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A Riemann-Hilbert problem with a vanishing
coefficient and applications to Toeplitz operators

Abstract
We study the homogeneous Riemann-Hilbert problem with a
vanishing scalar-valued continuous coefficient. We character-
ize non-existence of nontrivial solutions in the case where the
coefficient has its values along several rays starting from the
origin. As a consequence, some results on injectivity and ex-
istence of eigenvalues of Toeplitz operators in Hardy spaces
are obtained.
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1. IntroductionFor 1 ≤ p ≤ ∞, we denote the Hardy space over the circle T by Hp(T); that is,
Hp(T) = {f ∈ Lp(T) : fk = 0 for k < 0},

where fk is the kth Fourier coefficient of f . The Hardy space for the disk Hp(D) is defined to be the class of all analyticfunctions in D for which ||f ||p <∞, where
||f ||p = sup{||fr ||p : 0 ≤ r < 1}

with fr(eiθ) = f (reiθ). It is well known that Hp(T) and Hp(D) are isometrically isomorphic. Let P be the Riesz projection,defined by
P : n∑

k=−n fk t
k 7→

n∑
k=0 fk t

k

on Laurent polynomials. By the M. Riesz theorem, the projection P extends to a bounded operator of Lp(T) onto Hp(T)when 1 < p <∞. For a ∈ L∞(T), the Toeplitz operator Ta : Hp → Hp is defined by Taf = P(af ).Coburn’s theorem states that a nonzero Toeplitz operator has a trivial kernel or a dense range. It follows that for acontinuous symbol a : T → C, a point λ in σ (Ta) \ σess(Ta) is an eigenvalue of Ta if and only if the winding numberof λ − a, wind(λ − a), is negative. On the other hand, the question of whether λ in σess(Ta) (= a(T)) is an eigenvalue
∗ E-mail: antti.i.perala@helsinki.fi
† E-mail: j.a.virtanen@reading.ac.uk (Corresponding author)
‡ E-mail: lwolf-christensen@albany.edu
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Riemann-Hilbert problem and Toeplitz operators

is quite delicate and only very few results are known, most of which require strong restrictions on the behavior of thesymbol a in the neighborhood of its zeros; see [14] and the references therein.Let us denote the set of all Hölder continuous functions on T by C µ . The following result easily follows from [13, Lemma4.11] and Proposition 6.
Theorem 1.
Let 1 < p <∞, µ ∈ [0, 1], and let a : T→ R be a continuous function such that

|a(t)| ≤ constρ(t)µ for all t ∈ T, (1.1)
where ρ(t) = dist(t,Na), Na = {t ∈ T : a(t) = 0}. Let [c, d] = a(T). Then λ ∈ (c, d) is not an eigenvalue of Ta if

p ≥ 21 + µ ; (1.2)
while c, d are not eigenvalues of Ta whenever

p ≥ 2
µ . (1.3)

Remark 2.The difference between (1.2) and (1.3) is explained by the simple observation that in the first case a − λ gets bothpositive and negative values; while in the latter case the argument of a− λ remains constant.
Recall that

σ (Ta : H2 → H2) = σess(Ta : H2 → H2) = [c, d]
provided that a is continuous real-valued function (see [1, Sec. 2.36]). Therefore, Theorem 1 implies that Ta has noeigenvalues if a is Lipschitz continuous. If a ∈ C µ with µ < 1, then we can only say that there are no eigenvaluesin the interior of σ (Ta); in fact, one can construct a real-valued Hölder continuous function a so that the endpoints of
σ (Ta : H2 → H2) are eigenvalues of Ta; see [12].The next result, which follows from the main result of [15], generalizes Theorem 1 to the case when the values of a arelocated on two rays

Sk = {z ∈ C \ {0} : arg z = δk}, (1.4)
where, in general, δ1 ≤ δ2 < δ3 < · · · < δn < 2π. We also set Ek = {t ∈ T : a(t) ∈ Sk}.
Theorem 3.
Let 1 < p <∞ and µ > 0. Suppose that a : T→ S1 ∪ S2 ∪ {0} is a continuous function that satisfies (1.1). Then 0 in
σess(Ta) is not an eigenvalue of Ta : Hp → Hp if p > 2(µ + (δ2 − δ1)/π)−1.
If, in addition, the symbol a traverses through Sj to Sk at most finitely many times, then 0 in σess(Ta) is not an eigenvalue
of Ta : Hp → Hp if p ≥ 2(µ + (δ2 − δ1)/π)−1.
Note that the setting of Theorem 1 is invariant under translation by λ ∈ a(T), whereas the setting of Theorem 3 is not.The present approach addresses the question of whether 0 is not an eigenvalue of Ta; that is, whether Ta is injective.By inserting S1, . . . , Sn into two sectors and applying [14, Theorem 1.3], we can show that Ta is injective if

p > 2
µ + max{δn − δn−1, . . . , δ2 − δ1}

π

. (1.5)
However, this bound is not optimal as we see in the following theorem. In what follows, we identify functions definedon T with 2π-periodic functions defined on R. The function a is assumed to have values on rays S1, S2, ..., Sn starting
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from the origin. Let θ(t) = arga(t − 0), which is clearly a is piecewise constant function. We assume that the argumenthas only finitely many jumps. A point at which a goes to zero along a ray Sk and then returns to the same ray is notconsidered a jump. Note that since θ(t) = arga(t−0), the function θ remains constant when traversing over such zeros.Therefore, we allow some cases where there are infinitely many zeros, which is a natural setting in some applications.However, the Riemann-Hilbert problem cannot have a nontrivial solution if a has zeros on a set of positive measure.The change in the argument of a at t0 is denoted by δt0 ; that is,
δ(t0) = θ(t0 + 0)− θ(t0 − 0).

We also write
δ− = −min{δ(t) : −π ≤ t ≤ π}, δ+ = max{δ(t) : −π ≤ t ≤ π} (1.6)

and denote the largest contribution from both positive and negative jumps by δ; that is,
δ = min{δ−, δ+}. (1.7)

Note that, by a simple rotation argument, we may assume that we always have δ ≤ π.
Theorem 4.
Suppose 1 < p <∞ and µ > 0. Let

a : T→ S1 ∪ . . . ∪ Sn ∪ {0}
satisfy (1.1), and suppose δ± ≤ π. Then the Toeplitz operator Ta : Hp → Hp is injective if

p > 2
µ + δ

π
(1.8)

provided that the symbol a traverses through any Si to another Sj at most finitely many times.

Obviously if a traverses only along neighboring rays, then (1.8) is no different from (1.5). Also, if there are only tworays S1 and S2, then δ = δ2 − δ1, and the condition δ ≤ π is superfluous.The adjoint of Ta : Hp → Hp is the operator Tā : Hq → Hq (1/p+1/q = 1). Since the setting of our theorem is invariantunder complex conjugation, it is not difficult to construct operators Ta such that both Ta and T ∗a are injective. However,since a vanishes, such operators cannot be Fredholm. This reflects the inconvenient fact that Ta with vanishing symbolis often not normally solvable.The proof of Theorem 4 is given in the following section. Our approach is based on that of [15]. The reason we have astrict inequality in (1.8) is related to the properties of some norm inequalities for harmonic conjugation of characteristicfunctions; see [2, Chap. III, Sec. 2]. We conjecture that the strict inequality in (1.8) may only be needed if the argumentof the symbol has infinitely many jumps. However, our aim here is to show how some of the main results of the two-raycase (see [15]) are altered when additional rays are inserted between the two, depending on the order in which thesymbol a traverses through the rays. This provides more insight into how the geometry of the sets Ek and Sk affects thenonexistence of eigenvalues in the essential spectra of Toeplitz operators. It is also of interest to know what happenswhen the symbol a is matrix-valued.
2. The Riemann-Hilbert problemLet a ∈ L∞ and 1 < p < ∞. The Riemann-Hilbert problem (RHP) in Hardy spaces is the problem of finding
φ, ψ ∈ Hp(D) for which

φ∗ = aψ∗ a.e. on T, (2.1)
where φ∗ denotes the nontangential boundary values of φ (see [2]).
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The following well-known result essentially shows that the study of Toeplitz operators is closely related to the RHP inHardy spaces. We give the proof for completeness because it is not readily available in the literature. Let us first recalla couple of useful results. For f ∈ L1, define
F (z) = 12πi

∫
T

f (τ)
τ − z dτ, z ∈ C \ T. (2.2)

Note that such F is analytic on C \ T and F (∞) = 0. For t ∈ T, we denote by F+(t) the boundary values of F as
z → t nontangentially in D and by F−(t) as z → t outside of T. According to the Plemelj formulas, if f ∈ L1, then F isanalytic in C \ T and

F+ = Pf and F− = −Qf, (2.3)
where Q = I − P is the complementary projection (see [5, Chapter 2, Section 4]).
Proposition 5.
If H is analytic in C \ T, H(∞) = 0 and H+ −H− ∈ L1, then H is of the form (2.2) with f = H+ −H−.
Proof. Put H0(z) = 12πi ∫T f (τ)

τ−zdτ . By the Plemelj formulas, G := H − H0 is analytic in C \ T and G+ − G− = 0.Thus, G has an analytic continuation to the whole plane and it remains to apply Liouville’s theorem and use the factthat both H and H0 vanish at infinity.
Note that the condition in Theorem 4 is invariant under complex conjugation of the coefficient a. Therefore the RHP(2.1) is equivalent to the following

ψ∗ = aφ∗. (2.4)
Proposition 6.
Let a ∈ L∞ and 1 < p < ∞. Then the Riemann-Hilbert problem (2.4) and the problem of finding f in kerTa are
equivalent in Hp.

Proof. Note first that the study of the two operators Ta : Hp → Hp and aP +Q : Lp → Lp is equivalent in terms oftheir spectral properties. Indeed, (PaP + Q)(I + QaP) = aP + Q, where I + QaP is invertible with inverse I − QaP ,and also, since Lp = P(Lp)⊕Q(Lp), we have
ker(PaP +Q) = kerTa, ran(PaP +Q) = ranTa ⊕Q(Lp).

Suppose that there is a function g ∈ Hp such that Tag = 0. Then, as above, aPf + Qf = 0 for some f ∈ Lp. Let
F (z) = (2πi)−1 ∫

T
f (τ)
τ−zdτ . For |z| < 1, define φ(z) = F (z) and ψ(z) = F (1/z̄). Then F is analytic in C \ T and thePlemelj formulas imply

aφ∗ − ψ∗ = aF+ − F− = aPf +Qf = 0.
Conversely, suppose aφ∗ = ψ∗ for some φ, ψ ∈ Hp(D). We define F (z) = φ(z) for |z| < 1, and F (z) = ψ(1/z̄) for |z| > 1.Let f = F+ − F−. By Proposition 5, F (z) = 12πi ∫T f (τ)

τ−zdτ , and so again by the Plemelj formulas, we get
aPf +Qf = aF+ − F− = aφ∗ − ψ∗ = 0.

The one-to-one correspondence of the two problems follows from the fact that Ff1 = Ff2 if and only if f1 = f2 almosteverywhere.
Remark 7.The assertion of Proposition 6 remains true also if p = 1 provided that Ta is bounded on H1. The proof of the case
p = 1 is analogous to the general case.
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The following outer function plays an important role in what follows. Define
X (z) = exp( i4π

∫ π

−π

eit + z
eit − z θ(t)dt) , |z| < 1, (2.5)

where θ(t) = arga(t). Note that (X ∗)±1 = exp(∓12(Cθ(t)− iθ(t)))
(see [6, Chap. V]), where Cf is the Hilbert transform, defined by

Cf (t) = ∫ π

−π
f (y) cot t − y2 dy

for t ∈ R; see [2, Chap. III], so ∣∣(X ∗)±1∣∣ = e∓ 12 Cθ(t).
Lemma 8.
Suppose a traverses through Sj to Sk at most finitely many times.(1) If p < 2π

δ+ and q < 2π
δ− , then X ∈ Hp and X−1 ∈ Hq.(2) Suppose δ2 > δ1 and Ek are nonempty. If p ≥ 2π

δ+ and q ≥ 2π
δ− , then X /∈ Hp and X−1 /∈ Hq.

Proof. Observe first that for t1, t2 ∈ R with t1 < t2, we have
eπCχ[t1 ,t2](t) = ∣∣∣∣∣ sin t−t12sin t−t22

∣∣∣∣∣ (2.6)
for t ∈ R.Let x± ∈ [−π, π] be such that δ(x±) = δ±; that is, the largest positive and negative jumps are obtained at x+ and x−,respectively. Then there are δm < δn and ε > 0 such that δn − δm = δ+, θ(t) = δm for x+ − ε < t < x+ and θ(t) = δnfor x+ < t < x+ + ε.If p = λ 2π

δ+ with λ < 1, then using (2.6), we get
∫
|X ∗|p = ∫ e−

p2 Cθ = ∫ exp(− λ
δ+ πC(δmχ[x+−ε,x+ ] + δnχ[x+,x++ε] + . . .))

= ∫ ∣∣∣∣∣ sin t−(x+−ε)2sin t−x+2
∣∣∣∣∣
− λδm

δ+ ∣∣∣∣∣ sin t−x+2sin t−(x++ε)2
∣∣∣∣∣
− λδn

δ+
· · · ≤ const ∫ ∣∣∣∣ 1sin t−x+2

∣∣∣∣λ δn−δmδ+
<∞

because δn − δm = δ+ and λ < 1. Thus, since X is outer and X ∗ ∈ Lp, X ∈ Hp. Similarly, we can show that X−1 ∈ Hqif q < 2π/δ−.Let p = 2π
δ+ and rk = δk /δ+, and choose ε > 0 to be sufficiently small (which we can do because θ has finitely manydiscontinuities). Choose i < j such that x+ − ε ∈ Ei and x+ + ε ∈ Ej . Then
∫ π

−π
|X ∗(t)|pdt = ∫ π

−π
e−p 12 Cδ(t)dt = ∫ π

−π
e−r1πCχẼ1 (t) · · · e−rnπCχẼn (t)dt ≥ const∫ x++ε

x+−ε
∣∣∣∣ 1sin t−x+2

∣∣∣∣rj−ri
which is not integrable because rj − ri = 1 (j > i). Thus, X /∈ Hp since X is outer. Similarly, we can show X−1 /∈ Hqwhen q = 2π/δ−.
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Proof of Theorem 4. Suppose that (1.8) holds and Ta has a nontrivial kernel. Then there are nontrivial φ, ψ ∈ Hpsuch that φ∗ = aψ∗. It is not difficult to see that a 6= 0 almost everywhere; see [6, Theorem IV.C.1]. Thus, |R \∪Ek | = 0.As in [15], we define an outer function H by setting
H(z) = exp( 12π

∫ π

−π

eit + z
eit − z log |a(eit)|1/2dt) , |z| < 1. (2.7)

Observe that |H∗| =√|a|. We also define
F = φ

HX , G = ψH
X .Since

a = |a|eiθ = H∗H∗X ∗(X−1)∗, (2.8)we have F ∗ = G∗. As in the proof of Lemma 8, we can use (2.6) to show that
|(X−1)∗| = e 12π πCθ(t) ≤

∣∣∣∣sin ρ(t)2
∣∣∣∣− δ−2π (2.9)

for t ∈ E1 ∪ · · · ∪ En. Therefore,
|H∗(t)||(X−1)∗(t)|s ≤ const |a(t)|1/2ρ(t)− sδ−2π ≤ constρ(t) µ2− sδ−2π ≤ const

where s = µπ/δ−. Similarly, if r = µπ/δ+, |H∗(t)||X ∗(t)|r ≤ const. Using (1.8) and the assumption that δ− ≤ π, we get
1− 1

p′ = 1
p <

µ2 + δ−2π ≤ 1− δ−2π + µ2 =⇒ δ−2π − µ2 < 1
p′ ,

and so (1− s)p′ < (2π)/δ−. Therefore,
||G||1 ≤ const ∣∣∣∣|(X−1)∗|1−sψ∗∣∣∣∣ ≤ const ∣∣∣∣|(X−1)∗|1−s∣∣∣∣p′ ||ψ∗||p = const ∣∣∣∣(X−1)∗∣∣∣∣1−s(1−s)p′ ||ψ∗||p <∞

by Lemma 8. Since F ∗ = G∗, we also have G∗ ∈ L1. We can also show that F,G ∈ Hp for some p < 1. Thus, anapplication of Smirnov’s theorem implies that G,F ∈ H1. Consequently, G is a nonzero constant.Now (1.8) implies (2π/δ+−1− r)p′ < 2π/δ+ and so we can choose a q > 2π/δ+ be such that 0 < (q−1− r)p′ < 2π/δ+.By Lemma 8,
||G∗(X ∗)q||1 = ∣∣∣∣H∗(X ∗)s(X ∗)q−1−sψ∗∣∣∣∣ ≤ const ||X ∗||q−1−r(q−1−r)p′ ||ψ∗||p <∞,

but G∗(X ∗)q = const(X ∗)q /∈ L1 by the same lemma, which is a contradiction.
Remark 9.Theorem 4 shows that Ta is injective if p > 2

µ+ δ
π
. We can show that the condition is sharp; that is, if

1 ≤ p < 2
µ + δ

π
, (2.10)

then we can construct symbols a ∈ C µ such that the kernel of Ta is nontrivial. Indeed, let a be in C µ such that
a(t) ∈ S1 ∪ . . . Sn ∪ {0} and |a|−1 ∈ Lq for q < µ−1. Recall the outer functions X and H defined in (2.5) and (2.7).Since |H∗| = |a|1/2 and H is outer, we have H ∈ H∞ and H−1 ∈ H2q for q < µ−1. Let

φ = HX, ψ = H−1X.
Then φ∗ = aψ∗ (see (2.8)), and so 0 ∈ a(T) = σess(Ta) is an eigenvalue of Ta. Using Lemma 8 and Hölder’s inequality,we see that φ ∈ Hp and ψ ∈ Hp provided that 1 ≤ p < 2/(µ+ δ+/π). It is obvious that there are symbols such as thoseabove with an additional property that δ+ ≤ δ−. Thus, if (2.10) holds, then the kernel of Ta may be nontrivial.
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3. Toeplitz operators on H1
According to Coburn’s lemma, a nonzero bounded Toeplitz operator Ta on Hp has a trivial kernel or a dense range. When
p = 2, this result was proved for Hölder continuous symbols in [7], for continuous symbols in [4, 10], and for boundedsymbols in [3]. The case 1 < p <∞ for bounded symbols is in [11]. Because of the duality argument used in the proofof Coburn’s lemma in the most general case, there seems to be no obvious way to extend the result to the case p = 1.However, there is an alternative approach due to Vukotić [17], which we recall next.We write

P kerTa = {pf : p ∈ P, f ∈ kerTa},
where P is the set of all analytic polynomials.
Theorem 10.
Let 1 ≤ p <∞ and suppose that Ta is a nontrivial bounded Toeplitz operator on Hp. If Ta is not one-to-one, then

Ta
( span{P kerTa}) = P. (3.1)

Proof. The proof given in [17] also works when p 6= 2. We only comment on the case p = 1. Put χn(z) = zn. Themain idea is still the observation that the rank of the commutator
[Ta, Tχ1 ] = TaTχ1 − Tχ1Ta

is at most one; that is, it can be showed (see [17]) that
Ta(χ1f )− χ1Taf = Ta (χ1f ) (0),

where
Taf (z) = 12π

∫ π

−π

a(eiθ)f (eiθ)1− ze−iθ dθ (z ∈ D)
is the analytic extension of Taf . All the algebraic properties used in [17] remain true in the case 1 ≤ p <∞.
Coburn’s lemma for Toeplitz operators on H1 now follows directly from the preceding theorem.
Corollary 11.
If Ta is bounded on H1, then either its kernel is trivial or its range is dense.

It is well known that continuity of a is not sufficient for Ta to be bounded on H1. The most natural substitute for theclass of continuous functions is the algebra
C ∩ VMOlog,

where VMOlog is the space of functions of logarithmic vanishing mean oscillation; see [9, 16] for the definition. Observethat
C µ ⊂ VMOlog ⊂ VMO.

If a ∈ C ∩ VMOlog, then
σΦ(H1)(Ta) = a(T) (3.2)

and indTa = − inda (3.3)
provided that a(t) 6= 0 for any t ∈ T.
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Proposition 12.
Let a ∈ C ∩ VMOlog. Then

σH1 (Ta) \ σΦ(H1)(Ta) = {λ ∈ C \ a(T) : ind(λ− a) 6= 0}. (3.4)
A point λ ∈ σH1 (Ta) \ σΦ(H1)(Ta) is an eigenvalue of Ta if and only if ind(λ− a) < 0, in which case the multiplicity of λ
is the number − ind(λ− a).
Proof. Apply (3.2), (3.3), and Corollary 11.
As in the case 1 < p <∞, the situation regarding the (non)existence of eigenvalues embedded in the essential spectraof Toeplitz operators is a much more difficult question. One reason that the approach used in the previous section cannotbe applied here is related to the role that conjugate exponents play in the proof of Theorem 4. All known results arerestricted to real-valued symbols that satisfy Hölder or a slightly weaker condition. We give one condition, which isbased on the following result (see [13]).Let a : R → R be a 2π-periodic function which satisfies the condition in (1.1) with µ = 1. If a changes sign, theRiemann-Hilbert problem (2.1) has no solutions in H1. Let us see what this means in terms of eigenvalues. Using asimilar argument as in the proof of Proposition 6, it is easy to see that no point in the interior of the essential spectrumof Ta can be an eigenvalue of Ta. In particular, if a is Lipschitz continuous and if λ is in the essential spectrum of Ta,then λ may be an eigenvalue only if it is one of the endpoints of a(T).
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