
J-measure based hybrid pruning for
complexity reduction in classification rules

Article

Published Version

Liu, H., Gegov, A. and Stahl, F. (2013) J-measure based
hybrid pruning for complexity reduction in classification rules.
WSEAS Transactions on Systems, 12 (9). pp. 433-446. ISSN
2224-2678 Available at http://centaur.reading.ac.uk/34529/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://www.wseas.org/cms.action?id=6952

Publisher: WESAS

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

J-measure Based Hybrid Pruning for Complexity Reduction in

Classification Rules

HAN LIU1, ALEXANDER GEGOV1 and FREDERIC STAHL2
1School of Computing

University of Portsmouth
Buckingham Building, Lion Terrace, PO1 3HE Portsmouth

UNITED KINGDOM
Han.Liu@port.ac.uk

http://uk.linkedin.com/pub/han- liu/24/a13/488

Alexander.Gegov@port.ac.uk
http://www.port.ac.uk/departments/academic/comp/staff/title,3828,en.html

2School of Systems Engineering
University of Reading

Po Box 225 Whiteknights, Reading, RG6 6AY

UNITED KINGDOM
F.T.Stahl@reading.ac.uk

http://fredericstahl.wordpress.com

Abstract: - Prism is a modular classification rule generation method based on the ‘separate and conquer’
approach that is alternative to the rule induction approach using decision trees also known as ‘divide and
conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends
to produce a more compact noise tolerant set of classification rules. As with other classification rule generation
methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition,
over-specialised rules increase the associated computational complexity. These problems can be solved by
pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing
overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an
information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning
attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may
even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in
reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to
underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also
proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces
overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary
computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning
algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated
comparatively with the J-pruning and Jmax-pruning algorithms.

Key-Words: - Data Mining, Machine Learning, Classification Rules, J-pruning, Jmax-pruning, Jmid-pruning,
if-then rules, overfitting, J-measure

1 Introduction
The automatic induction of classification rules has
been increasingly popular in commercial
applications such as rule based expert systems,
decision making systems. In this context,
classification rule generation methods can be
divided into two categories - ‘divide and conquer’
and ‘separate and conquer’. The ‘divide and
conquer’ approach, which is also known as the Top-
down Induction of Decision Trees (TDIDT) [1], can

be traced back to 1960s [2]. This approach induces
classification rules in the intermediate form of a
decision tree such as ID3, C4.5 and C5.0. The
‘separate and conquer’ approach, which is also
known as covering approach, can be also traced
back to 1960s [3]. This approach generates if-then
rules directly from training instances such as Prism.
A series of experiments have shown that Prism
achieves with a similar level of classification

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 433 Issue 9, Volume 12, September 2013

accuracy compared with TDIDT and can even
outperform TDIDT in some cases [11].
 As mentioned in [4], a principle problem that
arises with most methods for generation of
classification rules is the overfitting of training data.
In some cases, this may result in the generation of a
large number of complex rules. This may not only
increase the computational cost but also lower the
classification accuracy in predicting further unseen
instances.
 A suitable way to reduce overfitting of
classification rules is by simplifying rules using
pruning strategies. Pruning methods can be
subdivided into two categories - Pre-pruning [5],
which truncate rules during rule generation, and
Post-pruning [5], which generate a whole set of
rules and then remove a number of rules and rule
terms, by using statistical or other tests [4]. For the
Prism method, two pruning algorithms have been
introduced recently. These are J-pruning, which is
completely based on pre-pruning as the pruning
action is taken during rule generation [6], and Jmax-
pruning, which is a hybrid between pre-pruning and
post-pruning as each rule is post-pruned before the
next rule is generated [6].
 The structure of this paper is as follows. Section 2
reviews the Prism method and identifies its
limitations. It also discusses which of these
limitations have been overcome and in what way by
J-pruning and Jmax-pruning in order to identify the
potential ways of resolving these issues. Section 3
introduces a novel pruning algorithm, called Jmid-
pruning. This algorithm is a modified version of the
J-measure based pruning and it addresses some
common issues such as clashes, tie-breaking and
continuous attributes that arise in classification
tasks. Section 4 describes the setup of an
experimental study and presents results in
classification accuracy and computational
efficiency. Section 5 evaluates the Jmid-pruning
algorithm in comparison with J-pruning and Jmax-
pruning in terms of classification accuracy and
computational efficiency. Section 6 summarises the
contribution of this work to real world applications
and highlights related future research directions.

2 Related Work
As mentioned in Section 1, most classification rule
generation methods may lead to overfitting of
training data, which results in lower classification
accuracy and higher computational cost. This
section describes how J-pruning and Jmax-pruning
can overcome the overfitting problems of Prism and
also discusses other related issues of these two

pruning algorithms that are discussed in the
subsequent sections.

2.1 Prism Method
The Prism method was introduced by Cendrowska
in [7] and the basic idea of the underlying Prism
algorithm is illustrated in Figure 1. This algorithm is
primarily aimed at avoiding the generation of
complex rules with many redundant terms [4] such
as the ‘replicated subtree problem’ that arises with
decision trees as illustrated in Figure 2.

Execute the following steps for each classification
(class= i) in turn and on the original training data S:
1. S’=S.
2. Remove all instances from S’ that are covered
from the rules induced so far. If S’ is empty then
stop inducing further rules
3. Calculate the probability from S’ for class=i for
each attribute-value pair.
4. Select the attribute-value pair that covers class= i
with the highest probability and remove all
instances from S’ that comprise the selected
attribute-value pair
5. Repeat 3 and 4 until a subset is reached that
contains only instances of class= i. The induced rule
is then the conjunction of all the attribute-value
pairs selected.
Repeat 1-5 until all instances of class i have been
removed

*For each rule, no one attribute can be selected
twice during generation

Fig.1 Basic Prism algorithm [5]

The original Prism algorithm cannot directly handle
continuous attributes as it is based on the
assumption that all attributes in a training set are
categorical. When continuous attributes are actually
present in a dataset, these attributes should be
discretised by preprocessing the dataset prior to
generating classification rules [5, 6]. In addition,
Bramer’s Inducer Software handles continuous
attributes as described in [5, 6, 8] and in Section 3.
 On the other hand, the original Prism algorithm
does not take clashes into account, i.e. a set of
instances in a subset of a training set that are
identical apart from being assigned to more than one
class but cannot be separated further [6, 8].
However, the Inducer Software implementation of
Prism can handle clashes and the strategy of
handling a clash is illustrated in Figure 3.

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 434 Issue 9, Volume 12, September 2013

Fig.2 Cendrowska’s replicated subtree example [8, 9]

 Another problem that arises with Prism is tie-
breaking, i.e. there are two or more attribute-value
pairs which have equal highest probability in a
subset. The original Prism algorithm makes an
arbitrary choice in step 4 as illustrated in Figure 1
whereas the Inducer Software makes the choice
using the highest total target class frequency [5].

If a clash occurs while generating rules for class i:
1. Determine the majority class for the subset of
instances in the clash set.
2. If this majority class is class i, then compute the
induced rule by assigning all instances in the clash
set to class i. If it is not, discard the whole rule.
3. If the induced rule is discarded, then all instances
that match the target class should be deleted from
the training set before the start of the next rule
induction. If the rule is kept, then all instances in the
clash set should be deleted from the training data.

Fig.3 Dealing with clashes in Prism

 In addition, Bramer pointed out that the original
Prism algorithm always deletes instances covered by
those rules generated so far and then restores the
training set to its original size after the completion
of rule generation for class i and before the start for
class i+1. This undoubtedly increases the number of
iterations resulting in high computational cost [9].
For the purpose of increasing the computational
efficiency, a modified version of Prism, called

PrismTCS, was developed by Bramer [14].
PrismTCS always chooses the minority class as the
target class pre-assigned to a rule being generated as
its consequence. Besides this, it does not reset the
dataset to its original state and introduces an order
to each rule for its importance [6, 8, 9]. Therefore,
PrismTCS is not only faster in generating rules
compared with the original Prism, but also provides
a similar level of classification accuracy [6, 8].
 Apart from the overfitting problem mentioned in
Section 1, Prism has further limitations. For
example, it may result in underfitting of training
data due to over-discarding of rules when clashes
occur during rule generation. It is mentioned in [5]
that clashes may occur in the following two ways:

 One of the instances has at least one
incorrect record for its attribute values or
classification [5].

 The clash set has all instances correctly
recorded but it is not possible to
discriminate between or amongst them on
the basis of the attributes recorded. So, it
may be required to examine extra attributes
not recorded in the training set [5].

 If the reason that clashes occur is due to the
presence of noise, the fact that Prism prefers to
leave instances unclassified rather than to give a
wrong classification may lead to good performance
with noisy data. However, in the absence of noise,
Prism may generate a rule set that underfits training
data due to over-discarding of rules. Bramer
mentioned in [13] that classification tasks are
normally aimed at finding all relevant rules to make

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 435 Issue 9, Volume 12, September 2013

good classifications rather than, say, finding the best
20 rules like Association Rule Mining. In addition,
over-discarding of rules may also increase the
redundant computational effort as the method takes
time to generate a rule which is discarded later. This
may result in a considerable waste of computational
resources.
 On the basis of above considerations, it is worth
looking at how J-pruning and Jmax-pruning manage
to reduce overfitting while also attempting to come
up with a solution that avoids underfitting and
redundant computational effort at the same time.

2.2 Pruning Algorithms
A working hypothesis taken from [13] is that rules
with high information content (value of J-measure)
are likely to have a high level of predictive
accuracy. This subsection aims to review how J-
pruning and Jmax-pruning use the J-measure to
reducing overfitting in classification rules. It also
examines whether these two pruning algorithms
exploit the J-measure to its full potential or if there
are potential improvements.

2.2.1 J-measure
J-measure was introduced by Smyth and Goodman
[10] who strongly justified the use of the J-measure
as an information theoretic means of quantifying the
information content of a rule.
 According to the notation of [10], given a rule of
the form IF Y = y THEN X = x which can be
measured in bits and is denoted by J(X, Y=y).

J(X; Y = y) = p(y) ·j(X; Y = y) (1)

J(X; Y = y) is essentially a product of two terms as
follows:

 p(y), the probability that the left hand side
of the rule (hypothesis) will occur.

 j(X;Y = y), which is called the j-measure
(with a lower case j) and measures the
goodness-of-fit of a rule.

 The j-measure, also known as the cross-entropy,
is defined as:

j(X;Y = y) = p(x | y) · log2(p(x | y)p(x))+(1− p(x | y)) ·
log2((1− p(x | y))(1− p(x))) (2)

 The value of cross-entropy depends upon two
values [5]:

 p(x): the probability that the consequence
(right hand side) of the rule will be matched
if there is no other information given. This
is known as a priori probability of the rule
consequence.

 p(x | y): the probability that the consequence
of the rule is matched if the given
antecedents are satisfied. This is also read as
a posterior probability of x given y.

 Bramer mentioned in [4, 5] that the J-measure has
two very helpful properties related to upper bounds
as follows:

 It can be shown that J(X; Y = y) ≤ p(y) ·log2

(1/p(y)). The maximum point of this
expression can be found at p(y) = 1/e. This
can derive a maximum value, is (log2 (e) ·
(1/e), i.e. approximately 0.5307 bits.

 More importantly, it can be proven that the
value of the J-measure is never higher than
the upper bound value illustrated in
equation (3) whenever a rule is specialised
by adding further terms to its left hand side.

Jmax = p(y) · max {p(x | y) · log2 (1/p(x)), (1− p(x |
y)) · log2 (1 / 1− p(x))} (3)

 Thus, there are no benefits to be gained by adding
further terms to a rule when the value of the J-
measure of this rule is equal to its corresponding
Jmax-value. The application of Jmax is illustrated in
Section 3.

2.2.2 J-pruning
As mentioned in Section 1, J-pruning, based on the
J-measure, is a pre-pruning method because the
pruning action is taken during rule generation. It
was developed by Bramer [4] and its basic idea is
illustrated in Figure 4.

Rule r = new Rule;
Boolean rule_Incomplete = true;
Do While (rule_Incomplete){

 Term t = generate new term;
 compute J_value of r if appending t;
 IF(r.current_J_value > J_value){
 do not append t to r;
 invoke clash handling for r;
 rule_Incomplete = false;
 }ELSE{
 r.current_J_value = J_value;
 append t to r;
 }
}

Fig.4 J-pruning for Prism algorithms

 J-pruning achieved relatively good results as
indicated in [14]. However, Stahl and Bramer
pointed out in [6, 8] that J-pruning does not exploit
the J-measure to its full potential as this method
immediately stops the generation process as soon as
the J-measure goes down after a new term is added

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 436 Issue 9, Volume 12, September 2013

to the rule. In fact, it is possible that the J-measure
may go down and go up again after further terms are
added to the rule. This indicates the pruning action
may be taken too early. The fact that J-pruning may
achieve relatively good results could be explained
by the assumption that it does not happen very often
that the J-value goes down and then goes up again.
It also indicates that J-pruning may even result in
underfitting due to over-generalised rules. This is
because the pruning action may be taken too early
resulting in too general rules generated to have high
predictive accuracy. This motivated the
development of a new pruning method, called Jmax-
pruning, which was proposed by Stahl [6, 8], in
order to exploit the J-measure to its full potential.

2.2.3 Jmax-pruning
As mentioned in Section 1, Jmax-pruning can be
seen as a hybrid between pre-pruning and post-
pruning. However, with regard to each generated
rule, each individual rule is actually post-pruned
after the completion of the generation for that rule.
However, with respect to the whole classifier (whole
rule set) it is pre-pruning approach as there is no
further pruning required after all rules have been
induced.
 The basic idea of Jmax-pruning is illustrated in
Figure 5.

Rule r = new Rule;
Boolean rule_Incomplete = true;
term_index = 0;
Do While (rule_Incomplete){

 Term t = generate new term;
 term_index++;
 append t to r;
 compute J_value of r;
 IF(J_value > best_J_Value){
 best_J_Value = J_Value;
 best_term_index = term_index;
 }
 IF(No more rule terms can be induced){
 cut r back to rule best_term_index;
 invoke clash handling for r;
 rule_Incomplete = false;
 }
}

Fig.5 Jmax-pruning for Prism algorithms

 A series of experiments have shown that Jmax-
pruning outperforms J-pruning in some cases and
perform the same as J-pruning in other cases [6, 8].
Strictly speaking, the situation that Jmax-pruning
outperforms J-pruning may arise when there are two
or more rule terms within the same rule that have a

local maximum for the J-value. J-pruning regards
the change trend of the J-value and thus stops
inducing further rule terms once the first local
maximum is reached, even though this may not be
the global maximum. In this case, J-pruning would
make Prism generate a rule with a J-value equal to
the first local maximum whereas Jmax-pruning
would provide the global maximum as the J-value of
the rule generated. The cases in which Jmax-pruning
performs the same as J-pruning could be explained
by the assumption that there is only one local
maximum for the J-value, or that the first local
maximum encountered is also the global maximum.
 However, all the explanations above are
potentially based on the assumption that a rule is
being discarded due to dealing with a clash after a
pruning action is taken does not happen very often.
As mentioned in Section 2.1, Prism prefers to
discard a rule rather than assign it to a majority class
when a clash occurs. Therefore, it may even lead to
underfitting of the induced rule set if a pruning
method attempts to reduce the overfitting by
pruning rules but unfortunately results in discarding
rules. If this case is taken into consideration, then it
may be possible that J-pruning outperforms Jmax-
pruning if J-pruning actually simplifies a rule
whereas Jmax-pruning makes the simplified rule get
discarded. However, it is not very likely to happen.
In addition, Jmax-pruning does not take into
consideration tie-breaking of the J-value, i.e. there
are two or more terms with equal highest J-value. In
other words, in terms of the change trend for the J-
value during rule generation, there may be two or
more global maxima for the J-value for different
rule terms. In this case, a different decision in
choosing the term with the highest J-value may end
up with a different outcome. For example, if there
are two terms that could be chosen and the first one
is chosen, then the rule is being discarded.
Otherwise, the rule is being kept. In order to prevent
underfitting from happening, as many rules as
possible rules that make good classifications should
be kept. However, the strategy of Jmax-pruning is to
simply choose the first term with highest J-value
and thus it may not only result in a loss of accuracy
but also increase the unnecessary computational
efforts if it ends up with the rule being discarded on
these grounds.
 On the other hand, Jmax-pruning may be
computationally relatively expensive as each rule
generated by this method is post-pruned. The
pruning action could be taken earlier during the rule
generation and thus speed up the rule generation.
This could be achieved by making use of the Jmax
value as introduced in Section 2.2.1.

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 437 Issue 9, Volume 12, September 2013

 Let us take the lens24 dataset for illustration; one
of the rules generated is shown below [13]:

If tears=2 and astig=1 and age=3 and specRx =1
then class= 3;

 After adding the four terms subsequently, the
corresponding J and Jmax values change in the trend
as follows:

If tears=2 then class=3; (J=0.210, Jmax=0.531)

If tears=2 and astig=1 then class=3; (J=0.161,
Jmax=0.295)

If tears=2 and astig=1 and age=3 then class=3;
(J=0.004, Jmax=0.059)

If tears=2 and astig=1 and age=3 and specRx =1
then class= 3; (J=0.028, Jmax=0.028)

 It can be seen that after adding the second and
third term to this rule that both the J-value (0.004)
and Jmax value (0.059) are lower than the J-value
(0.161) after adding the second term. In this case the
rule generation can be stopped by taking pruning
action after the third term is added. This is because
the J-value is unable to get higher than 0.161, it
could only go up to 0.059 by adding any further
terms and thus cannot get higher than the highest J-
value (0.210). By looking at the J-value after the
fourth term is added, it is obvious that the J-value
cannot get higher than 0.059 by adding further rule
terms, in fact it is decreasing to 0.028 after adding
the 4

th
 rule term. This shows that Jmax-pruning

increases the redundant computational effort in such
cases.
 On the basis of considerations above, the authors
propose a novel pruning method which can not only
reduce overfitting of classification rules but can also
avoid underfitting and unnecessary rule term
inductions and their associated computational
overhead.

3 Jmid-pruning
As mentioned in section 2.2, neither J-pruning nor
Jmax-pruning exploit the J-measure to its full
potential and they may lead to underfitting. In
addition, Jmax-pruning is computationally relatively
expensive. Therefore, the authors propose a novel
pruning algorithm that avoids underfitting and
unnecessary rule term inductions while at the same
time rules are being pruned for reducing overfitting.

3.1 Essence
The Jmid-pruning is a modified version of the J-
measure based pruning algorithm Jmax-pruning.
The basic concept of this algorithm is illustrated in
Figure 6:

Rule r = new Rule;
Boolean rule_Incomplete = true;
term_index = 0;
Do While (rule_Incomplete){

 Term t = generate new term;
 term_index++;
 append t to r;
 compute J_value of r;
 IF(J_value > best_J_Value){
 best_J_Value = J_Value;
 best_term_index = term_index;
 record current_marjority_class;
 }
 IF(r.current_J_value > J_value){
 compute Jmax_value of r;
 IF(best_J_value> Jmax_value){
 do not append t to r;
 cut r back to rule best_term_index;
 invoke clash handling for r;
 rule_Incomplete = false;
 } ELSE{
 r.current_J_value = J_value;
 append t to r;
 }
 } ELSE{
 r.current_J_value = J_value;
 append t to r;
 }
 IF(No more rule terms can be induced){
 cut r back to rule best_term_index;
 invoke clash handling for r;
 rule_Incomplete = false;
 }
}

Fig.6 Jmid-pruning for Prism algorithms

 Jmid-pruning can also be seen as a hybrid between
pre-pruning and post-pruning. This is because each
rule may be either pre-pruned or post-pruned. For
example, as mentioned in Section 2.2.3, it may be
possible that both J and Jmax values are lower than
the J-value given at the last stage of rule generation.
If this is the case, then the generation would be
stopped immediately. Thus, the rule is actually pre-
pruned. Otherwise, the rule would be post-pruned.
 The Jmid-pruning algorithm illustrated in Figure
6 does not take the tie-breaking problem into
consideration. Tie-breaking may happen during rule
generation in two ways:

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 438 Issue 9, Volume 12, September 2013

1) Let the current rule's last added rule term be
denoted t_i, and the previously added rule
term be denoted t_(i-1). Then a tie break
happens if J-value at t_i is less than that at
t_(i-1) and Jmax-value at t_i equals J-value
at t_(i-1). It is also illustrated by an example
(Rule 1) below.

2) When there is more than one term with the
highest J-value for one rule during rule
generation. It is also illustrated by an
example (Rule 2) below.

As mentioned in section 2.2.3, tie-breaking should
be carefully dealt with in order to avoid the case
whereby the pruning algorithm actually attempts to
reduce overfitting by pruning rules but unfortunately
discards the whole rule. The authors propose to keep
all rules that are capable of making good
classifications if adequate. Therefore, the basic idea
of dealing with this tie-breaking is to see if the rule
can be kept when choosing a particular term with
the highest J-value as the last (best) term of the
simplified rule for pruning criteria. Therefore, the
first case for tie-breaking mentioned above can be
handled as follows:

1) To check if the currently best term (with the
highest J-value) is chosen as the last rule
term of the generalized rule and then a clash
set covered by this rule can have a majority
class which is also the target class of this
rule.

2) If so, then the rule generation could be
stopped immediately. Otherwise, the rule
generation would be carried out as normal
generation procedure.

For example, let us see the rule:
Rule 1: If x=1 and y=1 and z=1 then class=1;

After adding first term:
If x= 1 then class= 1; (J= 0.33, Jmax= 0.55)

After adding second term:
If x=1 and y=1 then class=1; (J= 0.21; Jmax=0.33)

In this case, the Jmid-pruning would aim to check if
the incomplete rule: if x=1 then class=1; covers a
clash set which had ‘class=1’ as the majority class.
If this is the case, then the generation would be
stopped immediately and have the rule: if x=1 then
class=1; as the finally simplified rule to be applied
for predicting unseen instances. Otherwise, the rule
generation would be carried out as normal.
 For the second case, the tie-breaking could be
handled as follows:

1) To check if the term corresponded by the
first global maximum of J-value can retain
the corresponding rule.

2) If so, then choose the term as the last (best)
term of the generalized rule. Otherwise,
check the next term corresponded by a
global maximum in this way and so on.

For example, let us see the rule:
Rule 2: If a=1 and b=1 and c=1 and d=1 then
class=1;

After adding the terms subsequently, the J-value
changes in the way as below:
If a=1 then class=1; (J-value= 0.6)
If a=1 and b=1 then class=1; (J-value=0.4)
If a=1 and b=1 and c=1 then class=1; (J-value= 0.6)
If a=1 and b=1 and c=1 and d=1 then class=1; (J-
value=0.5)
 In this case, the Jmid-pruning method would aim
to first check if the incomplete rule: if a=1 then
class=1; covers a clash set which has the target class
of this rule as the majority class. If it does, the
method would choose the rule: if a=1 then class=1;
as the finally simplified rule. Otherwise, the method
will continue to check the rule: if a=1 and b=1 and
c=1 then class=1; in the same way and so on.

3.2 Justification
The proposed Jmid-pruning aims to avoid
underfitting and unnecessary computational effort.
In fact, J-pruning and Jmax-pruning do not actually
make use of Jmax to measure the potential search
space of gaining benefits.
 Let us get back to the example about the lense24
dataset as mentioned in Section 2.2.3. There is a rule
generated as follows:
If tears=2 and astig=1 and age=3 and specRx =1
then class= 3;

 After adding the four terms subsequently, the
corresponding J and Jmax values change in the trend
as follows:

If tears=2 then class=3; (J=0.210, Jmax=0.531)

If tears=2 and astig=1 then class=3; (J=0.161,
Jmax=0.295)

If tears=2 and astig=1 and age=3 then class=3;
(J=0.004, Jmax=0.059)

If tears=2 and astig=1 and age=3 and specRx =1
then class= 3; (J=0.028, Jmax=0.028)

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 439 Issue 9, Volume 12, September 2013

In this example, all of the three algorithms would
provide the same simplified rule that is: if tears=2
then class=3; this is because the highest J-value has
been given after adding the first term (tears=2).
However, the computational efficiency would be
different in the three methods. J-pruning would
decide to stop the generation after the second term
(astig=1) is added as the J-value goes down after the
second term (astig=1) is added. In contrast, Jmax-
pruning would stop when the rule is complete. In
other words, the generation would be stopped after
the fourth (last) term is added and then the terms
(astig=1, age=3 and specRx=1) will be removed In
addition, Jmid-pruning would decide to stop the
generation after the third term is added as the value
of Jmax (0.295) is still higher than the J-value
(0.210) given after the first term (tears=2) is added
although its corresponding J-value (0.161)
decreases; however, the generation should be
stopped after the third term (age=3) is added as both
J (0.004) and Jmax (0.059) values are lower than the
J-value (0.161) computed after the second term
(astig=1) is added although the J-value could still
increase up to 0.059.
 On the basis of the description above, J-pruning
would be the most efficient and Jmid-pruning is
more efficient than Jmax-pruning. However, it
seems J-pruning may prune rules too early in some
cases as mentioned in Section 2.2.2. For example,
one of the rules generated from the Soybean dataset
[6, 8] is:
If temp= norm and same-lst-sev-yrs= whole-field
and crop-hist= same-lst-two-yrs) then class=frog-
eye-leaf-spot;

First term:
If temp= norm then class=frog-eye-leaf-spot;
(J= 0.00113, Jmax=0.02315)

Second term:
If temp= norm and same-lst-sev-yrs= whole-field
then class=frog-eye-leaf-spot;
(J=0.00032, Jmax=0.01157)

Third term:
If temp= norm and same-lst-sev-yrs= whole-field
and crop-hist= same-lst-two-yrs) then class=frog-
eye-leaf-spot;
(J=0.00578, Jmax=0.00578)

In this case, both Jmax-pruning and Jmid-pruning
would normally stop the generation when the rule is
complete and take the complete rule: If temp= norm
and same-lst-sev-yrs= whole-field and crop-hist=
same-lst-two-yrs) then class=frog-eye-leaf-spot; as

the final rule with the highest J-value (0.00578). In
contrast, J-pruning would stop the generation after
the second term (same-lst-sev-yrs= whole-field) is
added and take the rule: If temp= norm then
class=frog-eye-leaf-spot; as the final rule with a
lower J-value (0.00113 instead of 0.00578).
 The other potential advantage of Jmid-pruning in
comparison with Jmax-pruning is that it may keep
more rules than Jmax-pruning when tie-breaking on
J-value happens as mentioned in Section 2.2.3 and
Section 3.1. In this way, Jmid-pruning is better in
avoiding underfitting of rule sets.

3.3 Dealing with Continuous Attributes
As mentioned in Section 2.1, the strategy of
handling continuous attributes introduced by
Bramer has been implemented in the Inducer
Software [12]. The basic idea of this strategy is to
sort a continuous attribute first. For example, let
attribute x have these values: 3, 5, 6, 8. Then the
attribute is scanned for these values in either
ascending or descending order. For each attribute
value, e.g. 5, two tests are used: p(class=i|x<5) and
p(class=i|x≥5). The largest conditional probability
would be chosen for comparison with the
conditional probabilities of candidate rule terms
generated from other attributes.

3.4 Dealing with Clashes
As mentioned in Section 2.1, a clash set is a subset
of a training set with instances that can be assigned
to more than one class whereby the subset cannot be
split further. In other words, the left-hand side of a
complete rule may be mapped to more than one
classification. The authors follow the approach
introduced by Bramer in [11] that is to check if the
target class pre-assigned to the current rule is also
the majority class in the clash set. If it is then the
rule is included in the rule set. Otherwise, the
current rule is discarded and all instances that match
the target class are deleted from the training set in
order to prevent the same case arising during the
rule generation all over again.

3.5 Conflict Resolution
There is a problem that arises with most ‘separate
and conquer’ rule generation methods. This problem
is known as classification conflict, i.e. one unseen
instance may be covered by two or more rules with
different right-hand sides (classifications) in the rule
set.

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 440 Issue 9, Volume 12, September 2013

Let us see the following example:
Rule 1: if x=1 and y=1 then class= 1;
Rule 2: if z=1 then class=0;

 So, what should the classification be for an
instance with x=1, y=1 and z=1? One rule gives
class 1 and the other one gives class 0. We need to
choose only one classification to classify the
instance. Bramer introduced in [5] the ‘take the first
rule that fires’ strategy that requires the rule
generation method to generate the most important
rules first. In this paper, the authors propose to
apply Jmid-pruning to PrismTCS. As mentioned in
Section 2.1, PrismTCS introduces an order to a rule
for its importance. Thus, the authors choose the
‘take the first rule that fires’ strategy for conflict
resolution.

4 Experimental Results
In this experimental study, the authors use
PrismTCS as a rule generation method and J-
pruning, Jmax-pruning and Jmid-pruning,
respectively, to prune the rules generated by Prism
TCS. In addition, all datasets used are retrieved
from the UCI repository [15].
 The authors compare classification accuracy and
computational efficiency performed by PrismTCS
with J-pruning, Jmax-pruning and Jmid-pruning
respectively. For estimating the classification
accuracy the authors used cross-validation [5].
Therefore the data is split into complementary
subsets, whereas one subset is used as test set and
the remaining subsets are used as training set.
Multiple rounds are performed using different test
sets and the results are averaged. With regards to
efficiency, the authors choose the whole dataset as
the training set to train the rule set and then use the
same dataset for testing. This is because the
efficiency performed in simulation stage is only
concerned with the computation time taken to make
a decision in assigning a class to an unseen instance
but no matter what decision (class). Moreover, in
this case (when the whole data set that is available is
used) it would be larger and more representative in
relation to the evaluation of efficiency. The
efficiency performed in modeling stage is measured
against the number of rules, the number of terms per
rule and the number of discarded (redundant) rules.
The reason for counting the number of discarded
rules is that these rules use the Prism method as a
computational resource and thus increase the
associated cost. In this case, the number of
backward steps should be counted in order to prove
that Jmid-pruning may stop the rule generation

earlier than Jmax-pruning. The number of backward
steps is equal to the number of terms removed. For
example, let us look again at the lense 24 dataset:

One of the rules generated is:

If tears=2 and astig=1 and age=3 and specRx =1
then class= 3; (number of terms: 4)

The final simplified rule would be:
If tears=2 then class=3; (number of terms: 1)

 Therefore, the number of backward steps would
be 4-1=3 in this case. For a rule set, the authors
count the total number of backward steps for all
rules. The number of redundant iterations would be
twice number of backwards steps, because all
discarded rule terms need to be induced and then be
removed, which requires some computation as also.
 The accuracy and efficiency are illustrated in
Table 1-3.

5 Evaluation

The results in Table 1 show that Jmid-pruning may
perform same as or even better than J-pruning and
/or Jmax-pruning in terms of classification accuracy.
In the four datasets namely ‘vote’, ‘weather’, ‘lung-
cancer’ and ‘ionosphere’, all the three methods
perform with the same accuracy. This could be
explained by the fact that there is only one local
maximum (or two or more local maxima but only
one global maximum which is also the first local
maximum) for the J-value in terms of the
relationship between the J-value and rule
complexity. In addition, if there is more than one
global maximum but the first one which is also the
first local maximum corresponds a rule term which
can retain the corresponding rule after dealing with
a clash, then it is also possible for the three methods
to perform with the same accuracy. However, there
are three cases on the contact-lenses, lense24 and
breast-cancer datasets for which Jmax-pruning and
Jmid-pruning perform with the same accuracy but J-
pruning performs worse than the other two methods.
The possible explanation for this is that there is
more than one local maximum point but the first one
is not the global maximum and the only one global
maximum or the first one of them corresponds a rule
term which can retain the rule. Besides, there may
still be special cases which show that J-pruning
performs better than Jmax-pruning but worse than
Jmid-pruning. This is possibly due to the fact that
Jmax-pruning discards one or more rules when
dealing with clashes and results in underfitting

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 441 Issue 9, Volume 12, September 2013

although J-pruning retains rules with probably lower
J-values. However, Jmid-pruning retains rules
successfully by dealing with tie-breaking of the J-

value (as mentioned in Section 3.1) in a heuristic
way.

Table 1 Classification accuracy in percentage

Dataset J-pruning Jmax-pruning Jmid-prun ing

Vote 97% 97% 97%

Weather 83% 83% 83%

contact-lenses 80% 85% 85%

Lense24 67% 75% 75%

breast-cancer 55% 58% 58%

car 74% 74% 78%

lung-cancer 95% 95% 95%

Iris 67% 77% 82%

segment 53.1% 53.3% 53.8%

ionosphere 87% 87% 87%

Table 2 shows that PrismTCS with Jmid-pruning
may generate a rule set with similar level of rule
complexity or even fewer but more general rules in
comparison with J-pruning and Jmax-pruning.
However, Table 3 shows that Jmid-pruning may
perform better compared with Jmax-pruning in
terms of computational efficiency. It can be seen by
looking at the number of backward steps that Jmid-
pruning needs a smaller number of iterations than
Jmax-pruning to make Prism stop generating rules.
Therefore, Jmid-pruning is computationally more
efficient. There is a special case with the ‘car’
dataset that shows that Jmax-pruning increases not
only the number of iterations (backward steps) but
also the number of discarded rules and thus it

increases the unnecessary computational effort. In
some cases, it may also increase the level of
underfitting of rule sets to training data due to over-
discarding of rules when dealing with clashes. On
the other hand, in terms of the number of discarded
rules, Table 3 does not actually show that Jmid-
pruning may perform with slightly different
computational efficiency in comparison with the
other two pruning methods. This is because the
experiments are done using relatively small datasets.
However, there is still a case with the ‘car’ dataset
showing that Jmax-pruning may make Prism discard
slightly more rules in comparison with Jmid-
pruning.

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 442 Issue 9, Volume 12, September 2013

Table 2 Number of rules and terms per rule

Dataset J-pruning Jmax-pruning Jmid-prun ing

 Count(rules) Ave(terms) Count(rules) Ave(terms) Count(rules) Ave(terms)

Vote 2 2.5 5 4.2 2 2.5

weather 3 1.67 3 1.7 3 1.67

contact-lenses 3 1.67 3 1.67 3 1.67

Lense24 4 1.5 4 2.25 4 2.0

breast-cancer 8 1.125 7 1.0 7 1.0

car 3 1.0 3 1.0 3 1.0

lung-cancer 4 1.0 4 1.0 4 1.0

Iris 5 1.0 5 1.0 5 1.0

segment 11 1.09 13 1.69 10 1.0

ionosphere 2 1.0 2 1.0 2 1.0

6 Conclusion
This paper reviews the Prism rule generation
method and two J-measure based pruning
algorithms J-pruning and Jmax-pruning. It also
identifies some limitations of Prism and the two
associated pruning algorithms. A novel pruning
algorithm called Jmid-pruning that is also based on
the J-measure is proposed and validated. The
experimental study shows that Jmid-pruning can
avoid underfitting and redundant computational
effort while also reducing overfitting of
classification rules. In most cases, Jmid-pruning
makes the Prism method generate a rule set with a
similar level of complexity with J-pruning and
Jmax-pruning. In some cases, Jmid-pruning may
also cause Prism to generate fewer but more general
rules than J-pruning and/or Jmax-pruning. In
addition, in some special cases, Jmid-pruning stops

rule generation earlier than Jmax-pruning as
mentioned in Section 3.2. This avoids redundant
effort in removing terms subsequently from a rule.
However, the authors still need to validate the Jmid-
pruning method using larger datasets in terms of the
number of discarded rules. In addition, the Jmid-
pruning may also work well with decision trees as J-
pruning has also been applied successfully to
decision tree induction with good results. Therefore,
the authors will validate this pruning method in
pruning classification rules generated by decision
trees. Moreover, the possible relationship between
the J-value and rule complexity has to be
investigated further in order to find heuristic
strategies for selecting the best J-measure based
pruning algorithm for a particular case study.
Furthermore, Jmid-pruning will be applied to some

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 443 Issue 9, Volume 12, September 2013

well-known methods and validated in some
particular application areas comparing other
techniques used. For example, some techniques
have been applied to integrated bio-systems for
modelling and control such as fuzzy modelling [19],
genetic algorithm [18, 20], asymptotic stabilization
[17] and observer based on current estimation [21].
Jmid-pruning may potentially contribute to
development of integrated bio-systems in accuracy
and efficiency by exploiting more potential of some
of those techniques above. For example, it may be

applied to fuzzy rule based modelling for
simplifying rules in order to reduce overfitting and
computation costs. Besides, the four versions of
PrismTCS (PrismTCS without pruning and with the
three pruning methods introduced in this paper) may
be embedded into four intelligent agents
respectively working in cooperative strategies [16]
that could be applied to a pool of different learning
systems such as the Pocket Data Mining system [22,
23].

Table 3 Number of discarded rules and backward steps

Dataset J-pruning Jmax-pruning Jmid-prun ing

 Count(discarded

rules)

Count(discarded

rules)

count(backward

steps)

Count(discarded

rules)

count(backward

steps)

Vote 4 4 154 4 5

weather 1 2 3 1 1

contact-

lenses

1 1 4 1 2

Lense24 2 1 5 2 3

breast-

cancer

1 2 1 2 1

car 12 46 207 12 10

lung-cancer 0 0 0 0 0

Iris 0 0 0 0 0

segment 5 3 7 4 6

ionosphere 0 0 0 0 0

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 444 Issue 9, Volume 12, September 2013

References:
[1] J.R. Quinlan, C4.5: Programs for Machine

Learning, Morgan Kaufman, 1993.
[2] E.B. Hunt, P.J. Stone and J. Martin,

Experiments in Induction, Academic Press,
New York, 1966.

[3] R.S. Michalski, On the Quasi-Minimal solution
of the general covering problem, in:
Proceedings of the Fifth International
Symposium on Information Processing, Bled,
Yugoslavia, pp. 125–128.

[4] M.A. Bramer, Using J-Pruning to Reduce
Overfitting of Classification Rules in Noisy
Domains. Proceedings of 13

th
 International

Conference on Database and Expert Systems
Applications— DEXA 2002, Aix-en-Provence,
France, September 2–6, 2002.

[5] M.A. Bramer, Principles of Data Mining.
London: Springer, 2007.

[6] F. Stahl and M.A. Bramer, Jmax-pruning: A
facility for the information theoretic pruning of
modular classification rules. Knowledge-Based
Systems 29 (2012) 12-19.

[7] J. Cendrowska, PRISM: an algorithm for
inducing modular rules, International Journal
of Man-Machine Studies 27 (1987) 349–370.

[8] F. Stahl and M.A. Bramer., Induction of
modular classification rules: using Jmax-
pruning. In: In Thirtieth SGAI International
Conference on Innovative Techniques and
Applications of Artificial Intelligence, 14-16
December 2011, Cambridge.

[9] F. Stahl and M.A. Bramer, Computationally
efficient induction of classification rules with
the PMCRI and J-PMCRI frameworks.
Knowledge-Based Systems 35 (2012) 49-63.

[10] P. Smyth and R.M. Goodman, Rule Induction
Using Information Theory. In: G. Piatetsky-
Shapiro and W.J. Frawley (eds.), Knowledge
Discovery in Databases. AAAI Press, 1991, pp.
159-176.

[11] M.A. Bramer, Automatic induction of
classification rules from examples using N-
Prism, Research and Development in
Intelligent Systems, vol. XVI, Springer-Verlag,
Cambridge, 2000, pp. 99–121.

[12] M.A. Bramer, Inducer: a public domain
workbench for data mining, International
Journal of Systems Science 36 (2005) 909–919.

[13] M.A. Bramer, Using J-Pruning to Reduce
Overfitting in Classification Trees. In:
Research and Development in Intelligent
Systems XVIII. Springer-Verlag, 2002, pp. 25-
38.

[14] M.A. Bramer, An information-theoretic
approach to the pre-pruning of classification
rules, in: B.N. M Musen, R. Studer (Eds.),
Intelligent Information Processing, Kluwer,
2002, pp. 201–212.

[15] C.L. Blake, C.J. Merz, UCI repository of
machine learning databases, Technical Report,
University of California, Irvine, Department of
Information and Computer Sciences, 1998.

[16] F. Neri, Cooperative evolutive concept
learning: an empirical study. WSEAS
Transaction on Information Science and
Applications, WSEAS Press (Wisconsin,
USA), issue 5, vol. 2, 2005, pp. 559-563.

[17] N. Dimitrova and M. Krastanov, On the
Asymptotic Stabilization of an Anaerobic
Digestion Model with Unknown Kinetics. In:
S. Vassileva and F. Neri (Eds.), WSEAS
Transaction on Systems: the Special Issue on
Modelling and Control of Integrated Bio-
Systems, issue 7, vol. 11, July 2012, pp.244-
255.

[18] T. Slavov and O. Roeva, Application of
Genetic Algorithm to Tuning a PID Controller
for Glucose Concentration Control. In: S.
Vassileva and F. Neri (Eds.), WSEAS
Transaction on Systems: the Special Issue on
Modelling and Control of Integrated Bio-
Systems, issue 7, vol. 11, July 2012, pp.223-
233.

[19] S.Vassileva, Advanced Fuzzy Modeling of
Integrated Bio-Systems. In: S. Vassileva and F.
Neri (Eds.), WSEAS Transaction on Systems:
the Special Issue on Modelling and Control of
Integrated Bio-Systems, issue 7, vol. 11, July
2012, pp.234-243.

[20] M. Angelova, P. Melo-Pinto and T. Pencheva,
Modified Simple Genetic Algorithms
Improving Convergence Time for the Purposes
of Fermentation Process Parameter
Identification. In: S. Vassileva and F. Neri
(Eds.), WSEAS Transaction on Systems: the
Special Issue on Modelling and Control of
Integrated Bio-Systems, issue 7, vol. 11, July
2012, pp.256-267.

[21] K. Robenack and N. Dingeldey, Observer
Based Current Estimation for Coupled
Neurons. In: S. Vassileva and F. Neri (Eds.),
WSEAS Transaction on Systems: the Special
Issue on Modelling and Control of Integrated
Bio-Systems, issue 7, vol. 11, July 2012, pp.
268-281.

[22] F. Stahl, M. Gaber, H. Liu, M. Bramer and P.
Yu, Distributed classification for pocket data
mining. In: Proceedings of the 19th

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 445 Issue 9, Volume 12, September 2013

International Symposium on Methodologies for
Intelligent Systems (ISMIS 2011), 28-30 June,
2011, Warsaw, Poland.

[23] F. Stahl, M. Gaber, P. Aldridge, D. May, H.
Liu, M. Bramer and P. Yu, Homogeneous and
Heterogeneous Distributed Classification for

Pocket Data Mining. In: A. Hameurlain, J.
Küng, and R. Wagner (eds.) Transactions on
large-scale data and knowledge-centered
systems V. Lecture Notes in Computer Science
(7100). Springer, pp. 183-205.

WSEAS TRANSACTIONS on SYSTEMS Han Liu, Alexander Gegov, Frederic Stahl

E-ISSN: 2224-2678 446 Issue 9, Volume 12, September 2013

