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Abstract 

In late February 2010 the extraordinary windstorm Xynthia crossed over Southwestern and 

Central Europe and caused severe damage, affecting particularly the Spanish and French 

Atlantic coasts. The storm was embedded in uncommon large-scale atmospheric and 

boundary conditions prior to and during its development, namely enhanced sea surface 

temperatures (SST) within the low-level entrainment zone of air masses, an unusual southerly 

position of the polar jet stream, and a remarkable split jet structure in the upper troposphere. 

To analyse the processes that led to the rapid intensification of this exceptional storm 

originating close to the subtropics (30°N), the sensitivity of the cyclone intensification to 

latent heat release is determined using the regional climate model COSMO-CLM forced with 

ERA-Interim data. A control simulation with observed SST shows that moist and warm air 

masses originating from the subtropical North Atlantic were involved in the cyclogenesis 

process and led to the formation of a vertical tower with high values of potential vorticity 

(PV). Sensitivity studies with reduced SST or increased laminar boundary roughness for heat 

led to reduced surface latent heat fluxes. This induced both a weaker and partly retarded 

development of the cyclone and a weakening of the PV-tower together with reduced diabatic 

heating rates, particularly at lower and mid levels. We infer that diabatic processes played a 

crucial role during the phase of rapid deepening of Xynthia and thus to its intensity over the 

Southeastern North Atlantic. We suggest that windstorms like Xynthia may occur more 

frequently under future climate conditions due to the warming SSTs and potentially enhanced 

latent heat release, thus increasing the windstorm risk for Southwestern Europe. 
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1. Introduction 

Mid-latitude winter storms are frequent phenomena, which occasionally lead to severe 

damage and strong socio-economic impacts over Europe (e.g. Lamb, 1991; SwissRe, 2008). 

The majority of such extreme extratropical cyclones originate in a region between 

Newfoundland and Iceland and have a north-eastward orientated track. This area is also 

known as the North Atlantic storm track region (e.g. Hoskins and Valdes, 1990). Most of 

these extreme cyclones undergo explosive cyclogenesis over the North Atlantic basin before 

they hit Europe (e.g. windstorms Lothar and Martin in 1999, Jeanett in 2002, Kyrill in 2007, 

and Klaus in 2009; cf. Wernli et al., 2002; Liberato et al., 2011; Fink et al., 2012)1.  

In late February and the first days of March 2010 windstorm Xynthia affected South-western 

and Central Europe. This explosively deepening storm exhibited an uncommon track 

compared to typical extreme cyclones (c.f. Trigo, 2006; Pinto et al., 2009). Xynthia 

originated from the subtropical eastern North Atlantic around 30°N where there were 

anomalously high sea surface temperatures (SSTs) even for this subtropical region, and 

followed an unusual southwest to northeast track passing close to the coast of the Iberian 

Peninsula (Fig. 1(a)).  

Severe winds were reported over large parts of South-western Europe (Liberato et al., 2013; 

their Fig. 2). The windstorm reached a minimum measured core pressure of 969 hPa 

(according to ERA-Interim reanalysis data), and gales reached up to 200 km h-1 in exposed 

mountainous areas (Bedacht and Hofherr, 2011). A total of 47 fatalities were reported 

because of the storm surge and associated dike bursts that caused 50000 ha of flooded land 

when the storm reached the French coast (Lumbroso and Vinet, 2011). Losses for France, 

Spain and Germany were estimated at €3.10bn, €250m, and €750m, respectively (Bedacht 

                                                            
1Storm names employed herein are as given by the Freie Universität Berlin and as used by the German Weather 
Service.  Source: http://www.met.fu-berlin.de/adopt-a-vortex/historie/ 
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and Hofherr, 2011). A detailed description of the socio-economic impacts can be found in 

Liberato et al. (2013). 

Many factors associated with the development of extratropical cyclones have been explored 

in the literature. Primarily, a broad baroclinic environment is required (e.g. Hoskins and 

Hodges, 2002; Wernli et al., 2002; Gray and Dacre, 2006). As a result of thermal wind 

balance, strong baroclinicity is associated with a strong upper-tropospheric jet stream 

(Carlson, 1991). Uccellini and Johnson (1979) showed that upper-level divergence at the 

entrance and exit region of a jet streak is an important factor for rapid cyclogenesis. Baehr et 

al. (1999) demonstrated that the phase of rapid deepening corresponds to the crossing of the 

cyclone from the warm to the cold side of the jet stream and its prevailing divergence areas.  

 Diabatic processes like the release of latent heat are also important for the evolution of 

extratropical storms (Uccellini, 1990). Previous studies have demonstrated that latent heat 

release by cloud condensation processes can be a crucial energy source for the storm 

evolution (Danard, 1964; Chang et al., 1982; Robertson and Smith, 1983). By applying a 

novel version of the surface pressure tendency equation to reanalysis data, Fink et al. (2012) 

were able to quantify the role of diabatic processes for five recent windstorms. For Xynthia 

and two other storms diabatic processes were found to contribute more to the observed core 

pressure fall than horizontal temperature advection. Latent heating has often been identified 

to increase the growth rate of cyclones by baroclinic instability (e.g. Davis and Emanuel, 

1991), and in some cases it even dominates the cyclogenesis process. Plant et al. (2003) and 

Ahmadi-Givi et al. (2004) showed that midlevel latent heating was crucial for two so-called 

‘type C’ cyclones as defined by Deveson et al. (2002). In these cases, the latent heating acts 

as a ‘dynamical surrogate’ (Snyder and Lindzen, 1991) for the basic-state baroclinicity, 

enabling cyclones to develop in regions of weak surface thermal anomalies. This is consistent 

with the higher proportion of type C cyclones found in the east compared with the west North 
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Atlantic (Dacre and Gray, 2009). The location and orientation of the tracks of extreme 

extratropical cyclones over the North Atlantic basin are strongly linked to the mode of the 

North Atlantic oscillation (NAO, e.g. Wanner et al., 2001).The probability of the 

development of extreme cyclones over the North Atlantic is highest during positive NAO 

phases (e.g. Raible, 2007; Pinto et al., 2009). Nevertheless, extreme cyclones may also occur 

during negative NAO phases. In such a negative NAO phase, the polar jet stream is shifted 

southwards (e.g. Woollings et al., 2010), thus enhancing the probability for severe 

windstorms affecting Southwestern Europe.          

Many studies have pointed out the benefit of using potential vorticity (PV; Hoskins et al., 

1985) to analyse the temporal evolution of synoptic systems. Broad areas of high PV values 

in the upper troposphere (meridionally orientated PV-streamers) have been identified as 

precursors for cyclonic systems (Massacand et al., 1998; 2001). PV-anomalies are also 

strongly linked to diabatic processes and anomalously high low-level and mid-level PV 

values often act as an indicator of latent heat release (cf. Hoskins, 1990; Wernli et al., 2002). 

The interactions between upper-level PV-anomalies and diabatically induced low-level PV-

anomalies can lead to an intensification of the cyclogenesis process (Hoskins et al., 1985) and 

to the formation of a so-called PV-tower with a distinct vertical extension throughout the 

troposphere (Wernli et al., 2002). Hence, the generation of PV in the low and mid 

troposphere also plays an important role in cyclone formation (e.g. Reed et al., 1992; Wernli 

and Davies, 1997), and the vertical PV distribution can be used to analyse the associated 

diabatic processes. Areas of extensive diabatic heating can be found e.g. in warm conveyor 

belts of extratropical cyclones, where the ascent of warm and moist air masses lead to huge 

amounts of latent heat release and the formation of upper-tropospheric negative PV 

anomalies in addition to the positive PV anomalies at lower levels (Pomroy and Thorpe, 

2000). The influence of latent heat release on PV changes in warm conveyor belts and its 
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potential influence on the large-scale dynamics is currently a subject of intense research (e.g. 

Joos and Wernli, 2012; Chagnon et al., 2013). Further, Dacre and Gray (2013) analysed the 

relationship between atmospheric precursors and extratropical cyclone intensity. For cyclones 

over the eastern North Atlantic they detected a significant association between the existence 

of mid-tropospheric PV-anomalies and increased cyclone intensity 48 hours later. 

As countries in Southern Europe are rarely affected by severe windstorms, we analyse here 

the large-scale dynamical conditions supporting the unusual southerly origin and rapid 

intensification of Xynthia. Regional (rather than global) model studies are required to 

consider the associated diabatic processes, since the feedback between cyclone intensification 

and latent heat release is strongly sensitive to horizontal resolution (Willison et al., 2013).  

The aim of this study is to determine the role of anomalously high SST over the southeastern 

North Atlantic in the cyclogenesis process of Xynthia by using a regional climate model. 

Section 2 describes the data and the regional climate model used in this study. A short 

description of different numerical sensitivity experiments is also given. In section 3, a brief 

synoptic overview of the large-scale atmospheric conditions prior to and during the 

occurrence of Xynthia, as well as results of a Lagrangian trajectory analysis are shown. The 

analysis of the outcomes of the regional numerical simulations is presented in section 4. The 

general findings are discussed and summarized in section 5. 

 

2. Data, analysis tools and numerical model 

ERA-Interim reanalysis data (Dee et al., 2011) from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) are used to analyse the large-scale atmospheric conditions 

prior to and during the occurrence of Xynthia. This data is available at six-hourly intervals 

with a horizontal resolution of 0.75° x 0.75°. To identify the sources of air masses involved in 
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the cyclogenesis process a Lagrangian trajectory analysis tool (Noone and Simmonds, 1999; 

Barras and Simmonds, 2009) is applied to several variables in the ERA-Interim dataset.  

For model studies, the non-hydrostatic regional COSMO model (http://www.cosmo-

model.org) is used, specifically Climate Limited-area Model version 4.8 (COSMO_4.8-CLM, 

hereafter CCLM; Rockel et al., 2008). The formulation of the dynamical core and physical 

parameterisations is equal to those of the COSMO-model, which is operationally used by the 

German Weather Service (DWD). The only difference to the operational model version is 

that neither data assimilation of observational data nor latent heat nudging of radar data are 

performed. The ability of CCLM to reproduce extreme windstorms and their characteristics is 

documented in Born et al. (2012). The model domain (Fig. 1(a), bold black border) covers 

large parts of Europe and the North Atlantic Ocean, roughly ranging from 70°N to 15°N. This 

large domain enables us to capture all crucial stages of the evolution of Xynthia, from its 

deepening phase over the south-eastern North Atlantic to its decay over the Baltic Sea. Due to 

the large model domain, the simulations are performed with a relatively coarse horizontal 

resolution (compared to operational limited area weather forecast models) of 0.22° x 0.22° 

(approx. 25 km x 25 km) and with 35 layers in the vertical. ERA-Interim data is used as 

boundary conditions. For time step integration, the Runge-Kutta integration scheme is used 

with a time step of 144 s. CCLM simulations are performed for the 96h-period from 00UTC 

26 February 2010 to 00UTC 2 March 2010.  

First, a control simulation with standard physics and undisturbed initial boundary conditions 

(in particular observed SST) serves as a reference run (CNTRL). Further, five sensitivity 

experiments are performed to investigate the role of the anomalously high SST and 

associated latent heat release in the development of Xynthia. In the first two sensitivity 

experiments (SF5, SF10) the surface heat fluxes and thus the evaporation over a south-

western sub region of the model domain (Fig. 1, thin black box) over the North Atlantic 
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Ocean are reduced by modifying the respective empirical model parameters. This sub region 

comprises the area over which the strongest intensification of Xynthia was identified. 

Specifically, the laminar boundary roughness for heat at the surface is enhanced; the non-

dimensional parameter rlam_heat (identified to affect model results by Bellprat et al., 2012) 

is increased from 1 to 5 (SF5) and 10 (SF10), respectively. The parameter rlam_heat is 

proportional to the inverse of the transfer coefficient of heat (tch), In turn, tch is directly 

proportional to the surface latent heat flux. Thus, an increase of rlam_heat will lead to lower 

tch values and also to reduced surface latent heat fluxes. A sensitivity study by Langland et 

al. (1996) showed that an increase of the transfer coefficient for the surface latent heat flux 

leads to an intensified cyclone.  

In the other three sensitivity experiments, the SST is stepwise reduced over the sub region 

defined in Fig. 1. The initial SST is reduced in steps of 1K at each model grid point in the sub 

region relative to that in CNTRL to a maximum reduction of 3K (experiments TS1 to TS3). 

The specific humidity in the boundary layer is assumed to decrease when surface fluxes or 

initial SST are reduced. To give the specific humidity sufficient time to adjust to modified 

surface conditions, an initialization run is performed prior each of the sensitivity runs. The 

initialisation runs are started on 24 February 00UTC (two days prior to the start time of the 

sensitivity runs), and provide adapted boundary layer humidity fields. Analysis of simulations 

with different lengths of initialisation runs reveals that a lead-time of 48 hours is sufficient 

for humidity adjustment. Afterwards, the sensitivity runs are performed using these adjusted 

boundary layer humidity fields as initial conditions at 26 February 00UTC. To restrict the 

adjustment of humidity to the boundary layer, a spectral nudging procedure (von Storch et 

al., 2000) is applied to the initialisation runs. By using this technique, the large-scale 

atmospheric flow fields are kept close to the driving reanalysis fields ensuring that the upper-

level forcing differs only marginally from that in the control simulation. A similar approach 
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of humidity adjustment for initializing RCMs has e.g. been applied by Etienne et al. (2013) 

for simulations over lakes in Switzerland. Surface and upper-air analysis charts provided by 

DWD (German weather service) as well as reports from two synoptic stations (Porto, WMO: 

08545, 8.68°W, 41.23°N and Chassiron, WMO: 07314, 1.41°W, 46.05°N) are used to 

validate the CNTRL simulation. The locations of both synoptic stations are indicated in Fig. 

5(a). 

To reveal the influence of diabatic processes (cf. section 5) we calculated potential vorticity 

(PVU) and the diabatic heating rate (DHR). The calculation of potential vorticity on isobaric 

surfaces follows Dickinson et al. (1997): 

 

   (1) 

 

Here, g is gravity, θ represents the potential temperature, f is the Coriolis parameter, p is the 

pressure level and u and v represent the zonal and meridional components of the wind, 

respectively. The DHR (also section 5) follows Berrisford (1988) and assumes that 

condensation occurs where ascending air is (nearly) saturated: 

 

(2) 

 

Thereby it is assumed that the vertical velocity ω < 0 (ascending motion) and the relative 

humidity h > h0 = 80%. L denotes the latent heat of condensation of water, cp the specific heat 

capacity of water vapour at constant pressure, κ the ratio of R (gas constant) and cp, and qs the 

saturation mixing ratio. The latter term accounts for potential saturation on the sub-grid scale 

(cf. Grams et al. 2011). 
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 3. Synoptic overview of the storm development  

A description of the large-scale atmospheric conditions prior to and during the occurrence of 

Xynthia is presented in this section. Brief descriptions of Xynthia can also be found in 

Rivière et al. (2012) and Liberato et al. (2013). The analysis is based on ERA-Interim 

reanalysis data. Xynthia was initially identified on 25 February over the subtropical North 

Atlantic (cf. Fig. 1(a)). Its development was associated with a huge snowstorm on the east 

coast of the United States, which modified the upper-level PV-distribution and formed a PV-

streamer in the vicinity of developing Xynthia (Piaget, 2011). In the following days, Xynthia 

underwent explosive cyclogenesis and reached its lowest core pressure close to the French 

Atlantic coast, before it dissipated over the Baltic Sea. 

As reported by Osborn (2011), the winter months prior Xynthia were characterized by a 

record-breaking negative phase of the NAO. Correspondently, the polar jet was shifted 

southward during most of the winter 2009/2010 (Santos et al., 2013), and was mainly located 

around the southern peak of its trimodal climatological distribution (Woollings et al., 2010). 

From 4-28 February, the polar jet was shifted to a region between 30°N and 40°N (Santos et 

al., 2013; their Fig. 1), thus forming favourable conditions for strong cyclogenesis around 

this latitudinal band. 

A positive SST anomaly existed over most of the subtropical North Atlantic during February 

2010 (Fig. 2). Figure 2 also shows the presence of long-lived Gulf Stream eddies which can 

be inferred from the series of alternating cold and warm anomalies in the Gulf Stream region. 

The SST anomaly has its maximum (exceeding 2K) close to the West African coast, a region 

that is usually characterized by upwelling of cold water, as can be seen in the climatological 

SST mean (black isolines in Fig. 2). It is also mostly above twice the standard deviation of 

the 30-year climatology as derived from ERA-Interim (dotted areas in Fig. 2). Hence, an 
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increased amount of available moisture can be assumed over the subtropical North Atlantic, 

which in turn can lead to an enhanced release of latent heat when these air masses are lifted, 

potentially playing a crucial role in the development of Xynthia. Within these prevailing 

atmospheric conditions, a catastrophic frontal rainfall event hit the island of Madeira just one 

week before the occurrence of Xynthia (Fragoso et al., 2012). The capital Funchal reported a 

daily precipitation of 146.9mm, which has an estimated return period of approximately 290 

years. Thus, conditions for the development of extreme hydro-meteorological events were 

already in place before the development of Xynthia.   

To analyze the origins of air masses involved in the cyclone development in more detail, a 

Lagrangian backward trajectory analysis (Noone and Simmonds, 1999) is performed. 

Trajectories starting at 00 UTC 27 February are calculated 72 hours backwards from six 

different tropospheric pressure levels inside the warm sector of Xynthia, which was located at 

this time southwest of the Portuguese coast (Fig 3(a)). The warm sector is characterized by an 

area of warm and moist air, indicated by high values of lower-level equivalent potential 

temperatures (Θe,). The air mass inside the warm sector of Xynthia is found to originate from 

areas with anomalously warm SSTs (Fig 3(a)). Boundary-layer air masses (up to 975 hPa) 

originate close to the West African coast, while mid-tropospheric air masses (400-600 hPa) 

originate from the central subtropical North Atlantic. The mid-tropospheric air masses 

originate close to the surface (beneath 900 hPa) and are rapidly lifted over the last 36 hours of 

the analysis (Fig. 3(b)). The specific humidity of these air masses decreases significantly 

during the lifting (Fig. 3(c)). Hence, moist air from low levels is transported to higher 

altitudes within the cyclone while undergoing condensation and releasing latent heat. Due to 

their rapid ascent, these air masses can be assigned to the warm conveyor belt of the storm, 

where strong lifting of air masses is typical (e.g. Carlson, 1991). For the boundary-layer air 

masses, which underwent only a slight descent during the last 24 hours of the trajectory 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
analysis (Fig. 3(b)), a strong increase of specific humidity can be observed before reaching 

the cyclone core (Fig. 3(c)), thus implying that humidity is gained by these air masses while 

flowing over warm ocean surfaces. These findings are consistent with results of Liberato et 

al. (2013), who used a more complex evaporation/precipitation Lagrangian method (Stohl et 

al., 1998) that is able to identify the evaporative sources associated with the development of 

Xynthia in the subtropical North Atlantic.  

Atmospheric conditions at three different times during the phase of Xynthia’s rapid 

intensification are presented in Fig. 4. At 00 UTC 26 February a long-wave trough at 300 hPa 

is centred over the North Atlantic (Fig. 4(a)). A PV-streamer with values of more than 4 PVU 

is located within the axis of the trough; the tip of the PV-streamer is vertically aligned with 

the identified surface cyclone. The jet stream exhibits a split structure (Fig. 4(d)). At the exit 

region of the western branch of the jet stream, which is vertically aligned with the surface 

cyclone, strong upper-level divergence can be observed. Hence, upper-air conditions 

facilitate the early development of the cyclone. At lower levels (850 hPa), the PV-distribution 

exhibits a local maximum in the vicinity of the cyclone, reaching almost 1PVU (Fig. 4(g)). 

Additionally, a weaker second low-level PV-maximum is located further downstream (cf. 

Rivière, 2012). A backwards vertical tilt between upper- and lower-level vorticity maxima is 

favourable for baroclinic development of the cyclone (e.g. Holton, 1979). The Θe field shows 

a strong horizontal gradient over central and eastern parts of the subtropical North Atlantic. 

At this stage, the cyclone is located on the southern edge of the frontal zone. 

 At 00 UTC 27 February, the upper-level trough with its embedded PV-streamer and the 

major jet structure have moved further eastward, with the cyclone still being located in the 

area of strong upper-level divergence between the two jet streaks (Figure 4(b) and 4(e)). 

Thus, perfect conditions for further deepening of the cyclone are provided (cf. Fig. 1(b)). 
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Close to the centre of the cyclone, the two lower-tropospheric PV maxima merged to form an 

elongated coherent maximum, exceeding values of more than 2 PVU (Fig. 4(h)). The gradient 

of Θe has also sharpened in the vicinity of the cyclone. We hypothesize that this increase in 

PV can be at least partly attributed to diabatic processes like latent heat release through the 

condensation of lifted moist air. In this study the contribution of the anomalously high SSTs 

in the storm’s genesis region to this diabatic PV component is determined.  

At 00 UTC 28 February, the cyclone has reached its maximum intensity (see Fig. 1(b)). The 

upper-level trough has considerably weakened (Fig. 4(c)). The PV-streamer has moved 

further to the northeast and is located over the Bay of Biscay. Upper-level divergence still 

exhibits locally large values, while the eastern branch of the jet stream has weakened 

significantly (Fig. 4(f)). The cyclone core is now associated with a single contracted PV 

maximum exhibiting further enhanced values at 850 hPa (Fig. 4(i)). Afterwards, the surface 

cyclone migrates further towards colder air masses and is consequently isolated from the 

warm and humid air masses, and thus from this energy reservoir.  

 

4. Numerical model studies 

a) Validation of the CCLM control simulation 

To explicitly analyse the role of the anomalous SST and associated latent heat release for the 

development of Xynthia as represented in CCLM, the validation of the control experiment 

(CNTRL) is first required. The CNTRL experiment is forced with undisturbed initial 

conditions (including observed SSTs, see section 2), and is validated against ERA-Interim 

reanalysis, DWD analysis, and observations from the two synoptic stations Porto and 

Chassiron (for location see Fig. 5(a)). In general, the simulated track of Xynthia and the 
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temporal evolution of the core pressure in CNTRL are in good agreement with ERA-interim 

(Fig. 5). The core pressure is slightly deeper in the CNTRL simulation than in the reanalysis 

during the regarded period. The lowest pressure is analysed from the reanalysis at 28 

February 00 UTC (969.2 hPa), located over the Bay of Biscay, while the core pressure in the 

CNTRL simulation occurs two hours earlier (966.7 hPa). The simulated cyclone track is 

slightly shifted southwards compared to ERA-Interim. The simulated wind signature 

(maximum wind speed per grid point during the whole episode) exhibits highest wind gusts 

south of the track with a maximum speed of 45.8 m s-1 west of the Portuguese coast (Fig. 

5(a)). 

The 300 hPa geopotential height, upper-tropospheric wind speed and direction as simulated 

by CNTRL are quite similar to DWD analysis, which is shown for the 27 February 12 UTC 

(Fig. 6). As CCLM is forced by ERA-Interim, we chose DWD analysis for comparison to 

have an independent dataset to evaluate the model performance. In both the DWD analysis 

and CNTRL, a distinct trough over the central and eastern North Atlantic and a small ridge 

over the western Mediterranean can be observed. The strong geopotential height gradient 

near the western coast of Spain and super-geostrophic conditions over southern France lead 

to high wind speeds of up to 100 kn over south-western Europe and are simulated quite 

realistically by CNTRL. The simulated upper-level jet stream (Fig 6(b)) shows a split 

structure with branches located over central Europe and east of the Iberian coast. This is 

similar to the upper-level jet stream structures observed in the reanalysis data (cf. Fig. 4 and 

section 3).    

Observed meteorological parameters at two synoptic stations, Chassiron and Porto, are 

compared to CNTRL at the respective nearest model grid point (Fig. 7). Chassiron is located 

on the island of Oleron just offshore the French Atlantic coast, where some of the most 

severe damage was reported (Lumbroso and Vinet, 2011). Porto is located at the Portuguese 
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coast just south of the area where Xynthia first hit Iberia. Simulated time series of mean sea 

level pressure (MSLP) and wind speed at 10m are in good agreement with observations for 

both stations with respect to their temporal evolution as well as their magnitude (Fig. 7(b) and 

7(d)). Correlation coefficients between simulated and observed time series for Chassiron are 

0.89 for wind speed and 0.98 for MSLP; for Porto the same coefficients are 0.76 and 0.99, 

respectively. The rapid decrease of MSLP to a minimum pressure of approximately 975 hPa 

in the early afternoon of 27 February for Porto and around midnight on 28 February for 

Chassiron is well reproduced by CCLM. On the other hand, the strong pressure increase at 

Chassiron after Xynthia has passed is simulated too early by CNTRL. As a consequence, 

simulated wind speeds reach their maximum an hour prior to the observations at Chassiron 

(Fig. 7(b)). Observed and simulated air and dew point temperatures have similar time series 

for both synoptic stations (Fig. 7(a) and 7(c)). A sharp increase of air and dew point 

temperatures can be observed at both stations as the storm passes (before and after noon on 

27 February at Porto and Chassiron respectively). This strong increase is due to the passing of 

the warm sector of the cyclone over the respective stations and is simulated quite realistically 

by CNTRL.  

We conclude that CNTRL reproduces the fundamental meteorological parameters of the 

reanalysis and observational data sets realistically. Therefore, the CCLM seems to be 

appropriate for the simulation of a windstorm like Xynthia. The sensitivity experiments are 

presented in the following subsection. 

 

b) Results of the sensitivity experiments 

The sensitivity experiments are analysed to quantify the role of the SST and associated latent 

heat release in the development of Xynthia. The main differences between the various 
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sensitivity studies and CNTRL are modified latent heat fluxes between the surface and the 

atmosphere (see section 2). Fig. 8 depicts latent heat fluxes for CNTRL (Fig. 8(a)) and the 

sensitivity experiments TS1, TS2, TS3, SF5 and SF10 (Fig. 8(b)-(f)) averaged over the 48h 

period from 00 UTC 26 February 2010 to 00 UTC 28 February 2010. As can be seen, the 

decrease of simulated latent heat flux is stronger in the sensitivity experiments in which the 

boundary layer roughness for heat is increased (SF5 and SF10), than in those with reduced 

SST (TS1, TS2, TS3). 

The cyclone tracks and the temporal evolution of the core pressure as simulated by TS1, TS3, 

SF5, and SF10 compared to results from CNTRL are shown in Fig. 9(a). During the entire 

period the core pressure of TS1 is above the core pressure of CNTRL, with a difference of 

minimum core pressure of 4.3 hPa. This effect is strengthened in TS3, where the minimum 

core pressure difference is 8.7 hPa above CNTRL. Additionally, the absolute minimum core 

pressure is reached with a retardation of nine hours in TS3 compared to CNTRL. The results 

of TS2 are within the range of the results of TS1 and TS3 (not shown). For all sensitivity 

experiments, cyclone tracks and 6-hourly positions are quite similar to CNTRL (Fig. 9(b)). 

These results suggest that decreasing the initial SST has only a small impact on the resulting 

cyclone track but a recognizable influence on the core pressure development. This assessment 

is strengthened by the results of the SF5 and SF10 experiments, which also show a clear 

reduction of storm intensity with minimal variations of the cyclone track compared to 

CNTRL. The resulting difference of minimum core pressure is 5.8 hPa (for SF5) and 8.0 hPa 

(for SF10), respectively. On 27 February 22UTC, when the core pressure in CNTRL reaches 

its absolute minimum, the deviations for the sensitivity experiment range between 5.9 hPa 

(TS1) and 10.3 hPa (TS3).  

To further clarify the role of latent heat release on the development of Xynthia, the MSLP, 

low-level Θe and PV distributions simulated by TS3 and SF10 are compared to CNTRL (Fig. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
10). For CNTRL a band of high Θe-values (vertically averaged between 900 and 950 hPa), 

reaching from the eastern subtropical North Atlantic along the northwest African shoreline 

towards the cyclone centre, is obvious at 27 February 12 UTC (Fig. 10(a)). This indicates the 

availability of warm moist air masses, which on lifting can release latent heat and thus 

contribute to the further intensification of Xynthia. Compared to CNTRL, both TS3 (Fig. 

10(b)) and SF10 (Fig. 10(c)) clearly show decreased and westward shifted low-level Θe over 

the eastern North Atlantic. As PV is conserved under adiabatic frictionless conditions, 

positive PV-anomalies in the lower troposphere are likely to be (at least partly) attributable to 

diabatic processes. For CNTRL, high values of low-level PV (vertically averaged between 

750 and 900 hPa) along the Portuguese coast are simulated (Fig. 10(d)). In TS3 (Fig. 10(e)) 

and SF10 (Fig. 10(f)), simulated low-level PV is weaker (up to 2PVU) in the vicinity of the 

cyclone compared to CNTRL. The association with reduced low-level Θe implies that the 

reduction is due to weaker diabatic processes in the sensitivity experiments.  

Finally, the effect of the reduced surface latent heat fluxes on cyclone-related precipitation is 

analysed. Heavy 12-hourly accumulated precipitation of up to 69.6 kg m-2 along the cyclone 

track (with large both resolved and parameterized components) is simulated by CNTRL (Fig. 

10(g)); the mean precipitation is 10.47 kg m-2 per grid point for a representative subdomain 

(see dashed box in Fig 10(g)-(i)). Less accumulated precipitation, peaking at 64.1 kg m-2 and 

with an average of 9.4 kg m-2 per grid point, can be observed for TS3 (Fig. 10(h)). The 

decrease of accumulated precipitation is even stronger for SF10, with accumulated 

precipitation of less than 53.1 kg m-2 (average of 9.1 kg m-2 per grid point) for the entire area 

(Fig. 10(i)). Weaker precipitation can be attributed to a) reduced available moisture from the 

sea due to reduced surface fluxes of latent heat, and/or b) weaker lifting during the deepening 

phase of the cyclone.   
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We conclude that the artificial reduction of surface latent heat fluxes inhibits the 

intensification of the cyclone, the development of PV through diabatic processes, and cyclone 

precipitation. 

c) Vertical perspective on the PV development 

Analysing the vertical distribution of PV-anomalies and diagnosis of diabatic heating rate 

(DHR, section 2) provides more profound insights into the role of latent heat release on the 

intensification phase of Xynthia. Here, we consider vertical cross sections of PV and DHR 

centred over the surface cyclone and averaged over 4° in the east-west direction and 10° in 

the north-south direction. Fig. 11(a)-(d) show the south-north orientated vertical sections of 

PV and relative humidity (RH) for CNTRL for different stages of development. The 

geographical locations of the cross sections are shown in Fig 5(a). At 26 February 12 UTC, 

high PV-values can be observed in the upper troposphere with maximum values at the 

tropopause level (Fig 11(a)). This is consistent with the identified upper-level PV-streamer as 

shown in Fig. 4(a)-(c). A secondary simulated PV maximum can be seen at mid-tropospheric 

levels which may be attributed to diabatic heating processes within the warm conveyor belt. 

Hence, crucial atmospheric conditions for a rapid cyclone development are present. Further, 

north of the surface cyclone centre moist air masses with RH of more than 80% reach up 

above 500 hPa, reflecting the upward transport of warm and moist air within the warm 

conveyor belt of the cyclone. Twelve hours later, a distinct PV-tower with two regions of 

maximum PV extends from the surface to the upper troposphere right above surface cyclone 

(Fig. 11(b)). The PV-tower is the result of the merging of diabatically produced PV and 

upper-level PV. Additionally, the region of moist air north of the cyclone has further enlarged 

which is an indicator of the ongoing uplifting of humid air masses on 27 February 00 UTC. 

Above this region, lower values of PV occur as the result of reduced PV above the area of 

strongest latent heat release. South of the cyclone a region of dry midtropospheric air 
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develops, associated with the dry intrusion (Browning, 1997). On 27 February 12 UTC, the 

low and mid troposphere above the surface cyclone is still characterised by an amplified PV-

tower (Fig. 11(c)). While moist air is still advected to upper levels within the warm conveyor 

belt of the cyclone, the dry intrusion south of the surface cyclone extends downwards to 

700 hPa. At peak intensity of the storm, 28 February 00 UTC,  the PV-tower extends 

throughout the whole troposphere. Values of up to 3 PVU are visible at lower levels, 

consistent with diabatic processes taking place here. To the north, moist air is still reaching to 

higher levels, while the dry intrusion to the south manifests itself at mid-tropospheric levels.  

The impact of diabatic processes on the PV structure of the storm is demonstrated by 

horizontally averaging PV over a 4°x4° box centred on the surface cyclone in the CNTRL 

and the sensitivity experiments TS3 and SF10 (Fig. 11(e)-(h)). The diagnoses of DHR 

confirm the influence of diabatic processes on the development of the storm. Strong DHR 

occurs within the corresponding air column at lower and mid-tropospheric levels during the 

deepening phase of the storm. While on 26 February 12 UTC the vertical distribution of PV 

is very similar in the three simulations (Fig. 11(e)), PV is reduced in both sensitivity 

experiments in the lower troposphere at later times (Fig. 11(f)-(h)). A decrease of PV of up to 

0.9 PVU can be seen for 27 February 12 UTC (Fig. 11(g)). This coincides with a reduction in 

DHR of 0.5 K h-1 for TS3 and SF10, respectively. At the same time, upper-level PV values 

(300-500 hPa) in the sensitivity experiments are enhanced in relation to CNTRL. The 

enhanced PV at 500hPa in TS3, and more clearly in SF10, is related to the reduced DHR just 

below 500hPa. The overall weakened negative vertical gradient in PV in the sensitivity 

experiments can be attributed to the weaker DHR at mid-tropospheric levels. On 28 February 

00 UTC (Fig. 11(h)) it is noticeable that DHR at lower levels has generally reduced by 

approximately 2 K h-1 since 27 February 12 UTC while at upper levels only the sensitivity 

experiments show a marked reduction of the DHR. In particular the reduction of DHR at 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
lower levels implies that the peak storm intensity has been reached (cf. Fig.9). To summarize, 

these results again clearly indicate the important role of moisture processes in the 

cyclogenesis of Xynthia and their contribution to the weaker intensification of the storm in 

the TS and SF experiments (cf. Fig. 9(a)).  

 

5. Summary and Conclusion 

The role of the anomalously high SST and associated latent heat release in the development 

of the exceptional windstorm Xynthia in early 2010 has been analysed. The record breaking 

negative phase of the NAO during the winter 2009/2010 was associated with a southward 

shift of the polar jet stream. These conditions favoured the development of Xynthia around 

30°N near an area with anomalously warm SSTs even for the subtropical North Atlantic. The 

occurrence of an upper-level PV-streamer, a split jet stream associated with strong 

divergence and enhanced baroclinicity further contributed to the intensification of Xynthia. 

Results of two different sets of sensitivity experiments with the CCLM demonstrate the 

importance of the enhanced SST and surface latent heat fluxes to the development of 

Xynthia.  

Our findings regarding the main atmospheric driving factors during the intensification of 

Xynthia are in agreement with a variety of studies on extratropical cyclones. In more detail, 

these driving factors are the existence of a strong jet stream with accompanied horizontal 

divergence, enhanced baroclinicity and availability of latent heat energy. Further, the 

importance of a split jet structure analysed during the stage of rapid intensification has 

already been ascertained for recent windstorms such as Lothar, Kyrill and Klaus (Wernli et 

al., 2002; Liberato et al., 2011; Fink et al., 2012). In general, a prevailing negative NAO 

reduces the total number of extreme cyclones over the North Atlantic, but increases the 
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number of systems travelling towards Southwestern Europe (e.g. Raible, 2007; Pinto et al., 

2009). Thus, Xynthia may be seen as exemplary case study for extreme cyclogenesis over the 

subtropical Eastern North Atlantic.     

The quantification of dry baroclinic versus moist diabatic processes (e.g. Fink et al., 2012) 

reveal the importance of diabatic processes during the intensification of windstorms like 

Xynthia. Here, this is estimated by considering regional model simulations with perturbed 

physics. Langland et al. (1996) showed that the intensification of an idealized extratropical 

cyclone was sensitive to increasing the transfer coefficient of the surface latent heat flux. In 

our sensitivity experiments, the surface heat fluxes were artificially reduced by increasing the 

laminar boundary roughness length for heat (rlam_heat; cf. Bellprat et al. 2012) or reducing 

the SST. The results of our sensitivity studies with the CCLM confirm the importance of 

diabatic processes for Xynthia, as these experiments show a weaker and retarded 

intensification of the storm. The contribution of enhanced SSTs to the intensification of 

extratropical storms has been discussed by several modelling studies e.g. for storm Lothar 

(Wernli et al., 2002). Our results are also in accordance with other studies addressing the 

influence of SST anomalies on the development of storms. For instance, Booth et al. (2012) 

analyzed the sensitivity of midlatitude storm intensification to perturbations in the SST near 

the Gulf Stream revealing enhanced SSTs lead to stronger storms. The same relationship had 

also been found by Giordani and Caniaux (2001). 

The formation of a PV-tower is a typical characteristic of strong extratropical cyclones (e.g. 

Wernli, 2002; Campa and Wernli, 2012). As Xynthia intensifies, a strong PV-tower develops 

above the surface cyclone within our control simulation. Likewise, we are able to show the 

existence of an upper-level stratospheric intrusion (PV-streamer) that merges with a 

diabatically produced PV-anomaly at low and midlevels. This interaction is typical for east 

Atlantic cyclones, where upper-level forcing and mid-level latent heating are of equal 
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importance (cf. Dacre and Gray, 2013). The results of the DHR diagnosis and the decrease of 

the PV-tower in our sensitivity experiments demonstrate the importance of available low-

level moisture for the diabatic processes during the intensification of the storm. The large 

values of low-level PV can be attributed to high potential temperatures at the surface (Campa 

and Wernli, 2012). Sensitivity studies with reduced SST or with increased laminar boundary 

roughness for heat showed a reduction of surface latent heat fluxes, inducing both a weaker 

and generally retarded development of the cyclone, and a weakening of the PV-tower, 

particularly at lower levels (cf. Fig. 11(f) and 11(g)). This fact along with the overall reduced 

DHR in the sensitivity experiments corroborates our hypothesis that anomalously high values 

of SST over the subtropical North Atlantic and the associated latent heat release were 

instrumental for the development of Xynthia. 

A pertinent scientific question is the potential impact of increasing greenhouse gas forcing on 

storms undergoing explosive development on the southern edge of the North Atlantic storm 

track (around 35°N–45°N) like Klaus (Liberato et al., 2011) and Xynthia. For example, Pinto 

et al. (2009) argued that the conditions for such intense developments close to Europe may be 

more favourable under future climate conditions, and suggested that the importance of 

diabatic processes during the intensification of extreme cyclones may significantly increase. 

Further, Bengtsson et al. (2009) estimated that the most prominent change in storm 

characteristics under future climate conditions is a significant increase in total precipitation. 

Based on these and other studies, we suggest that storms like Xynthia may occur more 

frequently under future climate conditions, increasing the windstorm risk for South-western 

Europe. 
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Figure Captions 

 

Figure 1. 6-hourly cyclone location (a) and core pressure evolution (b) for Xynthia derived 

from ERA-Interim data. Data ranges from 25 February 00 UTC until 02 March 00 UTC. (a): 

The CCLM model domain is marked by the black border. The model orography is shaded 

[m]. The small black box at the south-western corner of the model domain delimits the region 

where SST is perturbed for sensitivity studies. 

Figure 2. Long term average of SST over the North Atlantic basin for February (1980-2009) 

from ERA-Interim data (isolines with an interval of 2°C) and SST anomalies for February 

2010 (shaded). Areas with an anomaly more/less than twice the standard deviation are 

indicated with black dots. Cyclone track is included in grey. 

Figure 3. (a) Θe distribution at 950 hPa (green isolines with an interval of 10K), positive SST 

anomalies (shaded) and backward trajectories of airflows inside the warm sector of the 

cyclone. All trajectories start at 00UTC on 27 February and are calculated backwards for 72 

hours. The colours of the trajectories indicate the starting height (cf. 3(b) for colour key). 

Area where SST is reduced in CCLM sensitivity studies is also included as black frame. (b) 

Pressure along the trajectories. (c) Specific humidity along the trajectories. 

Figure 4. Synopsis of different meteorological parameters for three time steps during rapid 

intensification of Xynthia: left column 26 February 00 UTC; centre column 27 February 00 

UTC; right column 28 February 00 UTC. (a)-(c): PV-distribution [PVU] (shaded) on the 

320K isentropic level and geopotential height at 300hPa (black isolines with an interval of 16 

gpdm); (d)-(f): jet stream [kts] (isolines) and divergence [10-5 s-1] (shaded) at 300hPa; (g)-(i): 

PV-distribution [PVU] (shaded) and equivalent potential temperature Θe [K] (contour lines, 

every 5K) at 850hPa. Please note that (d)-(i) are zoomed to the dashed box as shown in (a)-

(c) for better representation of synoptic scale variables. In all panels the black squares mark 

the location of the surface cyclone.  

Figure 5. Cyclone location (a) and core pressure evolution (b) of Xynthia as derived from 

ERA-Interim (dashed line with squares) and CNTRL (solid line with circles). First depicted 

point is at 26 February 00 UTC. Squares/circles are in 6 hourly intervals until 02 March 00 

UTC. (a): Shaded areas show wind signature of the storm (maximum wind gust above 
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17.5 m s-1 at each grid point during the considered period). Uppercase letters ‘P’ and ‘C’ 

indicate the locations of the synoptic stations Porto and Chassiron for further comparisons. 

The four vertical lines along the track assign the positions of north-south cross sections 

shown in Figure 11. 

Figure 6. (a) Analysis of geopotential height [gpdm] (contours every 8gpdm) and wind 

vectors by DWD at 300hPa on 27 February 12UTC; (b) as (a), but for CNTRL. Wind speeds 

higher than 60 knots are shaded in intervals of 10 knots for clarification of upper level jet 

stream conditions in CNTRL. 

Figure 7. Time series for different meteorological parameters at two different locations for 

CNTRL (dashed line) and synoptic stations (solid line). (a): 2-metre temperature (black, [°C]) 

and dew point temperature (grey, [°C]) for CCLM grid point 164, 134 (1.20°W, 46.11°N) 

and synoptic station 07314 (Chassiron, 1.41°W, 46.05°N). (b) as (a), but for 10-metre wind 

speed (grey, [kn]) and mean sea level pressure (black, [hPa]). (c) as (a) but for CCLM grid 

point 140, 111 (8.55°W, 41.20°N) and synoptic station 08545 (Porto, 8.68°W, 41.23°N).  (d): 

as (c) but for 10-metre wind speed (grey, [kn]) and mean sea level pressure (black, [hPa]). 

For station locations please refer to Figure 5. 

Figure 8.  Averaged latent heat fluxes at sea surface (in W m-2) for the period 26 February 

2010, 00 UTC to 28 February 2010, 00 UTC. (a) Undisturbed control simulation, (b) 

sensitivity study TS1 with 1 K reduction of SST, (c) sensitivity study SF5 with rlam_heat=5, 

(d) sensitivity study TS2 with 2 K reduction of SST, (e) sensitivity study TS3 with 3 K 

reduction of SST and (f) sensitivity study SF10 with rlam_heat = 10. For more details see 

text. 

Figure 9. (a) Core pressure evolution and (b) cyclone locations for various sensitivity 

experiments. For better presentation of the results, only results for TS1 (black/plus symbol), 

TS3 (grey/circle), SF5 (stippled grey/asterisk) and SF10 (stippled black/square) are included. 

As reference, the core pressure evolution and location for the CNTRL (diamond symbols) are 

included. 

Figure 10. Top row: MSLP (contour each 2.5hPa) and vertically averaged Θe between 

900hPa and 950hPa on 27 February 12UTC for (a) CNTRL, (b) TS3, and (c) SF10. Centre 

row: as (a) to (c), but for lower-tropospheric PV vertically averaged between 750hPa and 

900hPa. (e) and (f) also show negative (positive) PV-differences of TS3-CNTRL and SF10-
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CNTRL contoured as thick (stippled) black lines respectively (contour each 1PVU). For (a)-

(f), black/white circles indicate corresponding cyclone position. Bottom row: as (a) to (c), but 

for 12-hour precipitation accumulation on 27 February between 00UTC and 12UTC. 

Comparative values for precipitation are calculated in the box marked by dashed line (see text 

for details). 

Figure 11. (a)-(d): South-north orientated vertical sections of the PV distribution [PVU] at 

different time steps (for positions of cross sections see Figure 5). PV and relative humidity 

(stippled isoline: 20% RH; dotted area: RH > 80%) for CNTRL at a) 26 February 12UTC, (b) 

27 February 00UTC, (c) 27 February 12UTC and (d) 28 February 00UTC. The location of 

the surface low is indicated by ‘L’. (e)-(h): Vertical distribution of horizontal averaged PV 

(left, [PVU]) and diabatic heating rate ( &θ , right, [K h-1]) over a 4°x4° box centred on the 

surface cyclone at different time steps for CNTRL (solid black line), TS3 (stippled grey line) 

and SF10 (stippled black line). Time steps in (e)-(h) according to (a)-(d). 
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Figure 1. 6-hourly cyclone location (a) and core pressure evolution (b) for Xynthia derived from ERA-Interim 
data. Data ranges from 25 February 00 UTC until 02 March 00 UTC. (a): The CCLM model domain is marked 
by the black border. The model orography is shaded [m]. The small black box at the south-western corner 

of the model domain delimits the region where SST is perturbed for sensitivity studies.  
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Figure 2. Long term average of SST over the North Atlantic basin for February (1980-2009) from ERA-
Interim data (isolines with an interval of 2°C) and SST anomalies for February 2010 (shaded). Areas with an 
anomaly more/less than twice the standard deviation are indicated with black dots. Cyclone track is included 

in grey.  
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Figure 3. (a) Θe distribution at 950 hPa (green isolines with an interval of 10 K), positive SST anomalies 
(shaded) and backward trajectories of airflows inside the warm sector of the cyclone. All trajectories start at 
00 UTC on 27 February and are calculated backwards for 72 hours. The colours of the trajectories indicate 

the starting height (cf. 3(b) for colour key). Area where SST is reduced in CCLM sensitivity studies is also 

included as black frame. (b) Pressure along the trajectories. (c) Specific humidity along the trajectories. 
 included as black frame. (b) Pressure along the trajectories. (c) Specific humidity along the trajectories. 
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Figure 4. Synopsis of different meteorological parameters for three time steps during rapid intensification of 
Xynthia: left column 26 February 00 UTC; centre column 27 February 00 UTC; right column 28 February 00 
UTC. (a)-(c): PV-distribution [PVU] (shaded) on the 320 K isentropic level and geopotential height at 300 

hPa (black isolines with an interval of 16 gpdm); (d)-(f): jet stream [kts] (isolines) and divergence [10-5 s-1] 
(shaded) at 300 hPa; (g)-(i): PV-distribution [PVU] (shaded) and equivalent potential temperature Θe [K] 
(contour lines, every 5 K) at 850 hPa. Please note that (d)-(i) are zoomed to the dashed box as shown in 

(a)-(c) for better representation of synoptic scale variables. In all panels the black squares mark the location 
of the surface cyclone.  
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Figure 5. Cyclone location (a) and core pressure evolution (b) of Xynthia as derived from ERA-Interim 
(dashed line with squares) and CNTRL (solid line with circles). First depicted point is at 26 February 00 UTC. 
Squares/circles are in 6 hourly intervals until 02 March 00 UTC. (a): Shaded areas show wind signature of 

the storm (maximum wind gust above 17.5 m s-1 at each grid point during the considered period). 
Uppercase letters ‘P’ and ‘C’ indicate the locations of the synoptic stations Porto and Chassiron for further 

comparisons. The four vertical lines along the track assign the positions of north-south cross sections shown 
in Figure 11.  
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Figure 6. (a) Analysis of geopotential height [gpdm] (contours every 8 gpdm) and wind vectors by DWD at 
300 hPa on 27 February 12 UTC; (b) as (a), but for CNTRL. Wind speeds higher than 60 knots are shaded in 

intervals of 10 knots for clarification of upper level jet stream conditions in CNTRL.  
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Figure 7. Time series for different meteorological parameters at two different locations for CNTRL (dashed 
line) and synoptic stations (solid line). (a): 2-metre temperature (black, [°C]) and dew point temperature 
(grey, [°C]) for CCLM grid point 164, 134 (1.20°W, 46.11°N) and synoptic station 07314 (Chassiron, 

1.41°W, 46.05°N). (b) as (a), but for 10-metre wind speed (grey, [kn]) and mean sea level pressure (black, 
[hPa]). (c) as (a) but for CCLM grid point 140, 111 (8.55°W, 41.20°N) and synoptic station 08545 (Porto, 
8.68°W, 41.23°N).  (d): as (c) but for 10-metre wind speed (grey, [kn]) and mean sea level pressure 

(black, [hPa]). For station locations please refer to Figure 5.  
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Figure 8.  Averaged latent heat fluxes at sea surface (in W m-2) for the period 26 February 2010, 00 UTC to 
28 February 2010, 00 UTC. (a) Undisturbed control simulation, (b) sensitivity study TS1 with 1 K reduction 
of SST, (c) sensitivity study SF5 with rlam_heat=5, (d) sensitivity study TS2 with 2 K reduction of SST, (e) 
sensitivity study TS3 with 3 K reduction of SST and (f) sensitivity study SF10 with rlam_heat = 10. For more 

details see text.  
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Figure 9. (a) Core pressure evolution and (b) cyclone locations for various sensitivity experiments. For 
better presentation of the results, only results for TS1 (black/plus symbol), TS3 (grey/circle), SF5 (stippled 
grey/asterisk) and SF10 (stippled black/square) are included. As reference, the core pressure evolution and 

location for the CNTRL (diamond symbols) are included.  
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Figure 10. Top row: MSLP (contour each 2.5 hPa) and vertically averaged Θe between 900 hPa and 950 hPa 
on 27 February 12 UTC for (a) CNTRL, (b) TS3, and (c) SF10. Centre row: as (a) to (c), but for lower-

tropospheric PV vertically averaged between 750 hPa and 900 hPa. (e) and (f) also show negative (positive) 
PV-differences of TS3-CNTRL and SF10-CNTRL contoured as thick (stippled) black lines respectively (contour 
each 1 PVU). For (a)-(f), black/white circles indicate corresponding cyclone position. Bottom row: as (a) to 
(c), but for 12-hour precipitation accumulation on 27 February between 00 UTC and 12 UTC. Comparative 

values for precipitation are calculated in the box marked by dashed line (see text for details).  
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Figure 11. (a)-(d): South-north orientated vertical sections of the PV distribution [PVU] at different time 
steps (for positions of cross sections see Figure 5). PV and relative humidity (stippled isoline: 20% RH; 
dotted area: RH > 80%) for CNTRL at a) 26 February 12 UTC, (b) 27 February 00 UTC, (c) 27 February 12 

UTC and (d) 28 February 00 UTC. The location of the surface low is indicated by ‘L’. (e)-(h): Vertical 
distribution of horizontal averaged PV (left, [PVU]) and diabatic heating rate (right, [K h-1]) over a 4°x4° box 
centred on the surface cyclone at different time steps for CNTRL (solid black line), TS3 (stippled grey line) 

and SF10 (stippled black line). Time steps in (e)-(h) according to (a)-(d).  
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