The vertical structure of ocean heat transport

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

Published version at: http://dx.doi.org/10.1029/2005GL022474
To link to this article DOI: http://dx.doi.org/10.1029/2005GL022474

Publisher: American Geophysical Union

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
The vertical structure of ocean heat transport

G. Boccaletti,¹ R. Ferrari,¹ A. Adcroft,² D. Ferreira,¹ and J. Marshall¹

Received 18 January 2005; revised 23 March 2005; accepted 29 March 2005; published 17 May 2005.

[1] One of the most important contributions the ocean makes to Earth’s climate is through its poleward heat transport: about 1.5 PW or more than 30% of that accomplished by the ocean-atmosphere system (Trenberth and Caron, 2001). Recently, concern has arisen over whether global warming could affect this heat transport (Watson et al., 2001), for example, reducing high latitude convection and triggering a collapse of the deep overturning circulation (Rahmstorf, 1995). While the consequences of abrupt changes in oceanic circulation should be of concern, we argue that the attention devoted to deep circulations is disproportionate to their role in heat transport. For this purpose, we introduce a heat function which identifies the contribution to the heat transport by different components of the oceanic circulation. A new view of the ocean emerges in which a shallow surface intensified circulation dominates the poleward heat transport.

1. Introduction

[2] Model simulations suggest that in the absence of oceanic heat transport the high latitudes would cool significantly, polar caps would spread equatorwards, and the Earth would freeze over [Winton, 2003]. While global ocean heat transport can be deduced from estimates of air-sea fluxes [Trenberth and Caron, 2001], its partitioning among different components of the circulation is difficult to determine from observations or models, and remains a source of debate.

[3] Traditional views of the ocean assign the bulk of the heat transport to the deep overturning circulation [Roemmich and Wunsch, 1985]. More recently Talley [2003] has attempted to reconstruct the vertical structure of the oceanic circulation from data by identifying water mass ventilation for shallow, intermediate, and deep waters. She concludes that shallow overturnings dominate the transport in the Pacific, but not in the Atlantic, where the deep overturning carries the bulk of the heat. Despite current efforts to accurately constrain the vertical structure of the oceanic heat transport, a view of the ocean circulation in which the deep circulation is responsible for most of the heat transport pervades the literature, especially when concerning climate change [Rahmstorf, 1995; Alley et al., 2003]. A clear way of diagnosing the vertical structure of the oceanic heat transport is still lacking.

[4] For a circulation flowing poleward near the surface, where temperatures are high, and returning equatorward at depth, where temperatures are low, the poleward heat transport is proportional to the strength of the circulation multiplied by the temperature difference encountered. The mean absolute temperature of the circulation is irrelevant as it just represents heat being carried around without being exchanged with the atmosphere. By calculating such a quantity for each circulation, it is possible to compare the contribution each one makes to the poleward heat transport. This paper develops the tools to make such calculations.

2. The Model

[5] The model used in this study is the MIT ocean general circulation model with a horizontal resolution of 2.8°, and 15 vertical levels [Marshall et al., 1997]. At this coarse resolution processes such as convection, mixing, and transfer of properties by the mesoscale eddy field, are parameterized. The surface heat and fresh water fluxes are each the sum of two terms: an imposed flux and a restoring term proportional to the difference between surface values and climatology [Jiang et al., 1999]. The restoring timescales are 60 and 90 days for temperature and salinity respectively. The model is therefore capable of modifying its surface fluxes in response to changes in circulation. The model is initialized from Levitus climatology, forced by monthly mean climatological surface wind stresses [Trenberth et al., 1990], and run for 7000 years until it has reached equilibrium. A constant diapycnal mixing coefficient κ of 0.3 × 10⁻⁴ m²/s is used.

[6] Figure 1a shows the stream function ψ (where ∂ψ/∂t = −v, ∂ψ/∂y = −w, and v and w are the zonally integrated meridional and vertical velocities respectively) for the global ocean model used here. Shallow cells, confined to the first 500 m, are connected to the processes of midlatitude subduction and equatorial upwelling. Deep cells, occupying the much vaster abyss, are connected to high latitude convection and abyssal mixing. It is the potential collapse of these cells – as a result of the shut down of North Atlantic Deep Water formation for example – that is believed to trigger major climate shifts, because of the sudden decrease in meridional heat transport by the ocean [Alley et al., 2003].

3. The Heat Function

[7] A common way to diagnose the heat transport is to compute the vertical integral of the temperature flux vT across an east-west section bounded by continents [Bryden and Imawaki, 2001]. This ensures that, as long as the total mass flux across the section is zero, the heat transport is due
5. Atlantic Heat Transport

[11] The deep meridional overturning circulation in the Atlantic, primarily associated with North Atlantic Deep Water formation, often is argued [Bryan, 1962] to dominate the oceanic heat transport because it flows poleward at the surface and equatorward at depth, therefore encountering a

chosen the sign to ensure that the heat function is positive for northward heat transport. However what contributes to the net meridional heat transport is only the component of the heat flux that varies along closed streamline loops: in the zonal mean, heat that is carried poleward at one depth and returned equatorward at another depth does not contribute any net meridional heat exchange. Therefore, we must eliminate from the portion of advective fluxes along each closed streamline tube that carries fluid at constant temperature. That portion is given by the product of the circulation \(v \) times a temperature uniform along the flow \(\bar{T} = \bar{T}(\psi) \), where \(\psi \) are the appropriate streamlines. There is arbitrariness in the choice of \(\bar{T} \), and several were tried, but as long as \(\bar{T} \) represents a reasonable average temperature for the fluid moving along the streamlines, the results do not qualitatively change. We chose the temperature field \(\bar{T} \) which minimizes the total advective heat transport in a least square sense, that is we minimize \(v(T - \bar{T}) \) when averaged between two streamlines, as defined in equation (A3). We can therefore define the heat function \(\hat{f} \) as,

\[
- i \times \nabla \phi = H - v \bar{T}(\psi).
\]

where \(i \) is a unit vector in the zonal direction.
large top to bottom vertical temperature difference. This is in opposition to the horizontal transport in gyres driven by the winds which, while of the same order of magnitude as the meridional overturning, encounter only the much smaller east-west temperature difference. Therefore, the argument goes, most of the heat transport must be due to the meridional overturning associated with deep water formation. The stream function for the Atlantic is shown in Figure 2a and the traditional decomposition into horizontal and vertical heat transport \[Bryden and Imawaki, 2001\] is shown in Figure 2b. At 24°N this decomposition assigns less than 0.1 PW to the horizontal circulation and 0.8 PW to the vertical circulation. Figure 2a further suggests that the main contribution is due to the deep overturning. However Figure 2c shows that such heat transport is again surface intensified. Both the deep circulation and the wind-driven circulation contribute to the vertical component, the former contributing about 0.4 PW, the latter about 0.5 PW. This is roughly consistent with the analysis by Talley [2003], who also recognizes the large contribution of the shallow circulation.

6. Abyssal Mixing and Heat Transport

[12] The importance of the deep overturning circulation in transporting heat is invoked to motivate the study of abyssal mixing in the ocean: it is often argued that the oceanic poleward heat transport is limited by the ability of the ocean to mix dense bottom waters across the stratification of the abyss [Munk and Wunsch, 1998].

[13] Figure 1c suggests that the problem of determining the oceanic heat transport is largely independent from that of the abyssal stratification, and that studies of deep abyssal mixing should be seen in this context. The mass transport is sensitive to mixing, but the heat transport also depends on the temperature difference, which is small in the abyss. Figure 3a shows the difference in volume transport between a simulation with a constant diapycnal mixing coefficient of \(\kappa = 0.3 \times 10^{-4} \text{ m}^2/\text{s}\) and a simulation in which abyssal mixing has been enhanced by increasing it to \(1.7 \times 10^{-4} \text{ m}^2/\text{s}\) below 2,000 m [Bryan and Lewis, 1979].

[14] The deep circulation more than doubles in response to the enhanced abyssal mixing, going from about 9 Sv to 21 Sv (Figure 3a). However the associated heat function (Figure 3b), and the total heat transport, remain virtually unchanged even though in principle the model is free to adjust its surface heat flux in response to changes in the circulation. Therefore while the mean mass transport and the deep stratification are indeed controlled by abyssal mixing, the modelled global heat transport is not [see also Scott and Marotzke, 2002]. This is not the case when mixing is also allowed to change in the thermocline so as to affect the surface circulation. Studies where mixing is changed across the whole water column, including the upper 500 m, do indeed find that the total heat transport is affected [Simmons et al., 2004].

7. Conclusions

[15] Our analysis has important implications for assessing the role of the ocean in paleoclimate and climate change. We have shown that the surface circulation dominates the heat transport in a model of the global ocean. It is therefore more likely that ocean heat fluxes will respond to changes in atmospheric winds, which drive the shallow overturning circulation associated with midlatitude subduction and equatorial upwelling [Boccaletti et al., 2004], rather than to changes in abyssal mixing and convection that drive the deep circulation. This does not exclude the possibility that the abyssal flow may affect the heat transport indirectly.

Figure 2. (a) Mass stream function for the North Atlantic. Contour interval is 2 Sv. (b) Decomposition of the advective heat transport \(\int \nabla T dz\) (black line) into a vertical contribution \(\int \nabla T dz\) (red line) and a horizontal contribution \(\int \nabla T dz\) (blue line). Here \(\langle \rangle = \int \langle dx \rangle\) and \(\langle \rangle' = \langle \rangle - \langle \rangle\). (c) Heat function for the North Atlantic. Contour interval is 0.1 PW.

Figure 3. (a) Stream function Anomaly. Difference in meridional volume transport between a run with constant mixing \(\times 10^{-4} \text{ m}^2/\text{s}\) and one in which the mixing has been increased to \(1.7 \times 10^{-4} \text{ m}^2/\text{s}\) in the abyss below 2,000 m. Contour interval is 3 Sv. (b) Heat function anomaly. Same as a but for the heat transport. Contour interval is 0.2 PW.
through its effect on the surface flow. However, a decrease in deep overturning circulation alone does not imply a significant reduction of the global oceanic heat transport. These results furthermore suggest that variability in the global heat budget transport may be decadal, the timescale of upper ocean variability, rather than centennial or longer, which is the timescale typical of the deep meridional overturning.

Appendix A: Calculation of the Heat Function

[16] The appropriate representation of mass flow for use in computation of the heat function is the residual circulation, which represents both the effects of mean flow and eddies. To proceed we divide the zonal and time mean heat transport in a mean contribution, which represents both the effects of mean flow and eddies. The flux \(\text{heatflux} \) is divergenceless in the ocean interior, \(\nabla \cdot \text{heatflux} = 0 \), and equal to the surface heat fluxes at the ocean surface.

[17] To obtain the heat function we subtract from the total heatflux the product of the residual circulation, \(\text{heatflux}_{\text{res}} = \nabla + \nabla \text{GM} \), times a temperature which is uniform along residual streamlines \(\tilde{T} = \tilde{T}(\psi_{\text{res}}) \) (where the residual stream function is given by \(\psi_{\text{res}} = i \times \nabla \psi_{\text{res}} \)). Notice that in making this choice we neglect zonal and temporal correlations between \(\nabla \cdot \text{heatflux} \) and fluctuations, which were found to contribute little to the final result.

[18] The temperature field \(\tilde{T} \) is found by minimizing:

\[
\delta \int |(T - \tilde{T})| \frac{d \psi_{\text{res}}}{|\nabla \psi_{\text{res}}|} = 0, \tag{A2}
\]

where \(d\psi \) is the infinitesimal increment along the streamline and \(\delta \) represents a perturbation in \(\tilde{T} \). The solution is

\[
\tilde{T}(\psi_{\text{res}}) = \int \frac{|\nabla \psi_{\text{res}}| T \; d\psi}{|\nabla \psi_{\text{res}}| \; d\psi}. \tag{A3}
\]

The flux \(\text{heatflux} \tilde{T} \) is by definition constant along streamlines and is the largest portion of the heatflux, in a least square

References

A. Adcroft, Program in Atmospheric and Oceanic Science, Princeton University, Princeton, NJ 08544, USA.

G. Boccaletti, R. Ferrari, D. Ferreira, and J. Marshall, Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, 54-1410, Cambridge, MA 02139-4307, USA. (gbocca@mit.edu)