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Abstract

Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of
protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the
human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the
heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-
terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the
protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag
present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously,
GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon
resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better
separation of oligomers present, during size exclusion chromatography. The optimised method for expression and
purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-
dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies.
This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for
recombinant production of multi-domain eukaryotic membrane proteins.
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Introduction

Cellular calcium homeostasis is regulated by a large number
of proteins, with the Sarco/Endoplasmic Reticulum Ca2+-
ATPase (SERCA) pumps as key players in this process.
SERCA pumps are integral membrane proteins responsible for
Ca2+ uptake from the cytosol into the sarcoplasmic/
endoplasmic reticulum (SR/ER), using the energy derived from
ATP hydrolysis to fuel the ion translocation. This process is
vital for preserving low intracellular calcium levels in a resting
cell, a prerequisite for the use of calcium as a secondary
messenger to control essential cellular processes such as
muscle relaxation/contraction, cell signalling and apoptosis.
Human SERCA (hSERCA) pumps belong to the P-type
ATPase superfamily and are encoded by three different genes
(ATP2A1, ATP2A2 and ATP2A3), each with its splice variants,
giving rise to SERCA1a-b, SERCA2a-c and SERCA3a-f
isoforms. All SERCAs have a total molecular weight of about
110 kDa and share a similar general structural organization,

possessing an integral transmembrane domain and a large
cytoplasmic domain. The cytoplasmic domain contains three
distinct subdomains; the nucleotide binding domain (N), the
phosphorylation domain (P) and the actuator domain (A).
These subdomains are jointly responsible for ATP binding and
hydrolysis, and serve as the motor driving ion translocation
through long-range intra-molecular interactions with the integral
membrane domain. The integral membrane domain consists of
ten, or for SERCA2b eleven, transmembrane (TM) helices and
is responsible for calcium binding and translocation [1,2].

All SERCA isoforms are homologous; the main amino-acid
sequence differences are located at the C-terminal ends.
Functionally, SERCA isoforms have different affinities for Ca2+

and different enzymatic turn-over rates [3–5].
Mammalian SERCA1a isoform is present mainly in adult fast-

twitch muscle and mammalian SERCA1b is found in foetal
muscle tissue, whereas mammalian SERCA3 isoforms (a-f)
have been found to be expressed in various tissues: heart,
skin, platelets and pancreas [6–10]. Rabbit SERCA1a
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(rSERCA1a) has been extensively studied since the 1960s
[11–15], its abundance in muscle tissue has made it the source
of choice for functional and structural analyses and it has been
used as a benchmark for recombinant eukaryotic protein
expression and purification from S. cerevisiae [16–18].

Three human SERCA2 isoforms have been identified:
hSERCA2a, found mainly in the heart and slow-twitch muscle
[19,20]; hSERCA2b, ubiquitously expressed and is present in
neurons and epidermis [21]; and hSERCA2c is found in
pancreatic, hepatic and mesenchymal cells [20,22,23]. Genetic
engineering experiments revealed that SERCA2b has an extra
transmembrane domain compared to SERCA1a and a longer
C-terminal luminal tail, providing the highest affinity for Ca2+

and the lowest enzymatic turn-over [24]. Physiologically,
SERCA2a is the main Ca2+ translocating isoform in the heart,
its activity being controlled by other important proteins such as
phospholamban and sarcolipin [25].

Numerous studies have shown a correlation between
SERCA2a down-regulation and heart failure [26–28], with
specific mutations in hSERCA2a and hSERCA2b leading to
skin diseases without affecting heart activity [29,30]. Recently,
a biotechnology company, Celladon (www.celladon.net) has
over-expressed SERCA2a protein by transgenic technologies
and is currently performing phase II clinical trials for humans
suffering from heart failure, with positive results.

To study hSERCA2a in greater detail and to understand the
complex nature of the physiological regulation in the heart, a
method is required for expression and purification of
hSERCA2a, in sufficient quantities and purity, suitable for in
depth functional and structural characterisation, similar to
methods developed for other complex membrane proteins
[18,31,32].

We present herein an optimised route for recombinant
production of hSERCA2a in S. cerevisiae purified by two
successive purification steps to obtain enzymatically active
protein suitable for crystallisation trials and biophysical
characterisation. The functional analysis of the purified protein
demonstrates Ca2+-dependent ATP consumption and
thapsigargin inhibition, confirming that the recombinant purified
protein is correctly folded and active.

Materials and Methods

Materials
All reagents used were obtained from Sigma-Aldrich, UK

unless stated otherwise. Restriction enzymes and polymerase
were purchased from New England Biolabs and Promega.
Talon resin was from Clontech and Ni-NTA super-flow resin
was from Qiagen. Streptavidin Sepharose High Performance
resin was from GE Healthcare and Thrombin from Calbiochem.
Complete EDTA free protease inhibitor was from Roche. 1,2 –
dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) was from
Avanti Polar Lipids. Dodecyl-β-D-maltoside (DDM) was from
Glycon Biochemicals. Octaethylene glycol monododecyl ether
(C12E8) was from Nikko Chemicals. 4-12% Tris-Glycine SDS-
PAGE precast gels were from Invitrogen. Bio-RadDC Protein
assay was from Bio-Rad Laboratories. cDNA for human
SERCA2a (NM_001681) was a gift from Anne-Marie Lompré

(Inserm UMRS956/Université Pierre et Marie Curie). Antibodies
were purchased from Santa Cruz Biotechnologies.

Equipment
Centrifugal filter concentrators were from Amicon-Millipore.

TosoHaas TSK-gel G3000SWXL gel filtration column was from
Hichrom, UK. LAS-1000-3000 charged-coupled device (CCD)
Imaging system was from Raytek Scientific. Polypropylene 96-
well round bottom, clear plates were from Greiner. 96-well
black, optical bottom plates were from Nunc. SpectraMax M2e
microplate reader was from Molecular Devices. 5mL Ni-NTA
His-trap columns were from GE Healthcare. NanoPhotometer
was from Implen. Cell disruptor was from Constant Systems.
iBlot Nitrocellulose membranes and iBlot™ Dry Gel Transfer
Device were from Invitrogen. Tetra-detector was from Viscotek.

Strain and plasmid
S. cerevisiae W303.1b/GAL4-2 (a, leu2, his3, trp1::TRP1-

GAL10-Gal4, ura3, ade2-1, can R, cir+) strain and pYeDP60-
SERCA1a-BAD expression vector (AmpR, ura, ade, OriBact,
thrombin cleavage site, Biotin Acceptor Domain) were a gift
from Dr Christine Jaxel (Institut de Biologie et de Technologies
de Saclay, France) as previously described [17]. S. cerevisiae
FGY217 (MATa, ura3-52, lys2Δ201, pep4Δ) strain and
expression plasmid pRS426-Gal1-GFP (ura3, Gal1, Sma1,
8His, yEGFP, AmpR) were a gift from Dr. Konstantinos Beis
(Membrane Protein Laboratory, Imperial College, London)
previously described in [33].

Cloning human SERCA2a
pYeDP60-SERCA1a-BAD vector was linearised using

EcoR1 and Sma1 restriction enzymes, removing SERCA1a
gene. hSERCA2a gene, previously mutated for an EcoR1
restriction site, was cloned into the pYeDP60-BAD vector by
standard T4DNA ligation and transformed into E. coli. The
clones were tested by colony PCR and DNA sequencing.
pYeDP60-hSERCA2a-BAD vector was prepared and used for
transformation in yeast using a standard protocol [34].

hSERCA2a cDNA was amplified using the following primers:
Forward (5’)

ATTAGAATTCTAGTATGGAGAACGCGCACACC(3’) and
Reverse (5’)

ATTACCCGGGAGCAGCAGTAGATCCTCTTGGAACCAAACC
ACCTTCCA

GTATTGCAGGTTCCAGGTAG (3’).
hSERCA2a gene was cloned into the pRS426-Gal1-GFP-

His8 vector by homologous recombination in S. cerevisiae. The
vector was linearised using Sma1 enzyme, providing the blunt
ends needed for homologous recombination. The hSERCA2a
PCR product was mixed with the linearised vector and used for
direct transformation into S. cerevisiae FGY217, as described
previously [35].

hSERCA2a cDNA was amplified using the following primers:
Forward (5’)

ACCCCGGATTCTAGAACTAGTGGATCCCCCATGGAGAACG
CGCACACC (3’) and

Reverse (5’)
AAATTGACCTTGAAAATTAAATTTTCCCCCTCCAGTATTGC

Recombinant Human SERCA2a from S. cerevisiae
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AGGTTCC (3’) - the underlined 15 base pair sequence
corresponds to the blunt ends of the linearised vector.

All buffers and containers used were sterile and freshly
prepared. The obtained transformants were platted on minimal
media agar plates (0.1% w/v casaminoacids, 0.7% w/v yeast
nitrogen base without amino acids, 2% w/v glucose, 2% w/v
agar) and grown for 48 hours at 30°C. The clones were tested
by PCR and DNA sequencing.

Expression
The expression level of hSERCA2a in S. cerevisiae was

tested using pYeDP60 and pRS426 vectors in small scale
minimal media cultures (0.1% w/v casaminoacids, 0.7% w/v
yeast nitrogen base without amino acids, 2% w/v glucose).
Overnight cultures were used to inoculate 10mL minimal media
containing 0.1% w/v glucose at a final OD600 0.12. After
complete consumption of the glucose, i.e. when reaching OD600

of about 0.6, the expression was induced by 2% w/v galactose.
Cells were harvested and processed as in [35] and [18].
Western blotting and in-gel-fluorescence (for the GFP-
construct) analysis were used to detect hSERCA2a expression.

For large scale cultures 2.5 L baffled Tunair flasks were
used, each flask containing 1 L media. An overnight
hSERCA2a minimal media (2% glucose) pre-culture (300 ml)
grown at 30°C and 280 rpm shaking was used to inoculate 12L
of rich media (2% w/v tryptone, 2% w/v yeast extract, 1% w/v
glucose, 2.7% v/v ethanol) or minimal media (0.1% w/v
casaminoacids, 0.7% w/v yeast nitrogen base without amino
acids and 0.1 glucose % w/v) at a starting OD600 of 0.12.

Rich media cultures were grown for 36 hours at 30°C and
260 rpm shaking. The culture temperature was lowered to 18°C
and protein expression was induced by addition of 2% w/v
galactose, followed by a second induction with 2% w/v
galactose after 15 hours. This methodology was based on
previous optimisation of yeast recombinant protein expression
established for rabbit SERCA1a [16,18], which showed that two
inductions increased the expression level of the target protein.
Cells were harvested 6 hours after final induction in 1 L
centrifuge bottles in a Sorvall Evolution RC centrifuge (10 min
at 5000gav).

Minimal media cultures were grown for approximately 7
hours at 30°C until OD600 reached 0.6 and were induced with
2% w/v galactose. Cells were harvested 20 hours after
induction, as described above. Cell pellets were frozen using
liquid nitrogen and stored at -80°C [35].

Fluorescence size exclusion chromatography
The methodology used for fluorescence size exclusion

chromatography was as previously described [35].

Purification
Membrane preparation.  Pelleted cells were resuspended in

100mL TES buffer/L culture (50 mM Tris-HCl pH 7.5, 1 mM
EDTA, 0.6 M sorbitol, 0.1 M KCl) supplemented with protease
inhibitor (1 tablet for each 100 ml buffer), 1 mM PMSF and 5
mM β-ME and passed through the cell disruptor (Constant
Systems) three times: once at 30 and twice at 35 Kpsi.
Unbroken cells and cell debris were removed by centrifugation

for 10 minutes at 15000gav using JLA16.250 rotor. Membranes
containing hSERCA2a were pelleted by ultracentrifugation at
135000gav (41000 rpm) for two hours using the Type 45 Ti rotor
in a Beckman Coulter Optima L100XP ultracentrifuge. The
membranes were resuspended and washed in presolubilisation
buffer (50 mM MOPS pH 7.0, 100 mM KCl, 1 mM CaCl2, 20%
glycerol, 5 mM β-ME) and pelleted again by ultracentrifugation
for 1 hour at 135000gav. Membranes were resuspended in 20
mL HEPES buffer/L culture (20 mM HEPES pH 7.5, 0.3 M
sucrose, 0.1 mM CaCl2), frozen using liquid nitrogen and stored
at -80°C.

Solubilisation.  The membranes were thawed and diluted to
10 mg/ml total membrane protein in solubilisation buffer (50
mM MOPS pH 7.0, 100 mM KCl, 1mM CaCl2, 20% v/v glycerol,
5 mM β-ME and 1.5:1 w:w ratio DDM: total membrane protein)
and mixed for 1 hour at 4°C. Unsolubilised material was
removed by ultracentrifugation for 45 min at 135000gav in a
Type 45 Ti rotor in a Beckman Coulter Optima L100XP
ultracentrifuge.

Affinity purification.  Ni-NTA super-flow or Talon resin was
pre-equilibrated with the solubilisation buffer and incubated
with the solubilised material; 1 ml resin/1L culture, for one hour
at 4°C while on a mixer roller, in the presence of 20 or 15 mM
imidazole, respectively, for each resin type, adjusting the pH to
7 to minimise unspecific binding. The resin was then poured
into a Bio-Rad glass column and left to settle under
gravitational force.

Ni-NTA resin was washed with 30x column volumes of buffer
(50 mM MOPS pH 7, 100 mM KCl, 1 mM CaCl2, 20% glycerol,
5 mM β-Me, 0.5 mg/ml DDM) and 50 mM imidazole. Elution of
bound protein was performed with three column volumes of
buffer containing 250 mM imidazole. Similarly, Talon resin was
washed with 20x column volumes washing buffer and 15 mM
imidazole and bound protein was eluted with two column
volumes of buffer containing 150 mM imidazole.

The eluted protein fraction was incubated with TEV-His6

protease (0.5 mg TEV protease/L culture used for purification)
for GFP-His8 tag cleavage and left overnight at 4°C while
dialysing (dialysis membrane cut-off of 12 kDa; dialysis buffer:
50 mM MOPS, pH 7, 100 mM KCl, 1 mM CaCl2, 15% v/v
glycerol, 0.25 mg/ml DDM). Since imidazole and DTT are not
compatible with the His-Trap column, dialysis was performed to
remove excess imidazole and DTT, the latter of which is initially
present in the TEV protease buffer. The sample was passed
twice through a 5 mL Ni-NTA His-Trap column, previously
equilibrated with dialysis buffer to remove the cleaved GFP-
His8 tag and the TEV-His6 protease.

Streptavidin-Sepharose affinity purification was performed as
described previously [18] [10]. Briefly, solubilised material was
mixed overnight at 4°C with Streptavidin-Sepharose resin to
allow binding of protein via the biotinylated tag, at a ratio
hSERCA2a: slurry resin of 1 mg: 2 mL, where hSERCA2a
concentration was assumed to be 1% w/w of total membrane
protein concentration, based on previous purification of
rSERCA1a [17] [30]. The resin was washed with a high-salt
buffer (50 mM MOPS-Tris pH 7, 1 M KCl, 20% glycerol (v/v), 1
mM CaCl2 and 0.5 mg/ml DDM) and the proteins were eluted in
low salt buffer (50 mM MOPS-Tris pH 7, 100 mM KCl, 20%
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glycerol (v/v), 2.5 mM CaCl2 and 0.5 mg/ml DDM) after two
short incubations with 25U of Thrombin per ml of settled resin
used. Thrombin cleavage action was quenched by addition of 1
mM PMSF. The elution was frozen in the presence of 40%
glycerol (v/v), using liquid nitrogen and stored at -80°C until
further use.

Size Exclusion Chromatography.  Eluted protein from the
affinity purification step was concentrated at 4°C and 2600gav in
an Eppendorf 5804R bench-top centrifuge, Swing-bucket rotor
A-4-44, to 500 μl using 50 or 100 kDa cut-off Millipore
centrifugal concentrators. The total protein concentration prior
to gel filtration was about 3 mg/ml, as determined by A280

method. The sample was loaded onto a TosoHaas TSK-gel
G3000SWXL GSK gel filtration column, previously equilibrated
with gel filtration buffer (50 mM MOPS pH 7, 80 mM KCl, 1 mM
CaCl2, 1 mM MgCl2, 5 mM β-Me, 0.25 mg/ml DDM or 0.5 mg/ml
C 12E8). The chromatography was performed at 4°C using a
flow of 0.3 ml/minute and the elution was collected in 0.5 mL
fractions.

SERCA2a detection
Ca2+-ATPase protein presence was monitored by SDS-

PAGE separation followed by Coomassie brilliant blue staining,
in-gel-fluorescence analysis, and/or Western blotting analysis
using specific antibodies directed against hSERCA2. Precast
4-12% Tris-Glycine gels were used to detect the presence of
hSERCA2a-GFP, throughout the purification steps. Samples
were mixed in equal volumes with the loading buffer without
boiling, which permitted in-gel-fluorescence visualisation of the
fusion GFP-tagged protein by measuring excitation at 460 nm
and emission at 515 nm. Also, the fluorescence signal of GFP-
membrane protein fusion was monitored in solution using a
microplate spectrofluorometer using an excitation wavelength
of 488 nm, while measuring emission at 512 nm [35].

Protein concentration estimation
Total membrane protein concentration was determined using

a Bio-RadDC Protein assay, using bovine serum albumin as
standard. Purified protein concentration was determined using
a NanoDrop Spectrophotometer, measuring the absorbance at
280 nm and using an extinction coefficient at 280 nm of 99945
M-1cm-1 for hSERCA2a; or by SDS-PAGE quantification, using
known amounts of native rabbit SERCA1a as standard. The
software used to quantify the SERCA2a yield was ImageJ [36].

ATPase activity measurement
The functional assay used is based on an ATP-NADH

enzyme coupled assay and involved measuring,
spectrophotometrically, the decrease of NADH absorbance at
340 nm [37,38], which is related to ATP consumption. The
reaction buffer contained 50 mM TES pH 7.5, 100 mM KCl, 7
mM MgCl2, 0.56/0.28 mg/ml DDM/DOPC mix; 5 mM ATP, 1
mM phosphoenolpyruvate (PEP), 0.2 mg/ml lactate
dehydrogenase [39], 0.4 mg/ml protein kinase from rabbit (PK),
1 mM NADH, 1.1 mM EGTA. To determine if the activity
observed was Ca2+-dependent, the assay was performed at
different free Ca2+ concentrations (0.0073, 0.0164, 0.042,
0.062, 0.089, 0.20, 0.47, 0.74, 1.1, 2.3, 7.1, 19.6, 34.9, 49.3,

98.8 µM and 1.11mM), which were calculated using http://
maxchelator.stanford.edu/CaMgATPEGTA-TS.htm programme
[40]. For each enzymatic reaction, 150 ��L of reaction buffer were
incubated at 37°C and the reaction was triggered by adding
5-10 µg purified protein. The reaction was quenched with
EGTA or thapsigargin (TG). The data were analysed using
SigmaPlot Systat software. The slope obtained after quenching
was subtracted from the slope obtained after addition of the
protein to eliminate any contaminant activity. Specific activity
was determined over time intervals where the change in
absorbance was linear minus any background activity observed
after calcium removal or TG inhibition.

Results and Discussion

Recombinant expression of hSERCA2a in S. cerevisiae
We have successfully achieved expression of hSERCA2a in

S. cerevisiae using two different constructs (Table 1). One
construct was designed with a cleavable C-terminal biotin
acceptor domain (hSERCA2a-BAD) and a second construct
with a cleavable C-terminal His-tagged green fluorescence
protein (hSERCA2a-GFP-His8). An estimated expression level
of up to 5 mg of solubilised hSERCA2a-GFP-His8 per litre of
culture was obtained, which is comparable to that reported for
heterologous expression of rSERCA1a isoform using various
constructs in different cell lines, including mammalian and S.
cerevisiae [16–18,41].

Given the comparable yields for the two constructs, the
hSERCA2a-GFP-His8 construct offers two main advantages: a)
the purification is more cost effective as the resin for affinity
chromatography can be re-used and b) the GFP-fusion protein
can easily be monitored throughout the expression and
purification steps by in-gel fluorescence, with the GFP
detection being as sensitive as or better than Western blot
detection using a hSERCA2 specific antibody. An example of

Table 1. Human cardiac SERCA2a protein yield obtained
per 1L of culture S. cerevisiae using minimal and rich
media.

SERCA construct

Total
membrane
protein (g) Estimated Ca2+ ATPase

  
Solubilised
material (mg)

After affinity
purification (mg)

After SEC
(µg)

SERCA2a-GFP-
His8

1.1 5.0 0.40 100

SERCA2a-BAD 1.0 n/d 0.15 65

SERCA2a-GFP-
His8 minimal
media

0.2 1.2 0.18 50

The yields were estimated from SDS-Page gels and Western Blots, using ImageJ
software [36,70]. The cultures were grown in rich media unless specified
otherwise. Data was estimated for each construct on at least two batches of
protein sample, using rabbit SERCA1a and free GFP as control standards; n/d- not
determined.

Recombinant Human SERCA2a from S. cerevisiae
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assessment of hSERCA2a-GFP-His8 expression levels in
different clones using in-gel fluorescence and Western blotting
techniques is shown in Figure 1.

To ensure the highest possible expression levels of
functional hSERCA2a-GFP-His8, we used rich medium and
lowered the temperature to 18°C, before two steps of galactose
induction of protein expression [16]. In addition, the use of
baffled flasks for cell growth significantly improves media
aeration and allows routine yields of 50-60 g of yeast per litre
culture to be obtained. We also tested hSERCA2a-GFP-His8

expression levels in minimal medium and determined
expression levels above 1mg L-1 culture (Table 1) of solubilised
protein. Minimal medium cell culture growth led to much lower
cell mass yield (<10g L-1 culture).

Previous studies have shown that chemical chaperons such
as DMSO (2.5% v/v), histidine (0.04% w/v) or biotin (0.2 ̶2
mg/ml) can improve the expression level of recombinant
proteins [33,42]. To further increase hSERCA2a expression,
we performed small scale tests in the presence of DMSO and
histidine for the hSERCA2a-GFP-His8 construct or biotin for the
hSERCA2a-Biotin construct. Addition of these chemicals was
performed concomitant with galactose induction. No visible
difference was observed in the expression levels (data not
shown), as previously reported for rSERCA1a in the case of
biotin addition [8].

Isolation of hSERCA2a-Biotin
Purification of hSERCA2a-Biotin, using its biotinylated tag,

produced pure and functionally active protein. The resulting
purified protein is shown in Figure 2. Yields of approximately
150 µg of purified hSERCA2a per litre culture were obtained
after affinity chromatography and 65 µg per litre after size
exclusion chromatography (SEC), Table 1. This is slightly lower
compared to the yield obtained for rSERCA1a, using the same
approach [18], and comparable to the yield obtained for purified
hSERCA2a by Magro et al. [43], using surface active
maghemite nanoparticles for purification (65 ��g/L at >90% purity
versus 125 ��g/L at 70% purity, respectively). However, the
hSERCA2a protein obtained in this study is nearly pure (>
90%) following SEC (Figure 2C) and is shown to be functionally
active.

The biotin-fusion protein purification methodology required
the use of new Streptavidin-Sepharose resin for each
purification, due to the strong interaction of biotin with
streptavidin resin. Thus, alternative approaches to express and
purify hSERCA2a from S. cerevisiae were investigated in order
to reduce the cost of purification. Immobilized metal affinity
chromatography (IMAC) purification is more economical and
can be useful for membrane protein purification [44,45].
However, a GFP-His fusion tag additionally offers the ability to
follow easily the over-expressed protein during the expression
and purification steps [35].

Isolation of hSERCA2a-GFP-His8

Purification of hSERCA2a-GFP-His8 was performed initially
using Ni-NTA batch-mode binding [35]. The yield of hSERCA2a
after affinity purification was improved to 0.4 mg per litre of
culture (Table 1). Despite the higher yield, more than half of the

solubilised material is not bound to the resin but is recovered in
the flow-through after the affinity step, as observed using in-gel
fluorescence (Figure 3B, lane FT versus S). Further, poor
separation of the monomer and oligomerised/aggregated
fraction during size exclusion chromatography was observed
(Figure 3C). Oligomers are expected when SEC is performed
in the presence of C12E8 [11]. Note that the contribution of light
scattering in OD for protein aggregates is high but in fact it
corresponds to a relatively low amount of protein, as
demonstrated in Figure 3D (see lane 6.0 and 6.5 mL).
However, the protein following SEC chromatography is almost
pure, as shown by Coomassie Blue stained gel (Figure 3A,
lane GF). Purification of hSERCA2a-GFP-His8 using minimal
medium yielded approximately 180 µg of purified hSERCA2a
per litre culture, after affinity purification (Table 1). This is less
than half compared to the yield when using rich medium. The
benefit of using minimal medium, besides being selective for
SERCA2 vector containing cells, is that it provides a reduced
amount of membranes at the start of the purification, thus
requiring less detergent for solubilisation than when using rich
medium. The final yield of hSERCA2a after SEC, obtained
using minimal media, is approximately 50 µg per litre of culture,
which means a lower yield per litre culture than when using rich
media but a higher yield per wet cell weight. Also, minimal
media resulted in a lower amount of total membrane protein
loaded on the affinity resin, which can be important to reduce
the amount of unspecific bound material.

Optimising the purification of hSERCA2a-GFP-His8

After several optimisation tests (using higher salt
concentration in purification buffers and varying the detergent
concentration used during solubilisation), Talon resin was used

Figure 1.  Small scale expression test for hSERCA2a-GFP-
His8 using different clones.  A. SDS-PAGE 4-12% Tris-
Glycine in gel fluorescence analysis. M-fluorescent ladder, 1-6
different hSERCA2a-GFP-His8 clones; B. Western Blotting
using specific hSERCA2 antibodies, MM – prestained protein
ladder.
doi: 10.1371/journal.pone.0071842.g001
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Figure 2.  Purification of hSERCA2a-Biotin fusion protein using Streptavidin-Sepharose resin.  A. Coomassie stained 12%
Tris-Glycine SDS PAGE gel from purification, M- protein ladder, HS-high salt wash, LS-low salt wash, FT- flow-through after binding
to Streptavidin resin, R-resin with bound hSERCA2a, FTC- flow-through concentrated, E – elution from Streptavidin resin, C-
concentrated sample prior to gel filtration, GF- elution after gel filtration, rS1a- rabbit SERCA1a, 1µg. B. HPLC-SEC profile for
hSERCA2a after Streptavidin affinity purification using 12L culture. DDM detergent was exchanged on gel filtration column with
C12E8 detergent. C. Coomassie stained 4-12% Bis-Tris SDS PAGE gel. SEC fractions obtained for hSERCA2a purified with
Streptavidin resin.
doi: 10.1371/journal.pone.0071842.g002
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in an attempt to improve the yield during the affinity purification
step (Figure 4). Talon resin is an IMAC resin, similar to Ni-NTA,
but charged with cobalt ions instead of nickel. It is described to
bind His-tagged proteins with higher specificity than nickel-
charged resins, resulting in isolation of His-tagged proteins with
higher purity and lower metal ion leakage (Co2+ ions are more
tightly bound to NTA than Ni2+ ions) [46]. As anticipated, the
Talon resin proved to be more specific than the Ni-NTA resin.
Binding at 15 mM imidazole and at pH 7 was essential for
obtaining a cleaner fraction, as binding at 5 or 10 mM imidazole
led to higher unspecific binding. Following TEV-His6 protease
cleavage, the protein was passed twice through the Ni-NTA His
trap column to remove uncleaved material and any
contaminants bound to the affinity resin. We observed that
passing the sample twice, rather than once, through the Ni-

NTA column improved the purity of the sample (Figure S1A,
lane R1 and R2). The yield of purified protein, for the
hSERCA2a-GFP-His8 construct, following the second
purification step (SEC-HPLC), was 100 µg hSERCA2a per litre
of culture (Table 1).

Purification of hSERCA2 tagged only with the deca-histidine
(-His10) tag rather than the GFP-octa-histidine (-GFP-His8) tag
was also tried, but no improvement was observed in the
purification profile during size exclusion chromatography
(Figure S2), suggesting no effect of the size of the histidine tag
or of the presence of GFP on aggregation.

The main difficulty with the purification of hSERCA2a-GFP-
His8, using Ni-NTA resin, is the low level of binding of the
solubilised protein to the metal-affinity matrix. This was
observed by in-gel fluorescence analysis of the flow-through

Figure 3.  Purification of hSERCA2a-GFP-His8 using Ni-NTA affinity chromatography.  Purification was done in the presence
of DDM only throughout all steps, including SEC. Protein was obtained using rich media. A. Coomassie stained SDS-PAGE gel; B.
In gel fluorescence 12% Tris-Glycine SDS-PAGE gel. MF- fluorescent protein ladder; MB- diluted membrane fraction; S- solubilised
fraction; FT- flow-through after binding; W- wash fraction; E- elution; D- sample after cleavage with TEV protease and dialysis; R-
sample after Ni-NTA rebinding after tag cleavage; C- sample concentrated using 50 kDa cut-off filter concentrator, before gel
filtration; S1a- rabbit SERCA1a; GF- fraction containing human SERCA2a after gel filtration; M- prestained protein ladder. C. HPLC-
SEC profile for hSERCA2a purified using Ni-NTA super-flow resin. D. Coomassie stained 4-12% Tris-Glycine SDS PAGE gel for
SEC fractions obtained for purification of hSERCA2a using Ni-NTA super-flow resin.
doi: 10.1371/journal.pone.0071842.g003
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sample after binding (Figure 3B). No improvement was
observed even when performing a longer binding step or when
rebinding of unbound material was tried (data not shown).
There are several potential factors contributing to the low
recovery observed. A fraction of the expressed protein may not
be correctly inserted into the membrane and hence misfolded
to some extent, resulting in shielding the GFP-His-tag.
Alternatively, the GFP-His-tag may only be partially accessible
without any misfolding of the fusion protein, as suggested in a
comparable study [13]. The latter hypothesis is sustained by
our current results, such that high fluorescence intensity of
GFP-fusion protein (Figure 3B) indicates correct folding of the
protein, in agreement with previous work using GFP [33,35,47].
However, this does not eliminate the possibility of partial
unfolding of the protein during the extraction from the
membranes. From this perspective, any or all of these factors
may lead to reduced recovery. One might argue that the poor
binding of hSERCA2a-GFP-His8 may be due to low binding

affinity of the fusion protein for the metal resin. Nevertheless, a
step gradient elution of GFP tagged protein from Ni-NTA resin
revealed that the protein starts to elute at and above 75 mM
imidazole, indicating strong binding and proper folding of the
expressed protein. In this respect, the poor affinity could be
considered an advantage as it allows us to eliminate misfolded
and probably inactive enzymes leading to optimal purification of
properly folded hSERCA2a-GFP-His8.

Aggregation properties and effect on purification
To address the possibility that aggregation of hSERCA2a-

GFP-His8 was induced by the solubilisation procedure, various
DDM: total membrane protein concentration ratios were tried.
We observed that lowering the ratio from 3:1 to 1:1 does not
affect the recovery of hSERCA2a-GFP-His8 during the affinity
chromatography step. Fluorescence size exclusion
chromatography (FSEC) analysis [48] was used to investigate
whether using DDM, C12E8 or a lipid-like detergent ,FC12, in

Figure 4.  Talon resin affinity purification of hSERCA2a-GFP-His8.  Protein was obtained using minimal media. A. Coomassie
stained SDS-PAGE gel; B. In gel fluorescence 12% Tris-Glycine SDS-PAGE gel, MF- fluorescent protein ladder; MB- membranes
fraction; S- solubilised fraction; FT- flow-through after binding to Talon resin; W- wash fraction; E- elution; D- sample after cleavage
with TEV protease and dialysis; R- sample after Ni-NTA reverse binding; C- sample concentrated, before gel filtration; rS1a- rabbit
SERCA1a at; C- fraction containing human SERCA2a concentrated before gel filtration; W2- eluted material from Ni-NTA His trap
after reverse Ni-NTA purification; M- protein ladder. C. HPLC-SEC profile for hSERCA2a purified using Talon resin. Protein was
concentrated with 100 kDa cut-off filter concentrator and DDM detergent was exchanged on gel filtration column with C12E8

detergent. D. Coomassie stained 4-12% Tris-Glycine SDS PAGE gel for SEC fractions obtained for purification of hSERCA2a using
Talon super-flow resin.
doi: 10.1371/journal.pone.0071842.g004
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the absence or presence of cholesterol hemissuccinate salt
could improve the yield of recovered protein. FC12 detergent
and cholesterol have been shown to improve the solubility and
stability of heterologous membrane proteins [35]. FSEC
analysis showed that hSERCA2a-GFP-His8 solubilisation in the
presence of FC12 and cholesterol presented the highest
monodispersity (FigureS3A), although further large scale
purification revealed that this detergent-lipid combination led to
aggregates after solubilisation without any improvement in the
yield of monodispersed sample after SEC (Figure S3B). This
may be due to the high solubility capacity of the FC12
detergent.

The final purification step for both constructs (-Biotin and -
GFP-His8) is size exclusion chromatography with detergent
exchange from DDM to C12E8. Detergent exchange has been
shown to be critical for native and recombinant SERCA1a
crystallisation [15,49,50]. Figure 4C shows a typical SEC profile
for hSERCA2a-GFP-His8 after purification, highlighting the two
different populations observed i.e. an aggregated fraction (at
~5.5-6.5 mL) and a monomeric fraction (at ~7.5-8.0 mL). For all
GFP-His8 purified samples we observed a third peak in the
chromatograms (Figure 3C, from ~9.0–10.5 mL), which was
assigned to correspond to detergent micelles [51] since it did
not appear to contain protein, as observed by SDS-PAGE
(Figure 3D). To further investigate the identity of this third peak,
we used a Tetra-detector, which allows measurement of
refractive index by light scattering of membrane protein in
detergent solution [52]. The sensitivity of this method can
reveal the presence of free detergent micelles and the ratio
between protein and detergent present in the sample [51,53].
For comparison, we analysed the sample before SEC
(concentrated using 50kDa cut-off filter concentrators) and the
fraction corresponding to the monomeric fraction, after gel
filtration. The refractive index peak corresponding to the
detergent micelles is present only in the sample before SEC
(Figure S4A) and not in the sample corresponding to the
monomeric hSERCA2a (Figure S4B). This suggests that most
of the detergent micelles were eliminated during the SEC step.
We also observed that using 100 kDa cut-off concentrators
instead of 50 kDa cut-off removes free detergent micelles from
solution (Figure 4C), as indicated by refractive index
measurement, at the expense of 12% protein loss as
previously shown in similar experiments [54]. This point is
critical, as final detergent concentrations need to be tightly
controlled for crystallisation trials [49].

Enzymatic properties of the purified hSERCA2a
To characterise the functional properties of the purified

hSERCA2a, the enzymatic activity was measured using a
regenerative ATP-NADH enzyme coupled assay [38,55]. For all
functional assays, only SEC-HPLC purified protein, which had
previously undergone all purification steps (including cleavage
of any affinity tag), was tested.

A typical spectroscopic trace, measuring NADH absorbance
at 340 nm, is shown in Figure 5. Upon addition of hSERCA2a
to the reaction mixture, a linear reduction in absorbance is
observed indicative of NADH conversion to NAD+ as a
consequence of ATP hydrolysis by the purified hSERCA2a. As

expected, after addition of molar equivalent concentrations of
EGTA (equivalent to the free Ca2+ concentration) or
thapsigargin (equivalent to the protein concentration), ATP
hydrolysis is quenched, confirming the presence of a calcium
and thapsigargin dependent hSERCA2a.

Specific enzymatic activity
ATPase calcium dependent analysis of hSERCA2a (from

hSERCA2a-GFP-His8) revealed a variation in the specific
enzymatic activity from 1 to 3 µmol min-1 mg-1 protein between
different batches of purified protein. However, we observed that
hSERCA2a, solubilised and purified in the presence of DDM,
consistently showed lower specific activity compared to
hSERCA2a solubilised in the presence of DDM and exchanged
for C12E8, during the final SEC purification step. The presence
of low amounts of DDM monomers, close to the Ca2+

translocating protein, may affect its enzymatic activity as
demonstrated in previous studies on rabbit SERCA1a [56].
Thus, exchange of DDM for C12E8 during SEC purification is the
most efficient way to remove DDM from the ATPase
monomers. Another reason for the observed variability in
specific activity may be the measurement of protein
concentration in the eluted fractions, which is difficult to assess
considering the low concentration.

Previously published data showed an enzymatic ATPase
turnover value of 70 sec-1 for hSERCA2a, when expressed in
HEK cells [57], 30 sec-1 when expressed in COS cells [3] and
35 sec-1 when obtained from natural source [3]. Our results
have shown a turn-over rate of 2-5 sec-1, depending on the
protein batch used. Assuming there is no inactive protein after
purification, which is reasonably difficult to assess, the
differences in ATPase turn-over rate between hSERCA2a

Figure 5.  Typical activity assay profile for purified
recombinant human Ca2+ ATPase isoform 2a
(hSERCA2a).  The protein was purified using -GFP-His8 tag
and Talon resin affinity purification. Reaction buffer used was
as in Materials and Methods; the reaction was triggered by
adding 5 µg of purified protein. Addition of thapsigargin inhibits
activity of purified protein. Calcium-dependent activity
corresponds to the difference of slope before and after
thapsigargin addition. Here, final calcium-dependent ATPase
activity is about 3 µmol hydrolysed ATP/min/mg of hSERCA2a.
doi: 10.1371/journal.pone.0071842.g005

Recombinant Human SERCA2a from S. cerevisiae

PLOS ONE | www.plosone.org 9 August 2013 | Volume 8 | Issue 8 | e71842



expressed in HEK, COS cells, or retrieved from natural source
and the values obtained in the present study could arise from
the difference in activity between membrane embedded and
detergent solubilised SERCA2a. Interestingly, these
differences are not observed for SERCA1a when purified from
natural source [58] or after heterologous expression [59,60].
The natural environment surrounding hSERCA2a is very
different from the surrounding environment in this study. The
major lipid found in heart tissue is phosphatidylcholine followed
by phosphatidylethanolamine [61,62]. Exactly what part of
hSERCA2a is embedded in the lipid bilayer is not known [63]
and it is not clear to what extent it differs from the part
embedded into a detergent micelle after solubilisation.
Detergent solubilisation and extensive chromatography steps
delipidate the protein and may cause a destabilising effect. In
some cases, detergent purified rSERCA1a presents a higher
activity upon relipidation (DOPC) [56,64]. Thus, the interactions
between the lipids and hSERCA2a may be important for the
protein to demonstrate maximum turnover [65].

Ca2+-dependent ATP hydrolysis
Calcium-dependence of the ATP hydrolysis using an ATP-

NADH coupled assay was estimated as described above. As
shown in Figure 6, we observed calcium dependent activation
of hSERCA2a from which an apparent calcium affinity of
approximately 0.6 μM for DDM-solubilised hSERCA2a was
determined. This value is in agreement with previously
published values for apparent calcium affinity, K0.5 values
ranging from 0.2 to 0.9 μM [3,22,57,66,67], depending on the
nature of the protein sample. There is a notable sharp
decrease of activity at calcium concentrations higher than 100
µM. As observed for rSERCA1a, high calcium concentrations
inhibit the pump due to: i) calcium affinity for the luminal
binding sites is in the mM range and binding of calcium on the
luminal side dramatically slows down the dephosphorylation
step, and ii) Ca2+ATP can replace Mg2+ATP at the nucleotide
binding site, resulting in deceleration of the phosphorylation
step.

Conclusions

We have succeeded in expressing and purifying functionally
active, recombinant hSERCA2a using S. cerevisiae and we
used the purified enzyme to characterise its functional
properties. The hSERCA2a yield reported in this study, using
the biotinylated tag, is comparable to that observed by Magro
et al. [43]. Furthermore, our work has demonstrated a
purification protocol for functionally active hSERCA2a.

The differences in purification yield between that previously
reported for rabbit SERCA1a [18] and hSERCA2a obtained
during this work using S. cerevisiae, may be explained by the
differences in the amino-acid sequences of the two proteins,
particularly those present in the C-terminal tail region. It would
be interesting to estimate the level of in vivo biotinylation for the
hSERCA2a-Biotin, which could reveal the amount of properly
folded protein [17,50].

Alternatively, the differences in purification yield observed
could be due to the particular post-translational modifications of

hSERCA2a, as recent heart failure research revealed that
SUMOylation by SUMO-1 of hSERCA2a contributes to its
stability [68]. It may be that the SUMO-like machinery present
in S. cerevisiae is not completely equivalent to that in human
[69]. The SUMOylation modification of SERCA2a could be
potentially sustained in yeast through the SUMO-1 homolog
SMT3 (suppressor of mif two 3 (macrophage migration
inhibitory factor, glycosylation-inhibiting factor)). However,
currently there are no published data available to confirm that
SUMOlylation of the heterologous expressed protein takes
place. Future work could involve Western blotting analysis of
heterologously expressed hSERCA2a proteins with double-
labelling against SERCA proteins and SMT3 to check for
SUMOylation in yeast. If no SUMOylation is found, then a
heterologous co-expression of SUMO-1 and SERCA2 should
be considered.

With regard to the solubilisation detergent, as tested in the
case of the hSERCA2a-GFP-His8 construct, no increase in the
yield of purified protein was observed when using a smaller
detergent: total membrane protein ratio. Thus, it can be
concluded that the initial 3:1 ratio used did not contribute to the
high aggregation observed during SEC. Further, based on the
result obtained with FC12, it may be that usage of a higher
solubility capacity detergent may lead to aggregated fraction
solubilisation rather than the solubilisation of the active form of
the protein. Further work would be necessary to more fully
understand the effect of different detergents or lipids on human
cardiac Ca2+-ATPase stability [58].

Purified hSERCA2a (from hSERCA2a-GFP-His8 construct)
showed calcium-dependent and thapsigargin-sensitive activity.
The calcium K0.5 for hSERCA2a of 0.6 μM found herein is
within previously reported values [57]. A significant difference
observed in the turn-over rate between previously purified
samples of SERCA2a may be explained by the different lipid

Figure 6.  Normalised specific ATPase activity rate versus
Ca2+ dependence for DDM solubilised hSERCA2a after
HPLC-SEC purification.  100% specific ATPase activity
corresponds to 3 µmol hydrolysed ATP/min/mg of hSERCA2a.
The results are the means of seven measurements, using
protein obtained from three independent membrane
preparations; error bars represent ±S.D.
doi: 10.1371/journal.pone.0071842.g006
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content, since previous data were measured on vesicular
microsomes which contain some natural lipids associated with
SERCA2, whereas SERCA2a purified from S. cerevisiae was
not reconstituted into liposomes and was analysed in the
presence of detergent. Another plausible explanation for the
differences in turn-over rate could be the presence of inactive
protein in the final purified sample. Finally and importantly, are
the diversity of ATPase assay conditions (e.g. functional assay,
temperature, pH, buffer composition), which may explain the
significant differences in the enzymatic activities reported. It is
noteworthy that, although the turn-over rate for hSERCA2a was
different than when expressed using other systems (HEK,
COS, natural source), the values obtained here are very close
to the specific enzymatic activities obtained for rSERCA1a
expressed and purified from S. cerevisiae [16,17].

The optimised protocol outlined in this work is easily
extended to other SERCA isoforms and useful for the
production of high quality recombinant active protein for further
analysis to study interactions between SERCAs and their
physiologically relevant partners. The resulting protein is
suitable for crystallisation trials and subsequent structural
analysis. Furthermore, the method outlined may prove useful
generally for the recombinant production of other multi-domain
eukaryotic membrane proteins.

Supporting Information

Figure S1.  Purification optimisation: two Ni-NTA reverse
binding steps for hSERCA2a-GFP-His8. Coomassie stained
4-12% Tris-Glycine SDS PAGE gel: M- protein ladder, E-
eluted protein, D- sample after cleavage with TEV protease
and dialysis, R1- after first Ni-NTA reverse binding, R2- after
second Ni-NTA reverse binding.
(TIF)

Figure S2.  Comparison of SEC purification profile of
hSERCA2a-His10 and hSERCA2a-GFP-His8.A. SEC profile for
hSERCA2a-His10. B. SEC profile for hSERCA-GFP-His8.
Affinity purification was performed using Talon resin. The
purification protocol did not involve washing the membranes
prior to solubilisation. The protein was concentrated with
50KDa cut-off filter concentrators prior to SEC purification.
(TIF)

Figure S3.  Detergent screening for hSERCA2a-GFP-His8.
A. Fluorescence size exclusion chromatography profile for

hSERCA2a-GFP-His8 solubilised in the presence of 2% w/v
cholesterol hemisuccinate salt and 1% w/v FC12 or 1% w/v β-
DDM. The same volume of solubilised hSERCA2-GFP-His8

was loaded onto a Superose 6 10/300 column for each
detergent screen. The eluted fractions were analysed using a
SpectraMax spectrophotometer, as described in Materials and
Methods. Aggregation peak corresponds to the void volume. B.
HPLC-SEC profile for large scale purification of hSERCA2a-
GFP-His, in the presence of FC12 and hemisuccinate salt
cholesterol.
(TIF)

Figure S4.  Tetra-detector analysis of purified hSERCA2a
before and after SEC. The construct used for this analysis
was hSERCA2a-GFP-His8. A. Protein sample analysis before
SEC. The profile obtained is comparable to the SEC profiles
obtained for hSERCA2a. The data shows two UV peaks after
the void volume, the first peak (at 13.83mL) corresponds to
hSERCA2a monomer and the second peak (at 16.31mL)
presence a refractive index trace, indicating excess detergent
micelles. B. Protein sample analysis after SEC. The protein
fraction eluted from SEC, corresponding to the monomer form
of hSERCA2a, was run on the Tetra-detector. The result
indicates that the concentrated detergent micelles are
separated and eliminated during SEC. The refractive index
peak corresponds to the protein-detergent complex.
(TIF)
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