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Abstract. The Asian summer monsoon is a high- 1 Introduction

dimensional and highly nonlinear phenomenon involving

considerable moisture transport towards land from the ocean,

and is critical for the whole region. We have used daily The South Asian and East Asian monsoon region constitutes
ECMWEFE reanalysis (ERA-40) sea-level pressure (SLP)ONe of the most populated areas on earth with around one-
anomalies on the seasonal cycle, over the region 50-B45 third of the world’s population. The lives and well-being of
20° S—-35 N, to study the nonlinearity of the Asian monsoon society in this region depend critically on the Asian sum-
using Isomap. We have focused on the two-dimensional emMer monsoon rainfall, which represents around 80 % of an-
bedding of the SLP anomalies for ease of interpretation. Unnual precipitation. As such, a lot of effort has been expended
like the unimodality obtained from tests performed in empir- © understand and predict monsoon variability, an exercise
ical orthogonal function space, the probability density func- that started from the days of H. F. Blanford (Blanford, 1884)
tion, within the two-dimensional Isomap space, turns out to@nd Sir Gilbert Walker (Walker, 1910, 1922), who attempted
be bimodal. But a clustering procedure applied to the SLPO predict the Indian monsoon but ended up discovering the
data reveals support for three clusters, which are identified>outhern Oscillation (Walker, 1910). The fundamental driv-
using a three-component bivariate Gaussian mixture modefnd mechanisms of the Asian monsoon can be linked to the
The modes are found to appear similar to active and brealdifferential heating between land and ocean and the associ-
phases of the monsoon over South Asia in addition to a@ted moisture transport (Webster et al., 1998).

third phase, which shows active conditions over the west- Potential predictability of seasonal mean monsoon rainfall
ern North Pacific. Using the low-level wind field anoma- implied by large-scale processes and slowly varying lower
lies, the active phase over South Asia is found to be characPoundary conditions is reasonably well understood and is
terised by a strengthening and an eastward extension of thésed routinely for rainfall forecasting (Charney and Shukla,
Somali jet. However during the break phase, the Somali jet ist981). particularly with empirical models (most recently,
weakened near southern India, while the monsoon trough ifk@jeevan et al., 2007). However, the skill, measured by spa-
northern India also weakens. Interpretation is aided using théial correlation, at which current dynamical models can pre-
APHRODITE gridded land precipitation product for mon- dict monsoon rainfall lies at around only45 (Rajeevan
soon Asia. The effect of large-scale seasonal mean monsodt al-, 2012), leading to the suggestion that other avenues
and lower boundary forcing, in the form of ENSO, is also for predictability should be explored. Subseasonal variations
investigated and discussed. The outcome here is that ENS@f monsoon activity, which are of particular importance to

is shown to perturb the intraseasonal regimes, in agreemerifi€ local population for agriculture, are poorly understood
with conceptual ideas. (Turner and Slingo, 2009) and this remains a major source of

uncertainty limiting the dynamical predictability of the Asian
summer monsoon using general circulation models (GCMs)
(Brankovich and Palmer, 2000). Furthermore, the relation-
ship between this intraseasonal component of the monsoon
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726 A. Hannachi and A. G. Turner: Asian monsoon dynamics and Isomap

and seasonal mean forcing conditions is unclear (Turner and Looking for a low-dimensional embedding of ASM dy-
Hannachi, 2010; TH10 hereafter). Among the hypotheses pubhamics belongs to the class of dimensionality reduction in
forward regarding monsoon intraseasonal variability (MISV) pattern recognition. One of the most commonly used meth-
is that of a chaotic model (Palmer, 1994) with fluctuations ods of dimensionality reduction is the empirical orthogo-
between active and break monsoon phases (Meehl, 1994ial function (EOF) method (Jolliffe, 2002; von Storch and
Webster et al., 1998), analogous to the wings in the classiZwiers, 1999; Hannachi et al., 2007). The EOF method is
cal Lorenz system (Lorenz, 1963), in some way determinecbased on an eigen-analysis of the data covariance matrix
by large-scale boundary forcing. Some modelling studies usand projects the data onto the leading modes of variability
ing simplified GCMs (Carl, 1994; Tschentscher et al., 1994)or EOFs to yield the principal component (PC) time series.
as well as also comprehensive climate models (GoswamiThe EOF method is known to have several severe geometric
1997) have even suggested a chaotic monsoon system (seenstraints, such as orthogonality in time and space, often
also Rangarajan and Sant, 2004). Large-scale forcing acts tpreventing the analyst from obtaining a meaningful physi-
change the stability and hence the population of one phaseal interpretation of the data in the low-dimensional space
at the expense of the other as in Palmer (1999). Sperber atf EOFs/PCs (see e.g. Hannachi, 2006). The main feature
al. (2000) investigated the relationships between patterns o6f this low-dimensional space is that it explains maximum
subseasonal and interannual variability of the Asian summewariance compared to other linear spaces with similar di-
monsoon. They used the 40 yr National Center for Environ-mensions, but no dynamical feature is necessarily involved.
mental Prediction — National Center for Atmospheric Re- Another serious weakness of the method is that it only en-
search (NCEP-NCAR) reanalyses of low-level wind fields ables projection onto linear subspaces of the original high-
and precipitation data to test the hypothesis that the chardimensional data. In the context of nonlinear processes with
acteristics of intraseasonal variability of the monsoon arenonlinear structures as the ASM may be, this means that the
modulated on interannual timescales in a systematic manmethod may not enable us to capture the intrinsic structure
ner. In particular, they showed that the probability distri- present in the data. For example, if the system’s attractor lies
bution function (PDF) of intraseasonal monsoon variabil- on a nonlinear manifold then the EOF method will simply
ity was Gaussian, suggesting that anomalous monsoons asgeld the linear tangent space and therefore can fail to detect
not associated with changes in regime behaviour. Howeverthe full structure of the nonlinear data manifold.
by using EOF analysis to break the intraseasonal variabil- Another classical method for dimensionality reduction is
ity down into its principal components, Sperber et al. (2000)the so-called multidimensional scaling (MDS), also known
noted that only a small subset of MISV (PC3) can be per-as principal coordinates (Young and Householder, 1938;
turbed by the large-scale forcing. In another work, Straus andlorgerson, 1952; Borg and Groenen, 1997). It has been used
Krishnamurthy (2007) analysed pooled 5 day means of rotain applied sciences but not much in atmospheric science.
tional 850 and 250 hPa wind and showed that (hints of) bi-MDS finds a linear low-dimensional embedding that pre-
modality only exist under certain conditions: namely during serves interpoint distances. A direct consequence of MDS is
weak monsoon years. Clear bimodality of the South Asianthat data points that are close together in a high-dimensional
and East Asian summer monsoon activity, however, has nogspace remain close in the low-dimensional space. There-
been established with certainty (Hannachi and Turner, 2013)fore MDS is a proximity-preserving dimensionality reduc-
Hence the relationship between long and short timescalgion. Note that the EOF method is similar, but not identical,
modes of monsoon variability, and the inherent predictabilityto MDS in that it attempts to preserve the data variance as
it may bring, offers great opportunities for further researchmeasured in the original high-dimensional space. But both
(Turner and Annamalai, 2012). the methods become equivalent when the distance used in
The Asian summer monsoon (ASM) is a complex and MDS becomes Euclidean. MDS, like EOF, is unable to detect
high-dimensional nonlinear dynamic system interacting withnonlinear structures in the data, but both share the advantage
other components of the climate system, including large-of being simple and efficiently computable.
scale processes and lower boundary conditions such as the The limitation of these linear projective methods has led to
El Nifio Southern Oscillation (ENSO). The so-callactive  the development of nonlinear dimensionality reduction meth-
andbreakphases of intraseasonal monsoon activity are wellods that can handle nonlinear structures present in the data.
recognised through their impacts, which could hint at a bi-Here we simply mention examples like local linear embed-
modal behaviour. This in turn would suggest the possible ex-ding (Roweis and Saul, 2000), and neural networks methods
istence of a low-dimensional manifold that captures impor-such as nonlinear principal component analysis (Monahan,
tant dynamical features of the system. This low-dimensional2001; Hsieh, 2004), but in this paper we focus on the iso-
space should also allow us to reveal the relationship to largemetric feature mapping (Isomap) method (Tenenbaum et al.,
scale flow and lower boundary forcing. One would therefore2000). In climate, only a few studies have applied Isomap
hope that any analysis method aiming to characterize Asiato ENSO (Gamez et al., 2004; Ross et al., 2008) and the
monsoon dynamics in reanalyses or centennial-length modeAsian monsoon (Hannachi and Turner, 2013). In Hannachi
simulations would be able to identify those main features. and Turner (2013), for example, we simply explored the
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bimodality of ASM without a deep and systematic analysis (210-270 E, 5> S—5 N) from HadISST data (Rayner et al.,
of the PDF structure of ASM. In this paper, a deeper analysis2003).

of intraseasonal monsoon variability is performed by gen-

uinely investigating the structure of the system’s PDF. We2-2 Methodology

use sophisticated clustering methodology combined with the

multivariate Gaussian mixture model to estimate the proba-2'2'1 Metric scaling

bility Qensity function of ASM within the obtained Isomap Multidimensional scaling is a geometric method for recon-
Iow:[dltgn.englor;alzslpage. 'tl'h3e data anld m(:rt]hodlplogtylare pre'tructing a configuration from its interpoint distances and en-
sented In Sect. 2. 1n Sect. 3, we analyse the climalology angy, qq visualising proximities in low-dimensional space. The
variability Of.ASM' The appllcan_on of Isomap and the_ MX" EOF method, for example, can find a low-dimensional em-
ture model is then performed in Sect. 4. The relatlonsh|pbedding of the data that preserves variances, as measured
to seasonal averages of the Ia_rge—scale monsoon and of the high-dimensional input space. MDS, on the other hand
Erge—scial: f(r)rcw:g Isr?tn?jl)i/r??r? 'r: S?Ct' 5t| annd asummary anﬁnds embedding that preserves interpoint distances and con-
scussion are presente € last section. sequently attempts to preserve agglomerations. To start, we
let xg = (xk1,xk2, ..., xkp) T designate thetth point in the

2 Data and methodology original p dimensional spacg,, wherek =1, ...n,andX =
(x1,...,x,)7 is the associated centerec p data matrix. In
2.1 Data the classical metric problem (Young and Householder, 1938;

Torgerson, 1952; Borg and Groenen, 1997), we are given a
The data used here come from the European Re-analysisiatrix of distances
(ERA-40) project (Uppala et al., 2005) of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) andP = (dij) = (Ixi —x;l) @)
consist of sea-level pressure (SLP) and lower tropospherigetween different pairs of the given points within a
(850hPa) zonal and meridional wind fields over the Asianhigh-dimensional space and the objective is to find a low-
summer monsoon region (5045, 20° S-35 N) for June  dimensional embedding space of the coordinates or config-
to September of the ERA-40 period 1958-2001. The datayration of the data points. In order for the problem to be
are supplied on a Gaussian grid of approximatelJ2®  well posed, the elements @ have to satisfy the criteria
spacing. Daily anomalies, with total sample size of 53680f distances or dissimilarities, namely: positivity; (> 0);
(44 x 122 days of JJAS), are obtained by removing the seanon-degeneracydf; = 0); and triangular inequalityd(j <
sonally varying mean field based on daily averages over they;, +dy;). We also denote the x n matrix of scalar prod-
years, i.e. daily anomalies to the seasonal cycle. In additionyct by
the data are detrended by removing a linear trend using least- T
squares fit. A= XX @)

We also use observed rainfall data foonsoon Asiérom When the distances defined in Eq. (1) are Euclidean a sim-
the APHROD'TE prOje&t (Yatagai_ et al., 2012) ThlS is a p|e a|gebra based on the |dent\i|ty_y||2 — ||x _y||2+ ||x _
daily gridded dataset at® resolution based on rain gauge y|2_2 < x, y >, applied to the elements & yields the
information. As such, it covers the land domain only, and wejdentity:
curtail the data to match the ERA-40 period as above. .

To characterise the large-scale seasonal mean monsoop, _ _ 1 [I _ lllT] D, [I _ }117] 3)
we have used the WY dynamical index proposed by Webster 21" n " n ’
and _Yang (.1992) and area-ave_rageq Indlan_ ra”.‘fa" (IR). Thewhere D2 = (d?), |, is the identity matrix of order and
WY index is a proxy for the (diabatic) heating in the atmo- iy o
spheric column and is defined as the JJAS average of anomd-= (1.---. D' is the vector of length: containing ones.
lous zonal wind shear between the lower (850 hPa) and uppeNote that sincel, — 3117) is a centering operator, Eq. (3)
(200 hPa) troposphere averaged over the band 40-B,1%- represents a double centerln.g of the malrjx The classical
20° N. The IR index is derived from an area-weighted aver- MDS problem seeks a low-dimensional spdge where the
age of 2140 rain gauge stations from the India Meteorologi-d'Stance”fkj are as close as possible to their original ana-
cal Department’s 1 degree gridded product (Rajeevan et allogues, achieved by minimiziny_(d;; —dl.*j)z. SinceA is
2006), averaged over the summer (JJAS) months and cusymmetric semi-definite positive it can be decomposed us-
tailed to match the ERA-40 period. To characterise ENSO,ing the singular value decomposition (SVD) procedure as
the major driver of interannual variability in the monsoon A = UAUT whereA = (diag(1;)) is a positive diagonal ma-
(see, e.g., Straus and Krishnamurthy, 2007, among maniix. Using Egs. (2) and (3) the principal coordinate makix
others) we use the JJAS average SST in the Nifio-3 regiogan be retrieved and yields:

Lavailable for free fronwww.chikyu.ac.jp/precip X = UA%. 4)
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When the dissimilarities are not Euclidean, the malryx functiongy:
and hence the matriRk in Eq. (3), may cease to be semi-
definite positive. The classical solution to this problem is to 8k, Xk, i) )
simply choose the first largest positive eigenvalues and as- = (27)~7/2|Z| 72 exg—3 (x — w7 — ),
sociated eigenvectors of the matAx The usual hope then is
thati, > A,41, for somer < p, as usually applied in EOF
analysis.

wheregq is the state space dimension, i.e. the dimension of
state vectow. The X@D@+2-2 ynknown parameters,,
Y, k=1,...M,andoy, k=1,...M — 1 are obtained using
2.2.2 Isomap the expectation-maximization (EM) algorithm (Everitt and
Hand, 1981; McLachlan and Basford, 1988; Hannachi and
In Isomap the underlying assumption is that the data be-O’Neill, 2001).
long to a nonlinear manifold. The metric therefore is not Estimating the number of components in the mixture
Euclidean and has to be computed carefully. The basic ideaodel (5) proves to be the most difficult part and can be
in Isomap (Tenenbaum et al., 2000) is to use a geotlesicmerged with the problem of finding the number of clusters
distance, i.e. a dissimilarity measured along the (generallyin a dataset. In this manuscript we focus on a particular and
unknown) nonlinear manifold of the data. This is achievedrobust method, namely the gap statistic (Tibshirani et al.,
by using local paths connecting the data points and ther2001), which can be applied to any clustering method (e.g.
distances are computed along those (geodesic) paths. Thdannachi et al., 2011). It is based on a comparison between
Isomap algorithm has three main steps. The first step is to usthe within-dispersion index of the data and that expected
the available interpoint (usually Euclidean) distanags for from a null distribution, normally taken to be a homogeneous
all i and j, to construct neighbouring points. This can be random point process. The computation of the gap statistic is
done either by selecting thé nearest (for some value &f) deferred until Sect. 4.1 in connection with clustering.
points to, or by choosing points falling inside a ball of radius
¢ centred at a target point. The neighbourhood is then defined . o
as a weighted graph where the weight of the edges is repre2 ASM climatology and variability
sented by the distancefs;, for all i and j. The second step .
consists of defining the geodesic distardge between any 3.1 ASM climatology
two points using the shortest path following the graph con-Tpe south Asian monsoon is a seasonal feature in the sum-
structed in step 2. Once the dissimilarity mathx= (5;;)  mer (June to September) and peaks around July/August. Dur-
is obtained the last step of Isomap consists of applying theng poreal spring, differential heating of the Eurasian land-
classical MDS procedure to find the embedding space anghass versus the Indian Ocean drives a pressure gradient and
the associated principal coordinates. development of a heat low over the northern Indian subcon-
tinent. Aided by the extension of the meridional temperature
gradient to significant depth in the troposphere by the Tibetan
Plateau (Li and Yanai, 1996) and isolation from drier mid-

To estimate the PDF of the data within the low-dimensional, . . )
space we use, in addition to the non-parametric kernel esl-at'tUde air by the Himalayas (Boos and Kuang, 2010), the

timate (Silverman, 1981), the parametric multivariate Gaus-Pressure gradient leads to a reversal of the seasonal winds
sian mixture modél (Hanr’1achi 2007, 2010; Woollings et al and advection of moist air to the South Asian subcontinent.

2010a; Rust et al., 2010). Within this framework any PDF, Forft_thher details see the recent review in Turner and Anna-
f(x) can be expressed as a convex combinatiol ahulti- malgu (2012). .
variate Gaussian distributions: Figure 1 shows. the summer (JJAS) cllmatology of'SLP
over the ASM region overlaid with the 850 hPa wind field.
M First and foremost we can see the low pressure trough sit-
fx)= Zotk 8k (X, X, ), (5)  ting over the Asian continent with the lowest values, reaching
k=1 998 hPa, located over most of the Indian sub-continent, west-
ern Arabia, the Bay of Bengal and the Bay of Vietnam in the
South China Sea. The high pressure system is pushed south
over the southern Indian Ocean (not shown). Next, the low-
©) level wind field shows clearly the Somali jet over the Ara-
bian Sea, reaching speeds of about 18 srossing India
andp, andX; are, respectively, the mean and the covariance?d the Bay of Bengal to Southeast Asia. Similarly, one can
matrix of thekth, k = 1, ... M, multivariate normal density also see cyclonic circulation of moist air around the monsoon
trough west from the head of the Bay of Bengal, in South-
2geodesics are the shortest path curves joining points on a giveeast Asia and the western North Pacific, which can give rise
manifold. For example, great circles are geodesics on the sphere. t0 monsoon precipitation in those regions. The southerlies

2.2.3 The mixture model

whereasy, ..., ay are theM mixing proportions or weights
of the mixture model and they satisfy:

O<ap <1, fork=1,..M,and> M op =1,

Nonlin. Processes Geophys., 20, 7241, 2013 www.nonlin-processes-geophys.net/20/725/2013/
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JJAS SLP and wind climatology

3()o N 30 N
15 N 15 N
0 o}
15'S = : 15 S
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-5-4-3-2-1 01234567 8 91011
Fig. 1. JJAS climatology of the ERA-40 SLP and 850 hPa wind
field over the Asian monsoon region. SLP units: 2 hPa, and the max-

imum wind speed is 18 M. b) EOF2 (15%)
- _ 30 N
incident on East Asia can also be perturbed by the western
North Pacific high further to the east. o
15N
3.2 ASM variability o

Figure 2 shows the leading two EOFs of JJAS detrended SLP
anomalies over the ASM region. The leading mode of vari- : . £ .
ability (Fig. 2a) explains about 22 % of the total JJAS SLP 60 E 90E 120E 150E
variance, and is well separated from the rest of the covariance
matrix spectrum (not shown). This EOF shows a monopoIeFig- 2. The _Ieading two EOFs of JJAS_ detrended SLP anomalies
over most of the domain with most of the loading located °Ve' the Asian summer monsoon region. The percentage of ex-
over land masses and with the centre of action situated ove?la'ned variance of the EOFs are also shown. Units are arbitrary.
the coast of East Asia and the western North Pacific cen-
tred near 25N, 120 E. Since the sign of EOFs is irrelevant,
EOF1 reflects a strengthening and weakening of the main
centre of action of the Asian monsoon in terms of anomalousf(x) _ 1 iexp[_ 1
surface pressure, over the western North Pacific. The second 2rny/h1ha = 2/h1hy
EOF, with about 15 % explained variance, shows two centres . _
located respectively in the west Pacific near the East China In EQ. (8), we have used the optimal kernel widkh,=
Sea at 30N, 130 E and most of the Indian Ocean with the ok~ /%, wheren is the sample size ang is the standard de-
strongest loadings situated in the Arabian Sea and the IndiaMiation of thekth (k = 1,2) PC. The PDF in Fig. 3 is clearly
subcontinent. The eigenvalue associated with EOF2 is alsgnimodal, although not Gaussian. There does seem to be mi-
well separated from the remaining covariance spectrum. Th&or evidence of two peaks in the data, although these are not
second mode of ASM variability (Fig. 2b) reflects a see-sawsignificant when decomposing the data using the linear EOF
of monsoon variability showing opposite behaviour betweenanalysis. The skewness estimates of PC1 and PC2 are, re-
western Indian Ocean and north-west Pacific. The third EOFSPectively,—0.05 and—0.23. Given the standard deviation of
(not shown) indicates mainly a north-east/south-west dipoldhe sample skewnesg6/n, with n being the number of in-
with centres of action located respectively over the north-dependent samples in the data, and taking heuristically every
west Pacific (18N, 130° E) and east China, and explains ° to 10 data points of the daily detrended SLP anomalies as
only 9% of the total variance. being approximately independent, only PC2 is significantly
To investigate the behaviour of the PDF of the leading twoskewed (at the 5% significance level). The PC1 component,
modes of Variabi”ty, we show in F|g 3 the Gaussian kerne'hOWeVer, is not Signiﬁcantly skewed nor kurtotiC, and hence
estimate of the ASM PDF using the leading two PCs of theis not significantly different from a Gaussian as suggested

SLP anomaly over the ASM region. Given a sample of databy Sperber et al. (2000). A similar skewness behaviour was
x1,...,%n, this PDF estimate is given by obtained using the leading PC of outgoing long-wave radia-

tion (OLR) by TH10. The OLR PC1 was also unimodal, but
TH10 interpreted the skewness in terms of a two-component

x—x0)" (x - xk)] . (8)

www.nonlin-processes-geophys.net/20/725/2013/ Nonlin. Processes Geophys., 2074252013
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PDF of SLP anomaly PC1 and PC2 60(
> 4071
» 0.2
S 20}
ko) [q\]
X
>
=01 g 0
3 :
2 ol 2 -20;
a 5
_40,
PC2 -5 -5 PC1 60} | | ‘ | | |
Fig. 3. Gaussian kernel PDF estimate of the leading two JJAS SLP —-60 -40 -20 0 20 40 60
PCs. Isomap X,

) ) Fig. 4. lllustration showing the neighborhood graph for the first 100
Gaussian mixture model, the components analogous t0 aGnomalous SLP observations within the two-dimensional Isomap
tive and break phases of ASM. The unimodality of the PCs isembedding space. The data have been scaled to zero-mean and unit
not surprising since EOFs/PCs aim only at maximising vari-variance. Axis units arbitrary.
ance but do not take into account the topology of the data
manifold, which is investigated next.

we use for the discussion to follow. Sensitivity to this param-
eter and to the choice of the domain have been investigated

4 Nonlinear dynamics of intraseasonal ASM : i
and are discussed below (see Sect. 4.1.3). The obtained graph

4.1 1somap low-dimensional structure of ASM allows us to construct the geodesic distafigebetween any
two pointsi and j by choosing the shortest path between
4.1.1 Variance in the leading modes them following the graph. Note that this graph cannot be vi-

sualized as is because it is in a high-dimensional space, but
Given that the PCs do not generally reflect the inherent strucwe show below an illustrative example from the data when
ture of the manifold present in the data, in this section we seembedded in two dimensions. Once computed the geodesic
out to apply Isomap to ASM. Note that Isomap is custom- dissimilarity matrix, A = (§;;), is submitted to an MDS de-
arily illustrated using the swiss-roll data as in Tenenbaum etcomposition. As an illustrative example we show in Fig. 4
al. (2000) and Ross et al. (2008), and so we do not repeat thithe two-dimensional embedding of the neighborhood graph
exercise here but refer the reader to those references. Sindmsed only on the first 100 data points, uskg= 10, for vi-
Isomap takes into account the neighbourhood structure of theualization purposes. The data are shown in small circles and
data it is hoped that the low-dimensional projection would re-the graph is shown, which connects the data points using the
veal the nonlinear feature of ASM dynamics. The interpoint 10 nearest points.
distance matri® between all JJAS daily observation pairs of  The Isomap goodness of fit is normally measured using
the SLP anomalies is first computed based on the Euclideathe residual variance explained by the retained Isomap com-
distance. To construct the neighbourhood graph we connegqtonents (Tenenbaum et al., 2000). Figure 5 shows the Isomap
the data using th& nearest neighbour method. Accordingly, residual variance of the SLP anomalies as a function of the
two points in state space that are rfotnearest neighbours embedding dimension. The residual variance associated with
are not connected directly but through other intermediatethe leading Isomap component is 69 %, and is 44 % for the
points. For example foK = 2, every point is connected to first two components taken together. The same residual vari-
the nearest two points. Of course a very small valu&of ance is also plotted for the leading 10 EOFs. Since the vari-
may lead to a poor graph that may not connect all the datances in EOFs are additive, residual variances are computed
points whereas a quite large value may lead to a metric thafrom the explained variances of these same EOFs. For ex-
is not too different from the Euclidean metric. We followed ample, the residual variance based on the leading EOF is
some guidelines given in Ross et al. (2008) for the neighbor-78 % and is 63 % for the leading two EOFs taken together.
hood size, and we found a value of the ordes= 12, which  These values are larger than their Isomap analogues because

Nonlin. Processes Geophys., 20, 7241, 2013 www.nonlin-processes-geophys.net/20/725/2013/
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more closely and aided in our interpretation by the rain-
fall (Fig. 7c), we see the flow to deviate southwards as it
reaches the Bay of Bengal. One can see much of the penin-
sular of India covered by negative rainfall anomalies, while
positive rainfall anomalies push further north associated with
cyclonic rainfall at the head of the Bay of Bengal. The pattern
of anomalies suggests somewhere in the transition between
an active and break phase for Indian monsoon rainfall (e.g.,
see Krishnamurthy and Shukla, 2007, Fig. 6). Over China,
L reductions in rainfall are seen, consistent with the northerly
1 2 3456 7 8 910 flow anomalies preventing the advection of moisture inland.
Embedding dimension The dipole pattern in the SLP field (Fig. 7b) is associ-
ated with a cyclonic circulation over the north-western Indian
Fig. 5. Residual variance obtained from the Isomap application us_Ocean/Arabian sea (showing strengthening of the monsoon
ing K = 12 (solid) and from the EOFs (dashed) of the Asian mon- trough) as well as intensification of the Somali jet near south-
soon SLP anomalies versus the embedding dimension. ern India. The rainfall pattern shows enhancement over much
of the country, as is common during an active phase. Indeed
the flow pattern over India is reminiscent of an active phase
Isomap attempts to follow the nonlinear manifold of the data,as in Krishnan et al. (2000). The anomalous anticyclonic cir-
unlike the EOFs which are obtained by looking for optimal culation off the coast of China can also bring additional mois-
linear subspaces. Figure 5 also shows an elbow, at the embetiire across its southern coast, reflected in the strengthening
ding dimensiord = 2, associated with a break in the slope of precipitation particularly in the north of China (Fig. 7d).
of the residual variance curve. Note the absence of this elOne of the most important features seen in Fig. 7a and b is
bow in the residual variance curve associated with the EOFsthus the large-scale nature of the patterns, associated with
which decreases, somehow, in a more smooth fashion. Theontributions from low-frequency variability (Fig. 6a). The
existence of such an elbow is normally taken as the dimenother main feature is that these patterns are not very different
sion of the nonlinear manifold of the data (Roweis and Saul,from the leading EOFs (Fig. 2).
2008; Ross et al., 2008). We note, however, that the main ob- The correlation coefficients between the two leading PCs
jective here is not to identify the dimensionality of the ASM, and the corresponding leading Isomap time series are a lit-
an important subject in its own right and which is deferred tle larger than ®. In fact, the few leading PCs are highly
to another study, but to look for possible nonlinearity using acorrelated with the associated Isomap time series (Table 1).

O OoOoo
s

o

o

Residual variance (%)
PN WD OO N
o o

o

simple 2-D embedding of the ASM via Isomap. The difference, of course, between Fig. 2 and Fig. 7a and b
is that the patterns in the latter figure are not exactly orthog-
4.1.2 Manifestation of the leading modes onal. This is an example where one of the main properties of

EOFs/PCs, i.e. orthogonality in space and non-correlation in
Figure 6a shows the leading two time series obtained fromtime, is compromised as in orthogonal EOF rotation (Han-
the 2-D embedding. As for the PCs, these two time seriesiachi et al., 2007) except that rotation is linear but Isomap is
are uncorrelated, but they do not explain maximum variancenot. This closeness between the leading modes of variability
To learn about the spatial features associated with these timand the associated Isomap components shows that the non-
patterns, we show in Fig. 7a and b the spatial patterns oblinear manifold is only slightly different from the linear EOF
tained by regressing the (detrended) SLP anomalies onto thgpace. As is shown below, however, this subtle distinction is
time series (Fig. 6a). A similar regression is performed be-sufficient to reveal the nonlinear behaviour of ASM.
tween the Isomap time series and the 850 hPa wind anoma-
lies. Further, regressions of APHRODITE precipitation are4.1.3 Clustering of the leading modes
shown for Isomap time series 1 and 2 in Fig. 7c and d, re-
spectively. As for the PCs, we now investigate the PDF of ASM us-

The low-pressure anomaly over the East China Sedng the 2-D embedding space. Figure 6b shows the Gaussian

(Fig. 7a) is associated with a low-level anomalous cyclonickernel estimate of this PDF using the leading two Isomap
circulation with an eastward extension of the Somali jet. Thistime patterns shown in Fig. 6a. Unlike the PCs (Fig. 3),
pattern appears to represent a strengthening and weakenittige 2-D PDF (Fig. 6b) is much more clearly bimodal as re-
of the large-scale Asian monsoon flow: strengthening in theported in Hannachi and Turner (2013). As was mentioned
west including the Somali jet as it crosses the equator inin that paper, the obtained bimodality is quite robust to rea-
the Indian Ocean before extending on to India and Southsonable changes of the numbki€raround the valu& = 12
east Asia. As it crosses into the western Pacific it counterin the Isomap as well as changes in the ASM domain. We
acts the mean flow into southern China. However, lookinghave also tested the Isomap method with OLR, and the
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a) Isomap time series X1 and X, b) Isomap 2D PDF
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Fig. 6. The leading two Isomap time series from the SLP anoméigand the associated kernel PDF estin{ale
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Fig. 7. Regression onto the firgh) and the secon(b) Isomap time series of the SLP and 850 hPa wind anomalies. Units: hPa for SLP and
maximum wind speed is 2.5 nT$. Regressions for APHRODITE daily precipitation are also show(e)and(d).

bimodality was patrticularly strong, but we choose not to usean appropriate test would be required. One way to test this
this field because of uncertainties especially prior to the satelbimodal behaviour is to use a Monte-Carlo-based bootstrap
lite era when it was wholly modelled (see Hannachi andtest as suggested by Silverman (1981), see e.g. Woollings
Turner, 2013). Here, however, we would like to go deeperet al. (2010b). A more elegant and robust way is to use a
in analysing the PDF rather than being content with the ob-clustering test by applying concepts from homogeneous ran-
tained feature. In fact, this bimodality suggests that the datalom point processes combined with copula (Stephenson et
within the low-dimensional Isomap space could well be clus-al., 2004; Hannachi, 2010; Hannachi et al., 2012). Clustering
tered, a clear indication of nonlinear behaviour, for which is a property that does not depend in general on the marginal
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Table 1. Correlation coefficients between the leading 10 PCs and the Isomap time series of the SLP anomalies.

PCs and Isomap time series

Number 1 2 3 4 5 6 7 8 9 10
Correlation 0.97 097 093 091 085 084 080 0.69 052 0.23

distributions of the data, and the method of copula attemptghere may be three preferred moélefo compute the most
to factor out precisely the (undesired) effect of the marginallikely number of clusters we use the gap statistic (Tibshirani
distributions. This is achieved by mapping each variaghle et al., 2001; Hannachi et al., 2011). For a given number of
k =1, 2, onto the unit, or probability, interv@d, 1] using the  clustersk, the sum of pairwise distances for all points in the
cumulative distribution functior¥ (), of the same variable, mth cluster,D,,, with sizen,,, form =1, ...k is computed

i.e. and yields the so-calledithin dispersion
Uy = Fr(Xp), 9 k. p

k= Fr(Xk) (9) Wi Z an . w2
as a result of whicly, k = 1,2, becomes uniform. Within m=1"m

this probability plane(Us, Uz) an assessment of clustering  The gap statistic is then given by
is easily achieved using concepts from point processes (e.g.,

Ripley, 1976). Now, given any target point within this plane G (k) = E(Log(W;")) — Log(Wy), (13)

the mean number of points{d), within a distancel from

this point can be expressed as where W: is the within dispersion computed from the null
distribution, and () is the expectation operator. A large sam-

n(d) = K(d)p(u1,u), (20) ple of W[ is obtained, then its averageg(W/’) and standard

deviations; are computed together. The optimum number of
where p(u1, u2) is the mean density of points ard(d) is clusterskopt, is then given by the smallektsatisfying:
a function ofd known asRipley’s K-function It has been

shown (Ripley, 1976) that for a randomly uniform distribu- G (k) > G(k +1) — sk+1. (14)
tion K (d) reduces to the area of the circle of radiudHence ) )
the departure of the L-function: We have computed; () using both the 2-D Isomap time
series with a (autocorrelated) Gaussian null, and the data
K@) mapped onto the probability plane with a homogeneous ran-
L{d) =,/ a2 (11)  dom point process for the null. Both consistently yield three

clusters. Figure 9b shows the gap statistic computed using

from L = 1 provides evidence of departure from homogene-the probability plane using the data shown in Fig. 9a. The
ity. figure clearly shows that the gap/at 3 is greater than the

Figure 8a shows a scatter plot of the leading two Isomapupper bound of the gap &t= 4 (see the condition in Eq. 14),
time patterns mapped onto the probability plane. The figureand this does not occur for smalleri.e.k = 1, 2, supporting
shows a region of low density around the diagonal separatinghree clusters, which are investigated next.
two regions of higher density situated near the lower left and _ )
upper right parts of the scatter. We highlight these featured-2 Nonlinearity and ASM phases

more clearly later in Fig. 9a. This inhomogeneity is further In Hannachi and Tumer (2013) the bimodality of the in-

lIraseasonal Asian monsoon PDF was discussed in terms of

envelopes of similar L-functions computed from 100 random 2CUVe versus break phases. The above result, however, lends
trong evidence for three clusters. To consolidate these re-

les of a h Poi i ifor o€ ¢ \
samples of a homogeneous Poisson point process (unifor sults further, we show in Fig. 10 the kernel estimate of the

distribution on the unit square) with the same sample siz . ) .
as the data. The L-function is clearly outside the shading fo?PDF within the Isomap plane along with a two- (Fig. 10a)

distances! < 0.25, and provides evidence for the clustering ﬁ:g) aTré?:;S(El'gérleo\%;?;gptﬁg??;eﬂx;%gir;n::gn(ssfoh deeoll
and the presence of nonlinearity in the ASM. (Fig. 10a), suggested by Hannachi and Turner (2013), fails to

In order to characterize the clustering, we show in Fig. gamatch the kernel modes, whereas the three-component model
the kernel estimate of the data PDF within the same probabil- ' P

ity plane of Fig. 8a, where the two regions discussed above 3e note here that the skewed PDF in the EOF space has a small

are singled out and now appear much more obvious. In adshoulder but no signature of bimodality even within the probability
dition, the PDF shows a further (third) peak, suggesting thatspace (not shown).
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a) Scatterplot in probability plane b) Clustering index
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Fig. 8. Scatter plot of the leading two Isomap times series within the probability frend the associated clustering L-cuif®. The
shading in(b) represents the upper and lower envelopes of clustering indexes obtained from 100 simulated homogeneous Poisson point
process.
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Fig. 9. Kernel PDF estimate of the leading two Isomap time series within the probability @aad the gap statisti). The vertical bars
in (b) refer to one standard deviation above and below the gap statistic based on the homogeneous Poisson point process null hypothesis (se
text for details).

(Fig. 10b) matches very well the kernel modes. For exam- The mixture model PDF with three Gaussian components
ple, the modes of the two-component mixture model PDFis shown again in Fig. 11a, but without the kernel PDF,
(Fig. 10a, dashed) do not match the modes of the kerneind each component is now labelled to enable clear discus-
PDF (Fig. 10a, continuous), whereas the three-componergion. The component centres are labelled A, B and C for
PDF modes do (Fig. 10b). In addition, the PDF shoulder iswhat we describe here as the South Asian monsoon active
well captured by the three-component model but not the twophase, a western North Pacific (WNP) active phase and a
component model. In order to identify the ASM states asso-South Asian monsoon break phase, respectively. The ASM
ciated with the PDF modes we can use the three-componerhases associated with the centres of the bivariate Gaussian
mixture model and analyse the individual components. Al-components are shown in Fig. 11b, ¢ and d, respectively.
ternatively, we can use a simple composite analysis of thélhey are obtained by averaging the SLP anomalies asso-
ASM states located near these modes. Both methods yieldiated with the closest 300 states to the individual centres
similar conclusions and we focus here on the mixture modelof the three-component mixture model (Fig. 11a). Superim-
The black dots in Fig. 10b refer to the centres of the indi- posed on these maps are the associated 850 hPa wind av-
vidual bivariate Gaussians of the mixture model and the el-erages. The first ASM phase (Fig. 11b) corresponds to the
lipses represent the associated covariance matrices. Each deft-hand side centre of Fig. 11a, labelled B. It clearly shows
variance ellipse delimits around 84 % of the total mass of thea high pressure anomaly over most of the domain with en-
corresponding component, and is used to show the shape afdncement over the north-eastern part (the WNP) accompa-
orientation of the individual bivariate Gaussians. nied by an anticyclonic wind circulation. This phase we de-
scribe here as the WNP active phase of the Asian monsoon.
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a) Two-dimensional PDF b) Three-dimensional PDF
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Fig. 10. Kernel PDF estimate of the leading two Isomap time series along with the(ayand three{b) component gaussian mixture
model. The mixture PDF is shown by the dashed lines. The covariance ellipses of each component along with the respective centres (black
dots) are also shown.
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Fig. 11. Three-component Gaussian mixture PDF of the leading two Isomap time @riesmposites of SLP and 850 hPa wind anomalies
based on the 300 closest data points to the centres of the mixture PDF for the western Nortl{tPatifcactive(c) and the breakd)
phases of the ASM. The labels A, B and (&) represent, respectively, the active, the WNP and the break phases. Contour inti?al 0
and the maximum wind speed for the break, active and China Sea active phases are, respectivéinyﬁm@l and 2.3ms1.

The strong anticyclonic low level wind circulation becomes There is also an indication of a cyclonic circulation slightly
nearly easterly around 20, 130 E and makes its way west- west of the southern tip of the Indian peninsula, but it is
ward across Thailand and Cambodia through to India and theery weak and cannot generate a noticeable low pressure
Arabian sea. Here it opposes and hence weakens the westhomaly, a fact due most probably to the lack of geostrophy
erly and south-westerly jet responsible for monsoon activity.near the equator, compared to further poleward. We note that
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Fig. 12. Composites of APHRODITE precipitation and 850 hPa wind anomalies based on the 300 closest data points to the centres of the
mixture PDF for the WNP phage), the active phasgh) and the breakc) of the ASM. The unit wind vector is 2 nTs-.

the anomalously strong western North Pacific high suggestpossible influence of the large-scale on the intraseasonal vari-
enhanced convection over southern China. This zonal patterability and regimes of ASM convection, which is discussed
of west-to-east reduced then enhanced convection is part of aext.
wider quadrupole pattern of intraseasonal monsoon variabil- For comparison, we also plot the composite phases using
ity (see, for example, the composite observations in Fig. 9ahe 300 closest data point method for the APHRODITE rain-
of Sperber and Annamalai, 2008). fall, as shown in Fig. 12. For ease of interpretation, we show
The second ASM phase (Fig. 11c), which corresponds taagain the wind field asin Fig. 11. In Fig. 12a, the WNP phase
the right-hand side centre in Fig. 11a and labelled A, showsshows a large-scale reduction in the strength of the westerly
a low pressure anomaly over most of the domain with highflow across the Bay of Bengal, Southeast Asia and western
pressure anomaly over a smaller region in the north-easterilorth Pacific, driven by strengthening of the western North
part near to Japan. Note in particular the low pressure anomaPacific high. For India and Burma, reduction in the mean
lies and associated cyclonic circulation over the Arabian Seaywesterlies on the west coast causes negative anomalies in the
the Bay of Bengal/north-west India and north-western part oforographic rainfall there. Meanwhile, inflow from the Bay
Vietnam. This flow regime corresponds to the active phase obf Bengal enhances rainfall over northern and eastern India.
the ASM. The anticyclonic wind circulation in this case is lo- In China, the enhanced high strengthens the convergence in-
calized quite close to the high pressure anomaly centre, anthnd, moving rainfall further from the coast and intensifying
the easterly wind in the eastern part of the domain is blockedt. The flow pattern in Fig. 12b, which we noted indicates an
by the Indonesian islands and is deviated southward. active phase for India, shows enhanced rainfall on the west
The last ASM phase (Fig. 11d) shows a high pressurecoast of India, and in north-east India associated with the cy-
anomaly over most of the domain with an anomalous lowclonic anomaly. Meanwhile in China, rainfall shifts south-
pressure system localized mostly over the north-eastern partvards associated with the anomalous divergence at around
We note that the circulation anomalies in the Indian re-30° N. In the break phase (Fig. 12c), the large-scale weaken-
gion are approximately opposite to those in the active phaséng of the monsoon trough over northern India and weaken-
(Fig. 11c) and so we term this the break phase. Similarly,ing of the Somali jet near southern India lead to a large neg-
circulation anomalies over the western North Pacific are cy-ative rainfall anomaly there, consistent with a break phase
clonic and roughly opposite to those in the WNP phasein the Indian monsoon. Over China, the cyclonic circulation
(Fig. 11b). Figure 10 (see also Fig. 11a) shows that the modeanomaly leads to added convergence and rainfall in southern
of the kernel estimate and the mixture models are quite clos€hina, opposite to that shown in Fig. 12a.
to the active and WNP phases, which means that these two Composites of the three-component mixture of the lead-
phases dominate the ASM dynamics. The mixing propor-ing two Isomap time series are thus consistent between SLP,
tions (Eq. 5) of the WNP phase (Fig. 11b), the active phasdower tropospheric winds and precipitation.
(Fig. 11c) and the break phase (Fig. 11d) of the ASM are re-
spectively 26 %, 38 % and 36 %. The analysis presented here ]
shows that the monsoon over South Asia is closely connecte@ ASM and large-scale forcing
to that over Southeast and East Asia in a complex manner o
intraseasonal timescales (see, e.g., Annamalai and Sperb
2005). This points to the fact that the Asian monsoon sys
tem should be looked at in a wider context, bringing in the

has been suggested that the primary reason behind the lack
~of dynamical predictability of the monsoon is poor simula-
tion of teleconnections between the monsoon and large-scale
boundary forcing in GCMs due to the dominance of model
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errors (Sperber et al., 2000; Sperber and Palmer, 1996). How- a) Positive DMI b) Negative DMI
ever, we now understand more on the role of systematic mean
state biases acting detrimentally against monsoon-ENSO 2
teleconnections and inhibiting seasonal prediction (Turner et
al., 2005; Annamalai et al., 2007). In addition, more recent >
comparisons of coupled models used in seasonal prediction -2
mode in the EU-ENSEMBLES project reveal skill levels of

. . ) -3-2-10 1 2 3 -3-2-1 01 2 3
around 045 in the multi-model mean (Rajeevan et al., 2012). X, X,
Nonetheless, predictability may still be limited by the Iack. of' ¢) Positive IR d) Negative IR
understanding of the connections between monsoon variabil-
ity on shorter and longer timescales. 2

Although Sperber et al. (2000) did not find bimodality in
the monsoon intraseasonal variability (MISV), they found >
that the PDF mean of EOF3/PC3 was systematically per- _
turbed during weak and strong monsoon years categorized

. T -3-2-1 0 1 2 3 -3-2-1 0 1 2 3
in terms of seasonal mean all-India rainfall (AIR). Here we X X

i tigate the relationship between regimes of MISV and 1 -1

Investig e) Positive ENSO f) Negative ENSO
the large-scale seasonal mean monsoon based on measures of

both the dynamical monsoon (using the WY dynamical mon- 2

soon index; DMI) and our own area-averaged Indian rainfall N

(IR). We also relate MISV to the most effective slowly vary- > ><

ing lower boundary condition acting to perturb the seasonal  _,

mean monsoon, ENSO, using the summer (JJAS) Nifio-3 in-

dex. -3 -2 -1 )? 1 2 3 3

To characterise these relationships, we simply classify the !

daily SLP anomalies within the Isomap space, according toFi 13. Kernel PDF estimates of the leading two Isomap time se-

the seasonal (JJAS) means of large-scale measures beirﬁggS during positive(a, ¢, e)and negativeb, d, ) phases of the
larger (smaller) than one (minus one) standard deviation — gynamical monsoon (DMI/WY) indea, b), area-averaged India
(asin TH10). The large-scale measures used are IR, DMI Ofajnfall, IR, (c, d)and ENSQ(e, f).

ENSO. For example, if IR is larger than one standard devi-
ation in a given season then all SLP data during that season

are classified as HR. Palmer (1999) regarding the change of regime frequency un-
der forcing changes in a chaotic system. Palmer (1994) also
5.1 Relationship with seasonal mean dynamical suggests that the seasonal mean condition relates to prefer-
monsoon ence for a particular monsoon phase. Here we see that sea-

sons with strong broad-scale monsoon heating are related to
Figure 13 shows the two-dimensional PDF of the ASM us-a much higher likelihood for the active monsoon phase. Note
ing the leading two Isomap time series during the positivealso that during the negative DMI phase (Fig. 13b) there is
(Fig. 13a) and negative (Fig. 13b) phases of the DMI. Al- 3 slight enhancement of the probability of the third mon-
though the PDF during both phases combined (not shownyoon phase (Fig. 11d), with break circulation and precipita-
is not bimodal but skewed towards the right-hand side modeion (Fig. 12c) over India. We also note here that TH10 found
(Figs. 10b and 11a), i.e. the active phase, it is clear that durabout equal probabilities of both the break/active monsoon
ing the positive DMI phase (Fig. 13a) we have a positive phases during positive DMI phase, but with a greater proba-
skewness associated with a substantial increase of probabibility of break events in the DMI negative phase (see Fig. 3b
ity of the active monsoon phase consistent with the resultsf TH10).
in Hannachi and Turner (2013). During the negative DMI
phase (Fig. 13b), on the other hand, we have a tendency fa§.2 Relationship with seasonal mean Indian rainfall
an increase in frequency of the WNP active monsoon phase,
with its associated large-scale easterly anomalies over InA similar analysis is applied using our IR index. The index
dia. This is consistent with the definition of the WY index, is scaled to zero-mean and unit standard deviation, and pe-
based on large-scale zonal wind shear in the vertical. Theiods when it is greater (smaller) than 1 X) are selected
change of frequency, however, is not symmetrical betweerand referred to as positive (hegative) IR. Figure 13 shows the
the positive and negative DMI phases, with much higherkernel PDF estimate of ASM during positive (Fig. 13c) and
probability of the active phase when the DMI is positive. negative (Fig. 13d) IR phases. During positive IR (Fig. 13c)
This behaviour is reminiscent of the paradigm put forward bythe PDF is positively skewed with large frequency increase of
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the active phase at the expense of the remaining two phasesquivalent respectively to those associated with negative and
The SLP anomaly associated with this mode (not shown) ispositive IR phases, and those in DMI.
similar to the active phase of Fig. 11c, but is much stronger.

During the negative phase of IR (Fig. 13d) the PDF is
clearly bimodal. The two modes represent, respectively, thes Summary and discussion
second and the third monsoon regimes, that is the WNP ac-
tive phase and break phase of the ASM (compare the posiThe Asian summer monsoon is one of the most large-scale
tion to Figs. 10b and 11a). The emergence of the break phasstmospheric phenomena involving one of the largest mois-
during the negative IR phase is not surprising, but it is alsoture volume transports from the ocean to land. This mois-
interesting to see an increase of probability of the westerrture transport is what makes the monsoon special as it is
North Pacific active phase. Note, in addition, there is equalthe main source of rainfall for the most populated region on
probability of the break phase and the western North Paearth. Rather than the summer seasonal mean rainfall, which
cific active phase of ASM during negative IR conditions. The is relatively constant, it is the variability in the monsoon on
mode associated with the WNP active phase (top left modéntraseasonal timescales that has most impact on society and
of Fig. 13d) is quite similar to the mode shown in Fig. 11b, leads to the importance of studying the dynamics and pre-
but slightly weaker in amplitude. The second (bottom right) dictability of the Asian monsoon. The ASM is a highly non-
mode of Fig. 13b, associated with negative IR (not shown) islinear and high dimensional phenomenon. One way to un-
quite similar to the break phase shown in Fig. 11d. derstand the dynamics of ASM is to find ways to reduce the
dimensionality of the system in a way that could help capture
the main features of its nonlinear behaviour.

We have investigated the ASM variability using nonlin-
ear dimensionality reduction based on Isomap of ERA-40
It is well known that ENSO is one of the fundamental pre- SLP anomalies over the Asian monsoon region (50=E5
dictors of seasonal mean monsoon rainfall in the tropics (see20° S—3% N) for the summer season June—September (JJAS)
e.g., Webster and Yang, 1992, among many others), and thdat958—-2001. In this study, we have revisited and systemati-
this can be simulated to some degree in models (Annamalagally extended Hannachi and Turner (2013). The Isomap pro-
et al., 2007). While ENSO is known to lend predictability jection technique is based on computing local geodesic dis-
to seasonal mean, countrywide rainfall anomalies for Indiatances between the atmospheric states. The data points are
(Krishnamurthy and Shukla, 2000, 2007), its role in perturb-first connected by a graph based on tienearest points,
ing MISV is uncertain and offers the prospect of enhancedthen distances between any two states are computed based on
predictability of monsoon rainfall. the previous graph. Multidimensional scaling (MDS) is then

Here we investigate this issue by applying the sameused to get an Isomap embedding. We have used 12,
methodology as with seasonal mean indices IR and DMI. Theand considered a two-dimensional embedding space. A ker-
PDF of the ASM using the two Isomap time series during nel PDF estimate is fitted to the data and reveals bimodal-
the positive ENSO phase is shown in Fig. 13e and that durity, compared to the unimodal PDF obtained within the EOF
ing the negative ENSO phase is shown in Fig. 13f. Duringspace. Furthermore, the data are shown to be clustered and
negative ENSO the PDF has a positive skewness associatesipport three clusters. The ASM phases associated with these
with an increase of probability of the active monsoon phaseglusters are determined using a three-component bivariate
suggesting that the large-scale slowly varying boundary conGaussian mixture model.
ditions are also lending predictability to intraseasonal modes. The first mode corresponds to an active phase in the WNP.
The SLP anomaly associated with this mode (not shown) idt is associated with a high pressure anomaly over most of
similar to the active phase (Fig. 11c) with a particularly low the domain with a particular increase of SLP in the west-
pressure anomaly system of abet® hPa around northern ern North Pacific. The associated low-level wind field has
Australia, the Indonesian archipelago, India and the Arabiara westward component that extends through to the Indian
Sea. The positive SLP anomaly is located in the upper rightOcean and Arabian Sea, which contributes also to a large-
corner of the domain. scale weakening of the Somali jet. The second mode is as-

During the positive ENSO phase (Fig. 13e) the PDF is bi-sociated with a typical monsoon active phase for India. This
modal with modes coinciding with the modes associated withmode has a dipole with high pressure anomaly around the
the break phase and the western North Pacific active phas&ast China Sea and a low pressure anomaly elsewhere, with a
There is nearly equal likelihood for both these phases duringparticular enhancement over the Arabian Sea and India. The
positive ENSO phases. The SLP anomalies associated wittow-level flow is characterised by an anti-cyclonic circula-
these modes (not shown) compare well with the break andion over the high-pressure anomaly, an easterly flow west
the western North Pacific active phases, and also with thef 120° E, and an extension of the Somali jet eastward. The
modes obtained during the negative AIR phase. The casesst ASM phase found here represents a classic Indian mon-
associated with positive and negative phases of ENSO areoon break phase. Itis also associated with an anomalous low

5.3 Influence of ENSO
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pressure centre over the China and Philippine Seas extendirigeferences
north-eastward into China.

We have also investigated the effect of the large scale segnnamalai, H., Hamilton, K., and Sperber, K. R.: The South Asian
sonal monsoon and large-scale boundary forcing using sea- monsoon and_ its relationship with ENSO in the IPCC AR4 Sim-
sonal mean area-averaged Indian rainfall (IR), Iarge-scaleBI ul?tlodnsﬁJ.FC.:lgnatﬁ, 20, 1071'_109f21h208|7" | wiall with
monsoon heating represented by the dynamical monsoon in- aniord, H. .. On the connection of the Himalaya snowlall wit

. . - dry winds and seasons of drought in India, Proc. Roy. Soc. Lon-
dex (DMI) and an ENSO index. During the positive phase don, 37, 1-23, 1884.
of the DMI, we find substantial increased probability of the goos W, R. and Kuang, Z.: Dominant control of the south Asian
active phase whereas during the opposite phase, we find & monsoon by orographic insulation versus plateau heating, Na-
significantly increased probability of the break phase and ac- ture, 436, 218-222, 2010.
tive WNP phases af the ASM. Borg, . and Groenen, P.: Modern Multidimensional Scaling, Theory

During the positive phase of IR we have, as expected, an and Applications, Springer Verlag, New York, 1997.
increase of probabi”ty of the active phase_ During the negaBrankovich, C. and Palmer, T.: Seasonal skill and predictability of
tive IR phase, however, we get equal likelihood of the break ECMWF PROVOST ensembles, Quart. J. Roy. Meteorol. Soc.,
phase and the western North Pacific active phase. A sim- 126, 2035-2067, 2000. _ )
ilar behaviour, with exchanged roles, is obtained with the ©&: P-- Monsoon dynamics in a low-dimensional GCM, WCRP-
ENSO phases, i.e., the positive phase of ENSO is equivalerE 84, WMO/TD-No 619, Volume II, 773-780, 199.4' L

RN . Charney, J. G. and Shukla, J.: Monsoon Dynamics: Predictability
to the negative phase of IR and vice-versa, as expected. This

] of Monsoons, edited by: Lighthill, J. and Pearce, R., Cambridge
supports the conceptual idea that large-scale lower bound- University Press, Cambridge, UK, 1981.

ary forcing (such as ENSO) exerts influence on modes Ofeyeritt, B. S. and Hand, D. J.: Finite Mixture Distributions, Chap-
MISV, thereby extending its predictive influence beyond sea- mann and Hall, London, 143 pp., 1981.
sonal mean rainfall anomalies alone (Charney and ShuklaGamez, A. J., Zhou, C. S., Timmermann, A., and Kurths, J.: Nonlin-
1981). By further understanding these relationships between ear dimensionality reduction in climate data, Nonlin. Processes
the large-scale and regimes of intraseasonal monsoon con- Geophys., 11, 393-398, db0.5194/npg-11-393-2002004.
vection we hope to increase the prospects of dynamical preGoswami, B. N.: Chaos and predictability of the Indian summer
diction of the monsoon. For example, the analysis of the Monsoon, Pramana J. Phys., 48, 719-736, 1997. o
intraseasonal ASM predictability in relation to large-scale Hannachl_, A.:_Pattern_huntlng In climate: anew method for finding
forcing permits us, via conditional probabilities, to compute trends n gridded C“mat.e data, Int. J. Climatol, 2.7’ 1-15, 2906'
A ! ' . Hannachi, A.: Tropospheric planetary wave dynamics and mixture
probabilistic forecast of the Statej o.f the m‘?”soon glver.l the modeling: Two preferred regimes and a regime shift, J. Atmos.
state of the large-scale flow. This is certainly of benefit to g 64, 3521-3541, 2007.
society and agriculture. Hannachi, A.: On the origin of planetary-scale extratropical winter
In future work we plan to investigate these relationships in  circulation regimes, J. Atmos. Sci., 67, 1382—1401, 2010.
long integrations of state-of-the-art coupled GCMs, judgedHannachi, A. and O’Neill, A.: Atmospheric multiple equilibria and
capable of simulating the full spectrum of monsoon variabil- non-Gaussian behaviour in model simulations, Quart. J. Roy.
ity as suggested in Turner and Annamalai (2012), and also Meteor. Soc., 127, 939-958, 2001.

study the behaviour of ASM phases in a warmer climateHannachi, A. and Tumner, A. G.: Isomap nonlinear dimensionality
(Schewe and Levermann, 2012). reduction and bimodality of Asian monsoon convection, Geo-

phys. Res. Lett., 40, 1653-1658, 2013.
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