
Resting state cortico-thalamic-striatal 
connectivity predicts pesponse to 
dorsomedial prefrontal rTMS in major 
depressive disorder 
Article 

Published Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0 

Open Access 

Salomons, T. V., Dunlop, K., Kennedy, S. H., Flint, A., Geraci, 
J., Giacobbe, P. and Downar, J. (2014) Resting state cortico-
thalamic-striatal connectivity predicts pesponse to dorsomedial
prefrontal rTMS in major depressive disorder. 
Neuropsychopharmacology, 39 (2). pp. 488-498. ISSN 0893-
133X doi: 10.1038/npp.2013.222 Available at 
https://centaur.reading.ac.uk/34158/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1038/npp.2013.222 

Publisher: Nature Publishing Group 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


OPEN

Resting-State Cortico-Thalamic-Striatal Connectivity
Predicts Response to Dorsomedial Prefrontal rTMS in
Major Depressive Disorder
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Joseph Geraci2,6, Peter Giacobbe1,2,5 and Jonathan Downar*,1,2,5
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Toronto, Toronto, ON, Canada; 5Department of Psychiatry, University of Toronto, Toronto, ON, Canada; 6Department of Pathology and Molecular

Medicine, Queen’s University, Kingston, ON, Canada

Despite its high toll on society, there has been little recent improvement in treatment efficacy for major depressive disorder (MDD). The

identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we

investigate whether resting-state functional connectivity predicted response to treatment with repetitive transcranial magnetic stimulation

(rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty-five individuals with treatment-refractory MDD underwent a 4-week course

of dmPFC-rTMS. Before and after treatment, subjects received resting-state functional MRI scans and assessments of depressive

symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-

subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal, and cortico-limbic

connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of

treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-

thalamic connectivity and decreased subgenual cingulate cortex-caudate connectivity, Our findings provide insight into which individuals

might respond to rTMS treatment and the mechanisms through which these treatments work.

Neuropsychopharmacology (2014) 39, 488–498; doi:10.1038/npp.2013.222; published online 23 October 2013
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INTRODUCTION

Major depressive disorder (MDD) has a devastating effect
not only on symptomatic individuals but also on society as
a whole, through high medical costs and loss of productivity
(Murray and Lopez, 1996; Collins et al, 2011). Despite the
enormous societal burden, recent history has seen relatively
little progress in treatment efficacy, with the most common
non-invasive treatments continuing to demonstrate rela-
tively low response and remission rates (Papakostas et al,
2007; Imel et al, 2008; Gartlehner et al, 2011; Spielmans
et al, 2011). There have been calls for personalized
treatment approaches to improve response rates (Collins
et al, 2011; Kapur et al, 2012).
One approach to developing personalized treatment

approaches is to better understand the biology that may

underlie individual differences in response to treatment.
Biomarkers that distinguish between depressed and non-
depressed individuals have been identified at the neural
level (Drevets et al, 2008; Northoff et al, 2011) but less is
known about the heterogeneity that underlies individual
differences in treatment response in depressed individuals.
Several studies report an association between activation in
single neural regions and treatment response. In particular,
responses in pre- and subgenual cingulate and adjacent
ventral medial prefrontal cortex (vmPFC) have been
associated with response to cognitive behavioral therapy
(Ritchey et al, 2011; Siegle et al, 2006), antidepressant
medication (Davidson et al, 2003; Kennedy et al, 2001, 2007;
Mayberg et al, 1997; Pizzagalli et al, 2001), and repetitive
transcranial magnetic stimulation (rTMS) (Li et al, 2010).
More recent work has focused on resting-state connectivity,
based on the presumption that activity across widespread
networks will be more telling than that of single regions.
Consistent with studies implicating pre- and subgenual
cingulate, recent findings suggest that connectivity
between ventral and dorsal regions of the anterior cingulate
cortex predicts response to antidepressant medication
(Kozel et al, 2011).
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If this functionally connected network represents a
window into the neural networks that underlie treatment
success, several clinically important questions arise. The
first is whether directly stimulating constituent regions of
this putative treatment response network might result in
improved outcomes. One way to examine this question is
through the use of repeated transcranial magnetic stimula-
tion (rTMS), an evolving treatment for refractory depres-
sion that uses magnetic fields to stimulate focal cortical
regions with electrical current. Although rTMS treatment
for depression has primarily focused on the dorsolateral
prefrontal cortex (dlPFC), convergent evidence from lesion
and structural imaging studies suggests that the dorsal
medial prefrontal cortex (dmPFC) might have a more
central role in emotion regulation and the pathophysiology
of major depression (Downar and Daskalakis, 2012). Given
the spatial resolution of rTMS and the proximity of this
region to the dorsal cingulate, using this target may have the
added advantage of demonstrating how direct stimulation
of constituent regions of the outcome-predicting network
identified by Kozel et al (2011) might address the
pathophysiology of depression, both at the neural and
behavioral level.
Here we investigated the neural and behavioral response

to rTMS applied to dmPFC. We observed substantial
heterogeneity in the degree of treatment response. We then
investigated the neural correlates of this heterogeneity using
resting-state functional connectivity. Our primary question
was whether baseline resting-state connectivity of the
dmPFC and subgenual cingulate cortex (sgACC) predicted
response to dmPFC-rTMS. Our secondary question was
whether changes in the connectivity of these regions were
associated with treatment response.

MATERIALS AND METHODS

Design Overview

Participants diagnosed with unipolar (MDD) or bipolar
depression (BD), resistant to at least two trials of medica-
tion, were treated with 20 sessions (4 weeks/5 sessions/week)
of open-label, add-on rTMS of the bilateral dmPFC. rTMS
coil placement for dmPFC stimulation was defined for each
subject using anatomical magnetic resonance images
acquired a week before treatment, as below. The 17-item
Hamilton Depression Rating Scale (HAMD17) was used as
the primary outcome measure in this study and was
administered at baseline and after the conclusion of the
course of treatment. Pretreatment resting-state functional
connectivity maps for seed regions representing the
stimulated dmPFC region were analyzed to identify pre-
dictors of HAMD17 improvement following treatment. To
assess neural correlates of the degree of improvement over
the course of treatment, we also conducted a second
neuroimaging session in the week immediately following
the conclusion of the treatment course.

Subjects

Subjects were 25 patients (10 male; mean 42.6 years, range
19–70) with either unipolar or bipolar illness (n¼ 4; one
type one, three type two) and a diagnosis of a major

depressive episode resistant to X2 medication trials or
medication intolerance. At the time of study, 7 subjects were
taking SSRIs, 9 SNRIs, 4 bupropion, 2 trazodone, 1
mirtazapine, 2 monoamine oxidase inhibitors, 1 tricyclic,
10 antipsychotics, 1 anticonvulsants, 7 benzodiazepines, 6
stimulants, and 3 sleeping pills. Three subjects were taking
no psychiatric medications; 18 were taking more than one
of the above listed medications. All patients had maintained
stable doses of antidepressant medications for at least 4
weeks before treatment and until completing the course of
rTMS. The group of subjects who underwent neuroimaging
was the latter individuals within a larger 47-patient clinical
outcomes case series, which will be reported separately.
This convenience sample was chosen entirely based on the
availability of functional neuroimaging, with no systematic
selection based on clinical or demographic characteristics.
Baseline symptom severity on HAMD17 was 21.3 (±6.7 SD)
with average length of current episode 42.5 months (þ /
� 10.26 SE). The median length of current episode was 12
months (range 1–204 months). No participants with active
substance abuse or psychotic disorders participated in the
study. Participants with potential contraindications to rTMS
and/or neuroimaging were excluded from participating in
this study. All patients provided informed consent to
treatment, and the study was approved by the UHN REB.

MRI Acquisition and Neuronavigation

In the week before treatment, subjects underwent MRI on a
3T GE Signa HDx scanner equipped with an 8-channel
phased-array head coil. The session included a T1-weighted
fast spoiled gradient-echo anatomical scan (TE¼ 12ms,
TI¼ 300ms, flip angle¼ 201, 116 sagittal slices,
thickness¼ 1.5mm, no gap, 256� 256 matrix, FOV¼ 240
mm). Patients also underwent a 10-min functional MRI scan
(TE¼ 30ms, TR¼ 2000ms, flip angle¼ 851, 32 axial slices,
thickness¼ 5mm, no gap, 64� 64 matrix, FOV¼ 220mm,
300TRs, 2 s temporal resolution) conducted in the resting
state with the eyes closed. In the week after treatment, they
also underwent a repeat session with identical parameters,
except for abbreviation of the T1 series (80 sagittal slices,
thickness¼ 2mm, no gap, 96� 96 matrix, FOV¼ 200mm).
One subject’s time 2 data were lost, so analyses of pre- vs
post-rTMS neural change are based on an n¼ 24.
Neuronavigation used the Visor 2.0 system (Advanced

Neuro Technologies, Enschede, the Netherlands) for MRI
preprocessing. Segments were then used for anatomical
landmarking, registration into standard Talairach and
Tournoux space, and the construction of 3-D surfaces for
the scalp and brain. Sterotactic coordinates were used to
identify stimulation area and closest approximately scalp
point in standard space (brain coordinate¼X 0, Y þ 30,
and Z þ 30; scalp coordinate¼X 0, Y þ 60, and Z þ 60) for
coil vertex placement. 3-D brain surfaces corresponding to
stimulation coordinates were then coregistered to the
patient’s head for individualized placement of the rTMS
stimulation coil.

rTMS Treatment

A full description of the dmPFC-rTMS treatment protocol
has been previously published (Downar et al, 2012). In
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brief, rTMS treatment was conducted using a MagPro R30
rTMS system (MagVenture, Farum, Denmark), and Cool-
DB80 stimulation coil placed over the dmPFC under MRI
neuronavigation as above. Bilateral stimulation of the left
then the right hemisphere was accomplished by orienting
the coil laterally, with vertex current flow directed toward
the hemisphere to be stimulated (Harmer et al, 2001; Terao
et al, 2001). Stimuli were delivered at 120% of the resting
motor threshold (determined using stimulation of the
medial aspect of the primary motor cortex to activate the
extensor hallucis longus-EHL), at 10Hz, at a duty cycle of
5 s on, 10 s off for a total of 3000 pulses in 60 trains per
hemisphere per session. Note that the standard safety tables
for rTMS administration specify a slightly shorter duration
limit of 4.2 s for 10Hz stimulation at 120% resting motor
threshold (Chen et al, 1997). Note also that these safety
parameters were based on observations during stimulation
of the upper extremities rather than the lower extremities as
in the present study (see Supplementary Methods for
additional methodological and safety information).

Preprocessing

Preprocessing of resting-state functional data was per-
formed using FEAT (Beckmann et al, 2003), part of FSL.
The first five volumes were deleted to account for signal
stabilization. Slice-timing correction, removal of non-brain
using BET (Smith, 2002), motion correction with MCFLIRT
(Jenkinson et al, 2002), and spatial smoothing using a
Gaussian kernel of 6mm FWHM were conducted. Mean-
based intensity normalization of all volumes was conducted.
Motion parameters and FAST (Zhang et al, 2001) segmented
CSF, and white matter mean time series data were extracted
and utilized in a linear regression analysis (Fox et al, 2005).
Data were bandpass filtered between 0.009 and 0.09Hz and
registered to the MNI-152 template brain using a linear
transformation in FSL’s FLIRT module.

Seed ROI Selection

Two seed regions of interest (ROIs) in the dmPFC were
initially selected based on their proximity to the region
stimulated by rTMS. The more superior of the two was just
above the cingulate cortex; the second region was deeper,
in the region of the anterior midcingulate (aMCC)
(Supplementary Figure S2). Time courses for these ROI
seeds were extracted from regions defined from a parcella-
tion map established by Craddock et al (Craddock et al,
2012) (see Supplementary Methods for details).
The subgenual cingulate has been consistently linked

with outcome prediction (Davidson et al, 2003; Kennedy
et al, 2001; Kozel et al, 2011; Mayberg et al, 1997;
Ritchey et al, 2011; Siegle et al, 2006) and connectivity
with our anatomically defined ROIs was found to predict
outcomes in the present study (see Results). We therefore
also tested a functionally defined sgACC seed ROI to
examine how connectivity of this region was associated with
outcomes following rTMS of dmPFC. Thus, although the
particular cluster was chosen post hoc, there was a strong
a priori interest in examining this region’s role in predicting
treatment response.

Statistical Analysis

Seed ROIs were registered to each participant’s brain using
the transformation matrix from the original registration
to standard space in FLIRT, extracting a mean time series
of the masked seed ROI region, and analyzed in multiple
linear regression analyses to find positively and negatively
correlated voxels associated with the seed ROI. This
correlation with the time series was taken as a measure of
functional connectivity with the seed region. In order to
find regions where correlation with the time series of our
ROI regions was associated with symptom change following
treatment, group level analysis was conducted using the
FSL’s FLAME mixed effects model (Beckmann et al, 2003),
using demeaned HAMD17 change scores for each subject as
a regressor in the general linear model. All corrections for
multiple comparisons were performed using a Gaussian
random field theory cluster-based correction (Z41.98,
cluster significance Po0.05, corrected), resulting in cor-
rected z-score maps correlating pretreatment functional
connectivity for each seed to HAMD17 change.
In order to examine the association between change in

functional connectivity and HAMD17 (baseline to post
treatment), ROIs were registered to each participant’s pre-
and post-treatment scan, extracting a mean time series of the
masked seed region. An initial fixed effects general linear
model was conducted to compare pre- and post-treatment
connectivity for each subject. The results of these analyses
were then examined at the group level to find voxels where
change in functional connectivity in the seed regions was
associated with change in depression symptoms. This
analysis was conducted using FLAME mixed effects model
and demeaned HAMD17 change for each subject as a
regressor in the general linear model.
Connectivity values between our seed and target regions

were extracted by transforming masks of individual clusters
into individual space and extracting z-score values from
the relevant connectivity map. In the case of baseline corre-
lations, values were extracted from individual subjects’
baseline connectivity. For connectivity change analysis,
between subjects correlations were performed by extracting
values from individual subjects’ pre vs post contrast map.
Anatomical specificity of the extracted regions was ensured
by masking the target with the anatomical map for the
region from the Harvard-Oxford atlas (50% probability).
To test whether improved outcomes were associated with

relative shifts between our dorsal and ventral ROIs, we
compared correlations between HAMD change and con-
nectivity between a given target region and our two ROI
seed regions (dmPFC and sgACC). These tests were
performed using the Hotelling’s test for dependent correla-
tions (Hotelling, 1940).
Recent work has suggested that small movements may

have a greater impact on resting-state analyses than
previously considered (Power et al, 2012). Thus, in addition
to visual inspection for large-scale movements, we assessed
the impact of micro-movements on our data. Specifically,
given that our analyses assessed correlations between
functional connectivity and a clinical outcome measure
(HAMD17 change), we tested whether micro-movement
would systematically alter our findings due to a confound
between this dependent measure and movement. Mean
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relative movements were extracted from each subject at
each time point. We then assessed correlations between
movement and HAMD17 change.

RESULTS

Clinical Results

Mean HAMD17 score at baseline was 21.3 (±6.7). Following
dmPFC-rTMS treatment, mean HAMD17 score had de-
creased significantly to 12.0 (±8.2) (po0.05). Overall,
HAMD17 scores decreased by 45% (±31%) between base-
line and post treatment, although there was substantial
interindividual variation in treatment response (Supple-
mentary Figure S1).
Individuals with BPD (n¼ 4) had higher HAMD17 scores

at baseline (26.5±4.1) than individuals with UPD (n¼ 21;
20.3±1.30), although this difference did not reach sig-
nificance (t23¼ 1.8, p¼ 0.08). HAMD17 change was greater
in BPD (mean reduction of 12±1.15) than UPD (mean
reduction of 8.8±1.51), but this difference was not
significant (t22¼ 0.92, p¼ 0.37).

Functional Connectivity Results

Baseline predictors of response. The stimulated dmPFC
region contained a superior and an inferior subregion in the
parcellation atlas of Craddock et al (Craddock et al, 2012);
each one was investigated here. Baseline resting-state
functional connectivity of the more superior dmPFC ROI
seed was not significantly correlated with HAMD17 change
and will not be referred to further in this manuscript.

However, baseline functional connectivity of the more
inferior dorsomedial (aMCC) ROI seed was significantly
associated with treatment response (Table 1). Results
reported for ‘‘dmPFC’’ will hereafter refer to this subregion
specifically. Higher baseline connectivity between dmPFC
and a medial prefrontal cluster spanning the subgenual
cingulate gyrus (BA 25, 32) and ventromedial prefrontal
cortex (BA 11, 47) was associated with better response to
treatment. Lower baseline connectivity between dmPFC and
right putamen, right thalamus (medial dorsal and ventral
lateral subnuclei), and right hippocampus/amygdala was
associated with better response to treatment. At baseline,
connectivity of dmPFC with sgACC was primarily positive.
Connectivity with thalamus and putamen was primarily
negative (Table 1, Figure 1).

Baseline connectivity of sgACC was also significantly
correlated with outcomes. Higher baseline connectivity
between sgACC and dorsal lateral PFC (dlPFC—BA 8, 9)
was associated with better response to treatment. Lower
baseline connectivity between sgACC and the insula,
putamen, and parahippocampus/amygdala was associated
with better response to treatment. At baseline, connectivity
of sgACC with dlPFC was primarily negative and con-
nectivity with parahippocampus/amygdala was primarily
positive. Subjects were split between positive and negative
connectivity between sgACC and insula (Table 1, Figure 2).

Baseline connectivity between sgACC and parahippocam-
pal gyrus was significantly correlated with baseline HAMD
scores (� 0.42, po0.05). None of the other predictor regions
was significantly correlated with baseline depression severity.

Neuroimaging results did not change in any substantial
manner when individuals with bipolar disorder (n¼ 4) were

Table 1 Activation Peaks for Regions where Baseline Connectivity was Associated with Treatment Response

Seed Region and broadman area MNI coordinates Peak z-score

X Y Z

Anterior midcingulate Positive correlation

Medial frontal gyrus (R), (BA11, BA47, BA25, and BA32) 16 30 � 24 3.3

Subcallosal gyrus (L) (BA 24 and BA25) and medial frontal gyrus (L) (BA11) � 6 28 � 18 3.2

Medial frontal gyrus (L) and middle frontal gyrus (L) � 22 38 � 20 3

Negative correlation

Putamen (R) 28 4 2 3.4

Thalamus (R), medial dorsal N, and ventral lateral N 14 � 12 8 3.2

Thalamus (L), medial dorsal N, VLN, VPN, and putamen � 20 � 8 8 3.5

Hippocampus (R) and amygdala 24 � 14 � 14 2.9

Subgenual cingulate Positive correlation

Left paracingulate gyrus, medial frontal gyrus, (BA6, BA9, and BA32),
and superior frontal gyrus (bi)

� 8 34 28 3.7

Left middle frontal gyrus (BA8 and BA9) � 32 14 38 3.6

Right middle frontal gyrus and inferior frontal gyrus, (BA9) 44 18 28 3.2

Negative correlation

Right insula, claustrum, and putamen 38 2 � 6 4

Right parahippocampal gyrus and amygdala 20 � 6 � 16 3.9

Abbreviation: HAMD, Hamilton Depression Rating Scale.
Z-scores indicate the degree of correlation between connectivity and symptom improvement (HAMD reduction). Peaks are from significant clusters (po0.05
corrected).
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excluded from either the baseline or change analysis (data
not shown). This suggests that our results were not
substantially driven by inclusion of individuals with bipolar
disorder.

Neural correlates of response. There were a number of
regions where connectivity change in response to rTMS was
associated with outcomes (Supplementary Table S1). For
the dmPFC seed, decreased connectivity with the bilateral
insula and parahippocampal gyrus/amygdala was associated
with better treatment response. The subjects who improved
most appeared to have increased anti-correlations between
dmPFC and insula. HAMD improvement was also asso-
ciated with increased connectivity with the bilateral
thalamus (medial dorsal nuclei and pulvinar)(Figure 3).
On average, individuals who had the most improvement
had high levels of anti-correlation at baseline, which were
modified somewhat by treatment, whereas individuals had
less successful outcomes had little connectivity in these
regions (Table 2).

For the sgACC seed decreased connectivity with the
ventral striatum and a region of dmPFC (just posterior to
the initial seed region) were associated with better response
to treatment (Figure 4). Subjects who responded well to
treatment developed increased anti-correlation between
sgACC and dmPFC. Subjects who responded less well to
treatment showed increased positive correlation between
sgACC and caudate (Table 2).

To examine whether outcomes were associated with
relative dorsal-ventral shifts between our ROIs, we tested

whether the association between HAMD change and
connectivity change with target regions differed between
the dorsal (dmPFC) and ventral (sgACC) ROIs. Connectivity
change between dmPFC and thalamus was significantly
correlated with HAMD17 improvement. The corresponding
correlation for the ventral ROI was nonsignificant (r¼ 0.38).
These correlations were not significantly different from each
other (t¼ 0.7, p¼ 0.49). Therefore, there is no basis for
concluding that successful treatment is associated with a
relative ventral-dorsal shift in cortico-thalamic connectivity.
On the other hand, reduced connectivity between caudate
and sgACC was associated with HAMD improvement.
The corresponding correlation for the dorsal ROI was small
(r¼ � 0.01) and the difference with the sgACC correlation
was marginally significant (t¼ � 2.01, p¼ 0.05) suggesting
that the successful treatment response corresponds with a
relative shift in caudate connectivity with ventral (sgACC)
as compared with dorsal (dmPFC) regions. The negative
association between dmPFC-insula connectivity and outcome
was significantly different from the corresponding sgACC
connectivity (r¼ 0.15; t¼ � 2.36, po0.05).

To test for confounding effects of micro-movements
(Power et al, 2012), we examined whether relative displace-
ment at either time point was associated with our dependent
measure (HAMD17 change). We found that relative move-
ment was stable within individuals across time points
(r¼ 0.92 for time 1 and time 2) but that HAMD17 change
was not correlated with movement at time 1 (r¼ � 0.11) or
time 2 (r¼ � 0.11). Change in mean relative movement was
also not related to HAMD17 change (r¼ � 0.08).
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Figure 1 Baseline connectivity from dorsomedial prefrontal cortex (dmPFC) in relation to Hamilton Depression Rating Scale (HAMD) improvement:
regions where high connectivity (orange) or low connectivity (blue) with the dmPFC seed (red) was significantly correlated with reduced depression
(HAMD change, high scores indicate improvement) following repetitive transcranial magnetic stimulation (rTMS) to dmPFC.
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DISCUSSION

This study examined neural predictors and correlates of
treatment response to rTMS administered to the dmPFC in
patients with MDD. Our primary aim was to find predictors
of treatment response by identifying regions where baseline
functional connectivity was associated with reduction in
depression symptoms following treatment. Specifically,
we examined whether baseline connectivity of the dmPFC
target region with other brain regions was associated with
successful outcomes. As resting-state activity of sgACC has
been previously associated with treatment outcomes in
depression (Davidson et al, 2003; Kennedy et al, 2001, 2007;
Mayberg et al, 1997; Ritchey et al, 2011; Siegle et al, 2006),
we also examined whether baseline connectivity of sgACC
with other brain regions was correlated with treatment
response. A secondary aim of this study was to examine
neural correlates of treatment response, by identifying
regions where change in functional connectivity with the
dmPFC and sgACC from pre- to post-treatment correlated
with reduction in depression symptoms.
As noted above, the degree of response to dmPFC-rTMS

was strikingly heterogeneous, with individuals’ HAMD17

change varying widely. Our analysis of the neuroimaging
data revealed a number of predictor regions, where
connectivity with dmPFC and sgACC was associated with
successful treatment response. Specifically, we found that
patients with high baseline connectivity among cortical
nodes involved in executive control and emotion

regulation (dmPFC-sgACC and sgACC-dlPFC) experienced
a greater reduction in depressive symptoms following
rTMS to the dmPFC. At the same time, patients with low
baseline cortico-thalamic (dmPFC-medial dorsal thalamus),
cortico-striatal (dmPFC-putamen), and cortico-limbic
(sgACC-amygdala and sgACC-hippocampus) connectivity
also experienced a greater response to the treatment
(Figures 1 and 2).
We also observed a number of regions where connectivity

changes correlated with improvement—that is, where the
pre- to post-treatment change in functional connectivity to
dmPFC and sgACC (Figures 3 and 4) was associated with
reduction in depressive symptoms. Of particular interest,
clinical improvement was associated with an increase in
dmPFC-thalamus connectivity and a decrease in sgACC-
caudate connectivity. Improvement was also associated with
decreases in connectivity between dmPFC and insula, and
between sgACC and a separate, more posterior region of
midcingulate cortex. Concordance between the predictor
and correlate regions observed here and circuits previously
implicated in depression supports their plausibility as
biomarkers for treatment response. Depression has been
associated with functional and structural abnormalities in
subgenual cingulate, thalamus, striatum, and limbic regions
(Alcaro et al, 2010; Drevets et al, 2008; Heller et al, 2009,
2013; Mayberg, 2009; Phillips et al, 2003). Cortico-thalamic-
striatal circuits have also shown signs of abnormal function
in depression in recent studies. For example, sgACC
connectivity with limbic, thalamic, and striatal regions has
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Figure 2 Baseline connectivity from subgenual cingulate cortex (sgACC) in relation to Hamilton Depression Rating Scale (HAMD) improvement: regions
where high connectivity (orange) or low connectivity (blue) with the sgACC seed (red) was significantly correlated with reduced depression (HAMD
change, high scores indicate improvement) following repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC).
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been strongly implicated in the maladaptive emotion
regulation underlying depression (Davey et al, 2012;
Furman et al, 2011; Giacobbe et al, 2009; Lui et al, 2011)
and associated with the degree of response to treatment
(Anand et al, 2005, 2009; Diaconescu et al, 2011; Kozel
et al, 2011).
Our predictor analysis suggests that specific patterns of

connectivity may characterize those individuals who are
most likely to benefit from rTMS to dmPFC. First, high
levels of baseline cortico-cortical connectivity among
prefrontal regions were found in the patients who had
more successful outcomes. The association with high
baseline connectivity between dmPFC and sgACC was of
particular interest. Interplay between these regions has been
associated with the transition between goal-directed cogni-
tion and affective response (Simpson et al, 2001a, b), and
connectivity between similar regions has been implicated
both with depressive symptomology (Davey et al, 2012) and
response to antidepressant medication (Kozel et al, 2011).
Given the role of this particular region of dmPFC in
facilitating goal-directed behavior by integrating cognitive
information with associated rewards and punishments
(Shackman et al, 2011), the association between positive
outcomes and high baseline connectivity between this
region and the sgACC and low baseline connectivity with
striatum may suggest that positive outcomes are associated
with the capacity for executive control over core emotional
functions. In the context of this interpretation, it is
noteworthy that improvements in treatment were associated
with increased connectivity between dmPFC and thalamus,

and decreased connectivity between sgACC and the caudate.
What is suggested is that a potential mechanism of action of
rTMS to dmPFC is increased influence of cognitive control
networks over thalamic and striatal regions, possibly linked
with improved facilitation of goal-directed behavior
(Corbetta and Shulman, 2002; Price and Drevets, 2010;
Sheline et al, 2010).
What remains unclear is whether the outcome-predicting

patterns of functional connectivity in the present study
represent general biomarkers of response across all treat-
ment modalities or more specific biomarkers for response
to dorsomedial rTMS in particular. The network-based
model of major depression proposed by Seminowicz et al
(Seminowicz et al, 2004) suggests that different antidepres-
sant approaches might work through different neural
routes, suggesting that the predictors and correlates of
change here may be specific for response to rTMS
treatment, or even more specifically rTMS to this specific
site (dmPFC). In line with such an interpretation, it is
noteworthy that Kozel et al (Kozel et al, 2011) found that
baseline connectivity of similar cingulate regions was
associated with response to antidepressant medication,
but that the association was in the opposite direction to
that observed here. One intriguing possibility is that
connectivity of these regions might differentiate between
suitability for a particular modality of treatment (see
Supplementary Discussion for expanded discussion).
The ability to predict successful treatment response based

on reliable biomarkers would allow for optimal matching
between patient and treatment and may therefore represent
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Table 2 Connectivity and HAMD17 Values for Each Subject

(A)

DMPFC Seed

HAMD change Time 1 insula Time 2 insula Time 1 thalamus Time 2 thalamus Time 1 MCC Time 2 MCC Time 1 caudate Time 2 caudate

24 0.53 � 2.43 � 8.44 � 0.93 5.5 3.36 3.58 1.52

20 � 1.27 3.31 � 0.57 � 2.36 � 4.49 6.25 � 1.54 4.46

18 � 0.78 � 4.38 � 1.17 � 4.77 3.42 2.34 � 1.76 2.27

16 3.06 2.42 � 8.86 � 6.69 5.34 8.82 � 3.49 � 3.55

15 3.01 � 4.68 � 4.49 0.3 9.49 4.94 1.17 � 0.5

14 0.29 � 3.81 � 4.74 � 3.64 5.15 3.31 1.65 2.18

14 � 0.64 � 1.87 � 6.72 � 0.58 4.88 5.26 6.57 3.69

10 � 3.06 2.46 � 7.3 1.08 3.32 3.48 4.97 6.8

10 4.71 3.38 � 4.74 � 7.76 3.33 11.37 6.98 1.31

10 3.75 0.16 � 3.76 � 3.83 3.81 2.12 0.67 � 1.16

10 4.04 2.26 � 8.22 � 0.82 10.55 2.32 � 5.72 0.53

10 1.42 2.63 0.75 � 0.71 5.36 10.02 6.26 1.19

10 � 2.32 � 7.93 � 2.71 � 3.64 6.56 0.62 2.76 � 1.11

9 4.25 � 1.06 � 0.77 4.26 4.41 0.89 5.89 3.38

8 1.99 0.82 � 1.34 1.68 2.7 5.33 � 0.3 0.43

7 2.55 1.67 � 1.27 � 4.08 2.56 11.71 1.14 10.03

7 � 5.89 � 2.66 1.38 1.66 � 1.35 6.93 2 7.59

5 � 1.6 � 1.16 � 1.39 0.16 4.52 3.33 5.46 0.34

3 � 6.47 � 0.52 � 1.65 � 1.92 1.38 4.51 � 0.57 6.65

2 3.67 0.62 � 2.92 � 1.27 8.18 5.47 8.26 2.93

2 � 2.89 2.15 � 6.91 � 2.95 10.23 8.83 5.75 � 0.91

1 2.77 5.44 4 � 1.57 6.06 6.52 4.89 0.33

� 1 � 3.27 � 0.77 2.38 1.13 3.7 5.21 � 0.02 1.72

� 2 � 1.47 4.52 2.5 � 1.4 4.39 8.23 2.67 5.57

Correlation with HAMD change 0.21 � 0.35 � 0.53 � 0.22 � 0.16 � 0.22 � 0.26 � 0.17

Average X10 0.98 � 0.65 � 4.69 � 2.64 4.79 4.94 1.7 1.36

Average o10 � 0.58 0.82 � 0.54 � 0.39 4.25 6.09 3.2 3.46

(B)

sgACC seed

HAMD change Time 1 MCC Time 2 MCC Time 1 caudate Time 2 caudate Time 1 insula Time 2 insula Time 1 thalamus Time 2 thalamus

24 � 0.92 � 3.6 � 3.36 2.94 � 1.39 � 3.37 � 9.69 � 0.07

20 � 3.30 � 0.04 2.81 � 0.86 1.36 3.12 � 2.46 � 0.12

18 1.69 1.19 � 0.84 0.56 0.19 0.36 0.57 � 1.13

16 � 1.57 � 3.13 � 1.31 4.84 � 2.4 � 0.58 0.94 0.84

15 2.42 � 3.3 � 3.86 3.17 � 3.29 0.98 � 1.19 � 0.57

14 � 2.41 � 2.73 � 0.18 � 1.1 � 1.1 � 1.32 1.86 2.05

14 4.06 � 5.05 � 6.1 7.81 1.85 � 2.88 � 4.72 � 3.06

10 � 1.45 � 0.59 2.36 � 1.94 3.92 � 2.64 � 4.96 � 0.71

10 � 0.65 � 10.04 � 6.86 8.86 3.62 � 3.12 � 2.59 7.94

10 0.1 � 7.16 � 4.32 � 0.6 � 0.86 � 7.61 0.68 � 0.34

10 1.93 3.08 0.28 2.84 5.09 3.21 � 0.47 3.55

10 0.91 2 0.31 2 0.4 2.04 � 4.87 � 2.65

10 3.76 � 0.59 � 2.59 1.41 2.99 5.67 � 2.07 3.62

9 � 1.25 2.25 2.45 0.83 � 3.37 0.09 0.52 0.55

8 3.02 � 1.73 � 3.28 5.99 3.42 4.21 3.49 � 2.34

7 2.52 4.73 1.81 2.62 2.36 6.82 � 2.81 � 0.93

7 5.27 2.92 � 1.63 9.05 2.88 � 1.68 2.05 � 1.43
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a key breakthrough in improving treatment outcomes. Here
we demonstrate that baseline connectivity of dmPFC and
sgACC with each other and with other cortical, thalamic,
and striatal regions was associated with successful response
to treatment with dmPFC-rTMS. A further step toward the
goal of establishing the clinical utility of these findings

would be to test the model outlined here in an independent
sample of depressed individuals. We would predict that
individuals with low levels of baseline connectivity between
dmPFC, thalamus, and striatum and high levels of
connectivity between dmPFC and sgACC would be most
likely to benefit from rTMS to dmPFC. If these predictions
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Figure 4 Change in connectivity from subgenual cingulate cortex (sgACC) in relation to Hamilton Depression Rating Scale (HAMD) improvement:
regions where decreased connectivity (blue) with the sgACC seed (red) was significantly correlated with reduced depression (HAMD change, high scores
indicate improvement) following repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC).

Table 2 (Continued)

(A)

DMPFC Seed

HAMD change Time 1 insula Time 2 insula Time 1 thalamus Time 2 thalamus Time 1 MCC Time 2 MCC Time 1 caudate Time 2 caudate

5 � 0.8 2.54 2.56 � 7.21 � 2.38 � 0.17 � 3.08 � 0.02

3 1.85 4.94 3.05 2.11 0.49 7.46 � 2.18 2.85

2 4.35 � 0.48 � 1.29 3.46 3.91 4.27 � 1.01 0.66

2 � 1.26 � 3.7 � 0.39 2.19 4 0.88 3.02 0.36

1 0.72 2.25 2.12 � 0.25 3.31 1.03 0.44 � 1.69

� 1 � 3.02 3.67 7.25 4.35 � 0.86 5.33 2.31 � 0.69

� 2 � 0.31 8.78 8.68 0.35 3.28 4.91 � 0.88 � 2.85

Correlation with HAMD change � 0.12 � 0.48 � 0.52 0.05 � 0.37 � 0.44 � 0.43 0.08

Average X10 0.35 � 2.3 � 1.82 2.3 0.8 � 0.47 � 2.23 0.72

Average o10 1.01 2.38 1.94 2.14 1.55 3.01 0.17 � 0.5

Abbreviations: DMPFC, dorsomedial prefrontal cortex; HAMD, Hamilton Depression Rating Scale; MCC, midcingulate; sgACC, subgenual cingulate cortex.
Connectivity values for the dmPFC (A) and sgACC (B) seeds (extracted z-scores for each target region). Subjects are ranked by HAMD17 change scores. At bottom
are correlations between connectivity and HAMD17 change scores for each time point. In addition, the mean connectivity value for subjects above (X10) and below
(o10) the median HAMD17 change score is provided.
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prove correct, comparison with rTMS treatments applied
to other therapeutic targets (eg, dlPFC) would further
demonstrate specificity of these biomarkers (Downar and
Daskalakis, 2012). This approach, if successful, would
represent a promising step toward the goal of developing
reliable biological markers for predicting the treatment with
the greatest likelihood of success in any given patient.
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