed in Remark 2.4, Assumption 2.3 has
not yet been shown to hold for A = Ak,η). In all our experiments we take the same
degree p of polynomial approximation on each element and the same number of layers
Nl := 2(p+ 1) on each graded mesh. According to (5.5), with N±

j = Nl and p
±
j = p

for each j = 1, . . . , ns, the total number of degrees of freedom is given by

N = 4ns(p+ 1)2.(7.1)

Since for each example N depends only on p (through (7.1)), we simplify our pre-
sentation by defining ψp(s) := ϕN (s). For the purposes of comparison with the
theoretical results, we note that in both examples (5.10) is satisfied with c±j = 2 for
each j = 1, . . . , ns.

In Figure 7.2 we plot the relative L2 and L1 errors (each on a logarithmic scale)
against p for both examples and for a range of values of k. In each case we take the
“exact” reference solution to be that computed with p = 7; further verification of our
method via comparison with solutions computed using the h-version scheme of [14],
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Table 7.1

L2 and L1 errors for the triangle, fixed p = 4 (and hence N = 300), various k.

k N
L/λ

‖ψ7 − ψ4‖L2(Γ) α
‖ψ7−ψ4‖L2(Γ)

‖ψ7‖L2(Γ)

‖ψ7−ψ4‖L1(Γ)

‖ψ7‖L1(Γ)
COND cpt(s)

5 20.00 1.96×10−1 −0.40 1.44×10−1 8.33×10−3 3.50×102 621
10 10.00 1.48×10−1 −0.40 1.55×10−1 1.24×10−2 2.77×101 612
20 5.00 1.12×10−1 −0.40 1.66×10−1 1.58×10−2 3.51×101 600
40 2.50 8.50×10−2 −0.40 1.78×10−1 1.74×10−2 4.60×101 691
80 1.25 6.44×10−2 −0.40 1.91×10−1 1.83×10−2 6.12×101 665
160 0.63 4.88×10−2 −0.40 2.04×10−1 1.91×10−2 8.27×101 648
320 0.31 3.70×10−2 −0.40 2.19×10−1 2.02×10−2 1.12×102 746
640 0.16 2.80×10−2 −0.38 2.35×10−1 2.06×10−2 1.53×102 746
1280 0.08 2.16×10−2 −0.39 2.55×10−1 2.19×10−2 2.08×102 764
2560 0.04 1.65×10−2 −0.39 2.76×10−1 2.19×10−2 2.83×102 826
5120 0.02 1.26×10−2 2.97×10−1 2.25×10−2 3.85×102 823

with a large number of degrees of freedom, has also been performed but is not reported
in detail here. The L2 and L1 norms are computed by a high order composite Gaussian
quadrature scheme on a mesh graded toward the corner singularities; experimental
evidence suggests that these calculations are accurate to at least four digits of precision
(a far higher accuracy than that achieved by the corresponding quadrature scheme
in [14], which used a uniform mesh).

The linear plots in Figure 7.2 clearly demonstrate exponential decay with increas-
ing polynomial degree p, as predicted for the L2 error by Theorem 6.2. We shall make
comparisons between the four plots in Figure 7.2 shortly. However, we first focus on
the key question of how the accuracy of our results depends on the parameter k.

In all four plots in Figure 7.2 the relative errors increase only very mildly as k
increases. To investigate this further, in Table 7.1 we show results for the equilateral
triangle for fixed p = 4 (and hence fixed N = 300) for a larger range of k. As well
as showing absolute L2 errors and relative L2 and L1 errors, we also show N/(L/λ),
the average number of degrees of freedom per wavelength. For the same value of
N , as k increases, the relative errors increase only mildly, and the absolute L2 error
actually decreases, despite the average number of degrees of freedom per wavelength
decreasing. It is interesting to compare these results to the k-explicit theoretical esti-
mate (6.3) for the absolute L2 error in Corollary 6.2. Suppose we make the hypothesis
that error(k) ∼ kα as k → ∞, where error(k) refers to the absolute L2 error for a par-
ticular value of k, and α denotes the estimated order of growth (α > 0) or decay
(α < 0). Under this hypothesis, we calculate α := log2(error(2k)/error(k)), and if the
hypothesis is correct we would anticipate α to take approximately constant values for
k sufficiently large. Recalling (6.3), we might expect to see α ≥ maxj=1,...,ns(1− δ±j );
for the equilateral triangle δ±j = 1 − π/(5π/3) for j = 1, 2, 3, suggesting an antici-
pated value α ≥ 3/5. But the results in Table 7.1 show α ≈ −2/5. This suggests
that our estimate (6.3) is not sharp in terms of its k-dependence. It is interesting to
note that the observed value α ≈ −2/5 is actually consistent with the k-dependence
of our best approximation estimate (5.11) if we assume that M = O (1) as k → ∞ (cf.
Remark 3.3).

We also show in Table 7.1 the 2-norm condition number (COND) of the linear sys-
tem arising from the discretization of (6.1). The condition number grows only slowly
as k increases for fixed p. This is in contrast to methods where the approximation
space consists of standard finite element basis functions multiplied by plane waves
traveling in many directions, for which large condition numbers can cause significant
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difficulties; see, e.g., [32] and the references therein. In the final column of Table 7.1,
we also show the computing time (cpt), measured in seconds, required to construct
and solve the linear system in each case. The computing time increases only slowly
(if at all) as the wavenumber k increases. For details of how this is achieved, see [36].
These results were computed using MATLAB on a Dell T7400 2.83 GHz machine.
We expect that faster computation times could be achieved with some optimization
of the code.

We now return to compare the four plots in Figure 7.2. As already alluded to in
Remark 5.6, our L2 best approximation estimates in section 5 are not uniform with
respect to variations in the corner angles of the polygon; this is linked to the fact
that the L2 norm of the boundary solution blows up if Ωj → 2π for any j = 1, . . . , ns

(i.e., as the corners become sharper). Figure 7.2 suggest that this nonuniformity also
appears in our numerical solutions, since comparing the L2 errors for the triangle and
the pentagon, we see that although in each case the error is decaying exponentially
with increasing polynomial degree, the errors are significantly greater in magnitude
(with slower rate of decay) for the triangle than they are for the pentagon. (Note that
the four plots in Figure 7.2 are on the same scale.)

On the other hand, Lemma 3.5 implies that for q < 2 the weaker Lq norm of the
solution on the boundary remains bounded, even as Ωj → 2π. The plots in Figure 7.2
reflect this, with the errors in the L1 norm being much smaller than the corresponding
L2 errors, and this difference is particularly pronounced for the scatterer with sharper
corners (the triangle). Moreover, there is little difference in either the magnitude or
the rate of decay of the L1 errors between the two examples, which suggests that the
L1 error is not significantly affected by corner angles. We return to this observation
at the end of the paper.

We now turn our attention to the approximation of u(x), x ∈ D, and of the far
field pattern F (often the quantities of real interest in scattering problems). As might
be expected of linear functionals of the boundary solution, we find that the errors in
u(x) and F are, in general, much smaller than the relative errors in ϕ. Moreover, the
sensitivity to the corner angles seen in the L2 errors in ϕ does not seem to be present
in the approximations of u(x) and F .

To investigate the accuracy of our solution in the domain, we compute the solution
on a circle of radius 2π surrounding the scatterer, as illustrated in Figure 7.1. To allow
easy comparison between different discretizations, noting again that for each example
N depends only on p (recall (7.1)), we denote the solution on the circles (with a
slight abuse of notation) by up(t) := uN(x(t)), t ∈ [0, 2π], where t = 0 corresponds
to the direction from which ui is incident. Plots of |u7(t)| (i.e., the total field on
the circle as computed with our finest discretization) for the equilateral triangle, for
k = 10 and k = 160, are shown in Figure 7.3. The shadow region and the regions in
which specularly reflected waves are present are indicated (compare Figure 7.3 with
Figure 7.1).

In Figure 7.4 we plot for both examples the relative maximum error on the circle,

maxt∈[0,2π] |u7(t)− up(t)|
maxt∈[0,2π] |u7(t)| ,

computed over 10,000 evenly spaced points in [0, 2π], for k = 10, k = 40, and k = 160.
The exponential decay with respect to increasing p predicted by Theorem 6.3 is clear
for both examples (note the logarithmic scale on the vertical axes). Moreover, for fixed
p, the relative maximum error seems to be, if anything, decreasing with increasing
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k = 10 k = 160

Fig. 7.3. Total field for the triangle, evaluated on the circle of Figure 7.1.

Triangle Pentagon

Fig. 7.4. Relative maximum errors on the circles of Figure 7.1.

k, suggesting that the theoretical error bound (6.4) in Theorem 6.3 is not sharp in
terms of its k dependence. As alluded to above, the errors in the domain are much
smaller than the relative errors in the computation of the boundary data in Figure 7.2
and, importantly, for fixed k and p the errors for the two examples are of similar
magnitude. This suggests that the bound (6.4) in Theorem 6.3 is not sharp in terms
of its dependence on the corner angles, either.

Finally, we compute our approximation to the far field pattern (6.7). As above,
to allow easy comparison between different discretizations we denote (again with a
slight abuse of notation) Fp(t) := FN (x̂(t)), t ∈ [0, 2π], where t = 0 again corresponds
to the direction from which ui is incident. Plots of |F7(t)| (i.e., the far field pattern as
computed with our finest discretization) for the triangle, for k = 10 and k = 160, are
shown in Figure 7.5. Again, the regions around the shadow and specularly reflected
directions are indicated.

In Figure 7.6 we plot approximations to ‖F − FN‖L∞(S1) for k = 10, k = 40,
and k = 160, for both examples. To approximate the L∞ norm, we compute both F7

and Fp at 200k evenly spaced nodes on the unit circle. The exponential decay with
respect to increasing p predicted by Theorem 6.4 is clear for both examples (note the
logarithmic scale on the vertical axes). Moreover, for fixed p, the error does not grow
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k=10 k=160

Fig. 7.5. Far field patterns for the triangle.

Triangle Pentagon

Fig. 7.6. Absolute maximum errors ‖F7 − Fp‖L∞(0,2π) in the far field pattern.

significantly as k increases, indicating that, as for the solution in the domain, the k
dependence of the bound (6.8) in Theorem 6.4 may not be optimal. Also, for fixed k
and p the errors are comparable in magnitude for the two examples, suggesting that,
as for the solution in the domain, the bound (6.8) may not be optimal in terms of its
dependence on the corner angles, either.

In summary, our numerical examples demonstrate that the predicted exponential
convergence of our hp scheme is achieved in practice. Moreover, for a fixed number
of degrees of freedom, the accuracy of our numerical solution appears to deteriorate
only very slowly (or not at all) as the wavenumber k increases. In fact, our results
lead us to conjecture that the theoretical error bounds provided by Corollary 6.2 and
Theorems 6.3 and 6.4 are not sharp in their k dependence. In particular, we believe
that this is partly due to the lack of sharpness of our estimate for M derived in
section 4; indeed, we conjecture (cf. Remark 3.3) that M = O (1) as k → ∞, but, as
yet, we do not have a proof of this result.

We also conjecture that the theoretical error bounds provided by Theorems 6.3
and 6.4 are not sharp in their dependence on the corner angles of the polygon. To
explain this, we recall that our error estimates for the approximation of u by uN ,
(6.4), and of F by FN , (6.8), were derived via the Cauchy–Schwarz inequality and
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our L2 estimates for ϕ − ϕN , (6.2), and (6.3), which we know to blow up to infinity
if one (or more) interior corner angle(s) tends to zero, reflecting that in this limit, ϕ
ceases to be in L2(Γ). Our choice of L2(Γ) as the space for error analysis is motivated
by the very recent results in [44], where coercivity was established with frequency
independence for a second kind BIE formulation. One way to obtain error estimates
which are uniform in the corner angles could be to work in a different function space,
e.g., H−1/2(Γ) or Lq(Γ) for q < 2, in which the norm of the boundary solution is
bounded uniformly with respect to the corner angles. In particular, in the case of
L1(Γ), for which we have presented numerical results, a key step in modifying our
analysis would be to use the bounds

|u(x)− uN(x)| = k |Sk (ϕ− ϕN ) (x)| ≤ kmax
y∈Γ

|Φk(x,y)| ‖ϕ− ϕN‖L1(Γ) , x ∈ D,

|F (x̂)− FN (x̂)| ≤ k ‖ϕ− ϕN‖L1(Γ) , x̂ ∈ S
1,

instead of (6.5) and (6.9), respectively. We remark that the former bound could
provide a sharper estimate in particular for the case when x is not near Γ, since
maxy∈Γ |Φk(x,y)| → 0 as x → ∞. However, in order to obtain a complete theory of
the form presented here, appropriately modified versions of Lemma 2.1, Lemma 2.2,
and Assumption 2.3 would also be required. We do not explore these issues further
here, except to say that the difficulty in dealing with the singularities when the corner
angles are sharp is unrelated to considerations regarding the oscillatory nature of the
solution, which form the main focus of this paper.

Acknowledgments. The authors thank S. N. Chandler-Wilde for many helpful
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