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Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate 

(PVCN) and a cholesteric silicone polymer.  Only blends that contained at least 40% of PVCN 

produced fibres.  Both differential scanning calorimetry (DSC) and electron dispersion 

spectroscopy (EDS) data indicate that the samples are miscible over a wide temperature interval.  

The variation of fibre diameter with concentration is nonlinear with a well defined minimum 

corresponding to an 80% PVCN blend.  The fibres are birefringent with Kerr constants similar to 

that of cholesteric liquid crystals.  Although not significant, the Kerr constant increases with 

increasing silicone polymer concentration. 

 

1. Introduction 

Electrospinning or electrostatic spinning is a simple yet effective technique for producing 

continuous ultrathin polymer fibres with diameters down to a few tens of nanometers and is 

applicable to virtually every soluble or fusable polymer [1].  In a typical electrospinning 

experiment, a strong electric field is applied to a droplet of a polymer solution that is ejected 

from the tip of a metallic nozzle which also serves as the electrode.  The droplet is attracted by a 

counter electrode which is usually 10-15 cm away.  Electrospun nanofibres offer great potential 

in many diverse fields including: cosmetics, tissue engineering, drug delivery, filtration, 

catalysts, optical and electronic devices [2, 3]. 

During the initial stages of electrospinning, the shape of the droplet is deformed from 

spherical to that of a cone with convex sides and a rounded tip.  At a certain threshold voltage, 

this rounded tip inverts and a charged jet of solution is ejected.  In order to maintain a stable 

cone-jet, a voltage slightly higher than this threshold voltage must be used.  The conical portion 

of the cone-jet after the electrospraying process has begun is generally referred to as the Taylor 

cone [4].  During its flight to the counter electrode, the diameter of the jet decreases due to the 

combined effects of solvent evaporation and stretching due to the electric field.  As the jet 

diameter decreases, the surface charge density increases.   If the high repulsive forces from the 



increased charge density become greater than the cohesive forces within the jet, the single jet 

divides into smaller jets (splaying).  This process may repeat several times and converts a single 

jet into many thinner jets.  Thin fibres can also be generated by the elongation of a single jet if 

splaying does not occur.  Splaying and elongation appear to occur simultaneously in many cases 

[5].   

Cholesteric films that are sensitive to external mechanical fields have recently been 

designed [6].   These films were fabricated from a cholesteric (chiral nematic) silicone polymer 

(C-4745) which was doped with a nematic liquid crystal.  Pure C-4745 has a wide cholesteric 

range ~ 120 K and Bragg reflects visible light around 450 to 470 nm [7].  However, it is possible 

to change the helical pitch and adjust the position of the Bragg peaks to virtually anywhere in the 

visible region by changing the composition of the blends [6].  Such cholesteric polymeric blends 

may serve as reversible colour-changing deformation sensors as well as photonic materials with 

a tunable position of the band gap.  The idea of developing polymer nanofibres that are highly 

sensitive to external mechanical or electric fields is quite attractive from an industrial 

perspective.   Unfortunately, pure C-4745 does not readily generate electrospun fibres.  Hence, in 

order to generate fibres with some residual cholesteric properties, poly-vinyl cinnamate (PVCN) 

was blended with C-4745.  PVCN was chosen since it readily forms smooth fibres and provides 

C=C sites for photo-crosslinking.   In addition, both components are readily soluble in 

dichloroethane (DCE) and the blends do not show any visible signs of phase separation.  

 PVCN is a copolymer of vinyl cinnamate and vinyl alcohol.  It is stable up to 200 
° 
C and 

has a glass transition temperature of ~ 70
° 
C [8].  Also, PVCN is highly sensitive to ultra violet 

(UV) radiation and undergoes photo-dimerization even without a photo-iniatator [8].  This 

polymer undergoes a random cross-linking photo-addition (Fig. 1) reaction between a UV 

excited cinnamoyl group of a polymer chain and that of an unexcited cinnamoyl group on a 

different or the same chain to form a cyclobutane ring [8].  The electrons in C-H bonds are 

usually too tightly held to be excited by UV light; the carbonyl group is also not expected to be 

excited by the same UV light.  The cholesteric polymer is a siloxane-based side chain polymer 

(Fig. 2).  The silicon atoms of the ring vary from 4 to 8.  The chiral and non-chiral derivatives 

are attached to the polymer backbone in an alternating sequence by flexible (CH2)3-O- spacers.   

The ratio of the chiral to the non-chiral mesogens (x : 1-x) is approximately 11:9 in C-4745 [9].   
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Fig. 1: Photodimerization of PVCN in the presence of UV light to yield the cyclobutane ring. 

 

 

 

 

 

Figure 2: Chemical Structure of C4745: x ~ 0.55 and 4≤ n ≤ 8. 



2. Materials and Methods 

The desired blends of PVCN (Polysciences, Inc) and C-4745 (Wacker) were dissolved in 

1, 2-dichloroethane (DCE, Aldrich) and then stirred and shaken overnight to produce uniform 

solutions.   Electrospinning was performed on six such blends whose concentrations by weight of 

either material varied from 0-100%.   The polymer solution was housed in a 5ml Luer lock glass 

syringe which was fitted with a 22 gauge metallic needle of 0.41 mm internal diameter.  The 

same type of syringe and needle was used throughout.  The syringe was placed horizontally on a 

calibrated syringe pump which was set at the optimum (as well as minimum) flow rate of 0.13 

ml/min.   If higher flow rates are employed, large quantities of material drip onto the floor and 

highly beaded fibres are formed.   

Fibres were deposited onto an aluminum sheet which was wrapped around a grounded 

and rotating cylindrical collector.   The collector has a diameter of 3.2 cm and a length of 7 cm.  

A rotating collector is expected to produce better aligned fibres than a flat-plate collector.  The 

collector is capable of achieving surface tangential velocities of 0 –15 m s
-1

.  However, for this 

study, a fixed tangential velocity of 4 m s
-1

 was used throughout.   After the initial preparation, 

the fibres were allowed to dry naturally for 72 h in a dark room before any measurements were 

taken.  This apparatus allows for the control of several parameters which include collector speed, 

applied voltage, collector-needle separation and flow rate.   If desired, photo-crosslinking could 

be performed with unpolarized UV radiation (10 mW cm
-2

) which has a wavelength of 365 nm.    

 

3. Results and Discussion 

Initially, solutions of pure PVCN and pure C-4745 each 20 % by weight were prepared 

and electrospun.   The silicone polymer solution appeared to be a lot less viscous than the PVCN 

solution and it is not surprising that only the PVCN solution yielded fibres.  The electrospinning 

of solutions of higher concentrations of C-4745 (20%, ~ 40% and ~ 56% by weight) were all 

unsuccessful in generating fibres.  In fact, despite varying all the parameters (concentration, 

applied voltage, collector –needle separation and collector speed) which the apparatus afforded, 

we did not collect fibres from the pure silicone polymer solutions.  Similarly, the                     

80% C-4745/20% PVCN blend also did not produce fibres.  Only the blends that contained at 



least 40% by weight of PVCN (60% of C-4745) produced electrospun polymer fibres.  This 

might suggest that the molecular weight of C-4745 is not high enough to allow for fibre 

formation. 

The SEM image of the product collected from the electro-spinning of pure C-4745      

(~56 % by weight) from 1, 2-dichloroethane is shown in Fig. 3.   It is quite obvious from this 

image that pure C-4745 does not produce fibres.  The collected material however, displays some 

elongated features due to the effects of the applied electric field.  The large number of fractured 

edges evident in the SEM scan of Fig. 3 is an indication of the brittle nature of the electrospun 

product generated from the pure silicone polymer.  

 

 

Fig.  3. Scanning electron microscope (Cambridge SEM  S360) image of the electrospun product 

from a solution of 2.5 g of C-4745 in 2g of DCE.  The needle-collector separation was10 cm and 

19 kV were applied.   

 

The variation of fibre diameter with concentration of PVCN for the blends studied is 

shown in Fig. 4.  There is a well defined minimum in the variation of fibre diameter which is not 

related to the concentration since this parameter was held fixed at 20 % by weight.  This 

minimum in the fibre diameter appears to be similar to a euthetic point in a two component 

system.   This effect is not likely to be a result of phase separation since all of the blends 

appeared to be uniform during the course of the study.   The observed minimum may be the 



result of complex interplay between viscous and dielectric forces within the blends.  Fibre 

diameters generally increase with increasing viscosity [10] but decrease with increasing 

dielectric constant [11].  The viscosity appears to increase with increasing PVCN concentration 

and if this is accompanied by a concomitant decreasing dielectric force, then this may be a 

possible explanation for the observed minimum.  
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Fig. 4: Variation of fibre diameter with concentration of PVCN/C-4745 blends showing a well-

defined minimum.  The curve is meant to be a guide to the eye.  The corresponding standard 

deviations appear in the table.   The fibre diameter represents the average of 120 measurements 

randomly selected from across the SEM image. 

 

The critical concentration that supports fibre formation is a 60% C-4745/ 40% PVCN 

blend.  The fibres generated from electrospinning this blend is shown in the SEM scan of Fig. 5.  

These fibres are thick and fairly short when compared with the fibres formed by samples of 

lower concentrations of C-4745.   The lengths of these fibres vary from 10 µm to 400 µm and 

they have an average diameter of 4.78 ± 0.90 µm.    Fibre diameters range from 3-8 µm but the 

overwhelming majority (> 90%) had diameters in the range 4-6 µm.   While the fibres in the 

SEM image of Fig. 5 are the thickest fibres obtained, the two fibres shown in Fig. 6 are those 

with the smallest diameters. 

% 0f 

PVCN 

Fibre  diameter     

          (µm) 

40 4.78 ± 0.90 

60 3.03 ± 1.17 

80 2.68 ± 0.71 

100 3.38 ± 0.98 



 

 

Fig. 5. The topology and distribution of the fibre diameter corresponding to a 60% C-4745/40% 

PVCN blend.  The needle-collector separation was15 cm and 15 kV were applied.  Fibre 

diameters were measured by using the software, Scandium. The fibre diameter of 4.78 ± 0.90µm   

represents the average of 120 measurements randomly selected from across the SEM image. 

 

 

 

Fig. 6.  The fibres with the average minimum diameter was obtained from the 80% PVCN blend 

while the pure PVCN solution were slightly larger.  The corresponding diameters are:  80% 

PVCN 2.68 ± 0.71 and (b) 100% PVCN 3.38 ± 0.98.   



By utilizing the energy-dispersive X-ray spectroscopy (EDS or EDX) component of the 

Cambridge S360 SEM, one can determine, in addition to dimensions and surface features of the 

fibres, information about the distribution of each polymer within the fibres.  The silicon atoms 

present in C-4745 are ideal markers for verifying the presence of this polymer within the matrix 

of the prepared fibres.   Figure 7 shows how the silicon atoms are distributed throughout the 

electrospun product for the 20% PVCN-80% C-4745 blend.  This uniform distribution of the 

silicon atoms is consistent with a high degree of miscibility at the microscopic level.  The weight 

percentage of silicon for the 20% PVCN-800% C-4745 blend derived from the EDS data is 1.19 

± 0.02 and this is similar to what is expected from the chemical structures of figures 1 and 2.  

EDS scans of the fibres derived from the 40% and 60% C-4745 blends also showed uniform 

distributions of silicon atoms.    

 

 

 

Fig. 7: EDS (EDX) images showing the distribution of silicon and carbon within the electrospun 

product from a 20% PVCN- 80% C-4745 blend.    

                                                                                                                                       

We used the Perkin-Elmer DSC2 to study the phase transitions associated with the 

various electrospun fibres.  It might be illustrative to discuss the features of pure PVCN before 

commenting on the other fibres.  The glass transitions (Tg) the polymer form of PVCN and its 

irradiated version are marked by large enthalpies, which is consistent with non-equilibrium 

thermodynamic states (see Fig. 8 and Fig. 9).   There is a 1 K difference for the glass transition 
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temperatures for the cross-linked and neat PVCN.   For these measurements, a few grams of 

PVCN (used as received) were placed on aluminum foil and irradiated with unpolarized UV 

radiation (10 mW cm
-2

 and 365 nm) for 10 min.  Cross-linking is expected to be essentially 

completed under such conditions [12].  Haramina and Kirchheim [8] observed a change in Tg of 

~ 3K for a similar quantity of incident radiation.   However, they performed the cross-linking on 

films that were cast from tetrahydrofuran.  Cross-linking is expected to be more effective if a 

film is irradiated (owing to larger exposed surface areas) as opposed to the powdered form of a 

material.  As expected, they observed larger variations in Tg for longer exposures times 

eventually reaching 10 K for an exposure time of 2h.   

The glass transition peak for the fibre form of PVCN which was not irradiated is greatly 

diminished and occurs at ~10K lower than the polymer form (Fig. 8).  This is not a solvent effect 

since the fibres were dried thoroughly before DSC scans were performed.  This decrease in Tg of 

the electrospun product has also been observed in poly (L-lactic acid) and has been attributed to 

the decrease in crystallinity after the electro-spinning process [13]. 

 

 

 

 

 

 

 

 

 

Fig. 8.  The glass transition temperatures of  pure PVCN and its corresponding electrospun fibre.  

A heating rate of 10 K/min was used in both cases.   



The glass transition temperatures of pure PVCN and the polymer fibres after they were 

both cross-linked for 10 min is captured in Fig. 9.   As with the uncrossed-linked samples, the 

glass transition temperatures of the fibres are approximately 10 K lower than that of the 

powdered polymer.   The glass transition temperature of the cross-linked fibres appears as a very 

broad and weak peak.  This weak but obvious peak may be the result of the cross-linked PVCN 

fibres having less chance of orienting themselves and possibly represents a state of 

thermodynamic equilibrium.   Additionally, the effectiveness of the cross-linking was monitored 

by infra-red spectroscopy (not shown).  The reduction in the intensity of the IR peak of the C=C 

at 1637 cm
-1

 is quite evident in the IR data.    

 

    

 

 

 

 

 

 

 

 

Fig. 9.  The glass transition temperatures of pure PNCN and the electro-spun fibres after they 

were both irradiated with UV light of intensity 10 mW cm
-2

 and wavelength 365 nm for 10 min.  

The data corresponding to the fibres are shifted by 0.01 in the positive y direction in order to 

separate the plots and show the glass transition of the fibre.  
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Fig. 10. DSC scans of the pure C-4745 polymer and the electrospun product from 80% C-4745, 

60% and 40% -PVCN blends.   Heating rates were 10 K/min. 
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The DSC scans for fibres generated from C-4745-PVCN blends are captured in Fig. 10.   

The data for the 20% C-4745/80% PVCN blend was not plotted since it is devoid of any thermal 

features and hence, carries no information.   The dominant peaks appear in the scan of pure C-

4745 where both a glass transition and a liquid crystalline phase (~ 110 K range) are evident.  

The liquid crystalline phase appears in both the 80% and 60% C-4745 blends but not at lower 

concentrations.  From figure 10, it is clear that the range of the liquid crystalline phase decreases 

with decreasing C-4745 concentration.   The intervals for the 80% and 60 % blends are ~ 100 K 

and 60 K respectively.   The 40% C-4745 does not show any transitions or thermal features 

except a very broad and shallow peak at ~385 K.   Also, the transition to the isotropic phase of 

the silicone polymer becomes less defined with increasing proportions of PVCN.  This vanishing 

of the clearing for silicone-based cholesteric liquid crystalline polymers which were doped with 

12.50 mol% of a cross-linking agent has been previously observed [14].    

We investigated the response of the fibres shown to applied electric fields by measuring 

the Kerr effect of the fibres.  We employed a Zeiss (Axiolab  Pol) polarizing microscope  

together with a tilting Eringhaus compensator which covers the range 0 -6 λ in order to measure 

the induced birefringence.  This technique is described in detail elsewhere [15, 16] and will only 

be outlined here.  The electro-optic cell consists of two aluminum electrodes which are 

sandwiched between microscope slides.  The aluminum plates serve as both electrodes and 

spacers.  The fibre sample is housed in the gap between the electrodes.  We have plotted in Fig. 

11, the field dependence of the induced birefringence for the 80% PVCN blend which generated 

fibres with the smallest diameters.  The plot of the induced birefringence versus the square of the 

electric field gives the expected straight line.   The Kerr constant derived from this method is 

(1.53 ± 0.01) x 10
-11

 mV
-2

.  This is approximately one order of magnitude greater than 

nitrobenzene [17] and similar to cholesteric liquid crystals [15].  This fibre suffers dielectric 

breakdown field is ~ 1.7x10
6
 Vm

-1
.  The Kerr constants for the 60% and 100% PVCN fibres are 

not significantly different from the 80% PVCN sample.  They are 2.49 ±0.01 x 10
-11

 mV
-2

 and 

9.63 ± 0.01 x 10
-12

 mV
-2

 respectively.   Although not significant, the Kerr constant decreases 

with increasing concentration of PVCN. 
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Fig. 11.  The induced birefringence (Δn) versus the square of the electric field (E) for fibres 

which were derived from the 80% PVCN/20% C-4745 blends.  The data is fitted to the equation: 

Δn=KE
2
λ0.  K is the Kerr constant and λ0 is taken as 550 nm. 

 

4. Conclusion 

We have succeeded in fabricating electro-active fibres from blends of a silicone-based 

cholesteric liquid crystalline polymer (C-4745) and PVCN.   Even though pure C-4745 does not 

yield electrospun fibres, the addition of PVCN to it generates fibres with residual liquid 

crystalline properties.   The composition of the blends strongly influences the structural features 

and well as the electro-optic properties of the blends.  The fibre diameters are also dependent on 

the composition of the blends and there is a well-defined minimum in fibre diameters (80% 

PVCN/20% C-4745).   PVCN and C-4745 appear to be miscible over a wide range as indicated 

by DSC scans and EDS data. Thus, it appears that it may be possible to design functional 

material fibres by a suitable choice of the individual materials.  
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