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• The current commercial status of GM cereal is described 

• Research on input (agronomic characteristics) and output (grain quality etc) traits is reported 

• Data from global field trials are summarised 

• Research trends from examination of patent databases are reported 

• Public perception and regulatory issues are discussed  
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Abstract 13 

This review summarises the history of transgenic (GM) cereals, principally maize, and then 14 

focuses on the scientific literature published in the last two years. It describes the production 15 

of GM cereals with modified traits, divided into input traits and output traits. The first 16 

category includes herbicide tolerance and insect resistance, and resistance to abiotic and 17 

biotic stresses; the second includes altered grains for starch, protein or nutrient quality, the 18 

use of cereals for the production of high value medical or other products, and the generation 19 

of plants with improved efficiency of biofuel production. Using data from field trial and 20 

patent databases the review considers the diversity of GM lines being tested for possible 21 

future development. It also summarises the dichotomy of response to GM products in various 22 

countries, describes the basis for the varied public acceptability of such products, and 23 

assesses the development of novel breeding techniques in the light of current GM regulatory 24 

procedures. 25 
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8.  64 

1. Background 65 

 66 

On a global basis the cereals wheat, maize, rice, barley and sorghum are grown on almost 700 67 

million hectares and collectively they provide approximately 40% of the energy and protein 68 

components of the human diet (Table 1). They therefore represent a vital contribution to food 69 

security both at present and also in the future when population growth (Dunwell, 2013) and 70 

other social and economic trends will require an approximate doubling of food production by 71 

2050. Specific retrospective and prospective data for wheat yields, based on information from 72 

the Wheat initiative (www.wheatinitiative.org) are given in Table 2. In the words of the G20 73 

Agriculture vice-ministers and deputies report from 2012 “Increasing production and 74 

productivity on a sustainable basis in economic, social and environmental terms, while 75 

considering the diversity of agricultural conditions, is one of the most important challenges 76 

that the world faces today” (http://www.g20.org/en) . The UK Secretary of State for the 77 

Department for the Environment,  Food and Rural Affairs made a major speech on 20th June 78 

2013 about the role of GM in the future of agriculture 79 

(https://www.gov.uk/government/speeches/rt-hon-owen-paterson-mp-speech-to-rothamsted-80 

research), and the European Academies Science Advisory Council has recently published a 81 

detailed report on the opportunities of using GM technologies in sustainable agriculture 82 

(EASAC, 2013). 83 

 84 

Against the background of this need for increased agricultural production, this review will 85 

consider the history of genetically modified (GM) or transgenic cereals during the 30 year 86 

period since the production of the first GM plants in 1983, before discussing their present 87 

status and future potential. Information has been obtained not only from recent scientific 88 
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literature but also from analysis of regulatory databases for GM crops, and from the patent 89 

literature. 90 

 91 

2. Methods for production of GM plants 92 

 93 

The original method devised for the production of the first GM plants in 1983 depended on 94 

the use of the natural bacterial vector Agrobacterium tumefaciens. At that time it was 95 

assumed that this system could not be applied to cereal species and the emphasis for these 96 

crops was focussed on direct gene transfer methods, particularly the “gene-gun” or Biolistics 97 

technology.  This technology was the first method successfully applied to maize. Since that 98 

time, significant improvements have been made to the Agrobacterium techniques, and these 99 

techniques can now also be applied to cereals. A recent summary of a diverse range of GM 100 

techniques is available in Dunwell and Wetten (2012).  101 

These novel technologies include new methods for the design of constructs (Coussens et al., 102 

2012; Karimi et al., 2013), that is the DNA sequences to be introduced and improved 103 

methods for DNA delivery. These latter methods include techniques for maize (Kirienko et 104 

al., 2012), wheat (Tamás-Nyitrai et al., 2012), rice (Duan et al., 2012b; Wakasa et al., 2012), 105 

barley (Holme et al., 2012a), triticale (Ziemienowicz et al., 2012), and tef (Eragrostis tef) 106 

(Gebre et al., 2013). There is also an improved understanding of the process of regeneration 107 

from plant cells in culture (Delporte et al., 2012), an important aspect of any system for high 108 

efficiency transformation.   109 

Temporal and spatial stability of transgene expression, as well as well-defined transgene 110 

incorporation are additional features to be considered (Bregitzer and Brown, 2013; Kim and 111 

An, 2012). Likewise, it is of practical importance that GM lines can be rapidly identified, 112 
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both in the laboratory (Chen et al., 2012b; Han et al., 2013b; Hensel et al., 2012; Mieog et al., 113 

2013; Xu et al., 2013a) and under field conditions.   114 

   115 

Another objective in many GM research projects is the development of more efficient 116 

methods for the introduction of multiple genes. These include the construction of mini-117 

chromosomes in rice (Xu et al., 2012a). Additionally, there has been significant progress with 118 

efforts to induce site-specific gene integration (Nandy et al., 2012; Kapusi et al., 2012) and to 119 

use GM techniques to suppress selected genes or gene families (Wang et al., 2013b). Some of 120 

these techniques are also associated with the new techniques described below in section 5.3. 121 

 122 

Immediately following the description of GM plants of tobacco in 1983, the commercial 123 

focus became the development of GM maize, as this crop was already hybrid and annual 124 

sales of such high-value seed was an established part of the agricultural economy of the USA 125 

and elsewhere. In contrast, the other important cereals wheat and rice are self-pollinating 126 

crops and the value of seed sales is comparatively low, and any GM variety could in theory, 127 

if not in practice, be saved by the farmer for growth in subsequent years. For this reason, 128 

there have been several attempts to convert inbreeding species into hybrid crops either 129 

through the use of chemical hybridizing agents or via GM technology. One GM approach to 130 

the production of male sterility, a necessary component of any hybrid system (Feng et al., 131 

2013), has recently been exemplified in wheat by expressing a barnase gene (Kempe et al., 132 

2013). 133 

 134 

In the summaries below, the specific traits incorporated into GM varieties will be divided into 135 

those that provide advantages to the farmer/grower, the so-called input traits and those that 136 

modify the characteristics of the harvested product, the so-called output traits. 137 
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 138 

3. Input traits 139 

 140 

3.1. Herbicide tolerance 141 

 142 

Prior to GM technology herbicides were classified into two categories, either selective, those 143 

that killed weeds and not crops, and non-selective, those that killed all plants. The 144 

development of selective herbicides, in particular, is a very difficult research challenge that 145 

requires an understanding of biochemical targets found only in weeds. Transgenic technology 146 

opened the possibility of converting non-selective compounds into selective ones, if a gene 147 

conferring resistance could be identified, isolated and then transferred into the crop of 148 

interest. The most obvious candidate for this strategy was glyphosate, a widely used selective 149 

herbicide marketed by Monsanto. Eventually, a bacterial resistance gene was identified and 150 

Monsanto subsequently acquired this technology, the means of introducing this gene into 151 

maize, and a company which owned elite maize inbred lines, the target for this technique. 152 

This company then had the significant commercial advantage of being able to sell both GM 153 

herbicide-tolerant (HT) varieties, and the herbicide in question. This combined approach 154 

became highly successful and provided the blueprint for many subsequent commercial 155 

programmes in maize and other crops. The second major herbicide resistant trait was that 156 

conferring tolerance to glufosinate. The commercial need for companies to be able to market 157 

both the herbicide and HT crops containing the gene conferring tolerance led to many 158 

conflicts associated with intellectual property rights (IPR) and many mergers and 159 

acquisitions. The process of consolidation of IPR began in earnest in August 1996 with 160 

AgrEvo’s purchase of Plant Genetic Systems (PGS) for $730 million, made when PGS’s 161 

prior market capitalization was $30 million. According to AgrEvo, $700 million of the 162 
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purchase price was assigned to the valuation of the patent-protected trait technologies (ie 163 

glufosinate resistance gene) owned by PGS (Pila, 2009). In all such cases it is important to 164 

avoid any yield drag associated with the presence of the transgene (Darmency, 2013). 165 

 166 

At present most hybrid maize sold in the USA is resistant to one or more herbicides. The 167 

availability of such HT crops has provided the farmer with a variety of flexible options for 168 

weed control (Brookes and Barfoot, 2013a), despite some problems caused by the 169 

development of HT weeds, an issue that has stimulated the development of improved 170 

versions of glyphosate resistance genes and also of novel genes encoding resistance to other 171 

herbicides such as 2,4-D. In some regions, particularly in sub-Saharan Africa, HT maize has 172 

also provided a novel control strategy for hemi-parasitic weeds such as Striga (Ransom et al., 173 

2012).  174 

 175 

One novel finding in the area of HT crops is that showing the resistance of melatonin-rich 176 

GM rice plants to herbicide-induced oxidative stress (Park et al., 2013).  177 

 178 

Monsanto also developed a glyphosate tolerant (Roundup ReadyTM) version of wheat, and 179 

carried out successful field tests in the 1990s. Due to concerns about international trade of 180 

GM wheat, this project was suspended in 2005, although recently in April 2013 some HT 181 

wheat plants carrying the Monsanto CP4 gene for glyphosate tolerance have been discovered 182 

growing in a farm in Oregon; their origin is uncertain (Fox, 2013; Ledford, 2013).        183 

 184 

 185 

3.2 . Insect resistance 186 

 187 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 

The second target for GM development, together with herbicide tolerance, was insect 188 

resistance, specifically the potential that might be provided by the toxins found in the soil 189 

bacterium Bacillus thuringiensis (Bt). Various proteins from this bacterium were known to be 190 

toxic to a range of insects and had been used widely as sprays in agriculture and forestry 191 

since the 1950s. Improvements in molecular biology and microbiology during the 1980s 192 

meant that the genes encoding these proteins could now be isolated from various strains of 193 

the bacterium and introduced into crops. The first target was the corn borer (Ostrinia 194 

nubilalis), a lepidopteran pest of maize. Subsequently, other Bt genes were isolated; these 195 

provided resistance to other pests including the coleopteran species, corn root worm 196 

(Diabrotica spp.) (Narva et al., 2013). Present maize varieties sold in the USA have several 197 

Bt genes, usually combined with herbicide tolerance (Edgerton et al., 2012); in total there 198 

may be eight transgenes in a single variety. Recently the experience obtained from the first 199 

billion acres of Bt crops was reviewed (Tabasnik et al., 2013).  200 

 201 

Such analysis has several aspects. One of the most important has been the need to prolong the 202 

life time of these GM varieties by avoiding the development of resistance in the target 203 

insects; the history of many insecticides suggests that resistance will eventually develop after 204 

prolonged application of any particular compound. Since the first GM products were 205 

marketed there has been advice on the need for refugia, areas of non-GM plants (Tabashnik 206 

and Gould 2012). This strategy reduces the incidence of insects carrying a mutant resistance 207 

gene in the homozygous state. As this refugia policy was not adopted by some farmers, 208 

resistant insects have indeed developed in recent years, and it is now suggested that at least 209 

five pests have developed such resistance (Tabasnik et al., 2013). Novel approaches to this 210 

issue include the combination of different Bt genes (Edwards et al., 2013), or genes with 211 
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different modes of action, and the adoption of seed mixes in which Bt and non-Bt seeds are 212 

combined (Carroll et al., 2013; Zukoff et al., 2012). 213 

 214 

Another significant environmental concern is the possibility of non-target effects, that is the 215 

susceptibility of non-pest beneficial insects to the various insecticidal proteins. This is a key 216 

element of all regulatory applications for sale of such products. Recent studies of this topic 217 

include those on the effects of Bt rice on a generalist spider (Tian et al., 2012) and thrips 218 

(Akhtar et al., 2013), Bt maize on bees (Dai et al., 2012) and other arthropods (Alcantera 219 

2012; Comas et al., 2103), and the effect on aphids of GM wheat expressing a snowdrop 220 

lectin (Miao et al., 2011).  221 

 222 

There have also been some unexpected beneficial side-effects of insect resistant crops. For 223 

example, Bt-expressing corn rootworm resistant maize has been shown to have improved 224 

nitrogen uptake and nitrogen use efficiency (Haegele and Below, 2013). These results may 225 

lead to improved agronomic practices (Bender et al., 2013). Similarly, increased microbial 226 

activity and nitrogen mineralization has also been shown in Bt maize (Velasco et al., 2013). 227 

This contrasts with the data of Cotta et al. (2013), Lupwayi and Blackshaw (2013) and 228 

Fließbach et al. (2013) who found no differences in the microbial communities from the 229 

rhizosphere of GM and non-GM maize, and particularly of Han et al. (2013a) who claim that 230 

Bt rice reduced the methane emission flux and the methanogenic archaeal and bacterial 231 

communities in paddy soils. 232 

 233 

Other approaches to insect resistance include modification of the volatile emissions produced 234 

by a plant in order to deter pests or to attract beneficial insects. Such a study of GM maize 235 

expressing a terpene synthase gene showed that the costs of constitutive volatile production 236 
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outweighed its benefits (Robert et al., 2013). An alternative route is to use plant-derived 237 

double-stranded RNA to target the suppression of genes essential for insect survival. This 238 

method has been shown to be effective in inhibiting growth of the Western Corn Root Worm 239 

(Diabrotica virgifera) (Bachman et al., 2013; Bolognesi et al., 2012).  240 

 241 

3.3.  Pathogen tolerance 242 

 243 

3.3.1. Fungi 244 

Although there are no commercial GM cereals with pathogen tolerance there has been a great 245 

deal of research on this subject, with promising results from both laboratory and field tests, 246 

particularly with wheat (http://www.isaaa.org/resources/publications/pocketk/document/Doc-247 

Pocket%20K38.pdf). Wheat is affected by a number of fungal diseases such as stem rust 248 

(Puccinia graminis), Septoria, Fusarium, common bunt (Tilletia tritici) and take-all, caused 249 

by the fungus Gaeumannomyces graminis. Among these diseases, Fusarium is probably the 250 

most significant, causing crown rot and head blight that result in production of small and 251 

stunted grains or no grain at all. Some Fusarium strains also produce mycotoxins, compounds 252 

which when ingested by humans or animals may cause serious illness. These toxins, which 253 

are subject to regulation in the human food chain, can also inhibit the growth of yeast during 254 

the fermentation of cereal starch to produce bioethanol. For many years Syngenta worked on 255 

the development of a Fusarium-resistant wheat but this project was suspended in 2007, also 256 

after concerns about exports of GM wheat from the USA. Among the genes that have been 257 

shown to provide resistance to this fungus are a bovine lactoferrin gene (Han et al., 2012; 258 

Lakshman et al., 2013), an Arabidopsis thaliana NPR1 (non-expressor of PR genes) gene 259 

(Gao et al., 2013), a polygalacturonase-inhibiting protein gene from Phaseolus vulgaris 260 

(PvPGIP) (Ferrari et al., 2012) (see also Janni et al., 2013), a lipid transfer gene from wheat 261 
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(Zhu et al., 2012b) and the antimicrobial peptides genes MsrA2 and 10R (Badea et al., 2013). 262 

Results from this latter study showed that T3 generation GM plants had a 53% reduction in 263 

Fusarium damaged kernels, and some lines also had a 59% reduction in powdery mildew 264 

susceptibility compared with the non-GM control.  265 

 266 

Other GM approaches to achieving mildew resistance in wheat include the use of virus-267 

induced gene silencing (VIGS) of Mlo genes (Várallyay et al., 2012), alleles of the resistance 268 

locus Pm3 in wheat, conferring race-specific resistance (Brunner et al., 2012). Related studies 269 

on this latter material showed that the mildew-resistant GM lines harboured bigger aphid 270 

populations (Metopolophium dirhodum and Rhopalosiphum padi) than the non-transgenic 271 

lines (von Burg et al., 2012). These results suggest that wheat plants that are protected from a 272 

particular pest (powdery mildew) became more favourable for another pest (aphids). Other 273 

evidence with the same material comes from a study of plots containing either monocultures 274 

or mixtures of two GM lines (Zeller et al., 2012). It was found that resistance to mildew 275 

increased with both GM richness (0, 1, or 2 Pm3 transgenes with different resistance 276 

specificities per plot) and GM concentration (0%, 50%, or 100% of all plants in a plot with a 277 

Pm3 transgene). Additional studies by Zeller et al. (2013) concluded that many genes 278 

providing resistance against fungal pathogens demonstrate a significant cost of resistance 279 

when expressed constitutively. Studies on powdery mildew in barley include one that 280 

examined the effect of modifying the expression of the HvNAC6 transcription factor (Chen et 281 

al., 2013). 282 

 283 

Other recent tests have described resistance to take-all in GM wheat lines expressing an 284 

R2R3-MYB gene from Thinopyrum intermedium (TiMYB2R-1) (Liu et al., 2013b) or a potato 285 

antimicrobial gene (Rong et al., 2013), to Bipolaris sorokinia by expression of the related 286 
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gene TaPIMP1 (Zhang et al., 2012d), to Penicillium seed rot in lines expressing 287 

puroindolines (Kim et al., 2012), and to rust diseases by endogenous silencing of Puccinia 288 

pathogenicity genes (Panwar et al., 2013) and expression of the Lr34 durable resistance gene 289 

(Risk et al., 2012, 2013) or TaRLP.1 (Jiang et al., 2013b). The recent discovery of the wheat 290 

Sr35 gene that confers resistance to the Ug99 strain of rust (Saintenac et al., 2013) may also 291 

provide new GM strategies to combat this disease. 292 

 293 

Related results from rice include resistance to rice blast (Magnaporthe oryzae) in lines 294 

expressing a chimeric receptor consisting of the rice chitin oligosaccharides binding protein 295 

(CEBiP) and the intracellular protein kinase region of Xa21 (Kouzai et al., 2013). Similarly 296 

lines expressing the WRKY30 gene showed improved resistance to rice blast and rice sheath 297 

blast (Rhizoctonia solani) (Peng et al., 2012), and lines expressing a bacterial  α-1,3-298 

glucanase (AGL-rice) showed strong resistance not only to the two blast pathogens but also 299 

to the phylogenetically distant ascomycete Cochlioborus miyabeanus (Fujikawa et al., 2012). 300 

 301 

In maize silencing of a putative cystatin gene (CC9) improved resistance to the biotrophic 302 

pathogen Ustilago maydis (van der Linde et al., 2012)  303 

 304 

3.3.2. Bacteria 305 

 306 
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It has been shown recently that silencing of the dominant allele of rice bacterial blast 307 

resistance gene Xa13 by using artificial microRNA technology generates plants highly 308 

resistant to this pathogen (Li et al., 2012a). These authors suggest that this approach may 309 

provide a paradigm that could be adapted to other recessive resistance genes. In an alternative 310 

approach, expression of TaCPK2-A, a calcium-dependent protein kinase gene that is required 311 

for wheat powdery mildew resistance has been shown to enhance bacterial blight resistance 312 

in transgenic rice Geng et al., 2013). 313 

  314 

3.3.3. Viruses 315 

Projects designed to improve virus resistance in cereals include expression of an artificial 316 

microRNA to provide resistance to wheat streak mosaic virus (Fahim et al., 2012), and of a 317 

dsRNA-specific endoribonuclease gene to provide resistance to maize rough dwarf disease 318 

(MRDD) (Cao et al., 2013). It has been reported that a wheat line with resistance to yellow 319 

mosaic virus is expected to be available in the market by 2015 320 

(http://www.isaaa.org/resources/publications/pocketk/document/Doc-Pocket%20K38.pdf).  321 

Related studies in rice include resistance to rice stripe disease (RSD) (caused by rice stripe 322 

virus, RSV) by expression of an RNAi construct containing the coat protein gene (CP) and 323 

disease specific protein gene (SP) sequences from RSV (Zhou et al., 2012b). A similar 324 

strategy was employed to improve resistance to the rice gall dwarf virus (RGDV) (Shimizu et 325 

al., 2012b) and rice grassy stunt virus (Shimizu et al., 2013).  326 

 327 

 328 

3.4 Abiotic stress 329 

 330 
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Following the great commercial success of herbicide tolerant and insect resistant crops, 331 

research focus moved to the more difficult subject of tolerance to abiotic stress such as 332 

drought, salt tolerance and nitrogen and phosphate deficiency. The first commercial cereal 333 

product in this area is the Monsanto GM maize DroughtGard™ variety that expresses cspB, 334 

an RNA chaperone gene from Bacillus subtilis (Castiglioni et al., 2008). This gene, which 335 

increases yield under water-limited conditions, is also being incorporated into maize adapted 336 

to African conditions, as part of the WEMA project (Water Efficient Maize for Africa). 337 

There is a wide range of other approaches that are being tested at present in order to improve 338 

the growth of cereals under conditions of abiotic stress (Saint Pierre et al., 2012). For 339 

example, wheat over-expressing the 12-oxo-phytodienoic acid gene (TaOPR1) significantly 340 

enhanced the level of salinity tolerance (Dong et al., 2013).  It is thought that this gene acts 341 

during episodes of abiotic stress response as a signaling compound associated with the 342 

regulation of the ABA-mediated signalling network. It is also reported that barley plants 343 

expressing the mitogen activated protein kinase HvMPK4 demonstrated improved tolerance 344 

to saline conditions (Abass and Morris, 2013).  345 

 346 

Overexpression of a phytochrome-interacting factor-like protein, OsPIL1, in transgenic rice 347 

plants promoted internode elongation (Todaka et al., 2012). The data suggested that OsPIL1 348 

functions as a key regulatory factor of reduced plant height via cell wall-related genes in 349 

response to drought stress and may be useful in improving plant regrowth under such 350 

conditions.  351 

 352 

GM rice overexpressing the transcription factor OsbZIP16 exhibited significantly improved 353 

drought resistance, which was positively correlated with the observed expression levels of 354 

OsbZIP16 (Chen et al., 2012a). Related data come from studies of GM rice overexpressing 355 
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Oshox22, which belongs to the homeodomain-leucine zipper (HD-Zip) family I of 356 

transcription factors (Zhang et al., 2012b). These authors conclude that Oshox22 affects ABA 357 

biosynthesis and regulates drought and salt responses through ABA-mediated signal 358 

transduction pathways. A number of similar results have been reported by overexpression of 359 

several diverse genes in GM rice. These include, OrbHLH001, a putative helix-loop-helix 360 

transcription factor, that confers salt tolerance (Chen et al., 2012a); ZFP182, a TFIIIA-type 361 

zinc finger protein, that significantly enhanced multiple abiotic stress tolerances, including 362 

salt, cold and drought tolerances (Huang et al., 2012); OsLEA3, a Late Embryogenesis 363 

Abundant protein, that showed significantly enhanced growth under saline conditions and 364 

was better able to recover after 20 days of drought (Duan and Cai, 2012); a DEAD-box 365 

helicase that improves growth in 200mM salt (Gill et al., 2013); and myo-inositol oxygenase 366 

(MIOX), (a unique monooxygenase that catalyzes the oxidation of myo-inositol to d-367 

glucuronic acid) that improves drought tolerance by scavenging of reactive oxygenase 368 

species (Duan et al., 2012a). Studies on GM rice have also suggested that overexpression of a 369 

wheat gene encoding a salt-induced protein (TaSIP) (Du et al., 2013) and a sheepgrass gene 370 

(LcSain1) (Li et al., 2013e) may also be of benefit in enhancing salt tolerance. An equivalent 371 

investigation demonstrated that GM oats expressing the Arabidopsis CBF3 gene exhibited 372 

improved growth and showed significant maintenance of leaf area, chlorophyll content, 373 

photosynthetic and transpiration rates, relative water content, as well as increased levels of 374 

proline and soluble sugars under high salt stress (Oraby et al., 2012). At a salinity stress level 375 

of 100mM, the GM plants showed a yield loss of 4-11% compared with >56% for the non-376 

transgenic control. According to a recent report, field trials conducted in Australia in 2009 377 

(Table 3) showed that wheat lines expressing a salt tolerant gene Nax2) from Triticum 378 

monococcum produced 25% more yield than the control line in saline conditions 379 

http://www.isaaa.org/resources/publications/pocketk/document/Doc-Pocket%20K38.pdf).  380 
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 381 

In a similar study two wheat CBF transcription factors, TaCBF14 and TaCBF15, were 382 

transformed into spring barley, and analysis showed that transgenic lines were able to survive 383 

freezing temperatures several degrees lower than that which proved lethal for the wild-type 384 

spring barley (Soltész et al., 2013). Similar results with improved frost tolerance or other 385 

abiotic stress were achieved with GM barley expressing the rice transcription factor Osmyb4 386 

(Soltész et al., 2011) or the wheat TaDREB3 gene (Hackenberg et al., 2012; Kovalchuk et al., 387 

2013).  388 

 389 

Encouraging data have also been produced from studies of GM rice overexpressing OsNAC9, 390 

a member of the rice NAC domain family (Redillas et al., 2012). Root-specific (RCc3) and 391 

constitutive (GOS2) promoters were used to overexpress OsNAC9 and field evaluations over 392 

two seasons showed that grain yields of the RCc3:OsNAC9 and the GOS2:OsNAC9 plants 393 

were increased by 13%-18% and 13%-32% under normal conditions, respectively. Under 394 

drought conditions, RCc3:OsNAC9 plants showed an increased grain yield of 28%-72%. 395 

Both transgenic lines exhibited altered root architecture involving an enlarged stele and 396 

aerenchyma.  One approach to the identification of genes that might confer improved drought 397 

tolerance in wheat involves use of the VIGS technique (Manmathan et al., 2013). 398 

 399 

Studies on improving crop growth under conditions of nutritional limitation include results 400 

from the overexpression of Thellungiella halophila H+-pyrophosphatase gene in maize (Pei et 401 

al., 2012). Under phosphate sufficient conditions, GM plants showed more vigorous root 402 

growth than the wild type, and under phosphate deficit stress they also developed more robust 403 

root systems. This advantage improved phosphate uptake, and the GM plants subsequently 404 

accumulated more phosphorus. In an associated study it was found that overexpression of the 405 
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phosphate transporter Pht1 promoted phosphate uptake in GM rice (Sun et al., 2012). A 406 

similar project concerns the use of the phosphate starvation response regulator Ta-PHR1 to 407 

increase yield in wheat (Wang et al., 2013a). 408 

  409 

One of the most ambitious of plans to improve growth under conditions of nitrogen 410 

deficiency is the project to engineer nitrogen fixation into cereals. For example, the Bill & 411 

Melinda Gates Foundation is funding the ENSA (Engineering Nitrogen Symbiosis for Africa) 412 

project (https://www.ensa.ac.uk/news/page/3).   413 

 414 

In addition to the problems of reduced growth under conditions of nutrient deficiency, the 415 

ions of certain metals inhibit normal development. One example is the inhibitory effect of 416 

excess aluminium in acid soils, and this was the subject of a recent genetic study on the root 417 

hairs of wheat (Delhaize et al., 2012). An alternative approach is represented by a study of 418 

the multidrug and toxic compound extrusion (TaMATE1B) gene in wheat (Tovkach et al., 419 

2013) and in wheat and barley (Zhou et al., 2013). One approach to improving growth in 420 

alkaline soils is demonstrated by results from GM rice expressing the barley iron-421 

phytosiderophore transporter (HvYS1). This gene enables barley plants to take up iron from 422 

alkaline soils, and the GM rice plants grown in alkaline soil exhibited enhanced growth, yield 423 

and iron concentration in leaves compared to the wild type plants which were severely 424 

stunted (Gómez-Galera et al., 2012). 425 

 426 

Other related recent studies include one on GM rice in which overexpression of a protein 427 

disulphide isomerase-like protein from the thermophilic archaea Methanothermobacter 428 

thermoautotrophicum enhances tolerance to mercury (Chen et al., 2012d) and one that 429 
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demonstrated the role of the Zn/Cd transporter OSHMA2 in cadmium accumulation in rice 430 

(Takahashi et al., 2012). 431 

 432 

3.5 Yield traits 433 

 434 

The obvious aim of all the agronomic traits mentioned to date is to increase or to stabilise 435 

yield under field conditions (Shi et al., 2013). There are also future new opportunities to 436 

improve the underlying physiological performance of the plant itself. One recent example of 437 

this is investigation in rice of the major grain length QTL, qGL3, which encodes a putative 438 

protein phosphatase with a Kelch-like repeat domain (OsPPKL1). It was found that a rare 439 

allele of this gene, qgl3 leads to a long grain phenotype, and transgenic studies confirmed that 440 

OsPPKL1 and OsPPKL3 function as negative regulators of grain length, whereas OsPPKL2 441 

as a positive regulator (Zhang et al., 2012c). Grain size in rice can also be increased by 442 

overexpression of a TIFY gene, TIFY11b (Hakata et al., 2012), whereas grain number in this 443 

crop can be increased by expression of the zinc finger transcription factor DROUGHT AND 444 

SALT TOLERANCE (DST), which itself regulates the expression of a cytokinin oxidase 445 

Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) (Li et al., 2013c). Corresponding 446 

transgenic research in wheat has identified the role of TaGW2-A, a functional E3 RING 447 

ubiquitin ligase, in regulating grain size (Bednarek et al., 2012). 448 

 449 

An important quality trait related to yield is the problem of post harvest sprouting. Among the 450 

GM approaches to overcoming this problem is the use of an antisense version of the trx s 451 

(thioredoxin s) gene from Phalaris coerulescens to reduce the endogenous trx h gene in 452 

wheat (Guo et al., 2011). 453 

  454 
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Amongst the most radical of research efforts are attempts to introduce the C4 photosynthetic 455 

trait, as found in maize, into C3 cereals such as rice. This is the subject of many programmes 456 

(see C4rice.irri.org). One recent report in this area is the finding that expression of the maize 457 

phosphoenolpyruvate carboxylase gene in wheat increases the rate of photosynthesis in the 458 

GM plants to 31.95 µmol CO2/m
2/s, some 26% greater than the rate in untransformed control 459 

plants (Hu et al., 2012c).  It was also found recently that constitutive expression of the rice 460 

gene OsTLP27 under the control of the CaMV 35S promoter resulted in increased pigment 461 

content and enhanced photochemical efficiency in terms of the values of maximal 462 

photochemical efficiency of photosystem II (PSII) (F(v)/F(m)), effective quantum yield of 463 

PSII (ΦPSII), electron transport rate (ETR) and photochemical quenching (qP) (Hu et al., 464 

2012a). 465 

 466 

Of course, in any studies of GM cereals, as with other crops, it is always important to 467 

examine the whole plant performance, including the photosynthetic efficiency, in order to 468 

identify any non-intended effects (Sun et al., 2013). 469 

 470 

4 Output traits 471 

 472 

4.1. Modified grain quality 473 

 474 

4.1.1. Nutrition 475 

 476 

Transgenic technologies provide a large variety of opportunities to modify the nutritional 477 

components in cereal crops (Bhullar and Gruissem, 2013; Demont and Stein, 2013; Morell, 478 

2012; Pérez-Massot et al., 2013; Rawat et al., 2013). These include modified proteins 479 
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(Wenefrida et al., 2013), carbohydrate, oils, and other minor compounds and these will be 480 

considered in turn. 481 

Among the first reported GM lines of wheat were ones with modified subunits of the high 482 

molecular weight glutenin protein that confers good breadmaking quality. Recent reports in 483 

this area include the generation of GM wheat with enhancement in the concentration of high-484 

molecular-weight glutenin subunit 1Dy10 and associated benefit in sponge and dough baking 485 

of wheat flour blends (Graybosch et al., 2013). It is also reported that such improved baking 486 

quality can be achieved without the need for selectable marker genes (Qin et al., 2013), and 487 

that coexpression of high molecular weight glutenin subunit 1Ax1 and puroindoline improves 488 

dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum) (Li et al., 489 

2012b).  Similarly it is reported that GM methods can be used to reduce the expression of γ-490 

gliadins and thereby potentially improve the dough mixing and bread making properties of 491 

wheat flour (Gil-Humanes et al., 2012). As part of related projects it has been shown that the 492 

starch characteristics of GM wheat overexpressing the Dx5 high molecular weight glutenin 493 

subunit are substantially equivalent to those in nonmodified wheat (Beckles et al., 2012), and 494 

that isolation of enriched gluten fractions from lines modified to overproduce HMW glutenin 495 

subunits Dx5 and/or Dy10 may require modified separation technologies (Robertson et al., 496 

2013). Studies on the GM modification of such subunits may also lead to the production of 497 

novel proteins encoded by altered versions of either the transforming or endogenous genes 498 

(Blechl and Vensel, 2013). A relevant similar study is that on transgenic rice seed expressing 499 

the wheat HMW subunit (Oszvald et al., 2013). Another aspect of this type of study that has 500 

importance in any future regulatory submission is the determination of potential changes in 501 

the allergenicity of the GM material (Lupi et al., 2013). 502 

 503 
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In addition to efforts to modify baking and bread-making quality there have also been 504 

projects to modify the particular amino acid profile of cereals, in particular to increase the 505 

levels of lysine. GM approaches in this area have included the expression of the sb401 gene, 506 

which encodes a lysine-rich protein, in GM maize; this leads to increased levels of lysine and 507 

total protein in the seeds (Tang et al., 2013) (see also Wang et al., 2013c). A three generation 508 

rat feeding trial of GM rice with increased levels of lysine has shown no adverse effects 509 

(Zhou et al., 2012a). In a related study, expression of a bacterial serine acetyltransferase 510 

(EcSAT) in rice lead to significantly higher levels of both soluble and protein-bound 511 

methionine, isoleucine, cysteine, and glutathione (Nguyen et al., 2012). 512 

 513 

Alongside the many projects that are designed to modify protein quantity and quality in 514 

cereals are several that focus on aspects of starch synthesis (Blennow et al., 2013). These 515 

include GM rice lines produced by introducing a cDNA for starch synthase IIa (SSIIa) from 516 

an indica cultivar (SSIIa (I), coding for active SSIIa) into an isoamylase1 (ISA1)-deficient 517 

mutant (isa1) that was derived from a japonica cultivar (bearing inactive SSIIa proteins). The 518 

storage α-glucan of these GM lines was shown to have altered solubility and crystallinity 519 

(Fujita et al., 2012). Many of these projects are designed to produce products with improved 520 

health benefits. For example, using a chimeric RNAi hairpin Carciofi et al. (2012a) 521 

simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, 522 

SBE IIb) in barley, resulting in production of amylose-only starch granules in the endosperm. 523 

The authors claim that this is the first time that pure amylose has been generated with high 524 

yield in a living organism, and the resulting lines with so-called “resistant starch” would have 525 

potential in reducing the glycaemic index of diets. Such improvements may be of particular 526 

value to diabetics and this has been shown experimentally in a study in which a high-amylose 527 

GM rice, produced by inhibition of two isoforms of the starch branching enzyme, improved 528 
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indices of animal health in normal and diabetic rats (Zhu et al., 2012). It was observed in a 529 

similar study on GM durum wheat, in which the gene encoding one isoform of SBE was 530 

silenced, that various protein differences were present in the endosperm of the transgenics 531 

(Sestili et al., 2013). Rapid testing of constructs for use in such studies may be achieved by 532 

using transgenic callus, rather than mature seed; this system has been developed first in 533 

barley (Carciofi et al., 2012b). 534 

 535 

GM triticale lines expressing one or both of the sucrose-sucrose 1-fructosyltransferase (1-536 

SST) gene from rye and or the sucrose-fructan 6-fructosyltransferase (6-SFT) gene from 537 

wheat accumulated 50% less starch and 10-20 times more fructan, particularly 6-kestose, in 538 

the dry seed compared to the untransformed control (Diedhiou et al., 2012). This is one of the 539 

first reports of GM cereals with production of fructans (Kooiker et al., 2013) in seeds. 540 

  541 

An alternative route to the alteration of starch content was demonstrated by a study on GM 542 

maize expressing the potato gene StSUS that encodes an isoform of sucrose synthase. Seeds 543 

from these transgenic plants accumulated 10-15% more starch at the mature stage, and 544 

contained a higher amylose/amylopectin balance than the WT control seeds (Li et a., 2013a). 545 

Possibly the most complex of these studies on maize was that in which the expression of six 546 

genes was modified; this led to a 2.8-7.7% increase in endosperm starch and a 37.8-43.7% 547 

increase in the proportion of amylose (Jiang et al., 2013a). Additionally there was a 20.1-548 

34.7% increase in 1000-grain weight and a 13.9-19.05% increase in ear weight. Other 549 

associated studies include the effect of the granule-bound starch synthase (GBSS), (known as 550 

waxy protein), on the amylose content of GM durum wheat (Sestili et al., 2012). 551 

 552 
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Among other investigations of starch biosynthetic pathway is that on the maize shrunken-2 553 

(Sh2) gene, which encodes the large subunit of the rate-limiting starch biosynthetic enzyme, 554 

ADP-glucose pyrophosphorylase (Tuncel and Okita, 2013). Expression in maize of a 555 

transgenic form of this enzyme with enhanced heat stability and reduced phosphate inhibition 556 

was shown to increase yield up to 64% (Hannah et al., 2012). The extent of this yield increase 557 

was found to be dependent on temperatures during the first 4 days post pollination, and the 558 

authors also demonstrated that the transgene acts in the maternal tissue to increase seed 559 

number, and thus yield. 560 

 561 

Suppression of the CSLF6 gene in wheat has been shown to reduce the level of glucan and 562 

provides an opportunity to improve the level of dietary fibre (Nemeth et al., 2010), and 563 

similar suppression of glucosyl transferase genes decreases the arabinoxylan content 564 

(Lovegrove et al., 2013).  565 

 566 

GM wheat and barley with a range of modified grain traits are among the list of lines that 567 

have been tested in the field in Australia (Table 3). 568 

 569 

In the area of lipid research it has been shown that the levels of oleic acid (Zaplin et al., 2013) 570 

and α-linolenic acid (Liu et al., 2012) in rice seed can be increased by manipulation of 571 

various fatty acid desaturase (FAD) genes. 572 

 573 

Another significant area relates to vitamin and mineral content, particularly iron, with studies 574 

on rice and maize summarised in Table 4. The classic example of vitamin increase is the 575 

generation of “Golden Rice” (Potrykus, 2012) with higher levels of provitamin A, a 576 

compound deficient in many subsistence diets based on rice. Such deficiency may lead to 577 
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juvenile blindness and even death.  Other recent results on modifying vitamin levels in rice 578 

include expression of Arabidopsis thaliana ρ-hydroxyphenylpyruvate dioxygenase (HPPD), 579 

which catalyzes the first committed step in vitamin E biosynthesis (Farré et al., 2012, 2013) 580 

and Arabidopsis γ-tocopherol methyltransferase (γ-TMT) (Zhang et al., 2013a), which 581 

catalyzes the final step in this pathway. In a related study, Chaudhary and Khurana (2013) 582 

produced GM wheat overexpressing the endogenous HPPD gene and observed a 2.4 fold 583 

increase in the level of tocochromomanol, one of an important group of plastidic lipophilic 584 

antioxidants, which may have significant benefits in the human diet. 585 

 586 

Results relating to iron and zinc accumulation in GM wheat expressing a ferritin gene have 587 

been discussed recently by Neal et al. (2013). In addition to increases in the levels of vitamins 588 

and minerals, GM techniques have also been used recently to improve the content of 589 

beneficial compounds such as flavonoids (Ogo et al., 2013) and sakuranetin, a flavonoid 590 

phytoalexin (Shimizu et al., 2012a) in rice. Related research demonstrating the effects of 591 

purple, anthocyanin-containing, wheat on extending the lifespan of nematodes (Chen et al., 592 

2013b) may be developed through GM technology. 593 

 594 

4.2 Enzymes, diagnostics and vaccines 595 

Probably the first commercial plant –derived industrial enzyme was trypsin, produced in 596 

maize kernels and marketed by Sigma (Product Code T3449) under the brand name 597 

TrypZean®. This company also markets maize-derived recombinant avidin (Product Code 598 

A8706). As summarised recently (Xu et al., 2012b) other recombinant products produced 599 

from corn included β-glucuronidase, aprotinin and a range of degradative enzymes (also see 600 
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biofuel section below). There have been significant environmental concerns expressed in the 601 

USA with some of these plant derived products. 602 

 603 

Among the most significant of GM maize products are those expressing the phytase enzyme. 604 

Such products are designed to overcome the problem caused by phytate, a phosphorus 605 

containing compound that is present in maize grain but one in which the phosphate is 606 

unavailable to monogastric animals such as poultry and pigs and therefore causes pollution 607 

from their waste. Maize expressing a phytase gene from Aspergillus niger is the first GM 608 

maize to receive a biosafety certificate in China (Chen et al., 2013a) (see also Xia et al., 609 

2012).  An alternative approach is to use RNAi techniques to downregulate the myo-inositol-610 

3-phosphate synthase (MIPS) gene that catalyzes the first step of phytic acid biosynthesis in 611 

rice (Ali et al., 2013), or to employ cisgenic methods (Holme et al., 2012b). The value of 612 

such low-phytate maize products has been recently confirmed in feeding trials with poultry 613 

(Gao et al., 2012; Ma et al., 2013; Wang et al., 2013e) and pigs (Li et al., 2013d). A similar 614 

benefit may derive from GM maize expressing a fungal β-mannanase from Bispora (Xu et al., 615 

2013b). 616 

 617 

Although no GM lines in this category have yet been approved for commercialisation, there 618 

has been considerable activity, over many years, in the area of plant-derived vaccines and 619 

other potential pharmaceutical products. This summary describes some of the recent activity 620 

in this ‘pharming’ area. The justification for such research lies in the assumed economic 621 

benefit that might derive from using plants rather than other expression systems (eg animal 622 

cells or bacteria) for production of high-value, bioactive compounds. Cereals, principally rice 623 

(Greenham and Altosaar, 2012; Takaiwa, 2013), maize, and barley (Magnusdottir et al., 624 

2013) (http://www.orfgenetics.com/) have become the crops of choice, as proteins can be 625 
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expressed at high levels in the seed and stored for extended periods without significant 626 

deterioration. Additionally, seed-derived antigens provide the possibility of oral delivery as 627 

an alternative to injection; this method may be of particular relevance in the area of 628 

veterinary medicine. Recent examples include the induction of a protective immune response 629 

to rabies virus in sheep after oral immunization with GM maize kernels that express the 630 

rabies virus glycoprotein (Loza-Rubio et al., 2012), and the proven immunogenicity of foot-631 

and-mouth disease virus structural polyprotein P1 (Wang et al., 2012) and MOMP protein 632 

(Zhang et al., 2013a) expressed in GM rice, and the porcine reproductive and respiratory 633 

syndrome virus (PRRSV) expressed in GM maize (Hu et al., 2012b). Other similar examples 634 

are the demonstration of immunogenicity of a neutralizing epitope from porcine epidemic 635 

diarrhoea virus (PEDV) fused to an M cell-targeting ligand fusion protein and expressed in 636 

GM rice (Huy et al., 2012) and the successful production of the hepatitis B surface antigen 637 

(HBsAG) in maize (Hayden et al., 2012a,b). This latter study represents the first description 638 

of a commercially feasible oral subunit vaccine production system for a major human disease, 639 

though there has also been much publicity given to the potential of maize as a production 640 

system for an HIV neutralizing monoclonal antibody (Sabalza et al., 2012). 641 

 642 

Recently it was confirmed that rice-derived recombinant human serum transferrin (hTF) 643 

represents a safe and animal-free alternative to human plasma-derived hTF for bioprocessing 644 

and biopharmaceutical applications (Zhang et al., 2012). 645 

 646 

Another area of related research is that on allergens. For example, GM rice seeds have been 647 

used for the production of a recombinant hypoallergenic birch pollen allergen Bet v 1 (Wang 648 

et al., 2013d), and a hypoallergenic Der f 2 (Yang et al., 2012a) and Der p 1 (Saeki et al., 649 

2012, 2013) derivatives of the House Dust Mite (HDM) allergen from Dermatophagoides 650 
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pteronyssinus. These products may be useful in allergen-specific immunotherapy. Similarly, 651 

human interleukin IL-10 (hIL-10), a therapeutic treatment candidate for inflammatory allergy 652 

and autoimmune diseases, has been produced in rice seed and effectively delivered directly to 653 

gut-associated lymphoreticular tissue (GALT) via bio-encapsulation (Yang et al., 2012b). 654 

Related research is being conducted on the similar molecule hIL-7 (Kudo et al., 2013). Rice 655 

is also the production system for human alpha-antitrypsin (AAT), a compound used as 656 

therapy of individuals with mutations in the AAT gene (Zhang et al., 2013b).     657 

    658 

4.3 Biofuels 659 

 660 

To date the only GM cereal with a biofuel-related trait that has been commercialised is 661 

Enogen™, a maize hybrid expressing a thermostable alpha amylase for efficient starch 662 

hydrolysis and higher bioethanol yields. Details of this Syngenta product, which was 663 

approved by the USDA on 12th February 2011, are available at 664 

(http://www.syngenta.com/country/us/en/enogen/Pages/Home.aspx and 665 

http://www.syngenta.com/country/us/en/agriculture/seeds/corn/enogen/stewardship/Documen666 

ts/June%2014th,%202011/Enogen%20Overview.pdf). It is stated that ethanol throughput 667 

during fermentation with this product is increased by 5.2% and the financial benefit is 668 

between 8-15 US cents per gallon. A news item from 12th June 2013 669 

(http://www.agprofessional.com/news/Syngenta-footprint-for-Enogen-corn-grows-to-11-670 

ethanol-plants-211053531.html) states that a total of 11 ethanol plants in the US have now 671 

signed agreements to use this product; such plants pay the farmer an average premium of 40 672 

cents per bushel for Enogen™ corn. Present research in Syngenta and elsewhere is also 673 

focussed on the potential for the production of recombinant cell-wall degrading enzymes in 674 

GM plants, in order to avoid the significant cost of adding exogenous enzymes during the 675 
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production of fermentable sugars from biomass (Sainz, 2009). As part of this strategic goal, 676 

Syngenta have signed research agreements which include those with Diversa in 2007, and 677 

Verenium (now owners of Diversa) and Protéus in 2009.  678 

Other relevant recent studies in this area include the production of:- bacterial 679 

amylopullulanase in maize grain (Nahampun et al., 2013); thermostable xylanase in maize 680 

stover (Shen et al., 2012); glycoside hydrolases (Brunecky et al., 2012); and an Acidothermus 681 

cellulolyticus endoglucanase in transgenic rice seeds (Zhang et al., 2012a). Additionally, 682 

down regulation of the enzyme cinnamyl alcohol dehydrogenase in maize has been shown to 683 

produce a higher amount of biomass and a higher level of cellulosic ethanol in assays 684 

(Fornalé et al., 2012). It is hoped that these various approaches will lead to significant 685 

improvements in the efficiency of biofuel production and thereby reduce the conflict between 686 

the demands for food and fuel (Zhang, 2013).     687 

 688 

5 Pipeline of future products 689 

 690 

5.1 Field trials 691 

 692 

One simple method to assess the direction of future research on GM cereals in both 693 

commercial and non-commercial programmes is to examine the various public databases that 694 

summarise the applications for field testing. Such information is available from the regulatory 695 

authorities in the various jurisdictions around the world. Data for the USA are available at 696 

http://www.isb.vt.edu/search-release-data.aspx and can be summarised as follows:-    697 
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Maize: A total of 8294 applications have been submitted in the period from 1996 to date 698 

(latest 14th June 2013). Many of these are from commercial companies and understandably 699 

have limited details of the genes being tested because of Confidential Business Information 700 

(CBI) restrictions. However, among the most recent application from a non-commercial 701 

institution is one from the Cold Spring Harbor Laboratory that lists a total of 78 genes to be 702 

tested. 703 

Wheat: A total of 510 applications for have been submitted in the period from 1996 to date 704 

(latest 22nd April 2013). The traits for trial in the 13 applications for 2013 include:- Nitrogen 705 

use efficiency (Arcadia); Fusarium resistance (Uni. Minnesota); nitrogen metabolism, 706 

drought/heat tolerance, water use efficiency, yield increase, modified flowering time, altered 707 

oil content, fungal tolerance, insect resistance, herbicide tolerance (Monsanto); increased 708 

carbohydrate, improved grain processing (Uni. Nebraska); herbicide tolerance (and other CBI 709 

traits) (Pioneer); and CBI traits (Biogemma); breadmaking quality (USDA). 710 

Barley: a total of 109 applications were submitted in the period from 1994 to 2013 (latest 711 

15th May 2013). The traits for trial in the 6 applications for 2012 include:- starch quality 712 

(USDA); nitrogen utilisation efficiency (Arcadia); Fusarium resistance (USDA); and 713 

Rhizoctonia resistance (Washington State University). 714 

Data for the EU are available at http://gmoinfo.jrc.ec.europa.eu/gmp_browse.aspx and are 715 

summarised in Table 5. This list is relatively short and does not include many of the 716 

commercial trials of maize. Among the interesting trials is that testing wheat designed to have 717 

reduced levels of epitopes linked to celiac disease, and that designed to deter aphids by 718 

expression of an alarm pheromone.   719 

 720 
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Data from Australia are available at 721 

http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/ir-1. A summary is given in 722 

Table 3, which identifies trials of wheat and barley with modified grain traits and with 723 

various genes providing tolerance to abiotic stress. More complete detail may be obtained 724 

from the application dossiers published by the various regulatory authorities.  725 

 726 

5.2 Patents 727 

 728 

In any consideration of future trends it is of great value to assess the patent literature, as this 729 

provides a summary of those novel technologies that are the subject of research activity, 730 

particularly in commercial companies who will publish information in patent applications 731 

prior to it emerging in the conventional scientific literature. The most recent overall review of 732 

this area is that of Dunwell (2010) who includes a discussion of IPR relevant to the research 733 

scientist and to those interested in international development, globalization, and sociological 734 

and ethical aspects of the public- and private-sector relationships. Data on patent application 735 

and granted patents are available in many publically accessible databases, with the most 736 

complete being that at http://www.patentlens.net/. The extent of patent activity in the area of 737 

GM cereals is exemplified by the selection of recent US patents (Table 6a) and patent 738 

applications (Table 6b). The subject matter of these patents, taken from a short period of 739 

time, covers all the major themes discussed in this review. It is always necessary to point out 740 

the commercial reality that few, if any, of the patents and applications in these lists will ever 741 

produce a financial profit. The most common reasons for this lack of success are unexpected 742 

additional costs of development or failure of the underlying science during the transfer from 743 

laboratory to field scale. 744 

 745 
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5.3 New Breeding Techniques 746 

 747 

It is more than twenty years ago that the various GM regulatory legislations were enacted. For 748 

example, the first iteration of the EU Directive that controls the Deliberate Release of 749 

genetically modified organisms (GMOs) into the environment was adopted in 1990. The 750 

foundation of this approach was to define an organism based on how it was made and the nature 751 

of the resulting alterations to its genetic material. However, since that time a number of reports, 752 

including the last review of the current 2001/18 Directive (EPEC, 2011), have highlighted 753 

concerns about the clarity of the definition of a GMO when applying it to organisms produced 754 

by particular new methodologies. These new breeding techniques (NBTs) include: 755 

cisgenesis/intragenesis; site directed mutagenesis; genome editing using zinc finger nucleases, 756 

TALENs (Wendt et al., 2013), CRISPRs (Shan et al., 2013) and other similar systems (Li et al., 757 

2013b; Nekrasov et al., 2013); RNA dependent DNA methylation (and other epigenetic 758 

methods) (Higo et al., 2012), and reverse breeding. Reports that have considered these NBTs in 759 

more detail include that from an EU Commission Working Group on ‘New Techniques’, a 760 

series of papers by the Dutch committee COGEM (COGEM, 2006, 2009, 2010) and an 761 

Austrian report (Brüller et al., 2012). A report from the EU Joint Research Centre also provides 762 

useful background on the subject (Lusser et al., 2011). In principle, these techniques can be 763 

applied to any crop, including cereals. For example, there is much support in certain areas for 764 

the concept of cisgenesis, whereby the DNA introduced into recipient crop comes from a 765 

sexually compatible relative, and this method has been used to produce low-phytate barley 766 

(Holme et al., 2013). In some of these methods, although molecular gene transfer techniques 767 

are used to generate the new line, there is no transgene present in the final product. Example of 768 

this involve techniques for the modification of recombination or the rapid generation of mutants 769 
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by suppressing the activity of DNA repair systems (Xu et al., 2012c) or generating transposon 770 

induced chromosomal rearrangements (Yu et al., 2012).  771 

 772 

Such problems of enforcement and uncertainty about whether or not new methods fall within 773 

the existing legislation (Pauwels et al., 2013) has led many to argue in favour of a so-called 774 

“phenotype” (or “product”) based (EASAC, 2013) or “process-agnostic” system (Ammann, 775 

2013).  776 

 777 

 778 

6 Acceptance of GM crops 779 

 780 

The commercial exploitation of GM crops varies greatly across the globe with a clear 781 

dichotomy between the position in North and South America, where such crops are grown 782 

widely, to Europe where there is little GM agriculture, though large imports of GM material 783 

for animal feed (Fresco, 2013; Masip et al., 2013). The foundation for this difference lies in a 784 

complex mixture of political, social and economic considerations. Within Europe it has been 785 

argued by some that the present regulatory impasse, whereby it has not proved possible for 786 

the 29 EU states to achieve political consensus for approval of GM crops for cultivation, 787 

should be bypassed by allowing states to determine their own policy. However, others 788 

consider this to a retrogressive approach that would lead to dangerous inconsistencies in the 789 

regulatory approach (Biszko, 2012).    790 

 791 

6.1 Regulatory aspects 792 

 793 
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Before any GM product can reach the market it must receive approval from the relevant 794 

regulatory authority in the appropriate legislative area. The two most important aspects of 795 

such a process are food and feed safety and the potential for harm to human health and the 796 

environment (Romeis et al., 2013). There is great deal of published information on these 797 

topics (eg http://www.efsa.europa.eu/en/panels/gmo.htm) and it will not be repeated here, but 798 

some of the recent information on compositional analysis has been summarised by Herman 799 

and Price (2013), Kitta (2013) and Privalle et al. (2013). Other specific recent data include 800 

information on transcriptome changes in maize expressing a phytase gene (Rao et al., 2013), 801 

tests for possible changes in allergens in GM maize (Fonseca et al., 2012) and a proteomic 802 

study on GM rice (Gong et al., 2102). Animal feeding tests (Buzoianu et al., 2013) are also a 803 

required part of any regulatory process, though the outcome of some such tests has recently 804 

provoked further controversy about GM safety (Arjó et al., 2013; Fresco, 2013) . 805 

 806 

As regards possible environmental effects, a large-scale analysis has shown convincing 807 

evidence that one consequence of the global cultivation of GM crops has been a significant 808 

reduction both in the amount of pesticide sprayed (~8-9%) and in the release of greenhouse 809 

gas emissions from the cropping area (Brookes and Barfoot, 2013b).  810 

 811 

Other environmental issues with all GM crops include possible transgene spread to wild 812 

relatives (Chandler and Dunwell, 2008). Among the important variables in this context is the 813 

relative fitness of the crop-weed hybrid and this is the subject of a recent study that examined 814 

GM insect resistant rice (Yang et al., 2012c). Recent studies on GM wheat include 815 

assessment of the impact of any GM pollen transfer either within or between crops (Loureiro 816 

et al., 2012; Foetzki et al., 2012; Rieben et al., 2011). There is also discussion about the 817 

possible persistence of feral populations of GM crops (Raybould et al., 2013). 818 
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 819 

An interesting additional aspect relates to the possible effect of GM crops on the soil 820 

microflora. This is the subject of one study on rice in which the expression of phenylalanine 821 

ammonia-lyase was inhibited by RNAi methods (Fang et al., 2013). It was concluded that the 822 

GM rice had less rhizospheric bacterial diversity that the non-GM control.    823 

 824 

 6.2 Public perception  825 

This is a very complex area and there have been many published surveys on consumer 826 

attitudes to GM. Some of these surveys are international in scope (Frewer et al., 2013) 827 

whereas other examine attitudes in specific regions such as Europe (Ceccioli and Hixon, 828 

2012; Gaskell et al., 2011), Switzerland (Speiser et al., 2013), Spain (Costa-Font and Gil, 829 

2012; Rodríguez-Entrena and Sayadi, 2013) and Japan (Ishiyama et al., 2012). Among issues 830 

considered in such surveys are questions relating to basic knowledge of science (Mielby et 831 

al., 2013), ethics (Du, 2012; Gregorowius et al., 2012), human rights (Srivatava, 2013), 832 

effects on the developing world (Jacobsen and Myhr, 2013; Okeno et al., 2012), the need for 833 

choice (Mather et al., 2012), labelling (Benny, 2012), and coexistence with organic 834 

agriculture (Areal et al., 2012). 835 

 836 

7 Conclusions 837 

 838 

It remains to be seen whether the prospects and opportunities (Chen and Lin, 2013; Dunwell, 839 

2011) described above will be translated into successful GM products in the future and 840 

whether GM technologies are compatible with sustainable (Bruce, 2012; Hansson and 841 

Joelsson, 2012) and biodiverse (Jacobsen et al., 2013) agriculture.  842 
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Table 1. Global area, production, yield and contribution to the human diet for major cereal 

crops 

__________________________________________________________________________________ 

2010 (FAOSTAT)   2009 (FAOSTAT) 

__________________________________________________________________________________ 

  Area  Production Yield  Energy   Protein 

__________________________________________________________________________________ 

  Mha % MT % Tonnes/ha kcal/ %  g/ % 

        capita/d   capita/d 

__________________________________________________________________________________ 

Wheat  217 32 651 27 3.0  532 18.8  16.2 20.4 

Maize  162 24 844 35 5.2  141 5.0  3.4 2.3 

Rice  154 23 672 28 4.4  536 18.9  10.1 12.7 

Barley  48 7 123 5 2.6  7 0.2  0.2 0.3 

Sorghum 41 6 56 2 1.4  32 1.1  1.0 1.3 

Total  683 100 2432 100 3.6  1248 44 30.9 38.6 

Adapted from Wheat Initiative (2013) 
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Table 2. Evolution of wheat yield over 10-year periods since 1960 (FAO) and projected 

needs for 2050 

 

Period  Mean area Mean  Mean production Mean yield Mean yield 

  harvested/yr production/yr increase/yr (%)  (t/ha)  increase/yr  

  (Mha)  (Mt)       (%) 

__________________________________________________________________________________

1961-1970 213  278     1.3 

1971-1980 225  388  3.9   1.7  3.2 

1981-1990 229  509  3.1   2.2  2.9 

1991-2000 220  571  1.2   2.6  1.7 

2001-2010 216  622  0.9   2.9  1.1 

2050 (target) 220  1045  1.7   4.75  1.6 

Adapted from Wheat Initiative (2013) 
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Table 3. Field trials of GM wheat and barley in Australia: Applications and licences for 

Dealings involving Intentional Release (DIR) into the environment 

__________________________________________________________________________________ 

Number Organisation Description  Crop(s)  Trait  Date 

__________________________________________________________________________________ 

DIR117  CSIRO  grain composition,  wheat,  nutrition, Mar 2013 

    nutrient utilisation barley  yield 

DIR112  CSIRO  grain composition,  wheat,  nutrition, Mar 2012 

    nutrient utilisation barley  yield 

DIR111  CSIRO  grain composition,  wheat,  yield,  Feb 2012 

    nutrient utilisation barley  disease, stress 

DIR102  Uni. Adelaide abiotic stress  wheat,  yield, stress Jun 2010 

       barley 

DIR100  CSIRO  drought, heat  wheat  yield, stress Jun 2010 

DIR099  CSIRO  grain composition,  wheat,  nutrition, Mar 2013 

    nutrient utilisation barley  yield 

DIR094  CSIRO  nutrient utilisation wheat,  yield  Jul 2009 

       barley 

DIR093  CSIRO  grain starch  wheat,  nutrition Jun 2009 

       barley 
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DIR092  CSIRO  grain composition wheat  nutrition, May 2009 

         processing 

DIR080  Vict. Dept. drought   wheat  abiotic stress Jun 2008 

  Prim. Indust. 

DIR077  Uni. Adelaide stress, glucan  wheat,  stress,   Jun 2008

       barley  nutrition 

DIR071  Vict. Dept. drought   wheat  abiotic stress Jun 2007 

Prim. Indust. 

DIR061  Grain Biotech salt tolerance  wheat  stress tolerance Withdrawn 

DIR054  CSIRO  grain starch  wheat  nutrition Apr 2005 

DIR054  Grain Biotech salt tolerance  wheat  stress tolerance Apr 2005 

__________________________________________________________________________________ 

Summary of data from the Office of the Gene Regulator. Available at:- 

http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/ir-1 
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Table 4. Transgenic cereals with enhanced content of vitamins and minerals 

__________________________________________________________________________________ 

Nutrient  Species  Genes used   Total increase (fold References 

 

increase over WT) 

 

__________________________________________________________________________________ 

 

Vitamin A Maize  PacrtB, PacrtI   33.6 µg/g DW (34)  Aluru et al., 2008 

  Maize  Zmpsy1, PacrtI, PcrtW, 146.7 µg/g DW (133)  Zhu et al., 2008 

Gllycb 

  Maize  Zmpsy1, PacrtI   163.2 µg/g DW (112)  Naqvi et al., 2009 

  Wheat  Zmpsy1, PacrtI   4.96 µg/g DW (10.8)  Cong et al., 2009 

  Rice  Nppsy1, EucrtI   1.6 µg/g   Ye et al., 2000 

  Rice  Zmppsy1, EucrtI  37 µg/g (23)   Paine et al., 2005 

Vitamin C Maize  Osdhar    110 µg/g DW (6)  Naqvi et al., 2009 

Vitamin E Rice  HPPD      Farré et al., 2012 

    γ-TMT      Zhang et al., 2013a 

Folic acid Rice  Atgtpchi, Atadcs  38.3 nmol/g (100) Storozhenko et al.,  

2007 

Iron  Rice  Osnas2    19 µg/g DW in   Johnson et al.,  

polished seeds (4.2)  2011 

Rice  Gm ferritin, Af phytase, 7 µg/g DW in  Wirth et al., 2009 

Osnas1   polished seeds (4–6.3)   

Rice  Activation tagging 32 µg/g DW in  Lee et al., 2009  

of Osnas3   dehusked seeds (2.9)  
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  Maize  Gm ferritin and  30 µg/g DW in whole Drakakaki et al.,  

    Af phytase   seed (2)  2005 

  Rice  Ferritin   7 µg/g DW in  Masuda et al., 2012, 

polished seed (6) 2013 

Zinc  Rice  Activation tagging  40–45 µg/g DW in  Lee et al., 2011 

    of Osnas2   polished seeds (2.9) 

Rice  Osnas2    52–76 µg/g DW in Johnson et al., 

polished seeds (2.2) 2011  

  Rice  Gm ferritin, Af phytase, 35 µg/g DW in  Wirth et al., 2009  

Osnas1   polished seeds (1.6)  

     

__________________________________________________________________________________ 

 

Data adapted from Pérez-Massot et al. (2012) and other sources. 
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Table 5. Summary of selected field trials of GM cereals in the EU 

___________________________________________________________________________ 

Number State  Date  Institution Subject   

___________________________________________________________________________ 

B/ES/13/19 Spain  May 2013  INIA  Bt maize  

B/ES/13/20 Spain  May 2013 CSIC  Wheat with low content of celiac- 

        toxic epitopes 

B/ES/13/15 Spain  March 2013 Limagrain Bt, HR maize 

B/ES/13/16 Spain  March 2013 Uni. Lleida High vitamin maize 

B/DK/12/01 Denmark April 2012 Univ. Aarhus Cisgenic barley with improved  

        phytase activity 

B/SE/12/484 Sweden  Feb 2012 Swedish Univ. Barley with improved nitrogen 

      Agric. Sci. use efficiency 

B/GB/11/ UK  Oct 2011 Rothamsted Wheat producing aphid alarm 

R8/01  

B/PL/11/ Poland  Sept 2011 Plant Breed. Transgenic Triticale 

02-10      Acclim. Instit. 

B/CZ/11/2 Czech  Mar 2011 Instit. Exper. Barley with phytase 

      Botany 

B/IS/09/01 Iceland  Apr 2009 ORF Genetics Transgenic barley, comparison 
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        of processing quality 

__________________________________________________________________________________ 

Available from JRC database (http://gmoinfo.jrc.ec.europa.eu/gmp_browse.aspx) 
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Table 6. Summary of selected USA granted patents (a) and patent applications (b) relating to 

GM cereals; data from 2013. Data are from the USPTO 

(http://www.uspto.gov/patents/process/search/index.jsp). 

(a) 

Number Date  Inventor  Subject 

___________________________________________________________________________ 

8,440,886 14 May Lundquist et al. Transgenic maize 

8,440,881 14 May Park et al.  Genes for yield 

8,431,775 30 April Hegstad et al.   knotted1 gene 

8,431,402 30 April Vasudevan et al. Sorghum regeneration 

8,426,704 23 April Hirel et al.   Glutamine synthetase 

8,426,677 23 April Yu et al.  GA20 oxidase 

8,426,676 23 April Oswald et al.  Pyruvate kinases 

8,420,893 16 April  Gordon-Kamm et al. AP2 domain transcript. factor 

8,415,526 9 April  McGonigle   Artificial microRNAs 

8,404,933 26 March Chen et al.  Herbicide resistance gene 

8,404,930 26 March Wu et al.  Monocot transformation 

8,404,929` 26 March Gruis et al.  Reducing gene expression 

___________________________________________________________________________ 
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(b) 

___________________________________________________________________________ 

20130133111  23 May Lyznik et al.  MAPKKK genes to improve yield 

20130133101 23 May Rodiuc et al  Phytosulfokines and pathogen resistance 

20130125266 16 May Hiei et al.  Agrobacterium, barley transformation 

20130125264 16 May Frankard et al.  Genes for yield 

20130125258 16 May Emmanuel et al. Genes for yield 

20130117894 9 May  Frohberg et al.  Starch synthase 

20130117888 9 May  Sanz Molinero et al. Genes for yield 

20130116124 9 May  Fernandez et al. Bacterial volatiles and starch 

20130111634 2 May  Kurek et al.  Artificial microRNAs 

20130111632 2 May  Champion et al.  Jasmonic acid 

20130111620 2 May  D’Halluin et al.  Meganucleases 

20130111618 2 May  Mankin et al.  Herbicide tolerance 

___________________________________________________________________________ 

 


