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Coupled subdaily and multiweek cycles during the lava dome
eruption of Soufriére Hills Volcano, Montserrat
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[11 Observations of volcanoes extruding andesitic lava to produce lava domes often reveal
cyclic behavior. At Soufriére Hills Volcano, Montserrat, cycles with subdaily and
multiweek periods have been recognized on many occasions. Observations clearly show
that the period of subdaily cycles is modulated by the multiweek cycle. The subdaily and
multiweek cycles have been modeled separately as stick-slip magma flow at the junction
between a dyke and an overlying cylindrical conduit and as the filling and discharge of
magma through the elastic-walled dyke, respectively. Here, we couple these two models to
describe the behavior over a period of well-observed multiweek cycles, with accompanying
subdaily cycles, from 13 May to 21 September 1997. The coupled model captures well the
asymmetrical first-order behavior: the first 40% of the multiweek cycle consists of high
rates of lava extrusion during short period/high amplitude subdaily cycles as the dyke
reservoir discharges itself. The remainder of the cycle involves increasing pressurization as
more magma is stored, and extrusion rate falls, followed by a gradual increase in the period

of the subdaily cycles.

Citation: Costa, A., G. Wadge, R. Stewart, and H. Odbert (2013), Coupled subdaily and multiweek cycles during the lava
dome eruption of Soufriere Hills Volcano, Montserrat, J. Geophys. Res. Solid Earth, 118, 1895-1903, doi:10.1002/jgrb.50095.

1. Introduction

[2] Cyclic behavior on timescales from a few to many hours
during volcanic activity is of considerable interest because it
provides repeatable “‘experiments” from an otherwise largely
hidden system. Such behavior has been commonly recognized
at numerous, well-monitored volcanoes (e.g., Mount St Helens
[Anderson et al., 2010]; Unzen [Yamashina et al., 1999];
Semeru [Nishi et al., 2007]). Of particular interest are those sys-
tems that show short-period cycles nested within longer-period
cycles because, potentially, we can use the insights and
constraints derived from the study of one type of cycle to better
understand the other type and their combined behavior. One of
the best studied systems with multiple cycles is the Soufriere
Hills Volcano (SHV), Montserrat. To explain long-term cyclic-
ity, Costa et al. [2007a, 2007b] considered an elastic dyke
joined to a cylinder toward the surface, coupled with a magma
chamber below (Figure 1). They showed that degassing-
induced crystallization within the conduit coupled with the wall
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rock elasticity largely control the long-term cyclicity during
lava dome-building eruptions. The model of Costa et al.
[2007b] demonstrated that there is a regime where the period
of pulsations is controlled by the elasticity of the dyke, having
periods from weeks to months, and a regime where the period
is controlled by the volume of the magma chamber with periods
of the order of years. Intermediate regimes are possible.

[3] Several models have been proposed to explain short-
term cyclicity [for a review, see Melnik et al., 2009].
The models of both Denlinger and Hoblitt [1999] and Wylie
et al. [1999] assumed that the lower part of the SHV conduit
acts like a capacitor that allows magma to be stored tempo-
rally to release it during the intense phase of the eruption.
Costa et al. [2012] generalized the Denlinger and Hoblitt
[1999] model by considering a compressible magma flowing
through an elastic dyke that transitions to a cylindrical
conduit near the surface (see Figure 1). Lensky et al.
[2008] described short-term cyclicity at the SHV as a result
of gas diffusion into growing bubbles and filtration through
the bubble network in a stagnated magma column before the
critical overpressure is reached followed by magma motion,
depressurization, and stagnation of the plug at the top of the
conduit.

[4] Tiltmeter data recorded within a few hundred meters
of the growing lava dome at SHV in 1997 [Voight et al.,
1998, 1999] demonstrated both a subdaily cycle (generally
with periods in the range 3 to 30 h) and a multiweek cycle
(periods mainly between 30 and 50days) [Sparks and
Young, 2002; Odbert and Wadge, 2009]. Odbert et al.
[2013] recognized that these two cycles have been present,
albeit intermittently, for most of the eruption of SHV
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between 1995 and 2010. This longevity of behavior suggests
that the physical conditions that drive the cycles are quasi-
permanent features of the volcano.

[s] The physical conditions during subdaily cycles are
better understood than those associated with the multiweek
cycles. Two main types of observation inform this. First,
vulcanian explosions occurring near the peaks of the subda-
ily cycles, observed in August and September—October
1997, indicate pressurization beneath a plug of degassed
magma within a cylindrical conduit that is then evacuated
explosively [Druitt et al., 2002]. Second, swarms of self-
similar, hybrid (high-frequency onset with a low-frequency
coda) earthquakes occurring during pressurization originate
at a depth of ~1.5 km below the dome and suggest a repeat-
ing mechanism during magma flow that is confined to that
depth [Neuberg et al., 2006; Green and Neuberg, 2006].
Highly nonlinear, rheological changes within the magma in
the shallower part of the conduit [Sparks and Melnik,
1999] coupled with a near-wall, stick-slip mechanism of
flow in the deeper conduit [Denlinger and Hoblitt, 1999;

Simplified sketch of the investigated system [from Costa et al., 2012].

Lensky et al., 2008; Costa et al., 2012] are thought to be
responsible for these phenomena.

[6] Multiweek cycles were recognized as involving ini-
tially high extrusion rates of lava, with accompanying high
rates of surface deflation, and a typical extruded volume of
about 30 x 10° m?® per cycle [Sparks and Young, 2002]. This
behavior suggests a discharge-recharge process. An elastic-
walled dyke (with approximate dimensions of 4km high,
480 m wide, and ~5 m thick) joining the cylindrical conduit
above and a magma reservoir below were proposed by Costa
et al. [2007a] as the source of this process. The junction of
the dyke and cylinder was invoked as the likely location of
the stick-slip process postulated for the subdaily cycles and
of the hybrid earthquakes [Costa et al., 2012; Thomas and
Neuberg, 2012]. The surface deformation occurring across
multiweek cycles was measured both by near-field
(<1km) tiltmeters in 1997 [Sparks and Young, 2002] and
perhaps by far-field (>2km) cGPS receivers in 2009
[Odbert et al., 2013], and this accumulated strain was not
immediately recovered, as was the case for the subdaily
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deformation. However, the aggregate episodes of deflation
across all these multiweek cycles during lava extrusion
was at least partially balanced by inflation during pauses
in extrusion [e.g., Elsworth et al., 2008]. Five of these
multiyear cycles of extrusion and pause have occurred
between 1995 and 2010, representing the third, and longest,
type of cyclic behavior during the eruption at SHV [Odbert
et al., 2013].

[7] In this article, we argue that the sets of processes
inferred for the multiweek and subdaily cycles must be
coupled [Sparks and Young, 2002; Odbert et al., 2013].
We use modified forms of the two physical models that have
been used to simulate cyclic behavior at the multiweek
[Costa et al., 2007a] and the subdaily [Costa et al., 2012]
scales to represent this coupled behavior. We compare the
coupled model with observations from SHV, particularly
between May and September 1997.

2. Coupled Cyclic Behavior

[8] This interpretation of the two cycles requires that
the varying physical conditions imposed by the discharge-
recharge cycle of the dyke will modulate the conditions of
the subdaily cycle, and hence the characteristics of the
subdaily cycle should change systematically through the
longer cycle. This, generally, is what we observe. Figure 2
shows the average period of the subdaily cycles across eight
selected multiweek cycles of normalized duration (40 days).

[] The multiweek cycles usually start abruptly. A hiatus
in flow from one cycle to the next is sometimes manifested
as a change in direction of the extrusion of lava on the dome
and/or the generation of a spine [Watts et al., 2002]. This is
then followed by elevated lava extrusion rates, swarms of
hybrid earthquakes, and reduced periods of the subdaily

25 L L L ' L L L

Hybrid Swarms!
|

20 -

Figure 2. The variation of the period of subdaily cycles
(thick black line with standard deviation envelope in pale gray)
measured by seismicity averaged across eight selected multi-
week cycles (28 July 199617 September 1996; 23 December
199615 February 1997; 13 May 1997-22 June 1997; 22
June 1997-31 July 1997; 31 July 1997-8 September 1997; 9
October 2009—20 November 2009; 20 November 2009-9
January 2010; and 9 January 2010-11 February 2010). The
durations of the multiweek cycles are normalized to 40 days,
the subdaily cycles are binned by day, and outliers are removed.
The average duration and standard deviation of the initial hybrid
earthquake swarms (16 + 4 days) is shown by the darker gray
panel and dashed vertical lines.

cycle. During the next 16 days or so (after approximately
40% of the period), the subdaily period reaches a minimum
value, the hybrid earthquakes diminish, and after that the
period rises slowly to the end of the cycle (Figure 2). The
multiweek cycle is thus highly asymmetrical.

3. The Coupled Dyke-Cylinder Model

[10] In their model of the subdaily cyclicity, Costa et al.
[2012] proposed that just above the junction between the
dyke and the cylindrical conduit there is stick-slip flow of
magma that behaves as a polymer in contact with the conduit
wall. They devised an appropriately parameterized analytical
model that yielded the observed range of subdaily cycle
periods for SHV. In their analytical model, the period is
proportional to a constant that depends on physical properties
of the magma and geometry of the system and is inversely
proportional to the combined compressibility of the magma
and the rigidity of the elastic wall rocks, expressed as a com-
pressibility-rigidity modulus, which we term here the system
rigidity. Because of the short duration of the subdaily cycle,
Costa et al. [2012] argued that this system rigidity could be
treated as constant. These assumptions cannot be made for
the entire duration of the longer (multiweek) period, and its
temporal variation must be explicitly calculated.

[11] Costa et al. [2007a, 2007b] considered an elastic dyke
changing to a cylinder toward the surface coupled with a
shallow (~5 km deep) magma chamber. The model accounts
for gas exsolution and filtration through the magma, degas-
sing-induced crystallization kinetics, rheological stiffening
of magma due to crystal growth, and latent heat release.
The physical model is based on mass conservation equations
for melt, microlites, phenocrysts, and dissolved and exsolved
gas that are solved together with an energy equation and two
momentum equations (for the mixture as a whole and the gas
phase). Variations in conduit cross-sectional area due to
elastic deformation of the wall rocks are also considered by
assuming that the conduit has an elliptic cross section whose
length is dependent on the vertical position and a transition
from a thin dyke at depth to a nonelastic cylindrical conduit
at shallow level. They found that different flow regimes are
possible. In particular, there is a regime where the period of
pulsations is controlled by the elasticity of the dyke (~weeks
to months) and a regime where the period is controlled by the
volume of the magma chamber (~years). Intermediate
regimes are possible. The model proposed by Costa et al.
[2007a, 2007b] is also consistent with geophysical observations
[e.g., Hautmann et al., 2009].

[12] We have modified the Costa et al. [2007a] model of
multiweek flow using data from two new studies. The con-
duit is lengthened (from 5 to 5.5km), following the depth
to the magma reservoir estimated by Paulatto et al. [2012]
from seismic tomography. Young’s modulus (E), Poisson’s
ratio (v), and the shear modulus (G) are estimated from the
one-dimensional seismic velocity profile beneath Soufriere
Hills Volcano of Paulatto et al. [2009] (Figure 3). The shear
modulus G is then rescaled to give an empirical relationship
between the static and the dynamic values [Wang, 2000].
The Costa et al. [2007a] numerical model was then used to
estimate the system rigidity and other parameters needed
for the analytical estimation of the subdaily period, 7,
proposed by Costa et al. [2012]:
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Figure 3. Crustal material property curves (lines) for (a)
Young’s modulus, (b) Poisson’s ratio, and (c) static shear
modulus (G), fitted to the seismic survey—derived data (crosses)
of Paulatto et al. [2009]. The numerical values of the best
fit parameters are as follows: ¢=37.01, b=141, c=1.15;
a,=-0.0527, a,=-0.0344, a3=0.00764, a4=-0.00079, and
as=043.

T~= (1)

where A4 is a constant that depends on physical properties of
magma and geometry of the system (see Table 1), and v is the
system rigidity parameter representing an effective compress-
ibility—rigidity modulus. Here y is estimated using the Costa
et al. [2007a] model and the parameters reported in Table 1
(see Appendix A), although in principle it can be expressed as
a function of the magma bulk modulus, K, controlled by the
presence of bubbles and pressure distribution inside the dyke,

Table 1. Parameters Used in the Models

Notation Description Value
co Concentration of dissolved gas 5.5 wt%
Ce Solubility coefficient 41x10°pa'?
Cin Specific heat 12x10° Jk}g’l K!
Iy Max nucleation rate 3%10m3s7!
L« Latent heat of crystallization 3.5%x10° Tkg™!
Py Chamber pressure 170.7 MPa
R, Gas constant 460Jkg "K'
Ron Phenocryst size Smm
Ten Temperature in the magma 870°C
chamber
Uo Max growth rate 2x10°ms™!
Ben Chamber crystal content 0.45
U Gas viscosity 1.5x 10 °Pas
02 Density of crystals 2700kgm ™
Pn Density of the melt phase 2300kgm >
Or Density of wall rocks 2600kgm >
L Total conduit length 5500 m
L, Cylindrical conduit length 1300 m
R Cylindrical conduit radius 15m
Aq Unpressurized dyke cross 1730 m?
section
O Flow rate at the dyke base Calculated (5.5 m’ sfl)a
Oout Flow rate at the dyke base Calculated (5.5 m® s™')*
Va Volume of the dyke region Calculated (7.3 x 10°m’)
o Average overall magma density Calculated (2100 k§ m3)?
" Viscosity in the cylinder region Calculated (6 x 10” Pas)®
P Average pressure drop Calculated (10 MPa)*
X Dimensionless fixed point 0.34°
t= U/ Psx Characteristic timescale 612s
&= /éﬁ—i‘ = g Dimensionless pressure 0.0014
- parameter o
= })l";d Dimensionless compressibility ~ 0.023
parameter
« = aP"/v, Dimensionless slip parameter 10
Qin = n;%"},* Dimensionless flow rate 0.38
A= mié')';“},,,, Dimensional parameter 7.47 x 10°Pas

#Calculated from the Costa et al. [2007a] model. The average values are
shown in parentheses.
bCalculated using the Costa et al. [2012] model.

and the rigidity modulus of rocks surrounding the dyke, G.
Table 1 shows the parameters used for equation (1). Such a
relationship is valid for the first-order analysis used in this
article, and a more rigorous approach consisting of implement-
ing a stick-slip mechanism directly within the Costa et al.
[2007a] dyke model is the subject of ongoing research. The
multiweek period is constrained to ~40days for comparison
with the 1997 cycles.

4. Model-Observation Comparison

[13] We now test the coupled model against seismic and
tilt data and daily values of extrusion rate of lava at SHV
from May to September 1997 (see Figure 4). The tiltmeter
data collected from 18 May to 4 August 1997, coupled with
the seismicity [Odbert et al., 2013] and lava extrusion rates
[Sparks et al., 1998], best represent the two multiweek
cycles shown by Sparks and Young [2002, Figure 12]. We
extend that record using seismicity and extrusion rate to
cover a third consecutive multiweek cycle.

4.1. 13 May-22 June 1997

[14] This cycle began with a swarm of hybrid seismicity
on 13 May 1997 [Luckett et al., 2008]. By 16 May, a 50 m
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(a) Observed daily lava extrusion rates from 13 May to 21 September 1997 (diamonds) [data

modified from Sparks et al., 1998] and the corresponding 4 day moving average curve shown as the black
line. The uncertainty on the rates is approximately 30%—50% [Wadge et al., 2010]. The second-order (blue
dashed line) and the tenth-order (blue dotted line) expansions of the best fit Fourier series are also shown.
The beginnings of four cycles are shown as vertical lines and the period of hybrid swarms by the gray
panels. (b) Temporal variation of the model discharge rate at the base of the cylindrical region of the conduit
for a ~40 day cycle obtained from the Costa et al. [2007a] model using parameters described in Table 1. The
corresponding temporal variation of magmatic overpressure in the model is shown as a dash-dot line. (c)
The three ellipses represent schematically the horizontal cross sections of crystal and bubble content
through the dyke at four states (A, B, C, and D) of the cycle.

high spine appeared on the lava dome; and by 17 May, the
direction of growth had switched from S to N [Watts et al.,
2002]. The period of intense hybrid swarm activity stopped
around 27 May. There was a relative lull in surface extrusive
activity from 6 to 13 June [Loughlin et al., 2002]. The
production of a spine 3 days after hybrid seismicity started
suggests that a more viscous plug of magma had been
generated in the conduit during slower magma rise (at the
end of the previous cycle) and moved upward for 3 days
as a result of higher conduit pressure at its base.

4.2. 22 June-31 July 1997

[15] Marked by an initial swarm of hybrid seismicity on
22 June 1997, subsequent swarms peaked on 24 June
[Loughlin et al., 2002]. At approximately 1300 h on 25 June,
a collapse of the lava dome following continuous tremor
shed a volume of about 5 x 10°m?® (dense rock equivalent)
in three pulses, producing fatal pyroclastic flows. The hybrid
seismicity ended by 8 July, coincident with a reduction in
tiltmeter-measured deflation [Sparks and Young, 2002].
From 8 to 13 July, there was intense ash emission, peaking
at the top of each subdaily cycle [Druitt et al., 2002]. From
then to the end of July, activity was generally low.

4.3. 31 July-8 September 1997

[16] Low-frequency seismic events restarted on 31 July
1997 [Voight et al., 1999]. Rapid growth of a west-facing lava
lobe ended in a 7 x 10°m> collapse on 3 August, producing
pyroclastic flows that destroyed the town of Plymouth. Start-
ing on 4 August, a series of 13 vulcanian explosions marked
the peak of many of the subdaily cycles [Druitt et al., 2002];
but by 13 August, a new lava lobe was established. The intense
swarms of hybrid earthquakes ended on 19 August, after
which activity was lower. Intense hybrid earthquake swarms
resumed on 8 September, by which time extrusion had moved
from west to north with more vigorous lava flow.

4.4. Magma Flux—Extrusion Rate

[17] Figure 4a shows the estimated lava extrusion rates for
the three consecutive multiweek cycles. These estimates
have higher levels of uncertainty at the highest rates, when
large pyroclastic flows are being generated [Wadge et al.,
2010]. We take the start of the series of intense swarms of
hybrid earthquakes as the beginning of each cycle, which
defines their periods to be 40, 39, and 40 days. The observed
extrusive rates reach peaks ~8 days from the start of the cy-
cle, near the middle of the ~16 day period of hybrid swarms.
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[18] Within a few days of the start of the cycle, a change in
the direction of lava extrusion (16 May, 8 September) and/or
a major collapse of the lava dome (25 June, 3 August) may
occur. Both of these are interpreted to be the result of a pulse
of magma at high flux reaching the lava dome. In Figure 4b,
the simulated magma flux is plotted for a repeating ~40 day
cycle (the parameters used are reported in Table 1), together
with the magmatic overpressure. The correspondence of
the timing of modeled magma flux with the observed lava
extrusion is good. The best fit first-order period obtained
from a Fourier analysis is 39 days.

[19] The state of the dyke during the cycle is shown
schematically in the three ellipses of Figure 4c. In Figure 4cA,
after the initial extrusive decompression of the cycle, the
dyke is at its narrowest and the magma contains a high
proportion of bubbles, enhancing buoyancy. In Figure 4cB,
the dyke is expanding as more magma enters than leaves
and the bubble fraction has fallen. The dyke reaches its max-
imum size in Figure 4cC-D, and the bubble fraction is low.

4.5. Periods of Subdaily Cycles

[20] The variations of discharge rate and overpressure
shown in Figure 4b affect the variation of other variables
that are thought to control subdaily period variability [Costa
et al., 2012]. The coupled behavior is nonlinear and is
largely determined by the variable response of the rigidity
of the combined magma-host rock system. Figures Sa—5c
show the behavior of four model variables calculated using
the Costa et al. [2007a] model: differential pressure and dif-
ferential magma flux (Figure 5a), the rigidity of the system
(Figure 5b), and bubble fraction (Figure 5c) through the 40

day cycle. At the start of the cycle, as magma flux increases
and pressure in the dyke falls, gas bubbles nucleate and their
volume fraction rises from 0.21 to 0.26 (Figure 5c). This
peaks after approximately 6 days into the cycle (Figure 4cA)
and then falls to 0.19 before increasing slightly again
(Figure 4cC). After 16 days, bubble fraction remains nearly
constant until the end of the cycle. The differential magma
pressure (dP/d¢, Figure 5a) and the differential magma flux
within the dyke (Qi, — Oout, Figure 5a) show similar behav-
ior: falling at the start of the cycle, rising to a peak, and then
falling again to near constant values after 16 days. However,
the curves do show second-order differences that modulate
the behavior of the rigidity parameters and cross twice
(Figures 4aA and 4aC). The system rigidity y (Figure 5b),
calculated from the Cosfa et al. [2007a] model as explained
in the Appendix, represents the response of the dyke-magma
system under strain from magma compression and the
elasticity (rigidity) of the dyke wall rocks. This varies over
about two orders of magnitude in a complex manner. In
particular, there are two strong inflections at A and between
B and C (Figure 5b).

[21] Figure 6a shows the periods of the subdaily cycles
measured using the tiltmeter record for most of the first
two multiweek cycles (13 May—22 June, 22 June—31 July)
and the start of the third (for which there are tilt data).
Generally, the periods recorded by tiltmeter are very similar
to those extracted from seismic data (Figure 6a), but with
less scatter. Also shown in Figure 6a are the moving average
and the variation in the period of subdaily cycles derived
from equation (1). In particular, the green points correspond
to T~ 0.54/y for the values of y reported in Figure 5b and
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Figure 5. Selected model variable behavior through multiweek (40 day) cycles. (a) Pressure drop and
differential magma flux, (b) gamma (rigidity parameter), and (c) bubble fraction.
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and curve). The initial periods of observed hybrid swarm activity are shown by the pale gray panels.

the set of parameters in Table 1 (the period in equation (1)
was scaled by a factor of 0.5 to better reproduce the aver-
aged value of the observed periods). The complex variation
in subdaily period predicted by the model is caused by the
nonlinear behavior of the system rigidity parameter as the
magmatic gas content changes (Figure 5).

[22] The model yields a reduction in period at the start of
the cycle, although smaller than what is often seen (e.g.,
before 24 June and 31 July 1997). The model then displays
two sharp oscillations to higher-period values (e.g., around
14 and 23 May, and 25 June and 3 July 1997, corresponding
to Figures 4aA and 4aC). The second of these is not always
clear in the data; however, the abrupt variation shown by the
model at C may be due to the fact that the Costa et al.
[2007a] model is not able to properly capture sharp variation
around the critical point C because the quasi-static approxi-
mation used in equation (1) is not valid there for abrupt var-
iations of y. In the rest of the modeled cycle, fluctuations in
period are more gradual, which is also typically seen in the
record. Fourier analysis of the period time-series gives a
first-order best fit period of 41 days. It is worth noting that
sharp variations at the beginning of the cycle cannot be
reproduced even with a high-order Fourier series that do,
however, capture long period modulations and higher-fre-
quency variations for the rest of the cycle.

4.6. Amplitudes of Subdaily Cycles

[23] Variation in amplitude of the tilting associated with
the subdaily cycles for the 1997 multiweek record is shown
in Figure 6b. The beginnings of the 22 June-31 July 1997
and the 31 July—8 September cycles correspond to abrupt

increases in tilt amplitude. The values reach a plateau
and then fall sharply in the case of the 22 June-31 July
1997 cycle, corresponding closely to the duration of the
hybrid earthquake swarms and the measured lava extrusion
rate (Figure 6b). This suggests that the tilt amplitude is
effectively correlated with magma flow rate suggesting the
control of shear traction on ground deformation near the vent
[Green et al., 2006; Anderson et al., 2010], at least during
the initial phase of the cycle.

5. Discussion

[24] The coupling of two models that separately simulated
subdaily and multiweek cyclicity at SHV produces results
that are consistent with the combined understanding of the
physical operation of the magma supply system. A vertical,
elastic-walled dyke stores compressible magma arriving
from below and discharges it into a cylindrical conduit. Flow
in the cylinder is pulsatory at a subdaily timescale because of
stick-slip behavior near the conduit walls. At the start of the
multiweek cycle, the average extrusion rate is high, the
period of the subdaily cycle is low, and the amplitude of
recoverable, near-field deformation is high. After approxi-
mately 16 days of a typical 40 day cycle (0.4 of the cycle),
the extrusion rate falls, and the dyke starts to repressurize.
This highly asymmetrical behavior of the multiweek cycle
is captured well by the models.

[25] Some of the second-order detail of the multiweek
models matches the observations less well. For example,
the onset of the multiweek cycle can be abrupt—more so
than the model onset. One way to achieve a more abrupt
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onset is via a failure event. Brittle failure, in the form of slip
on fault surfaces along the conduit margin, may play a role.
Accounting for a state-dependent friction law in the model
development would be required to simulate this. The
modeled change in shape of the dyke is elastic and does
not involve horizontal lengthening. If the recharge period
of the dyke were to lead to a sudden propagation of the dyke
horizontally, then the sudden pressure reduction could lead
to bubble nucleation and rapid magma ascent, initiating the
new cycle. There is no strong, general evidence for volcano-
tectonic earthquakes immediately preceding the hybrid earth-
quake swarms that often denote rapid magma rise at the start
of multiweek cycles, but there are some possible instances.
For example, on 22 June 1997, at the start of the 22 June-31
July 1997 cycle, there was a set of six volcano-tectonic
events immediately preceding the first hybrid swarm.

[26] What causes the wvariability between multiweek
cycles? The extrusion rate data of Figure 4 shows that the
31 July—8 September 1997 cycle was apparently much more
peaked than the 13 May-22 June 1997 cycle with its more
even rate profile. Both have periods of 40 days and similar
volumes (33 x 10° and 30 x 10°m>, respectively). This dif-
ference may be due to a variable dyke extension, a variable
deep magma supply rate into the dyke [Costa et al., 2007b],
or perhaps that the extrusion rate data are too uncertain.

[27] Forcing of the system by discrete (external) events
will also lead to unmodeled perturbations of repeating
mechanisms. Lava dome collapse events of sufficient volume
can perturb the pressure throughout the system [Pinel and
Jaupart, 2005]. There were two such events during the pe-
riod used here, on 25 June and 3 August 1997. They removed
volumes of approximately 5 x 10° and 7 x 10°m”, reducing
the height of the dome by approximately 100 and 150 m, re-
spectively. Costa et al. [2012] showed how such unloading
events might cause the system to respond by reducing
the subdaily period, as observed. Sensitivity analysis of the
model parameters during such forcing may help to refine
the physical understanding of the system.

[28] The release of gas from the magma is modeled as a
steady process, without any lateral escape or explicit
mechanisms such as temporary fracture networks enabling
gas transport at much higher than normal rates. The opera-
tion of such mechanisms, particularly when coupled with
other events such as dome collapse, may lead to other unmo-
deled perturbations of the cycle.

[29] Divergence between model and observations can be
due to the assumptions implicit in equation (1) that is in
turn based on the simplified model proposed by Costa
et al. [2012]. Although the level of model coupling used
here reproduces some of the observed features, a better
representation of the stick-slip mechanism interacting with
the dyke capacitor, generated by future work, may give more
realistic results.

6. Conclusions

[30] 1. Coupling two previously tested models of storage
and flow of magma at hourly and weekly timescales captures
the first-order cyclic behavior at SHV.

[31] 2. The nonlinear variation of the rigidity modulus of
the system and the bubble content dominate the dynamics
of the subdaily cycles.

[32] 3. The multiweek cycle is asymmetrical, the first 40%
of which consists of high rates of lava extrusion during short
period/high amplitude subdaily cycles as the dyke reservoir
discharges itself. The remainder of the cycle involves in-
creasing pressurization as more magma is stored, accompa-
nied by a gradual increase in the period of the subdaily
cycles. The model captures well the main features.

[33] 4. The combined model does not capture well the
abrupt start of the multiweek cycles. This may indicate other
mechanisms and require more sophisticated models.

Appendix A: Numerical Calculation of the
System Rigidity
[34] In this appendix, we describe how we estimated the
values of the system rigidity parameter, v, reported in Figure Sb.
[35] We estimated vy using the Costa et al. [2007a] model
and the parameters reported in Table 1. From equation (1) in
Costa et al. [2012], y can be written as

_<p><Vyg>dP. < p><Vy>sgn(On—

. . Oout) dP.
(Qin - Qout) de (Qin _ Qout)2 + 62

dt

where < p > is the averaged magma density obtained by
integration of the local density along the dyke, <V4>is the
average volume of the dyke, Ps is the overpressure at the
top of the dyke, Q;, is the mass influx into the dyke, O,y
the mass influx into the cylinder, and ¢ is a small numerical
regularization constant (with &/(Q;, ~ 10%).
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