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Abstract

The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches.

One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge,

while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB

split in a typical North Atlantic cold-season cyclone is analysed using two numerical models:

the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line

trajectory analysis. The two models represent the WCB split consistently. The split occurs

early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes

and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front

where the resolved ascent rates are greatest and there is also line convection. In contrast,

WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over

the system’s warm front. The greater moisture in WCB1 inflow results in greater net potential

temperature change from latent heat release, which determines the final isentropic level of each

branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2.

Complementary diagnostics in the two models are utilised to study the influence of individual

diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are

comparable in the two models with microphysical processes in the large-scale cloud schemes

being the major contributor to this heating. However, the different convective parameterisation

schemes used by the models cause significantly different contributions to the total heating.

These results have implications for studies on the influence of the WCB outflow in Rossby

wave evolution and breaking. Key aspects are the net potential temperature change and the

isentropic level of the outflow which together will influence the relative mass going into each

WCB branch and the associated negative PV anomalies at the tropopause-level flow.

Keywords

Warm conveyor belt; extratropical cyclone; potential temperature; potential vorticity; diabatic

processes
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1 Introduction

In the classical conveyor belt paradigm for extratropical cyclones (Browning, 1971; Harrold,

1973; Browning, 1990; Carlson, 1980; Schultz, 2001), ascent in the vicinity of the cold front

is described in terms of a warm conveyor belt (WCB) which transports warm air from low

levels and low latitudes both upwards and polewards. The ascent is viewed as being gradual

and continuous, albeit sometimes enhanced by small-scale embedded convection that may be

organized into clusters within the warm sector or as line convection along the cold front. A

detailed description of the WCB flow emerged first from isentropic analyses (e.g. Namias,

1939) and later from satellite imagery from Young et al. (1987) and others (see Bader et al.,

1995, for an overview). In this description the WCB splits into two parts. The primary part

turns anticyclonically within the upper-level flow and emerges into a downstream tropopause

ridge. The secondary part turns cyclonically around the cyclone centre within the lower to mid

troposphere. These primary and secondary parts are often simply referred to as WCB1 and

WCB2 (or W1 and W2 as in Browning and Roberts (1994) for example).

The conveyor belt paradigm was first introduced on the basis of isentropic analyses and

inspection of radar and radiosonde observations and satellite imagery, but more recently it

has also been shown to be fully consistent with more detailed trajectory analysis based on

numerical simulations (e.g. Wernli and Davies, 1997; Eckhardt et al., 2004; Joos and Wernli,

2012; Mart́ınez-Alvarado and Plant, 2013). Although there is an extensive literature on the

airflows within a range of observed and simulated cyclones (see Schultz and Vaughan, 2011,

and references therein), the questions of how and when the WCB splits has been relatively

unexplored alongside questions of how the evolution of the air streams compares between the

two branches. Diabatic processes enable transport upwards across isentropic surfaces to a

level where either cyclonic or anticyclonic breaking is more prominent. The objective of this

contribution is to investigate the local influence of diabatic processes on the splitting of a WCB.

We aim to improve the understanding of the structure of the WCB1 and WCB2 flows and of

the potential impact of their outflows on the tropopause structure. We will present evidence

that aspects of the splitting may be related to details of the diabatic processes taking place

along the WCB. Diabatic processes seem to be important in differentiating the two parts of the

WCB not only as the WCB overruns the warm front, where the split is traditionally assumed
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to take place, but also at earlier times within the WCB air stream, along the trailing cold front.

The WCB split does not require moist diabatic processes to occur. Indeed, the split occurs

even in dry baroclinic life-cycles, an example of which is given by branches C and D in Figure

1 of Thorncroft et al. (1993). In their interpretation these two branches are represented on

the same isentropic surface, although they note that, in a moist scenario, latent heat release

would enable cross-isentropic motion. The split is also an important feature in mediating the

interactions of baroclinic waves with other physical mechanisms in the atmosphere. Again

even in dry simulations, the existence of a distinct lower branch to the WCB is important in

the interactions between baroclinic waves and an underlying turbulent boundary layer (e.g.

Adamson et al., 2006; Plant and Belcher, 2007; Sinclair et al., 2010).

It is well established that the effect of moist processes on the evolution of baroclinic-wave

life-cycles is more involved than a simple enhancement of the baroclinic instability growth rate

due to latent heat release (Martin, 2006; Pavan et al., 1999; Boutle et al., 2010). Nonetheless

there are long-standing debates on the role of moist processes within extratropical cyclones

and especially on the question of whether latent heat release critically modifies the develop-

ment of the large-scale circulation or whether it produces only localized modifications within

large-scale circulations the structure of which is essentially dictated by the dry dynamics (e.g.

Whitaker and Davis, 1994; Ahmadi-Givi et al., 2004; Bracegirdle and Gray, 2009; Davis et al.,

1993; Stoelinga, 1996).

At least to some extent the relatively little attention devoted to the WCB split and the

role of diabatic processes within it may be due to the lack of routinely available detailed di-

agnostics with which to address the issues. Very recent work by Joos and Wernli (2012) and

Mart́ınez-Alvarado and Plant (2013) has helped to rectify this difficulty by developing sets of

diagnostics to integrate potential temperature tendencies from different model processes in

a Lagrangian framework. We combine and expand on their approaches in the present ar-

ticle. Specifically Joos and Wernli (2012) have developed a suite of heating diagnostics for

unpicking the various contributions to the microphysical tendencies, accumulated along tra-

jectories, occurring in the COSMO (COnsortium for Small-scale MOdelling) model, while

Mart́ınez-Alvarado and Plant (2013) have developed a suite of heating diagnostics for unpicking

the various contributions to diabatic heating from all of the separate parameterised processes,
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accumulated in the form of tracer fields, in the Met Office Unified Model (MetUM). The di-

agnostic methods are complementary, as we will demonstrate, with the MetUM diagnostics

providing a comprehensive picture of the time-history of all parameterised processes and the

COSMO model diagnostics providing a more detailed description of the diabatic heating caused

by different microphysical processes during the formation of clouds. The effects of diabatic heat-

ing on the development of potential vorticity (PV) are also investigated. These novel diagnostics

are put into their full context for the present aims and are suitably interpreted by also using

trajectory calculations which allow the WCB and its split into WCB1 and WCB2 to be cleanly

identified.

Our analysis is based on simulations of a case study with two different models, which are

configured in as similar a way as possible and forced with the same input data. The case was

chosen as a typical cold-season North Atlantic cyclone with clear WCB1 and WCB2 features

readily apparent in the satellite imagery (for example see Figure 1 which is discussed further

below). The case benefits from a research flight that enables direct comparison of the numerical

simulations with a section of dropsonde observations as well as in-situ measurements that reveal

the actual structure of the cold front. This data is valuable in allowing us to ensure not only

that the two models are able to provide accurate simulations of the case in comparison with the

available observations but also that the simulations are close enough together that the study of

each can be used in a complementary fashion to provide additional information about the case.

We use the models in hindcast mode with each having its default numerical weather pre-

diction settings for the most part, including its normal choice of parameterisations (see Sec-

tion 2.1). We focus on the results of two simulations in the following. Other simulations were

performed, however, to verify on some of the interpretations and possible sensitivities. Most

notable for the presentation here is that each model was run with the Kain–Fritsch convec-

tive parameterisation scheme (Kain and Fritsch, 1990; Kain, 2004) as an alternative option.

These simulations reveal to what extent differences in convective activity between the models

are a function of the convection scheme per se and to what extent they are dependent on the

behaviour of the large-scale microphysics parameterisation and the dynamical environment to

which a convection parameterisation responds.

The remainder of this article is organized as follows. Section 2.1 describes the numeri-
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cal models used and their configuration for this study. The diagnostic methods used for the

MetUM and the COSMO model are presented in Sections 2.2 and 2.3 respectively, while the

trajectory computations are defined in Section 2.4. A synoptic analysis of the case is given in

Section 3, including a validation of the models’ performance against observational data. The

two branches of the WCB are identified using trajectory calculations in Section 4 and differ-

ences in the diabatic heating along the two branches are noted. Such differences are investigated

systematically in Section 5 and their effects on PV are considered in Section 5.2. A summary of

the main results can be found in Section 6 alongside further discussion focusing on their wider

implications.

2 Methodology

2.1 Numerical models

Two models have been used in this work: the MetUM (Davies et al., 2005) version 7.3 and the

COSMO model (Steppeler et al., 2003).

The MetUM is a finite-difference model that solves the non-hydrostatic, deep-atmosphere

dynamical equations with a semi-implicit, semi-Lagrangian integration scheme (Davies et al.,

2005). The model uses Arakawa C staggering in the horizontal (Arakawa and Lamb, 1977)

and is terrain-following in the vertical with a hybrid-height coordinate and Charney-Phillips

staggering (Charney and Phillips, 1953). A rotated horizontal grid is used in the limited-area

model (LAM) configuration, which has one-way nesting from the global model. The parameter-

isation of physical processes includes longwave and shortwave radiation (Edwards and Slingo,

1996), boundary layer mixing (Lock et al., 2000), convection (Gregory and Rowntree, 1990),

and cloud microphysics and large-scale precipitation (Wilson and Ballard, 1999).

The COSMO model is also a non-hydrostatic, fully-compressible LAM. It also uses rotated

Arakawa C staggering in the horizontal and a terrain-following, hybrid-height vertical coordi-

nate, but this has Lorenz staggering (Lorenz, 1960). The physical parameterisations include

sub-grid-scale turbulence (Mellor and Yamada, 1982), surface layer exchange (Louis, 1979),

longwave and shortwave radiation (Ritter and Geleyn, 1989), convection (Tiedtke, 1989), and

cloud microphysics (Doms et al., 2007).
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Figure 1: Infrared satellite image (MODIS channel 22) valid at 0247 UTC 25 November
2009 (Image courtesy of the NERC Satellite Receiving Station, Dundee University, Scotland,
http://www.sat.dundee.ac.uk/). The frontal structure, the position of the low-pressure centre
(red star) and the position of a centre of high mean sea level pressure (HIGH) are based on
Met Office analysis valid at 0000 UTC 25 November 2009. The dark blue line indicates the
approximate location of the WCB and its split into anticyclonic (WCB1) and cyclonic (WCB2)
branches; the light blue line indicates the approximate location of the cold conveyor belt; the
green line indicates the position of the upper-level ridge (ULR). The letters ’CH’ indicate the
cloud head.
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The simulations have been performed on the same domain in both models. This domain cov-

ers nearly all of the North Atlantic and Europe, extending from eastern Canada, and including

most of Greenland and the northern part of North Africa. The domain extends approximately

from 25◦N to 75◦N in latitude and from 70◦W to 60◦E in longitude. The MetUM uses a horizon-

tal grid spacing of 0.11◦ (∼ 12 km) and 820× 500 grid points. There are 38 vertical levels with

a lid at around 39 km. The COSMO model uses a horizontal grid spacing of 0.125◦ (∼ 14 km)

and has 40 vertical levels. The spacing of the vertical levels in the MetUM (COSMO model) is

∼ 60 m (∼ 70 m) close to the surface and increases to ∼ 800 m (∼ 600 m) at a height of 7 km.

Both models have been initialised from the ECMWF operational analysis at 0600 UTC 23

November 2009. The MetUM has been run from these initial conditions in its global configura-

tion to produce lateral boundary conditions to be used by the LAM simulation. The COSMO

model, on the other hand, takes lateral boundary conditions directly from the ECMWF op-

erational analysis interpolating these in time every hour. The MetUM was found to be more

sensitive to the initialisation time than the COSMO model possibly due to its reliance on

self-produced lateral boundary conditions. Therefore, the initialisation time was chosen as to

minimise the differences between the ECMWF operational analysis and the simulations pre-

sented here. This issue is discussed further in Section 3. Both models have been run for 66

hours, including the trajectory computation periods (see Section 2.4).

2.2 Tracers for potential temperature and moisture in the MetUM

The tracer method for potential temperature (θ) and moisture variables (specific humidity q,

cloud liquid content qcl, and cloud ice content qcf) consists of a series of tracers, each one accu-

mulating the effect on the variables of interest (θ, q, qcl, qcf) of one specific parameterised pro-

cess in the model. The method has been previously described in Mart́ınez-Alvarado and Plant

(2013). In that work the tracer method was applied to investigate the balance between pa-

rameterised and resolved convection in an extratropical cyclone. The method is similar to

the partitioned PV integration developed by Stoelinga (1996) for the investigation of latent

heat of condensation and surface friction in a case of intense cyclogenesis. It is also similar

to the PV tracers used to study cross-tropopause transport (Gray, 2006), the PV of convec-

tive storms (Chagnon and Gray, 2009) and the diabatic modification of PV in extratropical
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cyclones (Chagnon et al., 2013). The tracer method is described as follows. Each variable φ is

decomposed into a complete set of tracer components such that φ = φ0 +
∑

P ∆φP. Each tracer

component ∆φP accumulates the changes in φ that can be attributed to the parameterised

process P . θ is modified by (i) boundary layer, (ii) convection, (iii) cloud microphysics and (iv)

short- and long-wave radiation, whereas the water vapour and cloud liquid water are modified

by processes (i)–(iii) only. The remaining tracer component φ0 is used to transport the initial

distribution of φ with the flow. By definition, this tracer is not modified by any parameteri-

sation but it is, nevertheless, subject to advection (using the in-built semi-Lagrangian scheme

including implicit numerical dissipation).

The decomposition of qcl enables the separation of the boundary layer θ tracer into two

sub-components which otherwise would be difficult to differentiate. These sub-components are

the contribution due to surface fluxes and turbulent mixing ∆θBLmix and the contribution due

to latent heat effects ∆θBLlh, both restricted to changes in the boundary layer (although the

tracer itself is not confined). Thus,

∆θBLlh =
L

cp

∆qcl,BL

Π
, (1)

where ∆qcl,BL is the change in qcl due to the boundary layer parameterisation, L is the latent

heat of condensation, cp is the specific heat of dry air at constant pressure and Π = ( p

p0

)
R
cp is

the Exner function, where p is pressure, p0 = 1000 hPa is a reference pressure and R is the

gas constant for dry air. The implicit assumption in this calculation is that water vapour is all

being transformed into liquid water (either cloud or rain). This assumption is largely valid in

the boundary layer but there will be a small error due to ice effects. The contribution due to

surface fluxes and turbulent mixing is then computed as

∆θBLmix = ∆θBL − ∆θBLlh. (2)

Latent heat effects in the boundary layer are in fact part of the modification of θ due to cloud

microphysics as they are caused by the same part of the model code in two different calls (inside

and outside the boundary layer parameterisation). Therefore, from this point we shall refer to
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the contribution of cloud microphysics as the sum

∆θmp = ∆θmp,outBL + ∆θBLlh, (3)

where ∆θmp,outBL is the tracer accumulating the heating associated with the cloud microphysics

parameterisation call outside of the boundary layer code.

2.3 Diabatic heating rates in the COSMO model

The cloud microphysics parameterisation scheme in the COSMO model includes water vapour,

cloud water, cloud ice, rain and snow as prognostic variables. When clouds form, latent heat is

released due to the transfer of mass between the different hydrometeor species. These diabatic

heating rates (DHR) are calculated for all microphysical conversion processes within the model

and the instantaneous values are stored at every model output (every hour in this study).

The total DHR caused by microphysical processes is then given by the sum over all single

processes. In the case study presented here, the DHR caused by condensation/evaporation

(TCE), depositional growth of ice (TIDEP), depositional growth of snow (TSDEP), melting

of snow (TSMELT), evaporation of rain (TEV) and convective heating (TCONV) are the

most important heating/cooling processes. For a detailed description of these processes and

a complete list of all microphysical processes see Joos and Wernli (2012) and for a complete

description of the COSMO model microphysics see Doms et al. (2007).

Potential vorticity is modified by these diabatic processes (e.g. Hoskins et al., 1985). The

main effect of DHR on the PV evolution in a WCB is the enhancement of PV below the

maximum of the DHR and the depletion of PV above (Wernli, 1997). For each microphysical

heating rate diagnostic, we also calculate and record the corresponding diabatic change in PV

(DPVR) according to

DPV R =
D

Dt
PV =

1

ρ
~η · ~∇DHR (4)

where D/Dt denotes the material derivative and ~η the absolute vorticity vector. Changes in

PV due to frictional mixing processes are not accounted for by this method. The total change

in PV due to microphysics is given by the sum over all individual DPVRs.
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2.4 Trajectory analysis

Model-derived velocity components from both models were used to calculate offline trajecto-

ries. Trajectories in the COSMO model were calculated with the trajectory tool LAGRANTO

(Wernli and Davies, 1997). For the MetUM, the trajectory calculation method described in

Wernli and Davies (1997) was adapted to compute trajectories using MetUM output directly

on the MetUM grid (described in Section 2.1). To investigate the WCB associated with the

cyclone in this case study, forward trajectories were initialised from every grid point around

the warm sector of the cyclone below a height of 1500 m at 1500 UTC, 1800 UTC and 2100

UTC on 23 November 2009 (i.e. 9, 12 and 15 hours after the start of the simulation). Only

trajectories exhibiting ascent greater than 600 hPa in 48h were selected. It has been shown in

several studies (e.g. Wernli and Davies, 1997; Eckhardt et al., 2004) that this selection crite-

rion is sensible to select WCB trajectories if the ascent occurs in the vicinity of a cyclone. The

three sets of trajectories were analyzed separately and yielded similar results irrespective of the

initialization time. For the presentation here, we therefore show results only for the trajectories

initialised at 1800 UTC 23 November 2009.

To filter out trajectories belonging to a second, short-lived low pressure system located

to the south of the system of interest, an additional criterion was applied to the bundle of

trajectories. Specifically, only trajectories that were located to the north of 45◦N at least once

within their 48-hour ascent were retained. This criterion removes those trajectories that start

close to the southern low pressure system. Once trajectories were computed and selected, p,

q, θ and PV were interpolated onto the trajectories in both models. Additionally, PV- and

θ-tracers were interpolated to MetUM trajectories and DHRs and DPVRs were interpolated to

COSMO model trajectories. In the following sections, variables along trajectories are presented

in terms of percentile curves. These curves are computed from the distribution belonging to the

particular variable displayed at constant values of the independent variable (this being either

time or pressure).

2.5 Trajectory validity

Unlike reality, in which length scales form a continuum, numerical models have a clear albeit

artificial separation between grid- and sub-grid-scale processes. Mass flux convection schemes,
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like those used in the MetUM and the COSMO model, are designed so that the area-averaged

vertical velocity (area-weighted updrafts, downdrafts and environment) equals the resolved

vertical velocity. As such, mass flux convection schemes do not directly impact the vertical

velocity at the grid-scale. However, they do have an indirect effect on vertical velocity by

modifying the vertical profiles of temperature and moisture.

The methods described in this article are designed to work at the grid-scale resolution of the

models. It is at that resolution that they are consistent in terms of the grid-scale effects of each

parameterisation scheme (including convection) and in terms of the advection of these effects

due to the grid-scale wind components. Our trajectory calculations are valid at the model grid

scale and represent the motion of the centroids of air (macro) parcels with the model-resolved

winds; they do not represent the motion of air (micro) parcels at sub-grid scales.

3 Synoptic overview of case-study

During the period 23 to 25 November 2009, an extratropical cyclone formed in the North

Atlantic and moved eastward across the British Isles and Western Europe. The surface low,

with a central pressure that fell below 960 hPa on 25 November, amplified in concert with an

upper-level trough. An overview of the synoptic evolution of this system is presented in this

section.

A sequence of surface analyses from 23-25 November 2009 is shown in Figure 2. This period

spans the phases of development of the primary low, including initial formation, amplification,

and maturity. On 23 November 2009 (Figure 2a) a mature barotropic low was situated north

of Scotland. This system, which is not the focus of our WCB analysis, moved northward and

eastward in the subsequent two days. An east-west oriented baroclinic zone extended across the

North Atlantic behind this mature low. By 0000 UTC on the 24th (Figure 2c) a surface cyclone

had formed along the baroclinic zone in the North Atlantic. The primary low would wrap up

and become occluded by 0000 UTC on 25th November (Figure 2e). The cold front and WCB

cloud band moved across the UK during the afternoon on the 25th November. The deepening

of the surface cyclone and formation of the WCB was accompanied by an amplification of

the upper-level trough. Figure 2 (right column) presents the potential vorticity (PV) on the

315 K isentropic surface. By 0000 UTC on 25 November (Figure 2f) the eastern edge of the
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primary upper-level trough was located over the Irish Sea. The downstream ridge extended far

to the north over Scandinavia and a downstream trough had elongated far to the south over

the eastern Mediterranean.

When the system had reached maturity, a south-to-north oriented cloud band running along

the surface cold front was evident in the composite satellite imagery (Figure 3a). The cloud band

split into two segments at its northern extremity, one turning cyclonically (westward) and one

turning anticyclonically (eastward). The cloud tops within the anticyclonically-turning branch

extended to higher altitudes than in the cyclonically-turning branch. A distinct shadow was

cast by these higher cloud tops immediately to the west of the cloud band edge associated with

the anticyclonically-turning branch. The radar rainfall rate composite (Figure 3b) indicates

that there was heavy rain along the cold front within the WCB cloud band at 2100 UTC 24

November 2009. Precipitation rate was strongest at the leading edge of the cold front which

was divided in segments along the front, a common pattern for line convection as described

by Hobbs and Biswas (1979) (This feature was well represented by the models and will be

discussed in more detail later). There was also heavy rain in a prominent band behind (west

of) the leading edge of the cold front.

The cold front associated with this system was the focus of a research flight conducted on

24 November 2009 (Knippertz et al., 2010). The FAAM (Facility for Airborne Atmospheric

Measurements) BAe-146 launched 7 dropsondes across the front between 1700 and 1800 UTC

south of Ireland at approximately 51◦N (approximately 900 km upstream along the WCB from

the frontal triple point; for further detail about the flight track see Knippertz et al. (2010)).

A comparison of the observed frontal structure in the dropsonde section with the simulated

structure in the MetUM is presented in Figure 4. The intersection of WCB trajectories (see

Section 4) is also depicted in the model sections in Figure 4(b,d). The comparison of the

simulated and observed cross-frontal sections confirms that the general characteristics of the

front (e.g. frontal slope, change in horizontal winds and equivalent potential temperature (θe)

across the frontal interface) were simulated accurately. The surface front is located slightly

farther to the west in the model; in-situ measurements across the front at low levels (1000 ft =

305 m) during the FAAM research flight show that the displacement was only 100 km, which is

a small phase error for a 35-hour forecast. The horizontal gradient across the frontal interface
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appears sharper in the model section than in the dropsonde observations. However, these

observations are limited by the spacing of the 7 dropsondes distributed across 6 degrees of

longitude. Examination of in-situ measurements across the front at 1000 ft reveals a drop of

14 m s−1 in meridional wind over just 600 m, flying from east to west, equivalent to a horizontal

shear of 0.02 s−1. The 600-m frontal width is supported by measurements of other variables

such as vertical wind and ozone. Therefore, the front is so tight that it cannot be resolved by

the grid spacing employed in the simulation presented here and is also 100 times narrower than

the spacing between the dropsondes. This comparison against observations confirms that the

simulation provides an accurate representation of the frontal structure. Furthermore, the section

indicates that the WCB trajectories at this location (about half-way between the southernmost

and northernmost extremities of the front) was split into two bundles: one which had already

ascended above the surface front and was characterized by high θe values, and one that was

primarily located along the surface front and had not yet ascended. The split between these

WCB trajectories will be analysed in detail in Section 4.

Figure 5a shows mean sea level pressure (MSLP) and the 2-PVU isoline (1 PVU = 10−6 m2 s−1 K kg−1)

on the 315-K isentropic surface according to the ECMWF operational analysis at 1800 UTC

25 November, which is the time at the end of the trajectory analysis. Figures 5(b,c) show the

corresponding forecasts (T+60) from the MetUM and the COSMO model simulations, respec-

tively. The cyclone appears approximately 4 hPa deeper in the forecasts than in the operational

analysis and there is an error in the location of the cyclone low-pressure centre of approximately

200 km. Moreover, the upper-level ridge on the 315-K isentropic surface appears more wrapped-

up in the forecasts than in the analysis. This feature is especially noticeable in the MetUM

simulation (Figure 5b). However, considering the long lead time of these forecasts (60 hours),

these differences are not surprising and the model results can be considered as a plausible and

an acceptably accurate representation of the state of the atmosphere for the purposes of this

study.

In summary, the extratropical cyclone that occurred between 23–25 November 2009 was

chosen as an example of a typical cold-season cyclone in the North Atlantic in which a distinct

WCB formed. Satellite imagery provides clear evidence for a WCB cloud band along the surface

cold front extending from south to north, and then splitting into cyclonic and anticyclonic
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branches at its northern extremity. Precipitation was heavy and continuous along the length

of the cold front during the period 23–25 November 2009. As such, this is an ideal case for

examining diabatic heating in a WCB as well as the mechanisms driving its split into two

separate air streams. The upper-level trough associated with the primary low amplified in

concert with the surface low. The downstream ridge and downstream trough also amplified

during this period.

4 The two branches of the WCB

Figure 3a clearly shows a difference in cloud-top height between WCB1 and WCB2 in satellite

imagery. Although the WCB split is only evident in satellite imagery close to the cyclone

centre after the original WCB has apparently risen above the surface warm front, we shall show

that the split actually starts further south and along the cold front. To define the split of the

WCB into two branches the value of θ, acting as a vertical-coordinate variable, at the final

trajectory point was chosen as separating variable. Thus, WCB1 trajectories were defined as

those trajectories for which θ(ttraj = 48h) > 307.5 K whereas WCB2 trajectories were defined

as those for which θ(ttraj = 48h) < 307.5 K, where ttraj indicates trajectory time from 1800

UTC 23 November 2009.

The resulting trajectory bundles representing WCB1 and WCB2 are shown in Figure 6. In

the COSMO model, WCB1 consists of 32240 trajectories and WCB2 of 21014 trajectories. In

the MetUM, WCB1 consists of 33466 trajectories and WCB2 of 3322 trajectories. A complete

separation of the trajectories into a cyclonically and an anticyclonically turning branch based on

their final θ value is not possible in either model. However, the majority of trajectories contained

in WCB1 do belong to the anticyclonically turning branch. Furthermore, the presence of a few

cyclonic trajectories in WCB1 does not meaningfully change the statistical properties of this

air stream. This statement has been tested by separating the branches with different final θ

values.

The trajectories in Figure 6 are coloured by pressure. Figure 6 also shows MSLP at the

trajectory start time (1800 UTC 23 November) and the 315-K 2-PVU isoline at the trajectory

end time (1800 UTC 25 November). Every trajectory starts in a region to the west of 10◦W and

to the south of 50◦N and the vast majority of them start to the east of the cold front in what
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was the system’s warm sector at 1800 UTC 23 November 2009. There is no obvious difference

between the starting regions of WCB1 and WCB2. This has been tested further by attempting

the separation of branches by the values of different variables such as specific humidity, potential

temperature and equivalent potential temperature at the trajectory starting time. Even though

the branches exhibit some differences in their initial moisture content (7.6 < q < 10.3 [g kg−1]

in WCB1 and 7.1 < q < 7.7 [g kg−1] in WCB2 in the MetUM), none of these attempts produced

as clean a separation as the one obtained by using θ at the final trajectory time.

WCB1 shows a pattern of rapid ascent which starts to the south of the cyclone centre so

that most of the trajectories constituting this branch are at low pressures for most of their

evolution (Figure 6(a,c)). These trajectories continue to travel to the east bordering the upper-

level tropospheric ridge, as marked by the 315-K 2-PVU isoline. This behaviour is in good

agreement with the findings by Eckhardt et al. (2004) regarding the final position of WCB

trajectories after 48 hours of ascent. WCB2, on the other hand, remains at high pressures for

longer, starting its ascent further northeast, closer to the cyclone centre and to the warm front

(Figure 6(b,d)).

To highlight the differences between the two branches, the time evolution of pressure, lat-

itude, specific humidity and potential temperature is shown in Figure 7, where time zero is

defined as the time of maximum vertical velocity (wmax) for each trajectory. Air parcels in

WCB1 stay relatively close to the surface and start to rise rapidly around the time of wmax

(Figure 7a). In contrast, WCB2 air parcels start to ascend more slowly and earlier, in general

showing a less abrupt ascent than WCB1 (Figure 7b). This effect is perhaps more noticeable

in the MetUM than in the COSMO model.

The two branches are already horizontally separated at the time of wmax. In fact, even 24

hours before this occurs there is a clear latitudinal separation between branches (Figure 7(c,d)).

WCB1 trajectories between the 25th and 75th percentiles undergo strongest ascent between

40◦N and 47◦N in both models (Figure 7c). These latitudes correspond to the latitudes where

vertical velocity along the cold front is maximum, as shown in Figure 8 for the MetUM (similar

structure can be found in the COSMO model). Figure 8 shows regions of maximum vertical

velocity arranged in a wave-like pattern along the cold front, in which a segment of enhanced

ascent is followed by a segment of neutral ascent. These segments are related to the precipitating
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segments apparent in radar imagery (see Figure 3b). This pattern is more noticeable to the

south of 51◦N, which is where WCB1 trajectories are subject to strongest ascent. In contrast,

WCB2 trajectories between the second and third quartiles undergo strongest ascent between

50◦N and 65◦N in both models (Figure 7d). These latitudes are more consistent with large-

scale ascent near the cyclone centre where the low-level jet component of the WCB encounters

the system’s warm front, rising over it along a surface of constant θe (cf. Figure 8) in a

similar manner as the ‘trowal airstream’ described by Martin (1998) and Martin (1999). This

is consistent with the situation depicted by Figures 4(b,d), which show the vertical separation

between the two branches. WCB1 trajectories intersecting that section (black circles) are

already located at upper levels after ascending vertically and then slantwise over the cold

anafront. WCB2 trajectories (white circles), on the other hand, are located closer to the

surface. This is also consistent with the ascent pattern previously described while discussing

Figure 6.

As well as experiencing strong ascent at lower latitudes, WCB1 trajectories are characterised

by a much higher specific humidity at the time of wmax than WCB2 trajectories (Figure 7(e,f)).

Trajectories in WCB1 reveal q values around 7 g kg−1 with a tendency to increase slightly,

briefly before wmax occurs (Figure 7e). Around the time of the maximum vertical velocity, q

strongly decreases to ∼ 1 g kg−1 in only 10 hours. In contrast, in WCB2 q starts to decrease

already 10 hours before the time of strongest ascent and decreases more slowly to low values in

the upper troposphere (Figure 7f). These results indicate that the larger amount of moisture

available to WCB1 parcels provided this branch with a larger source of energy through latent

heat release. Indeed, the change in potential temperature is slightly larger in WCB1 (Figure 7g)

than in WCB2 (Figure 7h).

As well as differences between the branches, there are differences between the two models,

especially in WCB1. While the median change in potential temperature in WCB2 is ∼ 18 K in

both models, the median change in potential temperature in WCB1 is ∼ 26 K in the MetUM and

∼ 22 K in the COSMO model. The enhanced heating in WCB1 trajectories causes this branch

to reach higher isentropic surfaces, turn anticyclonically and contribute to the ridge formation

downstream of the cyclone. The motion of both branches is largely moist-adiabatic: WCB1 tra-

jectories between the 25th and 75th percentiles remain within a 10-K θe band throughout their
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48-h development whereas the equivalent WCB2 trajectories remain within a more restrictive

5-K θe band throughout their 48-h development. The change in specific humidity along WCB1

trajectories described in the previous paragraph and the fact that θe is being approximately

conserved indicates that the ascent observed in WCB1 trajectories is caused by latent heat

being rapidly released to generate strong cross-isentropic motion. The more gradual decrease

in specific humidity along WCB2 trajectories while approximately conserving θe also explains

the smoother cross-isentropic ascent of these trajectories. Section 5 is devoted to the discussion

of the diabatic heating mechanisms in detail.

5 Heating and PV modification in the WCB

5.1 Detailed analysis of heating rates

Figure 9 shows total DHR along WCB1 and WCB2 as a function of pressure in the MetUM. In

WCB1 the median of the total DHR increases from small values (Dθ/Dt < 1 K h−1) near the

surface (p > 950 hPa) to a peak of 5 K h−1 at around 800 hPa. From this point the median

decreases monotonically until it reaches negligible values around 350 hPa. The full ensemble

follows a broadly similar behaviour although the ensemble spread is such that some trajectories

reach total DHR values larger than 10 K h−1 around 700 hPa. In WCB2 the median of the

total DHR exhibits two peaks. The first peak, slightly above 2 K h−1, is located around 820

hPa; the second peak, around 1.75 K h−1, is located around 600 hPa. At near-surface levels

(p > 950 hPa) many trajectories exhibit cooling, mainly due to evaporation of precipitation

falling from upper levels, as will be shown below. The results obtained with the COSMO model

(not shown) are consistent with these results, even though they account only for contributions

from cloud microphysics.

The use of θ-tracers in the MetUM allows the decomposition of the total DHR in terms

of contributions from individual parameterised diabatic processes. Figure 10a shows the most

important contributions to total DHR in both branches and according to θ-tracers in the

MetUM. The first most important contribution is due to cloud microphysics. The median

of this contribution reaches its global maximum (D∆θmp/Dt ≃ 2.5 K h−1) around 800 hPa

and a secondary maximum (D∆θmp/Dt ≃ 2 K h−1) around 600 hPa (Figure 10a, black solid
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line). WCB2 trajectories show a similar pattern of heating due to cloud microphysics, but with

lower values throughout the pressure layer (Figure 10a, black dashed line): a global maximum

(D∆θmp/Dt ≃ 2 K h−1) around 800 hPa and a secondary maximum (D∆θmp/Dt ≃ 1.5 K h−1)

around 625 hPa.

The second most important contribution to total DHR in the MetUM is due to the convec-

tion parameterisation. This contribution is concentrated primarily at lower levels (p < 600 hPa)

with a single maximum (D∆θconv/Dt ≃ 1.5 K h−1) around 800 hPa (Figure 10a, blue solid

line). Unlike D∆θmp/Dt which displays a similar (albeit of different intensity) behaviour in

both branches, D∆θconv/Dt displays very different behaviour. In WCB2 a single unambiguous

maximum (D∆θconv/Dt ≃ 0.5 K h−1) is found at 870 hPa and negligible contribution at up-

per levels (p < 800 hPa; Figure 10a, blue dashed line). Thus, the overall contribution due to

parameterised convection in WCB1 is stronger than in WCB2 in the MetUM.

The DHR analysis in the COSMO model also shows a difference in heating between WCB1

and WCB2 consistent with the enhanced heating observed in WCB1 in comparison with WCB2.

However, in this case the contribution from microphysical processes is more important than

that from convection by one order of magnitude in both branches (Figure 10b). It is important

to note that even though the DHRs are different in the two models, the time integral of

DHRs through the WCB is similar (to give the increase in θ shown in Figure 7(g,h)). In

WCB1 the contribution due to microphysical processes exhibits a peak in the ensemble-median

of 2.20 K h−1 around 875 hPa and a secondary maximum of 1.75 K h−1 around 670 hPa

(Figure 10b, black solid line). In WCB2 this contribution reaches 1.60 K h−1 around 850

hPa and remains around that value up to 600 hPa. Above this level the contribution due to

microphysical processes steadily decreases reaching zero around 350 hPa (Figure 10b, black

dashed line). On the other hand, the contribution due to convection may be significant for

some individual trajectories but remains low in the median (DHR < 0.3 K h−1) throughout

the pressure layer (300 < p < 1000 [hPa]) in both branches (Figure 10b, blue solid and dashed

lines). This contribution only slightly enhances the median DHR in the lower troposphere, in

clear contrast with the MetUM results.

With the DHR analysis implemented in the COSMO model it is possible to investigate in

further detail the relative contributions of the different microphysical processes to the total
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latent heating during cloud formation along the WCB trajectories (Figure 11). The maximum

in the total DHR in WCB1 around 875 hPa (Figure 10b) is caused by condensation of water

vapour and the formation of a liquid cloud (Figure 11, purple solid line). This contribution

peaks around 875 hPa with a value of 2.20 K h−1 and extends from the surface to the mid-

troposphere (550 < p < 1000 [hPa]). While WCB1 parcels travel through the lower troposphere,

they are also subject to slight cooling, mainly due to evaporation of rain below 900 hPa and

melting of snow around 750 hPa (Figure 11, solid blue and green lines, respectively). The small

amount of cooling found is consistent with the trajectory selection criteria, which only selects

trajectories that ascend the most from the warm sector. However, due to sedimentation of

rain and snow, some of the falling hydrometeors cross the path of the ascending trajectories

while evaporating or melting, thus reducing the overall heating. When WCB1 parcels rise and

reach the freezing level (around 700 hPa), ice phase processes become important. The second

maximum in the median of the total DHR is largely caused by the depositional growth of snow

and ice (Figure 11, solid yellow and red lines, respectively). This direct transfer of water vapour

to the solid phase releases an important amount of latent heat above 700 hPa. There is also

a contribution from the freezing of liquid cloud droplets. However, this contribution is only of

secondary importance compared to those shown in Figure 11.

A similar partitioning of microphysical contributions is found in WCB2 (Figure 11, dashed

lines). As in WCB1, the largest contribution at lower levels (below 600 hPa) is the condensation

of water vapour for the formation of liquid cloud (Figure 11, dashed purple line). However,

this peaks at slightly higher levels (around 800 hPa) than it does in WCB1, and its intensity

is lower throughout (maximum of 1.80 K h−1 in WCB2 compared to 2.20 K h−1 in WCB1).

Furthermore, evaporation of rain and melting of snow (Figure 11, dashed blue and green lines,

respectively) produce cooling effects of slightly larger intensity than in WCB1. Therefore, the

cooling to heating ratio is larger in WCB2 than in WCB1 at these levels so that the cooling ef-

fects are more noticeable in WCB2. Around 800 hPa, where the DHR from condensation peaks,

the net DHR is around 1.50 K h−1, while at near-surface levels (below 950 hPa), a clear net

cooling effect can be observed (Figure 10b). Around the freezing level, both the contributions

from depositional growth of snow and ice in WCB2 (Figure 11, dashed yellow and red lines,

respectively) peak below the corresponding contributions in WCB1. The peak in the contribu-
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tion due to depositional growth of snow is slightly smaller than in WCB1, whereas the peak

in the contribution due to depositional growth of ice is slightly larger. From this description it

is clear that, unlike in the MetUM, the difference between WCB1 and WCB2 in the COSMO

model is due to the extent and intensity of the contribution due to the condensation of water

vapour to cloud liquid rather than in the contribution from the convection parameterisation.

Additional simulations were performed with both the MetUM and the COSMO model

using a different convection scheme to determine the cause of the different contributions to

heating from convection in the two models. In these simulations, the Gregory–Rowntree

(Gregory and Rowntree, 1990) and the Tiedtke (Tiedtke, 1989) convection parameterisation

schemes normally used in the MetUM and COSMO, respectively, were replaced by the Kain–

Fritsch convection parameterisation scheme (Kain and Fritsch, 1990; Kain, 2004). The results

from these simulations were similar to each other regarding both the spatial distribution of

total precipitation and the way in which the total precipitation was split into convective and

large-scale precipitation (not shown). Specifically, with the Kain–Fritsch scheme both models

produced maxima in the total precipitation rate between 8 mm h−1 and 32 mm h−1 concen-

trated along a line of convection on the eastern flank of the cold front and between 4 mm h−1

and 16 mm h−1 to the northeast of the low-pressure centre. These numbers were also similar

to those obtained with the models’ standard convection parameterisation schemes. The precip-

itation from the Kain–Fritsch parameterisation was concentrated behind and in the southern

section of the cold front (e.g. at 0600 UTC 24 November 2009 both models showed parame-

terised convective activity to the south of 40◦N). These results confirm that the differences in

the simulated heating in the standard model configurations are mainly due to differences in

their standard convection parameterisation schemes.

The differences between the MetUM and the COSMO model can be interpreted by recalling

that in numerical models the distinction between parameterised and resolved convection arises

from whether the convection parameterisation scheme triggers or not. This does not exactly

map onto whether convection processes are occurring in the model but establishes a clear

separation nevertheless. In the actual atmosphere there is no clear separation between processes

to allow an unambiguous distinction. Both models show that WCB1 parcels contain more

moisture and are located more to the southwest than WCB2 parcels at the time of maximum
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Table 1: Total change in θ (∆θ) and PV (∆PV) along the full length of trajectories (from 1800
UTC 23 November to 1800 UTC 25 November) for each WCB branch in each model.

WCB1 WCB2
∆θ (K) ∆PV (PVU) ∆θ (K) ∆PV (PVU)

Percentile 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
MetUM 22.6 25.6 27.8 -0.024 0.103 0.298 17.5 18.6 19.3 0.188 0.713 2.60
COSMO 19.5 22.3 25.3 -0.073 0.102 0.377 16.4 17.6 18.8 0.043 0.270 0.75

ascent. Furthermore, the WCB1 parcels’ location is characterised by strong frontal lifting

along the cold front in both models. The latent heat release in the form of forced convection

produced when the WCB1 moist air is lifted provides the heating required for the stronger cross-

isentropic motion exhibited by this WCB branch relative to WCB2. The partitioning between

parameterised and resolved convection between the models is different, with the convection

scheme in the MetUM releasing part of the convective instability which in the COSMO model is

released explicitly and so appears in the cloud microphysics scheme. The more active convection

scheme in the MetUM explains the difference of about 4 K in total heating between the MetUM

and the COSMO model. Thus, despite differences in how the standard model configurations

partition convection, there is no fundamental conflict in how the differences between WCB1

and WCB2 arise.

5.2 Diabatic PV modification

The geographical distribution and diabatic modification of air parcels in the WCB outflow are

highlighted in Figure 12 for WCB1 and in Figure 13 for WCB2. These figures show the location

of WCB parcels close to the 315-K (Figure 12) and 305-K (Figure 13) isentropic surfaces at 18

UTC 25 November 2009, as an indication of the trajectories intersecting this surface. Parcels are

coloured by total heating during their 48 hours ascent (∆θ) and final PV values (corresponding

to the time shown). To complement this data, Table 1 summarizes the changes in θ and PV

during the 48-hour trajectory time span for the two WCB branches and for both the MetUM

and the COSMO model.

In both models, most of the trajectories that originated in WCB1 have been discharged from

the WCB outflow by this time and deposited along the eastern edge of the downstream ridge

(Figure 12). A smaller proportion of parcels remain to the west within WCB1, downstream

of the upper-level trough. The result is a wishbone pattern of parcels distributed along the
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edge of the upper-level trough and ridge. In contrast to WCB1, most of the parcels discharged

from WCB2 are wrapped cyclonically around the northwest quadrant of the cyclone centre

(Figure 13). In the MetUM (Figure 13a,c) the parcels are exclusively located in this northwest

quadrant, whereas in the COSMO model (Figure 13b,d) some of the parcels lag behind and are

located to the northeast of the cyclone centre.

The WCB1 parcels experienced significant warming in most places in both the MetUM and

the COSMO model after 48 hours (see Figure 12a,b) However the warming is slightly larger in

the MetUM than in the COSMO model with a median difference between models of about 3 K

and interquartile range of 22.6 K to 27.8 K in the MetUM and 19.5 to 25.3 K in the COSMO

model (see Table 1).

The WCB1 parcels are also characterized by low values of PV, typically less than 0.5 PVU

(see Figure 12c,d). The ensemble-median exhibits a net diabatic PV gain of around 0.1 PVU

for both models with at least some trajectories exhibiting small net diabatic reduction of PV

along the trajectories, as shown by the 25th percentile of ∆PV in Table 1. The WCB2 parcels

also experience significant warming but of slightly lesser amplitude than in WCB1 (compare

Figure 13a,b to Figure 12a,b). The difference between models is smaller for this branch with

an ensemble-median difference of only around 1 K (see Table 1). Furthermore, the PV values

of WCB2 parcels located close to the core of the low are much higher (PV > 1.5 PVU) than

those of the parcels in WCB1 (compare Figure 13c,d to Figure 12c,d). In this case, both models

agree in that there is an enhancement of PV but they disagree in the magnitude of the gain:

an interquartile range of 0.118 PVU to 2.60 PVU for the MetUM but only 0.043 PVU to 0.75

PVU for the COSMO model.

Figure 14 shows the total rate of change in PV in the MetUM and the COSMO model along

WCB1 and WCB2. The total PV generation rates in both models are consistent with the DHRs

obtained. In the MetUM there is gain of PV in WCB1 in the median at low levels, changing

sign around 800 hPa (Figure 14a, black lines). The crossing of the horizontal axis corresponds

to the maximum in total heating (see Figure 9). From this level upwards the median remains

close to zero. Every trajectory in the band between the 25th and 75th percentiles experiences a

gain in PV below 880 hPa. From that point upwards more and more trajectories in that band

experience a loss in PV so that around 830 hPa there are more trajectories losing PV than
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gaining it. The intensity of the PV sink then decreases until loss and gain become negligible

from 450 hPa upwards. The PV rate in WCB2 in the MetUM exhibits similar behaviour but

with lower intensity than in WCB1. At low levels the median is positive, crossing the horizontal

axis around 820 hPa to coincide with the peak in median total DHR. From that point upwards

the median remains very close to zero although there appears to be a gain at upper level. This

upper-level positive PV rate is consistent with the reported enhanced PV values (Figure 13(c))

and net diabatic PV gain (Table 1) in WCB2, and shows that this gain occurs at upper-levels

possibly as a result of other diabatic processes such as radiation.

Figure 14b shows the rate of change in PV due to all (albeit only) microphysical processes

along the WCB trajectories in the COSMO model. DPVR in WCB1 crosses from positive

to negative at a lower level than the MetUM consistent with a lower maximum in heating.

However, it is important to remember that the DPVR method implemented in the COSMO

model only accounts for heating associated with microphysical processes and does not include

turbulent mixing, radiation or frictional effects. The positive DPVR below ∼ 900 hPa is mainly

caused by condensation, but the evaporation of rain and convection contribute also (not shown).

When the air parcels further ascend the DPVR becomes negative, as the air parcels are located

above the maximum of the DHR and PV starts to decrease. The shape of the total DPVR

is dominated by the influence of the condensational heating whereas the other microphysical

processes play only minor roles. Around ∼ 700 hPa the heating due to depositional growth

of snow leads to a small positive DPVR and partly offsets the negative DPVR associated

with decreasing condensation at this height. Consistent with the location of the median DHR

maximum in WCB2, the region of positive median DPVR in WCB2 extends higher up than

in WCB1. The median crosses the horizontal axis around 880 hPa and becomes negative but

small, remaining around zero beyond that point.

6 Summary and conclusions

A detailed case study analysis of WCB flows, and the processes contributing to diabatic heating

and potential vorticity modification within them, has been presented. Diagnostics from two

models, the MetUM and the COSMO model, were used to characterise the WCB and to evaluate

diabatic heating and PV modification. It is shown that the two models are able to represent
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the split of the WCB in a consistent manner. In both models the trajectories in WCB1 ascend

further south and have higher specific humidity than those in WCB2. The WCB1 trajectories

ascend abruptly in narrow regions of intense ascent along the cold front south of the cyclone,

whereas those in WCB2 experience slower saturated ascent close to the cyclone centre where

the WCB flows over the warm front. WCB1 trajectories reach higher isentropes than WCB2

trajectories, where they are carried by the prevailing winds in the upper-level jet and hence

curve anticyclonically. One of the main differences between branches is the net change in θ,

which is larger for WCB1 than for WCB2. This difference determines the final isentropic level

of the parcels which influences whether they will turn anticyclonically into the upper-level ridge

or cyclonically to wrap around the cyclone centre. It has also been shown that WCB1 exhibits

lower PV values than WCB2 at their respective outflows. The low-PV outflow from WCB1

may enhance the amplification of the developing Rossby wave. The enhancement of PV in the

outflow in WCB2 is the result of positive PV rates at upper levels and therefore is likely to

occur due to the influence of non-conservative processes such as mixing and radiative transfer.

The paradigm of a WCB that splits into cyclonic and anticyclonic branches dates back

to Young et al. (1987) (although references to a split of an ascending warm-sector airflow can

be traced back to Namias (1939)). Using trajectory calculations, Wernli (1997) described the

characteristics of two WCB branches (referred to as “coherent ensembles of trajectories”) that

are similar to the ones identified here (i.e. the trajectory ensemble starting at lower latitudes is

initially moister, reaches higher isentropes and turns mainly anticyclonically at upper levels).

Here, the cyclonic and anticyclonic conveyor belt branches were discriminated by the potential

temperature at the end of 48-hour trajectories, ascending at least 600 hPa, calculated using the

resolved winds. The WCB structure is broadly consistent with that diagnosed through isen-

tropic analysis by Browning and Roberts (1994) – a lower branch turning cyclonically on lower

isentropic surfaces than those of an anticyclonic-turning upper branch. However, trajectory

analysis has revealed that the ascent in these branches takes place in different regions in the

cyclone and has different contributions from convection.

A split WCB has been analysed in an idealised cyclone using trajectories by Schemm et al.

(2013) (their downstream cyclone). However, the behaviour of the two branches in their study

contrasts with the results of this case study in terms of their latitude of origin and primary
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ascent locations. Schemm et al. (2013) diagnose a “forward-sloping” (anticyclonically-turning)

WCB that originates further north than a “rearward-sloping” (cyclonically-turning) WCB. The

anticyclonically-turning WCB ascends very rapidly in the region of the bent-back front whereas

the cyclonically-turning WCB ascends more gradually at the surface cold front. These WCB

branches also contrast with the results of our case study in that the cyclonically-turning branch

ascends to the higher isentropic level (by about 3 K), although (as in our case study) the final

pressure level is very similar for the two branches. It must be mentioned here that in these

idealized studies, latent heating due to cloud formation only consists of a saturation adjustment

and that the boundary layer, radiation, microphysics and moist convection schemes are switched

off; this may account for some of the differences compared to our case study.

A decomposition of the diabatic heating and PV modification along the trajectories has

been diagnosed in both models but through different techniques: tracers that track changes in

θ and moisture variables in the MetUM and the direct calculation of DHRs and the associated

rates of diabatic PV in the COSMO model. The MetUM diagnostic has the advantage that

the contributions from all the different parameterisation schemes that modify θ, moisture and

PV can be diagnosed (and hence their budgets can be balanced) but the disadvantage that it

does not provide the detail on the microphysical conversion processes provided by the COSMO

diagnostics. In contrast, the COSMO diagnostic provides the contributions that modify θ and

PV only from the dominant large-scale cloud microphysical and convective schemes.

Total DHRs are comparable in the two models for both WCB1 and WCB2 (being larger

for WCB1) and both models agree that microphysical processes in the large-scale cloud scheme

are the major contributor to this heating; however, the models differ in their assessment of the

relative contributions from the convection parameterisation and cloud microphysics schemes. In

the COSMO model the contribution from the convection scheme along the median trajectory is

much smaller than from the cloud microphysics scheme, whereas in the MetUM it is about half

that of the microphysics scheme. This difference arises from a different partitioning between

resolved and parameterised convection in these models. If both models are run using the

Cain-Fritsch convection scheme they obtain a similar partition. Therefore, we attribute the

differences primarily to their different default convection schemes. The WCB1 flow is subject

to line convection, forced by strong ascent along the cold front. The WCB2 flow is subject to
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large-scale ascent as the moist isentropic surfaces slope over the warm front. In all the model

experiments, the net increase in θ along a WCB is similar irrespective of the split between

parameterised convection and resolved ascent.

The microphysical contributions to diabatic heating found in WCB1 agree closely with those

found for the WCB in a different case by Joos and Wernli (2012). Comparison of Figure 11 here

to Figure 10b in that paper reveals similar functions for the total heating due to microphysical

processes as a function of pressure along the trajectories. In both cases heating from condensa-

tion of water vapour dominates at low levels whereas the heating from the depositional growth

of ice phase species dominate above the freezing level (both snow and ice in this case but just

snow in the case of Joos and Wernli (2012)). The consistency of these two cases (and another

case study discussed very briefly in Joos and Wernli (2012)) suggests that these aspects of the

microphysical contributions are somewhat generic in cold-season WCBs, at least within the

COSMO model.

The net increase in potential temperature between models is robust, including a greater

ascent for WCB1 relative to WCB2. Similarly, the net PV change in WCB1 is near zero and

slightly positive for both models (Table 1). WCB2 trajectories experience a slight increase in

PV associated with microphysical processes in COSMO - the larger PV increase in the MetUM

is not just associated with latent heating, but has contributions from surface fluxes, turbulent

mixing and radiative transfer. These results are consistent with the analysis of Methven (2013)

who argues that the mass-weighted average PV of the outflow of a WCB must equal the average

PV of the inflow before ascent and heating has commenced. In other words the net PV change

following the WCB should be approximately zero. The argument uses two control volumes

that are confined within layers in isentropic coordinates encompassing the WCB inflow and

outflow. The volumes follow the horizontal (adiabatic) flow within each layer but mass can be

transported diabatically between them as a result of heating. The two fundamental conditions

for this to hold are: 1) all the mass transported diabatically from the inflow layer ends up in the

outflow layer, and 2) the volumes encompassing the inflow and outflow have the same average

PV at the mid-time when half the mass has been transported diabatically between them.

The zero PV change is a result of the PV impermeability theorem of (Haynes and McIntyre,

1987) combined with Kelvin’s circulation theorem. It does not depend on the details of the
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heating rates or diabatic path between inflow and outflow volumes, including whether or not the

vertical motion is resolved or parameterised. Although the theory is consistent with the results

presented for this case study, earlier studies (Pomroy and Thorpe, 2000; Joos and Wernli, 2012)

have typically indicated a net decrease in PV, such that the outflow at final time has lower PV

than the inflow at initial time. This may relate to the fact that the trajectory ensembles were

already experiencing ascent at the ”initial time” of those calculations and therefore PV had

already increased as a result of diabatic mass transport upwards. Also, heating in the boundary

layer is found to be important to diabatic PV in the MetUM simulations (Chagnon et al.,

2013) and so the conditions of Methven (2013) that the inflow control volume extends below

the heating may not be satisfied for the trajectory ensembles in the earlier studies. Figure 7

shows that in this study the mean altitude of the trajectory ensembles was very near the ocean

surface. The insensitivity of net PV change to the details of diabatic transport may explain

the robustness of the results between models and insensitivity to parameterised convection.

However, the net θ-increase within the WCBs determines the level of the outflow layer and this

is the integrated effect of all diabatic processes. The value of ∆θ is itself strongly constrained

by −Lqsat(0) where qsat(0) is the saturation specific humidity of the inflow because the specific

humidity of the outflow must always be so much lower if the WCB reaches the upper troposphere

(i.e., almost all the water vapour condenses).

The overriding impression on comparison of the WCB structure in the two models is of

similarity, which likely contributes to the close agreement in the Rossby wave structure in the

60-hour forecasts between the two models and to the ECMWF analysis. However, differences

in the Rossby wave structure do exist (see Figure 5) and may be attributable to differences

in the WCBs. In particular the ridge has greater extent as it wraps around the north of the

surface cyclone in the MetUM compared to the COSMO model forecast. This is consistent

with the more vigorous WCB1 flow in the MetUM with larger DHRs and larger net increases

in potential temperature along trajectories. Although the absolute value of PV in the outflow

may be insensitive to the net diabatic transport, diabatic processes determine the level of the

WCB outflow in isentropic coordinates, relative to the tropopause, and its spatial extent, which

would both influence the flow associated with the negative PV anomaly and the subsequent

Rossby wave evolution.
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Systematic forecast errors have been shown to develop in Rossby wave amplitude in re-

gions consistent with the location of the WCB (Dirren et al., 2003; Davies and Didone, 2013).

Rodwell et al. (2013) has shown that the worst forecast busts for central Europe can be traced

back to misrepresentation of convective weather systems over the eastern USA 6 days earlier.

The dynamical link is via latent heat release, diabatic transport of mass to the tropopause

level and Rossby wave propagation. Our findings are consistent with the hypothesis that errors

in the representation of diabatic processes in WCBs could contribute to such forecast errors,

although the results may not be especially sensitive to the details. A criterion for the choice of

the case analysed here was that it verified well in forecasts from both models so that the WCB

structure could be analysed. In future it would be instructive to identify systematic contri-

butions to forecast error from separate diabatic processes, acting to enhance errors associated

with initial condition uncertainty and chaotic model trajectories.
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Figure 2: (a,c,e) Met Office surface analyses ( c©2009 Crown Copyright, the Met Office) and
(b,d,f) PV on the 315 K isentropic surface in ECMWF analysis valid at 0000 UTC on (a,b) 23
November, (c,d) 24 November and (e,f) 25 November 2009.
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Figure 3: (a) RGB composite satellite image (MODIS channels 1, 3, 4) at 1127 UTC 24 Novem-
ber 2009 (Satellite image courtesy of the NERC Satellite Receiving Station, Dundee University,
Scotland, http://www.sat.dundee.ac.uk/), and (b) Met Office radar-derived precipitation rate,
valid at 2100 UTC 24 November 2009.
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Figure 4: Dropsonde sections across the cold front of (a) equivalent potential temperature
and (c) meridional wind component on 24 November between 1700-1800 UTC at 51◦N. The
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Figure 5: Tropopause trough/ridge structure in (a) the ECMWF operational analysis, (b) the
MetUM and (c) the COSMO model, showing the 2-PVU isoline on the 315-K isentropic surface
(bold line) and MSLP every 4 hPa (thin lines) at 1800 UTC 25 November 2009 (corresponding
to T+60 for MetUM and COSMO model forecasts).
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Figure 6: Maps showing the full trajectory ensembles (coloured by pressure, in hPa) in (a,b) the
MetUM and (c,d) the COSMO model showing the branches WCB1 (left column) and WCB2
(right column). Also shown are MSLP (isobars every 4 hPa) at the start of trajectories (1800
UTC 23 November 2009) and 2-PVU isoline on the 315-K isentropic surface at the end of
trajectories (1800 UTC 25 November 2009) as output by the corresponding model.
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1Figure 7: (a,b) Pressure, (c,d) latitude, (e,f) specific humidity and (g,h) potential temperature
along trajectories as a function of time for (a,c,e,g) WCB1 and (b,d,f,h) WCB2 with time
zero defined as the time of maximal ascent for the MetUM (red lines) and the COSMO model
(black lines). Solid lines represent the ensemble median; dashed lines represent the 25th and
75th percentiles; dotted lines represent the 5th and 95th percentiles.
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Figure 8: Map of 850-hPa vertical velocity (in m s−1, filled contours) and θe (in K, contoured
every 5 K) at 1800 UTC 24 November 2009 from the MetUM.

Figure 9: Total DHR as a function of pressure for WCB1 (black) and WCB2 (red) in the
MetUM. Solid lines represent ensemble medians; dashed lines represent the 25th and 75th
percentiles; dotted lines represent the 5th and 95th percentiles.
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Figure 10: Ensemble-medians of contributions to total DHR due to cloud microphysics (black)
and convection (blue) as functions of pressure for WCB1 (solid lines) and WCB2 (dashed lines)
in (a) the MetUM and (b) the COSMO model.

Figure 11: Ensemble-medians of DHR contributions due to condensation/evaporation (TCE),
depositional growth of ice (TIDEP), depositional growth of snow (TSDEP), melting of snow
(TSMELT) and evaporation of rain (TEV) as functions of pressure for WCB1 (solid lines) and
WCB2 (dashed lines) in the COSMO model.
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Figure 12: 2-PVU isoline on the 315-K isentropic surface at 1800 UTC 25 November 2009 in
(a,c) the MetUM and (b,d) the COSMO model showing intersecting WCB1 parcels coloured
by (a,b) ∆θ (in 48 hours), in K, and (c,d) PV, in PVU.
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Figure 13: As in Figure 13 but for the 305-K isentropic surface and WCB2 parcels.
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Figure 14: PV rates of change as functions of pressure for WCB1 (black) and WCB2 (red)
for (a) the MetUM and (b) the COSMO model. Solid line represents the ensemble median;
dashed lines represent the 25th and 75th percentiles; dotted lines represent the 5th and 95th
percentiles.
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