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To calculate the potential wind loading on a tall building in an urban area, an accurate representation of
the wind speed profile is required. However, due to a lack of observations, wind engineers typically
estimate the characteristics of the urban boundary layer by translating the measurements from a nearby
reference rural site. This study presents wind speed profile data obtained from a Doppler lidar in central
London, UK, during an 8 month observation period. Used in conjunction with wind speed data measured
at a nearby airport, the data have been used to assess the accuracy of the predictions made by the wind

Keywords: engineering tools currently available.
‘S’E‘d When applied to multiple changes in surface roughness identified from morphological parameters,
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the non-equilibrium wind speed profile model developed by Deaves (1981) provides a good representa-
tion of the urban wind speed profile. For heights below 500 m, the predicted wind speed remains within
the 95% confidence interval of the measured data. However, when the surface roughness is estimated

Doppler lidar
Internal boundary layer
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Morphology using land use as a proxy, the model tends to overestimate the wind speed, particularly for very high
Deaves wind speed periods. These results highlight the importance of a detailed assessment of the nature of the
Harris surface when estimating the wind speed above an urban surface.

Wind speed profile

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

To design tall buildings in urban areas, wind engineers need to
calculate the maximum potential wind loading on the structure.
This requires an accurate representation of the characteristics of
the urban boundary layer (UBL) in strong wind conditions. Several
theoretical and empirical models to describe the vertical distribu-
tion of mean wind speed have been proposed, the predictions of
which are dependent on the characterisation of the underlying
surface. However, at present, due to the lack of both observed
wind speeds and surface roughness data, there has been limited
validation of the models in urban areas.

For a horizontally homogeneous surface, a number of equilibrium
wind speed profile models are available; power law, log law and
Deaves and Harris model (Davenport, 1960; Simiu and Scanlan,
1996; Deaves and Harris, 1978). However, in urban areas there may
be several changes in the nature of the surface within a few
kilometres of the site. A number of studies have developed theore-
tical models which consider the effects of surface heterogeneity.
Panofsky and Dutton (1984) and Elliott (1958) considered the
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growth of a new inner boundary layer at a step change in surface
roughness. Deaves (1981) used this concept to extend the applic-
ability of the Deaves and Harris model to heterogeneous terrain. This
was subsequently adapted into the UK wind loading code and the
ESDU data items (ESDU, 2006; British Standard, 1995).

A number of studies have investigated the characteristics of the
boundary layer in various urban areas. Rotach et al. (2005) and
Li et al. (2010) investigated the urban wind speed profile over
Basel and Beijing respectively using data obtained at various
elevations on meteorological masts. However, these observations
are confined to heights relatively close to the surface. To detail the
wind characteristics for higher altitudes, ground-based remote
sensing techniques, such as Doppler Sodar, have been deployed in
a number of urban areas. Emeis (2004) investigated the character-
istics of the boundary layer up to a height of 210 m agl over
Hannover. While, Barlow et al. (2008) observed the wind speed
profile up to a height of 110 m above Salford, UK. In addition,
Tamura et al. (2001) used observations from a number of Doppler
Sodars located at various sites across Tokyo to consider the impact
of variations in terrain roughness of the upstream fetch on wind
speed profiles. Due to the increased terrain roughness of the
upstream fetch, the mean wind speeds at low altitudes measured
at a city centre location were lower than those observed at both a
coastal and suburban location.

As part of the ACTUAL project (Advanced Climate Technology:
Urban Atmospheric Laboratory, 2011) a pulsed Doppler lidar has
been installed at a site on Marylebone Road, Greater London, to
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obtain the characteristics of the urban boundary layer. This study
presents the wind speed profiles observed during high wind speed
periods for a range of wind directions. The objectives of this paper
are twofold: (1) to compare the observed wind speed profiles with
the predictions of both the equilibrium and non-equilibrium
models and (2) to investigate whether a detailed assessment of
the urban surface improves the accuracy of the models.

2. Wind speed profile models

For sites with a long fetch over a homogeneous terrain, the
boundary layer can be considered to be in equilibrium with the
underlying surface. (i.e the wind speed profile does not change as
the fetch of upwind uniform terrain increases). Rao et al. (1974)
showed that an equilibrium profile is established for a fetch of the
order of 100 times the boundary layer height. In practice there are
very few sites, where a sufficiently long upwind fetch of uniform
terrain occurs for an equilibrium boundary layer to exist.
A number of both equilibrium and non-equilibrium wind speed
profile models are available, and are reviewed here.

2.1. Power law

The power-law model is an empirical formula for the mean
velocity profile, which is based on finding the magnitude of the
exponent, a, which provides the best fit of wind speed observa-
tions between two heights:

o

U(z1) = U(zy) C—;) (1)

where U(zy) and U(z;) are the wind mean wind speeds at a height
of z; and z, respectively.

Eq. (1) is based on the assumption that the magnitude of the
exponent is a constant between the two heights and is only
dependent on the roughness of the underlying terrain. In reality
however, a varies with wind speed, stability and the height range
of the fit. In addition, the power law does not meet the lower or
upper boundary conditions. Consequently the model fits best over
the range of moderate heights 30 <z <300 m Cook (1997).

2.2. Log law

Asymptotic similarity considerations for a neutral boundary
layer show that by matching the law of the wall with the velocity
defect law in the region where both laws apply (known as the
inertial sublayer), the wind speed profile is given by

Uz)= u_k* In (;0) (2)

where u, is the surface friction velocity, k is von Karman's constant
and z; is the surface roughness length. For regions with densely
packed surface obstacles, such as vegetation and buildings, the
mean flow does not penetrate to the surface; therefore the wind
profile is displaced vertically:

u

C
k 2o

U@)= 3)
where d is the zero plane displacement. Despite being applied to
the whole boundary layer, the log wind profile is only valid in the
inertial sublayer (ISL). The ISL typically extends from a height of
4-6 times the mean building height to approximately 10% of the
boundary layer depth (Ricciardelli and Polimeno, 2006). Tieleman
(2008) and Li et al. (2010) showed that the log law does not provide
a good representation of the wind speed profile above heights of
approximately 200 m.

2.3. Deaves and Harris model

The Deaves and Harris model (DH) meets both the upper and
lower boundary conditions and is therefore applicable to the
entire boundary layer, not just the surface layer (Deaves and
Harris, 1978). The DH wind speed profile is given by

U@z) = “—k* {ln <230> 4575 (%) ~188 (%)2_1 33 (%)3 +0.25 (%)4]

where h is the height of the neutral boundary layer

“)

Uy
h= Bf )
where f is the Coriolis parameter and B is an empirical constant
estimated to have a magnitude of 6 from observed wind profiles
(Tieleman, 2008).

2.4. Roughness change models

Several theoretical methods have been developed to deal with
the effects of a heterogeneous surface (Elliott, 1958; Panofsky and
Dutton, 1984; Deaves, 1981). When flow encounters a change in
surface roughness, a new inner layer develops (known as an
internal boundary layer), which propagates upwards through the
upstream layer as the downstream distance increases. Such
growth was observed using Doppler Sodars in Tokyo (Tamura
et al,, 2001). Elliott (1958) showed that the depth of the IBL, §, can
be derived from

X 0.8
8(x) =0.28zp, |:£:| (6)

where x is the distance from the roughness change boundary and
Zoo is the roughness length of the downstream surface. Above 4,
the wind speed is independent of x and equal to the value given by
the equilibrium profile (at the same height) just upwind of the
roughness change.

Mertens (2003) and Heath et al. (2007) assumed that within
the IBL, there is an equilibrium log law wind profile, governed by
the nature of the new surface. By equating the upstream and
downstream wind speed at 5, the wind speed, U at a height of z
above the downstream surface can be expressed as

o—dq z—dy
R Glre -+ P o
(i[5t 22))
where zg; and zq, are the roughness lengths and d; and d, are the
displacement heights of the upwind and downwind surfaces
respectively and U, is a reference upwind rural wind speed U,,
(measured at a height z,).

Deaves (1981) developed a method to deal with the non-
equilibrium effects based on a solution of the full elliptic form of
the Navier-Stokes equations, which is obtained using a simple
eddy-viscosity closure assumption. This solution is consistent with
the Deaves and Harris equilibrium wind speed profile (Eq. (4))
when X — co. Deaves (1981) applied the method to a wide range of
surface roughness changes and collapsed the results onto a series
of curves. These curves were fitted with simple equations which
are used in the ESDU 82026 to directly estimate the boundary
layer velocity profile for a distance x from a roughness change.

Both the equilibrium internal boundary layer method (Eq. (7))
and the Deaves (1981) model enable the wind speed profile
downstream of a step change in roughness to be estimated from
a wind speed measured at a single height above the upwind
surface. However, several changes in roughness typically occur
upwind of an urban site. By assuming the growth of a new internal
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layer at each step change, both techniques can be applied for
multiple changes in roughness length. This study considers the
accuracy of these models by comparing the urban wind speed
profile derived using reference wind data collected at London
Heathrow with observations from the Doppler lidar at the central
London site. The analysis has also been performed using two
methods for estimating the surface roughness length: (1) using
land use as a proxy (2) values based on the urban morphology.

3. Measurement and instrumentation

Two instrument sites used in this study are located within
central London, UK (Fig. 1). A Doppler lidar has been installed on
the roof of the Westminster City Council building (at a height of
21 m) on Marylebone Road in west-central London (51.5213°N,
0.1606°W). In addition, a sonic anemometer is mounted on an open
lattice tower on top of the BT Tower (51.5215°N, 0.1389°W) with its
head at height 190.3 m (Barlow et al., 2009). The distance between
the two sites is approximately 1.6 km. The data analysed in this
study were collected from 22nd May 2011 to 6th January 2012.

3.1. Sonic anemometer observations

The BT tower is the tallest building within several kilometres of
its surroundings and consequently has good exposure to winds in all
directions. Wood et al. (2010) used a flux source-area model to show
that the measurements at 190.3 m during neutral conditions were
affected by the surface 1-10 km upwind of the tower (pertaining to
the 10 and 90% probability contours). Within this distance the land
use is typically residential and commercial with the exception of two
large parks; Regent's Park (1.66 km?) approximately 0.64 km north-
west and Hyde Park (2.53 km?) approximately 1.7 km south-west.
Wood et al. (2010) calculated the mean building height in this region
as 8.8 +3.3 m and the zero-plane displacement as 4.3 + 1.9 m. The
instruments at the top of the BT tower are therefore approximately
22 times the mean building height.

The three wind components (u, v, and w) and temperature, T,
were measured by the sonic anemometer (R3-50, Gill Instruments
Ltd., 0.01 ms~! resolution and accuracy) at 20 Hz. Barlow et al.
(2011) performed wind tunnel simulations of the flow around the
BT tower and the lattice tower on which the anemometer is
located. It was observed that both the tower and the lattice
slightly distorted the flow and therefore small correction factors
were derived (approximately 2% of the mean wind speed). The
anemometer has since been moved to a higher position, it is
therefore expected that any error is smaller. Lane et al. (2012)
showed a slight increase in the turbulence intensity for northerly
flow, consistent with flow being distorted by the lattice tower.

3.2. Doppler lidar observations

The lidar is a Halo Photonics Streamline pulsed Doppler lidar,
which uses light of sufficiently low wavelength to be eye safe.
A Doppler Beam Swinging (DBS) method has been used to obtain
wind speed profile data. This scan type was preferred to the
Velocity Azimuth Display (VAD) approach as it has a shorter scan
time and is therefore more capable of capturing the unsteady flow
experienced in an urban area (Pearson et al., 2009). Each scan cycle
is completed in approximately 21 s, but due to limitations of the
lidar software, the interval between scans is limited to a minimum
of 120 s. Data are averaged into 80 30 m gates along the lidar beam,
however the first three are not usable as at short distances only part
of the return signal is detected (Wandinger, 2005). A full description
of the DBS method and lidar quality control is provided in Lane et al.
(2012).

Fig. 1. Instrument sites in central London. ©2011 Google-Imagery ©DigitalGlobe,
GeoEye, Getmapping plc, Infoterra Ltd. and Bluesky, the Geolnformation Group.

3.3. London Heathrow

London Heathrow weather station (51.4787°N, 0.44904°W) is
located on the outskirts of Greater London at a distance of
approximately 20 km south west (260°) from the WCC building.
Hourly wind speed and direction data measured at the site have
been obtained for the whole observation period. It is noted that
there are a number of buildings close to London Heathrow, however
the Met Office state that the data are collected at standard exposure.
This is defined as being over level, open terrain at a height of 10 m
above the ground, where open terrain is defined as an area where
the distance between the anemometer and any obstruction is at
least 10 times the height of the obstruction.

3.4. Surface parameters

To estimate the wind speed profile at a given location using the
models outlined in Section 2, the magnitude of a number of
parameters describing the surface of the upstream terrain is
required. In the absence of observations, a common approach of
estimating the roughness length, displacement height and power
law exponent over a relatively large area is to use land use as a
proxy (Rooney, 2001; Barlow et al., 2008; Boehme and Wallace,
2008). Table 1 details the terrain dependent parameters for
extreme winds in the UK, taken from Cook (1997). However, the
problem for those interested in urban areas is that land use
categories are usually very broad (as they have to cover all types
of land use) (Britter and Hanna, 2003). For example, Choi (2009)
showed that there are typically only two urban categories (urban
and suburban) in the various wind loading codes and for each of
the categories there can be a large variation in the magnitude of z,
and d (Wieringa, 1993).

Alternatively, the magnitude of zo and d can be estimated using
a morphological approach. Macdonald et al. (1998) showed that
the relationship between the surface parameters and the size and
spacing of the buildings can be expressed as

~05
ZFO = (1—%)exp {— {0,5/]% (1—%)&5] } )

% =1+A(p-1) C)
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Table 1
Value of the terrain-dependent parameters for the UK (Cook, 1997).

Description Typical rural Suburban City
Roughness length, zo (m) 0.03 0.3 0.8
ABL height (m) 2550 3000 3250
Exponent a 0.16 0.24 0.32

where Cp is the drag coefficient of a single obstacle, A is a tuning
parameter controlling the curvature of the d/h graph, g is a
parameter which modifies the drag coefficient to a value more
appropriate to the particular configuration of obstacles, Jp is the
ratio of the total plan area of the buildings to the total plan area of
the surface and 4r is the frontal area ratio in the direction facing
the wind to the total plan area.

Morphological data for Greater London were available from the
Virtual London dataset; a digital model of more than 3.5 million
buildings licensed to the Centre for Advanced Spatial Analysis
(CASA) at University College London (Evans, 2009). From this data,
Padhra (2010) derived the plan and frontal area density ratio for
westerly wind direction for the whole of Greater London
(1650 km?) at a resolution of 1 km?. It is not however possible to
determine the magnitude of g and A for each individual gridbox.
It is therefore assumed that within each gridbox there is a
staggered array of obstacles aligned along the wind direction.
For such an arrangement, Macdonald et al. (1998) derived values
of p=1 and A=4.43. Using Eqgs. (8) and (9), the magnitude of the
surface parameters has been estimated. Fig. 2 shows the displace-
ment height is estimated to be greater in central London where
the buildings are taller and more densely packed. It peaks at a
value of 19.5 m (approximately 0.8 h) at a distance of 5 km east of
the gridbox which contains the WCC building and gradually
decreases to a value of close to zero at the rural boundary.
A secondary peak is shown approximately 5 km south east of
the central peak; this corresponds to the location of a number of
tall, densely packed buildings (London's CBD).

Fig. 3 shows the estimated roughness length across Greater
London for westerly flow. An initial increase in roughness length
between the rural edge and central London reaches a peak (at a
value of 1.8 m) at a distance of 5 km upstream of the displacement
height peak. Further downstream, the roughness length gradually
decreases towards the rural boundary. Again however, there is a
secondary peak (zo=2.0 m) in the CBD region of London. In the
city centre (the area within 5 km of the BT) the mean roughness
length is approximately 1.1 m, while in the suburbs, (the area
between 5 km and 10 km from the BT tower) it is approximately
0.6 m. Both of these values are therefore significantly higher than
the corresponding values given in Table 1.

4. Results and discussion
4.1. Mean wind speed profile

The data obtained by the lidar has been analysed to derive the
mean wind speed profile for the whole observation period, shown
in Fig. 4. For heights of up to 1000 m the measured data fits well
with a logarithmic wind profile. Above 1000 m, there is a large
increase in wind speed and therefore a deviation away from a log
law profile. For the lidar gate which contains the BT tower (170-
200 m), a mean wind speed of 8.1 ms~! was derived. In compar-
ison, the mean wind speed observed by the sonic anemometer
on the BT tower was only 7.7 ms~ . Lane et al. (2013) showed that
despite the large spatial distance between the two instruments

18m
16
14
12
10

0

Fig. 2. Displacement height (m) of Greater London derived from urban morphology
database on a 1 km? resolution.

Fig. 3. Roughness length (m) derived from urban morphology on a 1 km? resolu-
tion for westerly flow.
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Fig. 4. The mean wind speed profile averaged over the whole observation period
(4578 h). Confidence intervals (95%) of the mean are shown.

and the low sampling frequency pf the lidar, there is good
agreement between the datasets. However, the lidar wind speed
is generally higher by between 0 and 0.5 ms~ .

While the mean wind speed profile exhibits a logarithmic
profile up to a height of approximately 1000 m, Fig. 5 shows that
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Fig. 5. Comparison between the measured wind speed profile and the profiles
predicted by the equilibrium models based on the parameters stipulated in Cook
(1997). The wind speeds have been normalised using the wind speed measured in
the lowest gate (z=110 m).

based on the surface parameter values stipulated in Table 1, the
power law shows best fit to the shape of the measured wind
profile. In comparison, both the Deaves and Harris model and the
logarithmic profile underestimate the wind shear observed above
110 m. The underestimate of the wind speed suggests that the
surface parameters given in Table 1 are too low for the central
London location. For example, if « is increased to a value of 0.34,
the power law profile remains within the 95% confidence interval
of the measured data for all heights up to 1000 m.

The mean wind speed profile presented in Figs. 4 and 5 has
been derived by averaging all of the hourly wind speed profiles
obtained from the lidar and therefore includes a full range of wind
speeds and stability conditions. However, when considering the
potential wind loading on a structure, there is a focus on high
wind speed periods. The hourly wind speed profiles have therefore
been filtered into quartiles based on the wind speed observed in
the lowest gate (U,s=4.7ms™ !, Usp=6.75ms~!, and U;s=
8.87 ms~!). Data measured by the sonic anemometer on the BT
Tower shows that as the wind speed increases, the conditions are
more likely to be neutral. For each hour, a local stability parameter
was calculated as ¢=z—d/L where the locally-scaled Obukhov
length was calculated as

3
_ Tl (10)
kg(W'T")
and g=9.8 ms~? is acceleration due to gravity. For the highest

wind speed quartile, the conditions were neutral (-0.1 <¢<0.1)
for approximately 30% of the time, in comparison to 6%, 12% and
20% for the lowest, second and third wind speed quartiles
respectively.

Fig. 6 shows the mean wind speed profiles derived for each
wind speed quartile. The profile obtained from low wind speed
periods (lowest quartile) shows the largest deviation from a
logarithmic relationship. It also shows a relatively large spread in
wind speeds for each height. The profiles for the second and third
quartiles are very similar, with a lower wind shear than the low
wind speed data. This is to be expected as the logarithmic profile is
strictly only valid for neutral stability. For the upper quartile wind
speeds, the profile shows a logarithmic relationship up to a height
of approximately 500 m with very little spread in the wind speed
at each height. Further analysis shows that the Deaves and Harris
equilibrium model (with the parameters stipulated in Table 1)

1000
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1 1.5 2 2,5 3 3.5

U(z)/U(110)

Fig. 6. The mean wind speed profile averaged over the whole observation period
filtered by the wind speed observed in the lowest lidar gate. Confidence intervals
(95%) of the mean are shown.
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Fig. 7. The magnitude of the roughness length derived from an urban morphology
database for three wind directions from the WCC building to the rural boundary.

provides a good fit to the profile, remaining within the 95%
confidence interval of the measured data up to a height of 400 m.

4.2. Surface heterogeneity

The wind profile data obtained for the upper wind speed
quartile have been subfiltered by wind direction (based on
observations at London Heathrow). For 80% of the time a wind
direction of 225°, 270° or 315° was observed. For each direction
the nature of the surface over the fetch has been investigated.
Based on the urban morphology data, the magnitude of the
roughness length tends to remain relatively constant in the city
centre (1.2-1.4 m), before decreasing to a relatively constant value
in the suburban region (0.4-0.6 m). However, this relationship is
complicated by the presence of a number of large parks relatively
close to the city centre, for example the south westerly wind
direction is now considered.

For the gridbox which contains the WCC building a roughness
length of 0.76 m was estimated. In a south-westerly direction
(225°), the magnitude of zo decreases to a value of approximately
0.03m at a distance of approximately 1.5 km upstream, this
corresponds to Hyde Park which is characterised as flat, open
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Fig. 8. The measured mean wind speed profile for high wind speed periods (U > Uys) for (a) South westerly (b) westerly and (c) north westerly winds. The results have been
compared to the predictions of the IBL (Blue) and ESDU (Black: Vyq stars, Vs squares, and Vyq circles) predicted profiles. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

grassland. Immediately upstream of Hyde Park, z, increases as the
nature of the surface returns to high density buildings, this
continues until a distance of 11-13 km where there is again a
large reduction in zo, which is associated with Richmond Park.
ESDU 82026 states that for gradual changes in roughness length
(when the ratio of the larger value of zy to the smaller value is less
than approximately 3), it is assumed that there is not a step
change in roughness and a mean z, value is taken. Consequently,
for flow from the south-west (225°), 8 step changes in roughness
length were identified. For westerly (270°) and north-westerly
(315°) directions, the surface is less heterogeneous and conse-
quently only 3 and 4 step changes in roughness respectively were
identified.

4.3. Directional wind speed profiles

Fig. 8 shows the measured mean wind speed profiles for the
three wind directions. Despite the variations in the nature of
surface, a similar profile is shown for all directions. The wind
speed profiles estimated by applying the IBL model (Eq. (7)) for the
multiple roughness length changes and using the method outlined
in the ESDU 82026 are also shown. As the ESDU profiles are
dependent on the magnitude of the reference rural wind speed, a
range of values have been considered (V,ef=10, 15 and 20 ms~—1).
In contrast, the IBL model is independent of the friction velocity
for each surface, consequently the derived U(z)/U(110) profile is
constant for all reference wind speeds.

For the south-westerly direction and a reference wind speed of
10 ms~!, the ESDU wind profile between 110 and 290 m is the
result of an inner layer which develops for the change in roughness
at a distance of 5.5 km, see Fig. 7 (Zoupstream=0.69 M, Zodownstream=
1.09 m). Any step changes closer to the WCC building are not
observed in the profile as they have not developed to a height of
110 m, therefore the impact of Hyde Park is not observed in the
profile. Between 290 and 560 m, the wind profile is governed by the
inner layer which develops as a result of the roughness change at a
distance of 11 km (associated with Richmond Park). At greater
heights, the profile is governed by inner layers which develop at
roughness changes which occur at a distance further upstream.
As the reference wind speed increases, the height of each inner
layer increases and consequently large differences are shown
between each of the model wind speed profiles. For the westerly
and north-westerly directions, the ESDU model profiles are less
complex due to the reduced number of step changes in roughness.

For each wind direction, the mean wind speed profile
(observed for upper quartile wind speeds) has been compared

with the results of the two models. For the south westerly
direction, the ESDU models (with V,ef=15 and 20 ms~') provide
a good representation of the measured wind speed profile,
remaining within the 95% confidence interval up to a height of
750 m. As the reference wind speed decreases, the ESDU model
data show a larger deviation from the measured profile. The IBL
model is not as accurate; however it is within the 95% confidence
interval of the measured data between the heights of 260 m and
440 m. A similar result is shown for the westerly and north-
westerly directions, with the ESDU (V,,=15 and 20 ms~ 1) profiles
providing a good fit to the measured data.

4.4. Assessing the non-equilibrium model using reference data
from London Heathrow

The analysis performed thus far has considered the accuracy of
the various wind speed profile models assuming a known wind
speed at a reference height (z=110 m), and therefore has been
limited to an assessment of the shape of the profiles. However, a
reference wind speed in an urban area is rarely available, conse-
quently a wind engineer generally obtains an estimate of the
urban wind speed profile by translating the measurements from
the nearest weather station.

In this section, the ESDU and IBL models have been used to
estimate the urban wind speed profile based on wind speed
observations at London Heathrow. For each hour for which the
wind direction was between 250° and 270°, the wind speed
measured at Heathrow has been translated to an estimate of the
wind speed at a series of heights above the WCC building. The
analysis has been performed using two methods for representing
the nature of the surface between the sites: (1) using the para-
meters derived from the urban morphology database and (2) by
applying the values given in ESDU (2006) based on land use
categories. Fig. 9 shows that by using the urban morphology
database, 5 step changes in roughness length were identified. In
comparison, assessing the land use over the fetch yields only
3 categories (urban, suburban and parkland) and therefore 3 step
changes in roughness length.

During the observation period, the wind direction was between
250° and 270° for 1052 h. The data were then organised into
quartiles based on the wind speed observed at Heathrow. Fig. 10
shows the estimated mean wind speed profile for each quartile
compared with the measured data. For all 4 wind speed quartiles,
the wind speed profiles predicted by the ESDU model with the
surface parameter data obtained from the urban morphology
database show a good fit with the measured data. The results
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are within the 95% confidence interval for all heights up to 450 m.
Above this height, the model tends to overestimate the wind
speed. The predictions of the ESDU model with the surface
parameters determined using land use as a proxy are not as
accurate, particularly for the high wind speed quartile.

The wind speed profiles derived using the equilibrium internal
boundary layer model do not show as a good a fit to the measured
data. Using the surface parameters data obtained from the urban
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Fig. 9. The magnitude of the roughness length for the surface between the WCC
building and London Heathrow, estimated using an urban morphology database
(Black) and land use as a proxy (Red). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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morphology database, the model underestimates the wind speed
at all heights. However, the predictions of the model provide a
better fit when the surface parameters are derived from land use.

5. Conclusions

The purpose of this paper was to investigate the wind speed
profile over an urban area in high wind speed conditions. As part
of the ACTUAL project (Advanced Climate Technology: Urban
Atmospheric Laboratory, 2011) a pulsed Doppler lidar has been
deployed in Doppler Beam Swinging mode in central London with
the aim of determining the urban wind speed profile. This paper
has presented results obtained over an 8 month period (May
2011-Jan 2012). The mean wind speed profile for the whole
observation period has been shown to fit well with a logarithmic
relationship below 1000 m. Above this height, there is a rapid
increase in wind speed and therefore a large deviation from the
log profile.

The length of the observation period has allowed the investiga-
tion of the wind speed profile for a range of wind directions and
speeds. For low wind speed periods, conditions are rarely neutral
(only 6% of the time) and consequently, the wind speed profile
shows a large deviation from a log law relationship. In contrast, for
high wind speed periods, neutral conditions occur for 30% of the
time and consequently there is less variability in the mean wind
speed profile.

For approximately 80% of the observation period, the wind
direction was either south westerly, westerly or north westerly.
For each direction the nature of the underlying surface has been
characterised using an urban morphology database. In general, the
magnitude of the roughness length tends to remain reasonably
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Fig. 10. The measured mean wind speed profile at the WCC building for wind direction 250-270° (red) compared with the predictions of the ESDU models (Black) and IBL
model (Blue) for a range of wind speed conditions (a) U < Uss, (b) Uys > U > Usy, (¢) Usg > U > Uys, and (d) U > Uys. For each model, the wind speed profile has been estimated
using the roughness length given in Cook (1997) (circles) and values derived from urban morphology (squares). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)



D.R. Drew et al. / J. Wind Eng. Ind. Aerodyn. 121 (2013) 98-105 105

constant in the suburbs before increasing close to the city centre.
However, there is a number of large parkland areas scattered
throughout the city therefore the fetch for each direction is
heterogeneous. Despite this, a similar wind speed profile is
observed for the three wind directions.

The second aim of this paper was to investigate the accuracy of
the models used by wind engineers to estimate the urban wind
speed profile. The analysis has shown that when used in conjunc-
tion with surface parameters derived from an urban morphology
database, the non-equilibrium model outlined in the ESDU 82026
provides a good representation of the urban wind speed profile.
For heights below 500 m, the predicted wind speed profile shows
a good fit with the measured data, remaining within the 95%
confidence interval. Above 500 m, the model tends to overesti-
mate the wind speed. This relationship is shown for a range of
wind speed conditions. In contrast, the equilibrium internal
boundary layer model tends to underestimate the urban wind
speed at all heights.

The models were also applied using surface parameter data
derived using land use as a proxy. However, for this approach the
predictions of the ESDU model are not as accurate; it tends to
overestimate the wind speed, particularly for very high wind
speed periods. In contrast, the predictions of the equilibrium IBL
method are improved by using the simple land use derived surface
parameters. These results highlight the importance of a detailed
assessment of the nature of the urban surface when using the
ESDU 82026.
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