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ABSTRACT

Future climate change projections are often derived from ensembles of simulations from multiple global

circulationmodels using heuristic weighting schemes. This study provides amore rigorous justification for this by

introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential

in order to quantify the uncertainty associated with the estimate of the mean climate change response.

The most general framework yields the ‘‘one model, one vote’’ weighting scheme often used in climate

projection. However, a simpler additive framework is found to be preferable when the climate change re-

sponse is not stronglymodel dependent. In such situations, the weightedmultimodel meanmay be interpreted

as an estimate of the actual climate response, even in the presence of shared model biases.

Statistical significance tests are derived to choose the most appropriate framework for specific multimodel

ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical

techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct

confidence intervals for the size of the response.

The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model

Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical

storm tracks, the cyclone frequency climate change response is not found to bemodel dependent over most of

the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone

frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

1. Introduction

Future climate projections are usually inferred from

simulations from general circulation models. The pre-

vious phase of the World Climate Research Programme

(WCRP) Coupled Model Intercomparison Project

(phase3; CMIP3) included 24 models from 17 groups in

12 countries (Meehl et al. 2007b). The latest CMIP (phase

5; CMIP5) multimodel ensemble (MME) (Taylor et al.

2012) is not yet fully populated but promises to include an

even greater number of more recent models (see Table 1

for a full list ofmodels included in this study). TheseMMEs

represent a rich source of data for climate scientists.

However, in a recent review, Knutti et al. (2010b) con-

cluded that ‘‘quantitative methods to extract the relevant

information and to synthesize it are urgently needed.’’

Themodels, scenarios, and runs thatmake up anMME

explore the three primary sources of uncertainty in cli-

mate projections. Structural (model) uncertainty arises

from the fact that not all relevant processes are well

represented in models. Different scenarios represent un-

certainty about changes in radiative forcing due to future

emissions. Ideally, several perturbed initial condition runs

of each scenario should also be available from each model

in order to sample internal variability. These sources of

uncertainty can be quantitatively partitioned using simple

analysis of variance (ANOVA) frameworks (Yip et al.

2011).

The projections presented in the Intergovernmental

Panel on Climate Change (IPCC) Fourth Assessment

Report (Solomon et al. 2007) were largely based on
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arithmetic means of the projections from the models in

the CMIP3 MME. When multiple runs are available

from a model, these are often averaged together before

averaging over allmodels. Alternatively, one run or a fixed

number of runs may be selected from eachmodel for each

scenario (e.g., Tebaldi et al. 2011a; Yip et al. 2011). These

approaches treat all models as equally credible, that is,

‘‘one model, one vote’’ (Knutti et al. 2010a).

The one model, one vote approach is a point estimate

that has a number of shortcomings. The assumptions un-

derlying this heuristic estimate are not explicit and there-

fore cannot be checked. No assessment of the uncertainty

associated with the estimate is given, so confidence in-

tervals on the climate response cannot be constructed.

Also, arithmetic means are not resistant estimators and

may be strongly influenced by runs that are outliers com-

pared to the rest of the MME.

The shortcomings of the onemodel, one vote approach

may be addressed by specifying our assumptions about

the structure of the uncertainty in the MME using a

statistical framework. The statistical framework is ef-

fectively an emulator for the entire ensemble. If the

framework correctly describes the behavior of, for ex-

ample, the CMIP5 models, then it should be possible to

stochastically generate a new ensemble of CMIP5 runs

from the statistical framework that would be indis-

tinguishable from the expected result of rerunning the

CMIP5 models themselves.

TABLE 1. List of CMIP5 models and institutes included in the study.

Modeling center (or group) Model name Model expansions

Beijing Climate Center (BCC), China

Meteorological Administration

BCC-CSM1.1 BCC Climate System Model, version 1.1

Canadian Centre for Climate Modelling

and Analysis

CanESM2 Second-generation Canadian Earth

System Model

Centre National de Recherches M�et�eorologiques
(CNRM)/Centre Europ�een de Recherches

et de Formation Avanc�ee en Calcul Scientifique

CNRM-CM5 CNRM Coupled Global Climate Model,

version 5

Commonwealth Scientific and Industrial Research

Organisation (CSIRO) in collaboration with

Queensland Climate Change Centre of

Excellence

CSIRO-Mk3.6.0 CSIRO, Mark version 3.6.0

EC-Earth consortium EC-EARTH

National Key Laboratory of Numerical

Modeling for Atmospheric Sciences and

Geophysical Fluid Dynamics (LASG), Institute

of Atmospheric Physics, Chinese Academy

of Sciences, and CESS, Tsinghua University

FGOALS-g2 Flexible Global Ocean–Atmosphere–Land

System Model, gridpoint version 2

NOAA/Geophysical Fluid Dynamics

Laboratory (GFDL)

GFDL-ESM2G,

GFDL-ESM2M

GFDL Earth System Model 2G, GFDL

Earth System Model 2G

Met Office Hadley Centre HadGEM2-CC,

HadGEM2-ES

Hadley Centre Global Environment Model,

version 2 (Carbon Cycle), Hadley

Centre Global Environment Model,

version 2 (Earth System)

Institute for Numerical Mathematics (INM) INM-CM4 INM Coupled Model, version 4

L’Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR,

IPSL-CM5A-MR

IPSL Coupled Model version 5A, low

resolution; IPSL Coupled Model

version 5A, medium resolution

Atmosphere and Ocean Research Institute

(University of Tokyo), National Institute

for Environmental Studies, and Japan Agency

for Marine-Earth Science and Technology

MIROC5 Model for Interdisciplinary Research on

Climate 5

Japan Agency for Marine-Earth Science and

Technology, Atmosphere and Ocean Research

Institute (University of Tokyo), and National

Institute for Environmental Studies

MIROC-ESM,

MIROC-ESM-CHEM

Model for Interdisciplinary Research on

Climate Earth System Model, Model for

Interdisciplinary Research on Climate

Earth System Model, atmospheric

chemistry coupled version

Max Planck Institute (MPI) for Meteorology MPI-ESM-LR MPI Earth System Model, low resolution

Meteorological Research Institute (MRI) MRI-CGCM3 MRI Coupled General Circulation Model

version 3

Norwegian Climate Centre NorESM1-M Norwegian Earth System Model 1, medium

resolution
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The use of the one model, one vote approach as an

estimate of the actual climate response is often justified

by the assumption that the model mean climates are

centered on the actual climate, that is, ‘‘truth centered’’

(Knutti et al. 2010a). However, there is an increasing

awareness that GCMs share common biases compared

to the actual climate (Knutti et al. 2010b). The existence

of common biases is to be expected since climate models

are often calibrated against the same data, run at similar

resolutions, and share similar numerical codes or entire

model components (Stephenson et al. 2012; Collins et al.

2012; Sanderson and Knutti 2012). A number of authors

have suggested statistical frameworks that explicitly

account for biases between models and the actual cli-

mate (Chandler 2013; Rougier et al. 2012, manuscript

submitted to J. Amer. Stat. Assoc.; Tebaldi et al. 2011b).

The common approach in each of these frameworks is to

propose a separate statistical model for the relationship

among the models in the MME and for the relationship

between theMME and the actual climate, linked via the

ensemble mean climate.

Some studies (e.g., Giorgi and Mearns 2002; Tebaldi

et al. 2005) have weighted models according to how well

they simulate past observations and their convergence

to the ensemble mean response. In seasonal and inter-

annual climate forecasting, models are often weighted

according to performance in simulating observed cli-

mate by regressing hindcasts on previous observations

(DelSole 2007; Kharin and Zwiers 2002; Pe~na and van

denDool 2008). The conditions that make these methods

attractive over short lead times do not apply over longer

lead times (Weigel et al. 2010). If the weights applied do

not reflect the truemodel skill or if the internal variability

is large compared to the structural uncertainty, an un-

weighted estimate may be preferred (Weigel et al. 2010).

For these reasons and for the sake of simplicity, this study

addresses the prerequisite problem of how to construct

suitable estimates in the absence of information about

past performance.

This study uses ANOVA frameworks tomake explicit

one simple set of assumptions that lead naturally to the

one model, one vote estimate of the ensemble mean

climate response. However, a more precise estimate can

be obtained when the structural uncertainty in the cli-

mate response is small compared to the internal vari-

ability. In that case, it may be possible to neglect the

estimation of any shared bias between the models and

the actual climate and obtain confidence intervals for

the expected actual climate response.

ANOVA frameworks have already been used in cli-

mate science for a variety of purposes (Zwiers 1987, 1996;

R€ais€anen 2001). Simple ANOVA frameworks have been

used to analyze MMEs of both GCMs (Yip et al. 2011)

and regional climatemodels (RCMs) (Ferro 2004; Hingray

et al. 2007). Further studies of MMEs of RCMs have

used the ANOVA methodology as the basis for more

complex frameworks (Sain et al. 2011; Kang and Cressie

2013).

Section 2 of this paper describes the ANOVA frame-

works and their underlying assumptions, methods to verify

those assumptions, and a formal statistical approach to

choosing which set of assumptions are most appropriate to

describe the uncertainty in a particularMME. In section 3,

the ANOVA approach is illustrated by application to the

future climate response of the North Atlantic storm track

in the CMIP5 MME.

2. Statistical frameworks

This section begins with a general discussion of mul-

timodel mean estimates of the climate response in an

MME. A family of ANOVA frameworks are then out-

lined, the most general of which is shown to yield the

usual one model, one vote multimodel mean. The rest

of the section addresses statistical inference using these

frameworks. This includes how to test the underlying

assumptions, how to choose the most appropriate frame-

work, and how to construct statistical significance tests and

confidence intervals.

a. The multimodel mean response

Let ymsr represent a climate statistic (e.g., a 30-yr mean)

from run r of scenario s simulated by climatemodelm. For

simplicity, we consider an MME containing only one his-

torical scenario H and one future scenario F. The climate

response of modelm is usually estimated by the difference

between its sample mean climates in the historical and

future scenarios

ymF . 2 ymH.
, (1)

where yms. is the sample mean climate simulated by

model m in scenario s,

yms. 5
1

Rms

�
R

ms

r51

ymsr ,

and Rms is the number of runs from model m under

scenario s. A general multimodel mean estimate of the

climate response is given by

1

W
.F

�
M

m51

WmFymF . 2
1

W
.H

�
M

m51

WmHymH.
, (2)

where
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W
.H 5 �

M

m51

WmH and W
.F 5 �

M

m51

WmF

and M is the number of models. The WmH and WmF are

model specific weights on the historical and future sce-

narios, respectively. The most commonly used estimate

is the equally weighted multimodel mean, that is, the

one model, one vote approach, where

WmH 5WmF 5 1 for all models m5 1, 2, . . . ,M .

(3)

b. A two-way ANOVA framework with interactions

In the appendix it is shown that the one model, one

vote estimate of the climate response from Eq. (3) is

equivalent to the maximum-likelihood (ML) estimate b̂F

of the ensemblemean climate response from the following

two-way ANOVA framework with interactions:

ymsr 5m1am 1bs1 gms 1 �msr ,

�msr ;
iid

N(0,s2) , (4)

with the usual constraints that�M
m51am 5 0, bH5 0, and

gmH5 0 for all models and�M
m51gmF 5 0. The effect m is

the expected climate (in the ensemble) in the historical

scenario, and bF is the expected climate response (in the

ensemble) to scenario F. The effect am is the difference

between the mean historical climate of modelm and the

expected historical climate m. The interaction terms gmF

represent the difference between the mean climate re-

sponse simulated by model m and the expected climate

response bF. The constraint �M
m51am 5 0 ensures that

the mean historical climates of the individual models are

centered on the expected historical climate m. Similarly,

the constraint �M
m51gmF 5 0 ensures that the mean cli-

mate responses of the individual models are centered on

the expected climate response bF.

The random component �msr represents the internal

variability of ymsr and is assumed for simplicity to be

normally distributed and constant for all models and

both scenarios. The central limit theorem implies that

any long-term mean will be approximately normally

distributed (if the climate response trend is small). The

assumption that the internal variability is constant be-

tween models is a working assumption and must be

checked (see section 2e).

There are a total of 2M parameters to be estimated in

the ANOVA framework of Eq. (4). One parameter

must be estimated for the expected historical climate m

and one for the expected climate response bF. To avoid

ill conditioning, the am and gmF effects are constrained

to be centered onm and bF, respectively. Therefore, only

M2 1 of each needs to be estimated. If only two runs of

each scenario are available from each model, then there

are N5�m(RmH 1RmF)5 4M runs in total. If 2M de-

grees of freedom are used up estimating the mean ef-

fects, only 2M remain to estimate the size of the internal

variability s2. In a small MME, there is a risk of over

fitting, and the precision of the estimates may be low.

If only one run of each scenario is available from each

model, then N 5 2M, and the framework has as many

parameters as runs. All the degrees of freedom are then

used up estimating the mean effects, and the internal

variability represented by the random term �msr cannot

be estimated. If the internal variability cannot be esti-

mated, then the framework assumptions cannot be tested,

and the significance tests and confidence intervals out-

lined later in this section cannot be used.

The inclusion of the interaction term gms complicates

the interpretation of the ensemble expected climate

response bF. If the models all simulate different re-

sponses, how can we be confident in how the actual cli-

mate will respond? The truth-centered approach assumes

that bF coincides with the actual climate response.

However, biases shared by all models mean that this

may not be the case (Knutti et al. 2010b).

Theam and gms terms represent the structural (model)

uncertainty in the historical climate and climate re-

sponse, respectively. Their relative contribution to the

total uncertainty in the MME is quantified in section 2g.

However, only the size of the uncertainty due to internal

variability is quantified directly through the �msr terms

and the parameter s2. Therefore, we do not recommend

reporting confidence intervals based on the one model,

one vote estimate of the climate response since doing so

would neglect the contributions from structural un-

certainty and any shared bias. In section 2g it is shown

that if the relative contribution of the structural un-

certainty in the climate response is sufficiently small

compared to the internal variability, we may safely as-

sume gmF5 0 for all models, that is, the models simulate

the same climate response.

c. A simpler additive ANOVA framework

If the models all simulate the same climate response,

then estimating the gmF effects is unnecessary. Estimat-

ing a systematic component where none exists increases

variance, which leads to decreased precision in the esti-

mates. More precise estimates may be obtained using

a simpler additive framework:

ymsr 5m1am 1bs1 �msr ,

�msr ;
iid

N(0,s2) , (5)
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with the usual constraints that�M
m51am 5 0 and bH 5 0.

The effects are interpreted as in the two-way framework

of Eq. (4). However, the ML estimates of the effects are

not the same.

In the appendix it is shown that theML estimate b̂F of

the expected climate response from the additive frame-

work is a weighted average of the model mean responses

with weights

WmH 5WmF 5
RmHRmF

RmH 1RmF

. (6)

This additive framework assumes that all models simu-

late the same climate response with the same internal

variability. If that assumption is believable, then we

should give increased weight to models that have more

runs. This argues against advice to avoid weighting

models based on the number of runs they contribute to

the MME (Knutti et al. 2010a). Note that the weights

depend on the combined number of historical and future

runs. To achieve a high weighting, it is necessary to have

many runs from both scenarios.

The additive framework is more parsimonious and

has onlyM1 1 parameters to be estimated. Without the

interaction effects, there are M 2 1 less parameters to

be estimated. An additional M 2 1 degrees of freedom

are then available to estimate the internal variability.

Therefore, the precision of the parameter estimates

should increase compared to the two-way framework

with interactions. However, if the models do not all

simulate the same climate response, then a systematic

component is missing from the framework. The pre-

cision of the estimates will decrease dramatically if the

missing effects are large. The additive framework must

therefore only be used when the structural uncertainty

in the climate response is small compared to the internal

variability, as shown in section 2g.

If the models all simulate the same climate response,

then no truth-centered assumption is required to justify

the mean response of the ensemble as an estimate of

the actual climate response. However, the possibility

remains of a bias shared by all the models compared to

the actual climate. In estimating the actual climate re-

sponse, any shared bias will cancel if it is constant in both

historical and future scenarios. Such an assumption is

difficult to verify since we have no observations of the

future for comparison. This assumption may still be

optimistic (Buser et al. 2009; Christensen et al. 2008);

however, it is a more acceptable assumption than that of

no shared bias. Therefore, if the conditions outlined in

section 2g are satisfied, the only notable uncertainty

in the climate response in scenario F is due to internal

variability, and the confidence intervals given in the

appendix should be reported for the expected climate

response bF.

d. A simple one-way ANOVA framework

The am effects allow for the possibility that each

model simulates a different historical mean climate. In

the unlikely event that all models are believed to simu-

late the same historical climate, then a one-way ANOVA

framework may provide more precise estimates:

ymsr 5m1bs 1 �msr ,

�msr ;
iid

N(0,s2) , (7)

with the usual constraint that bH 5 0. The effects are

interpreted as in the more complex frameworks; how-

ever, the ML estimates of the effects are not the same.

In the appendix it is shown that theML estimate b̂F of

the expected climate response from this one-way frame-

work is also a weighted average of the model mean re-

sponses with weights

WmH 5RmH and WmF 5RmF . (8)

In this case, the weights are equivalent to giving equal

weight to every run in the MME, that is, ‘‘one run, one

vote.’’ Note that in the balanced case whereRmH5RmF,

the weights from the additive framework in Eq. (6) re-

duce to the one run, one vote estimate.

This simple framework has only two parameters to be

estimated. With M 2 1, additional degrees of freedom

available to estimate the internal variability the precision of

the estimates should increase again. However, a similar

caveat applies as in the additive framework. If the models

do not all simulate the same historical climate and climate

response, the precision of the estimates may decrease

dramatically. The one-way framework must therefore only

be used when the structural uncertainty associated with

both the historical climate and the climate response is small

compared to the internal variability, as shown in section 2g.

The assumptions required in order to justify the one

run, one vote estimate as an estimate of the actual cli-

mate response are identical to those outlined for the

additive framework in section 2c. Therefore, if the con-

ditions outlined in section 2g are satisfied, the confi-

dence intervals given in the appendix should be reported

for the expected climate response bF. However, the es-

timates will have greater precision compared to those

from the additive framework.

e. Is an ANOVA framework appropriate?

The traditional estimation procedure for ANOVA

frameworks involves only simple linear combinations of

15 JUNE 2013 SANSOM ET AL . 4021



the group means of the various factors included in the

framework, that is, the model-scenario means yms.. This

simplicity comes at the cost of requiring a balanced de-

sign, that is, the same number of runs of each model for

each scenario. So in an MME, it might be necessary to

exclude additional runs from somemodels, or to exclude

models that do not have sufficient runs. This can be

avoided by fitting theANOVA framework using normal

linear regression methods (Krzanowski 1998).

There are three main assumptions about the random

component in these frameworks:

d the residuals �msr are mutually independent;
d the residuals �msr are normally distributed;
d the residuals �msr have constant variance.

Each of these assumptions must be carefully checked

before confidence can be placed in the estimates from

the frameworks. If they are satisfied, then the ANOVA

framework provides a good statistical description of the

MME.

The distributional assumptions may be checked by

analysis of the fitted residuals emsr 5 ymsr 2 ŷmsr. The

fitted values ŷmsr from each framework are defined in the

appendix. If the data are normally distributed, then

a plot of the ordered standardized residuals against the

theoretical quantiles of the normal distribution should

lie close to a straight line through the origin with unit

gradient. If the data have constant variance, then plot-

ting the standardized residuals against the fitted values

ŷmsr should show random scatter about zero. Any sys-

tematic component visible in the scatter may indicate

nonconstant variance or a systematic difference between

the ymsr that is not captured by the framework.

The assumption of independence is less easily

checked, so consideration must be given a priori to

whether this assumption is justified. Under the truth-

centered view, it would be necessary to assume that the

model mean climates are distributed independently

about the actual climate. However, there is an increas-

ing awareness that this may not be the case (Knutti et al.

2010b). It is less restrictive to assume that themodels are

independent depending on the ensemble mean climate,

that is, independently distributed about the ensemble

mean climate (Rougier et al. 2012, manuscript sub-

mitted to J. Amer. Stat. Assoc.). This splits the model

bias into a part that is shared between all models in the

MME and a part that is unique to each model, in-

dependent of the others. Since we do not consider the

actual climate explicitly, we need only consider the in-

dependent part. This assumption may still be optimistic

(Pennell and Reichler 2011). However, it is a more ac-

ceptable assumption than that of complete independence

of model biases.

f. Identifying outlying runs

As in any large experiment, there are a variety of ways

by which unexpected results may enter into an MME.

These include human error (e.g., initialization errors or

mislabeling a particular run) as well as less predictable

factors (e.g., poorly chosen initial conditions or a param-

eterization that lacks the flexibility to respond correctly to

a particular scenario). The ANOVA frameworks can be

used to systematically identify runs that appear to be

outliers with respect to the rest of the MME.

The �msr are assumed to be normally distributed.

Therefore, fitted residuals emsr should also be normally

distributed. Any runs having standardized fitted residuals

lying in the far tails of the standard normal distribution

are considered outlying. If viewed as a significance test,

we might consider labeling any run with a standardized

residual in the most extreme 10% of the normal distri-

bution (jZj . 1.64) as outlying. However, the residuals

are assumed to be independent, so we would expect 10%

of all residuals to lie in this region. A stricter 1% criterion

(jZj . 2.58) is therefore more appropriate.

Outliers can be easily identified from the plot of stan-

dardized residuals against fitted values ŷmsr. They may

also be visible in the quantile–quantile plot used in the

check for normality. As noted above, outlying runs arise

for a variety of reasons. They may represent unlikely but

still plausible climates and contribute valuable informa-

tion to the MME. Therefore, outlying runs should not

simply be dismissed from theMMEunless an explanation

can be found for the unusual behavior.

Outlying runs can have a large influence on the pa-

rameter estimates. A quick check of the influence of any

outliers is to temporarily remove them, refit the frame-

work, and check the parameter estimates. If the esti-

mates of the main effects m and bF do not change, then

the influence of the outliers is small. In that case, the

outlying runs should remain in the ensemble. If re-

moving the outliers strongly affects the estimates of the

main effects m and bF, then it is essential to determine

whether the outlying runs represent plausible climates

or problematic simulations.

Outlying runs may also affect the test for normality. A

large number of outliers are a strong indication that the

framework assumptions are not appropriate. If there are

only one or two outliers, then they may simply be results

that are unlikely given the total number of runs. This can

quickly be checked by temporarily removing the out-

liers, refitting the framework, and rechecking the nor-

mality. If the normality is satisfactory after removing the

outliers, then the analysis can proceed with the outlying

runs included. If the normality is still not satisfied, an

ANOVA framework may not be appropriate.

4022 JOURNAL OF CL IMATE VOLUME 26



g. Which framework is most appropriate?

In section 2c it is noted that the additive framework is

only appropriate if all models simulate the same climate

response. Similarly, in section 2d it is noted that the one-

way framework is only appropriate if the models also

simulate the same historical climate. These are condi-

tions on model agreement. This is often quantified by

the number of models having the same sign of response

or discrepancy. That does not take into account the in-

ternal variability (Tebaldi et al. 2011a). If the expected

climate response b is small compared to the internal

variability, then models may appear to disagree when

they are actually behaving similarly.

The additive framework is a special case of the two-

way framework with interactions where gmF 5 0 for all

models m. In the appendix, a statistical significance test

is derived for the presence of model dependence in the

climate response, that is, to test the null hypothesis H0:

gmF 5 0 for allm against the alternativeHa: gmF 6¼ 0 for

some m. The test statistic is the ratio of variances:

Fg 5
N2 2M

M2 1
f 2g , where f 2g 5

R2
g 2R2

a

12R2
g

. (9)

The statistics R2
g and R2

a are the coefficients of determi-

nation for the two-way framework with interactions and

the additive framework, respectively. The coefficient of

determination R2 is the proportion of total variability

explained by a normal linear regression framework. The

quantity f 2g therefore represents the ratio of the variance

explained by structural uncertainty (model dependence)

in the climate response to that explained by internal

variability. If the structural uncertainty is small com-

pared to the internal variability, then estimating the gmF

effects does not significantly improve the framework as

a description of theMME. Formally, if the p value of the

test is small (p, a), we conclude that there is significant

evidence of model dependence in the climate response

at the a% level and that the two-way framework is most

appropriate. Otherwise, the additive framework is more

appropriate.

Similarly, the one-way framework is a special case of

the additive framework where am 5 0 for all models m.

In the appendix, a statistical significance test is derived

to test for the presence of model dependence in the

historical climate, that is, to test the null hypothesis

H0: am 5 0 for all m against the alternative Ha: am 6¼ 0

for some m. The test statistic is the ratio of variances:

Fa 5
N2 (M1 1)

M2 1
f 2a , where f 2a 5

R2
a 2R2

b

12R2
a

. (10)

The quantity R2
b is the coefficient of determination for

the one-way framework. The quantity f 2a represents the

ratio of the variance explained by structural uncertainty

in the historical climate to that explained by internal

variability. If the structural uncertainty is small com-

pared to the internal variability, then estimating the am

effects does not significantly improve the framework

as a description of the MME. Formally, if the p value of

the test is small (p , a), we conclude that there is sig-

nificant evidence of model dependence in the historical

climate at the a% level and that the additive framework

is most appropriate. Otherwise, the one-way framework

is more appropriate.

h. Strength of evidence of climate change

When the expected climate response bF is small, it

may be difficult to distinguish it from the internal vari-

ability. In the appendix, a significance test is derived to

test for the presence of a climate response signal, that is,

to test the null hypothesis bF 5 0 against the alternative

bF 6¼ 0. The test statistic is

Tb5
jb̂F jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(b̂F)

q . (11)

If the p value of the test is small (p , a), we conclude

that there is significant evidence of a nonzero climate

response at the a% level of significance. If the p value is

not small, we conclude that there is no significant evi-

dence of a climate response.

The standardized effect size db 5 jb̂F j/s, where s is the
estimate of s, is a practical way of quantifying the size of

the climate response. It is easily understood on the scale

of the internal variability using the quantiles of the

standard normal distribution, that is, db ’ 2 implies the

projected future climate is more extreme than 95% of

plausible historical climates. The IPCC Fourth Assess-

ment Report (Meehl et al. 2007a, Fig. 10.9) highlights

climate responses greater than one standard deviation

of intermodel spread. This is more closely related to f 2g
than to db, which is measured on the scale of internal

variability. The value of db considered large for practical

purposes may vary depending on the impact of a par-

ticular response. However, the scale is useful, and db. 1

represents a natural threshold for less impact focused

studies.

i. Testing of individual climate models

Similar tests to that given for nonzero expected climate

response in the previous section can be made for nonzero

model dependence in the climate response (gmF 6¼ 0) and

historical climate (am 6¼ 0) of the individual models.
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Under the null hypotheses of no model dependence in

the historical climate of model m (H0: am 5 0) and no

model dependence in the climate response of model m

(H0: gmF 5 0), the test statistics are

Ta 5
jâmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(âm)

p and Tg 5
jĝmF jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(ĝmF)

p . (12)

If the p value of one of these tests is small (p , a), we

conclude that there is significant evidence at the a%

level that model m differs from the ensemble mean in

either its historical climate or climate response, that is,

model m does not agree with the expected historical

climate or climate response.

Removing models that disagree strongly with the

expected climate or climate response runs the risk of not

sampling unlikely yet still plausible climates. Therefore,

models should not be excluded from the ensemble

simply because they do not agree with the ensemble

mean. It is useful to be able to systematically identify

such models as such behavior may indicate problems

that need to be investigated further. It may subse-

quently be decided that these problems warrant the

exclusion of the model for the analysis of some or all

climate variables. However, this should be based on

expert judgment.

j. Framework selection strategy

The frameworks discussed in the previous sections

form a hierarchy. The one-way framework is a special

case of the additive framework, which is itself a special

case of the two-way framework with interactions. A

simple approach to selecting the most appropriate

framework would be to calculate and compare the es-

timates of the expected climate response bF from all

three frameworks. The estimates may be obtained by

simply calculating the weighted mean response in

Eq. (2) using the weights in Eqs. (3), (6), and (8). If all

three estimates are similar, then the one-way framework

is probably sufficient to describe the MME. If the ad-

ditive and two-way frameworks appear similar to each

other but different to the one-way framework, then the

additive framework is probably more appropriate. If all

three frameworks give different estimates then either

the two-way framework with interactions is required or

a simple ANOVA framework is not appropriate.

A more rigorous approach would make use of the

significance tests and assumption checking procedures

outlined above:

1) Fit the two-way framework with interactions.

2) Check the framework assumptions and identify any

outlying runs:

(i) If the assumptions appear satisfied and there are

no outlying runs, then go to the next step.

(ii) If there are outlying runs, investigate possible

causes before removing completely, or consider

removing temporarily and rechecking the as-

sumption of normality.

(iii) If the assumptions do not appear satisfied and

there are no outlying runs, then consider an

alternative statistical framework or revert to the

previous framework.

3) Perform the significance test for model dependence

in the climate response. If the null hypothesis of no

model dependence is rejected then stop; the two-way

framework with interactions is most appropriate.

4) Fit the additive framework.

5) Check the framework assumptions and identify any

outlying runs as in Step 2.

6) Perform the significance test for model dependence

in the historical climate. If the null hypothesis of no

model dependence is rejected then stop; the additive

framework is most appropriate.

7) Fit the one-way framework.

8) Check the framework assumptions and identify any

outlying runs as in Step 2.

Once the most appropriate framework has been se-

lected, the test for nonzero climate response can be

performed to identify whether or not there is significant

evidence of a climate response in the MME. The values

of db and f 2g or f 2a may be examined in order to assess the

size of the response and level of agreement between

models.

Using the significance tests, the framework selection

procedure may be easily automated for multiple grid

points. Some manual intervention is required in check-

ing the framework assumptions. The check for normality

may be automated using the Anderson–Darling test.

The Anderson–Darling test has greater power to detect

a range of departures from normality than the more

general Kolmogorov–Smirnoff test (Stephens 1974).

The checks for constant variance and for independence

should be performed at a random selection of grid points

at each stage. When removing outliers, even temporar-

ily, care must be taken to ensure that at least one run

remains available under each scenario from each cli-

mate model.

3. Example: Storm tracks in CMIP5

a. Data

The frameworks outlined in the previous section

are used to estimate changes in the 30-yr mean win-

tertime [December–February (DJF)] track density of
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extratropical cyclones in the North Atlantic from an

ensemble of climate models participating in the WCRP

CMIP5 (Taylor et al. 2012). For a more complete dis-

cussion of climate change in the North Atlantic storm

track in the CMIP5 MME, see Zappa et al. (2013b). Six-

hourly output suitable for storm track analysis is avail-

able from 19 models from 12 centers. To maximize

independence between models, it might be sensible to

include only one model from each center (Rougier et al.

2012, manuscript submitted to J. Amer. Stat. Assoc.).

However, Pennell and Reichler (2011) show that the

effect of including same center models is limited, so in

this example all models are included. Projections are

compared from two 30-yr periods. The recent climate is

represented by the mean of a 30-yr period from the

historical experiment between December 1975 and

February 2005. The future climate is analyzed condi-

tionally on the Representative Concentration Pathway

4.5 (RCP4.5) midrange mitigation emissions scenario

(Moss et al. 2010). The mean of a 30-yr period between

December 2099 and February 2099 is analyzed. At least

one realization is available from each model for each

scenario. The total number of realizations available for

each model-scenario pair is summarized in Table 2.

The analysis methodology is similar to that used in

several previous studies of extratropical cyclones (e.g.,

Bengtsson et al. 2006, 2009; Catto et al. 2011; McDonald

2011). Cyclones are identified as maxima in the 850-hPa

relative vorticity field and tracked through their life

cycle using the method developed by Hodges (1994,

1995, 1999). Prior to tracking, the large-scale background

field is removed (Hoskins and Hodges 2002; Anderson

et al. 2003). The output of the models is also interpolated

to a common resolution of T42. This simplifies compari-

son between models and reduces the noise in the vorticity

field. After tracking, storms that last less than 2 days or

travel less than 1000 kmare excluded. Spatial statistics are

then computed from the tracks using the spherical kernel

approach of Hodges (1996).

This example focuses on the track density statistics.

This is the mean number of cyclones passing a particular

point each month. The spherical kernel approach utilizes

a variable bandwidth so the statistics are rescaled to be

representative of a region of radius 58 centered on a par-

ticular grid point. This study focuses on the DJF winter

period in the North Atlantic. The study region is defined as

808E–408W and 308–908N. This window covers the North

Atlantic storm track and its exit region over Europe.

b. Results

1) THE SIMPLE APPROACH TO FRAMEWORK

SELECTION

The simple approach to framework selection is illus-

trated in Fig. 1. The CMIP5 models simulate the DJF

storm track reasonably well, but with some departures.

TABLE 2. Number of realizations available from eachmodel for the historical and future scenarios and the weights given by eachANOVA

framework. Weights have been standardized to sum to 100 for each framework.

Model

Runs Weights

Historical RCP4.5 Two way Additive One way

RmH RmF WmF WmH WnF WmH WmF WmH

BCC-CSM1.1 3 1 2.63 2.63 2.25 2.25 3.85 1.28

CanESM2 5 1 2.63 2.63 2.50 2.50 6.41 1.28

CNRM-CM5 5 1 2.63 2.63 2.50 2.50 6.41 1.28

CSIRO-Mk3.6.0 4 5 2.63 2.63 6.68 6.68 5.13 6.41

EC-EARTH 3 3 2.63 2.63 4.51 4.51 3.85 3.85

FGOALS-g2 1 1 2.63 2.63 1.50 1.50 1.28 1.28

GFDL-ESM2G 1 1 2.63 2.63 1.50 1.50 1.28 1.28

GFDL-ESM2M 1 1 2.63 2.63 1.50 1.50 1.28 1.28

HadGEM2-CC 2 1 2.63 2.63 2.00 2.00 2.56 1.28

HadGEM2-ES 1 1 2.63 2.63 1.50 1.50 1.28 1.28

INM-CM4 1 1 2.63 2.63 1.50 1.50 1.28 1.28

IPSL-CM5A-LR 4 4 2.63 2.63 6.01 6.01 5.13 5.13

IPSL-CM5A-MR 1 1 2.63 2.63 1.50 1.50 1.28 1.28

MIROC5 1 1 2.63 2.63 1.50 1.50 1.28 1.28

MIROC-ESM 3 1 2.63 2.63 2.25 2.25 3.85 1.28

MIROC-ESM-CHEM 1 1 2.63 2.63 1.50 1.50 1.28 1.28

MPI-ESM-LR 3 3 2.63 2.63 4.51 4.51 3.85 3.85

MRI-CGCM3 5 1 2.63 2.63 2.50 2.50 6.41 1.28

NorESM1-M 3 1 2.63 2.63 2.25 2.25 3.85 1.28

Total 48 30 50.00 50.00 50.00 50.00 61.54 38.46
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The main northeast track is too weak, while the more

zonal track toward northern Europe is too strong.

Comparing the climate response estimates from the

three frameworks in Figs. 1d–f suggests the additive

framework may be suitable to describe the CMIP5

MME. The response estimates from the two-way frame-

workwith interactions and the additive framework appear

similar. The response estimate from the one-way frame-

work fails to capture the increase in track density over the

UnitedKingdomandDenmark indicated by the other two

frameworks. This suggests the presence of differences

between the historical climates simulated by the CMIP5

models.

2) A SINGLE GRID POINT

To better understand the differences between the

ANOVA frameworks, a single grid point in central

France (46.58N, 1.258E) is considered in detail. Figure 2

confirms that there are large differences between the

historical climates simulated by the CMIP5 models. By

comparison, the usual one model, one vote estimate of

the climate response indicated by the horizontal dashed

lines is small. Where multiple runs are available, the

spread appears comparable between models and sce-

narios. This suggests the assumption of constant vari-

ance is justified for cyclone track density in the CMIP5

MME. One exception is the MIROC-ESM model, which

appears to have an unusually large spread of values in the

historical scenario at this grid point. Most models appear

to show a small decrease in track density in the RCP4.5

scenario compared to the historical scenario. However,

there is some variation in the size of the decrease. The

two-way framework with interactions may be required to

explain this variation if it is greater than might be ex-

pected because of internal variability.

The differences between the structures of the three

ANOVA frameworks are also visible in Fig. 2. In the

two-way framework with interactions, the ML estimate

of the mean climate in each model and scenario is the

sample mean of the runs from that model-scenario pair

FIG. 1. (a) DJF track density (storms month21) in the European Centre for Medium-Range Weather Forecasts

(ECMWF) InterimRe-Analysis (ERA-Interim), (b) CMIP5 expected historical DJF track density estimate from the

two-way frameworkwith interactions, and (c) CMIP5 expectedRCP4.5DJF track density estimate from the two-way

framework with interactions. Expected climate response estimates (storms month21) (d) from the two-way frame-

work with interactions, (e) from the additive framework, and (f) from the one-way framework.
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(Fig. 2a). Different climate responses are estimated for

each model. The additive framework constrains the es-

timates so that all models have the same climate re-

sponse.While no longer centered on the model-scenario

means, these estimates appear reasonable for most

models (Fig. 2b). The uncertainty indicated by the error

bars is reduced compared to the two-way frameworkwith

interactions, suggesting that the additive framework may

FIG. 2. Estimatedmean climates from the threeANOVA frameworks for a grid point (46.58N, 1.258E) in central France: track density vs
model. (a) The two-way framework with interactions, (b) the additive framework, and (c) the one-way framework. Open points represent

individual runs from the historical scenario (H, left in each column) and the RCP4.5 (future) scenario (F, right) for each model. Solid

points are framework estimates of the mean climate of each model for each scenario. Error bars represent a 90% confidence interval for

the mean climate of each model. Dashed horizontal lines indicate the usual one model, one vote estimates of the historical and future

climates.
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be sufficient to describe the MME. The one-way frame-

work constrains the estimates so that all models simulate

the same historical climate and climate response (Fig. 2c).

Note that these do not coincide with the usual onemodel,

one vote estimates. The error bars indicate that the un-

certainty is greater than in the additive framework. This is

not surprising given the large differences between the

historical climates simulated by the CMIP5 models.

These are not captured at all by the one-way framework

and are therefore absorbed into the estimate of the in-

ternal variability.

The expected climate response estimate b̂F and as-

sociated 90% confidence interval from the two-way

framework with interactions is 20.54 (20.73, 20.36)

storms month21. From the additive framework the es-

timate b̂F is 20.50 (20.67, 20.33) storms month21, and

from the one-way framework it is 20.59 (21.76, 0.58)

storms month21. The decrease in width of the confi-

dence intervals in the additive framework suggests that

the interaction terms are not required in order to ade-

quately describe the uncertainty in the ensemble. The

dramatic increase in width of the confidence intervals

from the one-way framework reflects the large structural

uncertainty in historical climate that has been absorbed

into the estimate of the internal variability.

No systematic patterns are visible in the plot of stan-

dardized residuals against the fitted values from the two-

way framework with interactions in Fig. 3a. This suggests

the assumption of constant variance is justified. Two

outlying runs are indicated from the MIROC-ESM

model. The same runs are indicated in the quantile–

quantile plot in Fig. 3b. Most runs lie close to the ex-

pected straight line, although some skewness is visible.

This is likely to be because of the influence of the two

outliers. After removing the two runs of MIROC-ESM,

no further outliers are identified. The p value of the

Anderson–Darling test for normality is 0.16, so there is no

significant evidence to reject the null hypothesis of nor-

mality. Investigating the reasons behind the two outlying

runs of MIROC-ESM is beyond the scope of this exam-

ple. Removing the two outliers has very little effect on the

estimates of the main effects m and b. We therefore pro-

ceed with the two outlying runs included in the ensemble,

but we are reassured that the framework assumptions are

basically justified at this grid point.

The variance ratio f 2g is calculated as 0.47, that is,

structural uncertainty in the climate response explains

variability equivalent to 47% of that explained by in-

ternal variability. The p value of the significance test for

model-dependent climate response based on f 2g is 0.44.

There is no evidence to reject the null hypothesis of no

model-dependent climate response at the 10% level.

Therefore, the additive framework may be adequate to

describe the variability in the MME. Checking the

framework assumptions under the additive framework

reveals no problems. The variance ratio f 2a is calculated

as 70.5, that is, structural uncertainty in the historical

climate explains 71 times more variation in the CMIP5

MME than the internal variability. This result is highly

significant. The null hypothesis of no model dependence

in the historical climate is rejected entirely. At this grid

point, the additive framework provides the most parsi-

monious description of the MME.

3) THE NORTH ATLANTIC STORM TRACK

Figure 1 suggests that the structural uncertainty in the

climate response of the CMIP5 ensemble is small de-

spite large structural uncertainty in the historical cli-

mate; that is, the models agree on the climate response

but not the historical climate. Before the hypothesis of

no model-dependent climate response can be tested, the

framework assumptionsmust be checked in the two-way

framework with interactions.

Plots of standardized residuals against fitted values at

a random selection of grid points (not shown) reveal no

FIG. 3. Framework checking for the two-way framework with

interactions. (a) Plot of standardized residuals against fitted values.

Each point represents one run. Dashed lines indicate the 0.5% and

99.5% quantiles of the standard normal distribution. (b) Quantile–

quantile plot of the standardized residuals.
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evidence of nonconstant variance between models or

scenarios. The Anderson–Darling test (Fig. 4) suggests

that the assumption of normality is justified over most of

the study region. The two outlying runs identified over

central France do not persist across the study region. To

perform a thorough check for outlying runs, the stan-

dardized residuals of each run were mapped in-

dividually (N 5 78 plots, not shown). No single run is

identified as outlying at the 1% level at more than 4%

of grid points, and these are usually spread over mul-

tiple subregions. Therefore, we proceed with all runs

included in the ensemble.

The variance ratio f 2g and p values of the significance

test for model-dependent climate response are shown in

Figs. 5a and 5b. The structural uncertainty associated

with the climate response is less than the uncertainty due

to internal variability over most of the study region.

However, areas of significant nonzero model de-

pendence at the 10% level are detected, most notably

over the subtropical Atlantic Ocean, away from the

main storm track.

To determine which models are not in agreement with

the rest of the CMIP5 MME, the outcomes of the sig-

nificance tests on the individual gmF effects [Eq. (12)]

are mapped in Fig. 6. No one model or group of models

appears responsible for all of the interaction in the cli-

mate response. Different groups of models deviate from

the rest of the MME in different regions. In the sub-

tropical Atlantic Ocean, CSIRO-Mk3.6.0, FGOALS-g2,

MIROC-ESM, and MIROC-ESM-CHEM all deviate

strongly from the expected response. MRI-CGCM3 is

unique in that it deviates from the expected response

near the Iberian Peninsula, but not over the rest of the

subtropical Atlantic.

Figure 6 indicates that all the regions of interaction

detected in Fig. 5b involve more than one model.

Comparing plots in Fig. 6 shows that models that share

similar responses in one area will not necessarily have

similar responses in another. Therefore, removing any

model from the MME entirely would remove useful

information in some regions and risk excluding unlikely

but still plausible climate responses in other regions.

Although there is evidence of structural uncertainty in

the climate response in some areas, there is good agree-

ment between models over most of the study region.

Where the structural uncertainty is small compared to the

internal variability, the additive framework may provide

amore parsimonious description of theMME. Fitting the

additive framework and checking the assumptions (not

shown) reveals no problems.

However, examining the variance ratio f 2a (not shown)

reveals that even where the models agree on the climate

response, there are large differences in their historical

climates. Differences among the historical climates of

the models are responsible for at least twice the varia-

tion explained by the internal variability everywhere in

the study region. Over central Europe the variance ratio

rises to f 2a ’ 70. This agrees with Zappa et al. (2013a),

who found that the storm tracks of several models ex-

tend too far into the European continent. On the basis of

this evidence, the one-way framework, where runs are

weighted equally, should not be used to estimate the

climate response anywhere in the North Atlantic storm

track.

The difference between the estimates of the expected

climate response bF from the two-way framework with

interactions and the additive framework is shown in

Fig. 7a. A comparison with Figs. 1a and 1b shows that

the two-way framework with interactions tends to es-

timate a stronger climate response than the additive

framework. Since both estimates are weighted aver-

ages, the difference must be due to the weights. In

Table 2 the additive framework assigns most weight to

the CSIRO-Mk3.6.0, EC-EARTH, IPSL-CM5A-LR,

FIG. 4. The p values of the Anderson–Darling test for normality in the two-way framework

with interactions. Small p values (p, 0.10) indicate significant evidence of nonnormality. The

assumption of normality appears justified over most of the study region.
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and MPI-ESM-LR models. Comparing these models in

Fig. 2a shows that they all have relatively weak climate

responses (at this grid point). Since the additive frame-

work gives increased weight to these models, its climate

response estimate is correspondingly lower.

Figure 7b shows the spatial distribution of the stan-

dard error of the expected climate response estimate b̂F

from the additive model. Variability decreases away

from the main storm track. This is to be expected since

the standard errors from the ANOVA frameworks

represent the uncertainty due to internal variability. A

90% confidence interval for the expected climate re-

sponse b would have width 61.64 SE, where SE is the

standard error from Fig. 7b. Local maxima in the stan-

dard error over Newfoundland, Denmark, Corsica, and

near the tip of Greenland appear related to areas of

strong primary or secondary cyclogenesis (Hodges et al.

2011).

Comparing Fig. 7c with Fig. 5b shows that the expected

climate response estimate from the additive framework

has greater precision than the two-way framework with in-

teractions where there is no significant evidence of model

dependence in the response. Note that the decrease in

precision from using the two-way framework with in-

teractions where there is no evidence of model depen-

dence in the response is generally small compared to the

decrease in precision from using the additive framework

where there is model dependence. This agrees with the

theoretical arguments in section 2c.

Both the two-way and additive frameworks estimate

large (db. 1) climate responses in the subtropical North

Atlantic, the Mediterranean, and parts of the main

northeast branch of the storm track (Figs. 5c,d). The

statistical significance of these responses is shown in

Figs. 5e and 5f. Both frameworks find significant evi-

dence of nonzero climate response at the 1% level over

the three regions already highlighted plus France, Spain,

Portugal, Switzerland, and parts of northern Europe.

In the CMIP5 MME, there is significant evidence of

a decrease in the frequency of cyclones on the northern

flank of the North Atlantic storm track in the RCP4.5

scenario. A significant increase is also noted on the

southern flank. However, there is significant structural

uncertainty in the climate response in this region, so the

result should be treated with caution. A small increase in

frequency is indicated in the zonal branch of the storm

FIG. 5. (a) Variance ratio f 2g , (b) p values of the significance test for model-dependent climate response, (c) standardized mean climate

response db from the two-way framework, (d) standardized mean climate response db from the additive framework, (e) p value of

significance test for nonzeromean climate response from the two-way framework, and (f) p value of the significance test for nonzeromean

climate response from the additive framework.
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track directed toward northern Europe. There is evi-

dence at the 10% level, but not at the 1% level, that this

increase is because of a change in radiative forcing

rather than internal variability. However, the evidence is

not strong enough that we can be certain. The largest

responses are seen in the Mediterranean basin. In this

region a decrease in storm frequency of up to two storms

per month is projected. This corresponds to a standard-

ized decrease of up to three standard deviations, a very

strong signal. This could have serious consequences for

water supplies in southern Europe and the Middle East.

4. Conclusions

This study describes a family ofANOVA frameworks,

the most general of which naturally yields the one

model, one vote estimate of future climate response in

a MME. Two alternative estimates, including a one run,

one vote estimate, are also introduced, and they are

more efficient when the structural uncertainty is small

compared to the internal variability. The assumptions of

these frameworks can be rigorously checked using simple

tests and graphical techniques. TheANOVA frameworks

allow the construction of confidence intervals in addition

to the usual point estimates. The frameworks described

here overcome the need to analyze only one run, or an

equal number of runs, from each model-scenario pair by

using linear regression techniques rather than traditional

ANOVA estimation.

The two-way ANOVA framework with interactions

shows that the one model, one vote estimate of the en-

semble mean climate response implicitly allows for the

possibility that each climate model may respond differ-

ently to the same radiative forcing. If the models all

respond differently, it is difficult justify the ensemble

mean climate response as an estimate of the actual cli-

mate response without assuming that the models are

truth centered. However, this assumption is often hard

to justify (Knutti et al. 2010b).

The principle behind the use of MMEs for climate

projection is that each model represents a line of evi-

dence for the future behavior of the actual climate. If

multiple lines of high-quality evidence agree, then con-

fidence is increased (Mastrandrea et al. 2010). There-

fore, it is hoped that a consensus will exist among

climate models on the climate change response. If the

models all simulate the same climate response, no truth-

centered assumption is required in order to justify that

FIG. 6. The p values of the individual t tests on the gmF terms. Small p values (p, 0.10) indicate significant evidence that a particularmodel

disagrees with the mean climate response of the MME.
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response as an estimate of the actual climate response.

However, it is necessary to assume that any bias shared

by all the models compared to the actual climate is

constant between historical and future scenarios. Such

an assumption is more acceptable than the increasingly

unsupportable truth-centered approach (Stephenson

et al. 2012).

The additiveANOVA framework assumes that all the

models simulate the same climate response, even if they

simulate different historical mean climates. When this

assumption is justified, the associated estimate of the

climate response will have greater precision than the one

model, one vote estimate, as well as being more de-

fensible as an estimate of the actual climate response. The

ML estimate of the climate response from this framework

is a weighted average of the sample mean responses from

the individual models. The model weights depend on the

number of runs from each model-scenario pair. Having

many runs from only one scenario does not yield a high

weighting. This emphasizes the need formodeling centers

to provide multiple runs from future scenarios, not just

the historical scenario.

This study shows that the assumption that all models

in the MME simulate the same climate response can be

FIG. 7. (a) Difference between the expected climate response estimates (storms month21)

from the two-way framework with interactions and the additive framework, (b) standard error

(storms month21) of expected climate response estimate from the additive framework, and (c)

ratio of standard errors of the expected climate response estimates from the additive frame-

work and the two-way framework with interactions.
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formally justified based on the ratio of the structural

uncertainty in the climate response to the uncertainty due

to internal variability. When the ratio is small, there is

insufficient evidence (i.e., runs) in the MME to reliably

distinguish any structural uncertainty in the response

from internal variability. It is unlikely that models will

ever agree completely on the climate response; however,

it can be hoped that the differences are small. Given

sufficient runs, even small differences could be distin-

guished. However, if they are sufficiently small compared

to the internal variability, then their estimation may be

safely neglected.

There is increasing awareness of the role of internal

variability in climate projection (Deser et al. 2012;

Tebaldi et al. 2011a; Yip et al. 2011). In agreement with

Tebaldi et al. (2011a), we find that the agreement between

models on the future climate response may be greater

than previously thought. In particular, the methods pre-

sented here argue strongly against the practice of selecting

only one run, or a subset of runs, from each model-sce-

nario pair when additional runs are available.

The example of the North Atlantic storm track dem-

onstrates that, to within the range of internal variability,

climate models generally agree on the extratropical cy-

clone frequency response to the RCP4.5 scenario in

DJF. This is surprising considering that climate models

often simulate different storm tracks in the historical

scenario (Zappa et al. 2013a). We also demonstrate how

outlying runs and models may be systematically identi-

fied for further investigation. However, such runs or

models should only be removed from the ensemble

based on expert judgment following a detailed in-

vestigation of the underlying cause of the discrepancy.

When applying the significance tests on a grid point

basis, as in section 3, it may be necessary to consider

spatial dependence in the data. We do not address this

explicitly here. However, depending on the application,

authors may wish to consider applying either the field

significance method (Livezey and Chen 1983) or the false

discovery rate method (Ventura et al. 2004) to account

for any dependence.

ANOVA frameworks can be used to quantify the

relative contributions of the various components of

uncertainty to the total uncertainty in an MME (Yip

et al. 2011). However, only the internal variability is

quantified absolutely. If the structural uncertainty in the

climate response is small compared to the internal var-

iability, confidence intervals for the climate response

from the additive framework should be reported. This

should be accompanied by a statement of the assump-

tion of constant shared bias. However, subject to that

assumption, we should have high confidence in such an

estimate.

When the models do not agree on the climate re-

sponse, only the usual one model, one vote estimate of

the climate response should be reported. This should be

accompanied by a statement of limited confidence in the

findings. To report confidence intervals from the two-

way framework with interactions would be to ignore the

structural uncertainty in the climate response as well as

the uncertainty because of any biases shared by all the

models. This would give an impression of false confidence.

Themethod of Tebaldi et al. (2011a) could be employed in

conjunction with the significance tests in section 2i to vi-

sualize the level of agreement between models.

When the agreement on the climate response is poor,

the challenge is to determine the scientific reasons for the

differences between the models. In some cases feedbacks

exist that cause the climate response simulated by a par-

ticular model to depend strongly on the historical climate

in that model (e.g., Bracegirdle and Stephenson 2012). In

other cases, particular variablesmight be found to depend

strongly on other processes that vary betweenmodels (e.g.,

Woollings et al. 2012). If such relationships have a physi-

cal basis, they could be incorporated into the statistical

framework in order to reduce the structural uncertainty.

Ideally, we would like to make quantitative state-

ments about the uncertainty in the climate response,

even in the presence of shared biases and when models

do not agree on the response. However, to do so would

require a subjective view of the nature of probability in

order to express the size of the structural uncertainty. It is

difficult to imagine a notional population of climate

models from which the models in the ensemble were

sampled (Stephenson et al. 2012), so the ideas of classical

statistics do not apply.A number of Bayesian hierarchical

frameworks (Chandler 2013; Rougier et al. 2012, manu-

script submitted to J. Amer. Stat. Assoc.; Tebaldi et al.

2011b) have been proposed that allow this subjective

evaluation. However, this study has shown that such

complex frameworks are not always necessary in order to

quantify the uncertainty in climate change projections.

At present, there is no consensus on a ‘‘correct’’

framework for quantifying the uncertainty in climate

projections from MMEs. Both the simple ANOVA

frameworks outlined here and the more complex

Bayesian frameworks suggested elsewhere make as-

sumptions about the independence of models. The issue

of how the biases between models and the actual climate

may evolve in the future is also an area of active research

(Stephenson et al. 2012). Identifying outlying runs and

models and the incorporation of physical relationships

into statistical frameworks all point to the importance of

process-based evaluation of climate models. Process-

based comparisons also suggest an alternative approach

to model weighting. Incorporating such process-based
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information will only be achieved by increased co-

operation between statisticians and climate scientists.
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APPENDIX

Estimates, Standard Errors, Significance Tests,
and Confidence Intervals

a. Derivation of two-way frameworkwith interactions

The log likelihood of the two-way framework with

interactions in Eq. (4) is

l(m,am,bs, gms,s
2; y)

52
N

2
log(2p)2N log(s)

2
1

2s2 �
M

m51
�

s2fH,Fg
�
R

ms

r51

(ymsr 2m2am 2bs 2 gms)
2 ,

(A1)

with the usual constraints �M
m51am 5 0, bH 5 gmH 5 0

" m, and �M
m51gmF 5 0. ML estimates are obtained by

maximizing the log likelihood with respect to all the

parameters simultaneously. This is equivalent to solving

the set of simultaneous equations arising from par-

tial differentiation of the log likelihood with respect to

each parameter and setting each equation equal to zero.

Solving the set of simultaneous equations yields the fol-

lowing estimates:

m̂5
1

M
�
M

m51

ymH.
, (A2a)

âm 5 ymH.
2 m̂ , (A2b)

b̂F 5
1

M
�
M

m51

(ymF . 2 ymH.
) , (A2c)

ĝmF 5 (ymF . 2 ymH.
)2 b̂F , (A2d)

and

s25 ŝ25
1

N2P
�
M

m51
�

s2fH,Fg
�
R

ms

r51

(ymsr 2 ŷmsr)
2 , (A3)

where P 5 2M is the number of effects to be estimated

and ŷmsr 5 m̂1 âm 1 b̂s 1 ĝms. The variances of the esti-

mates are given by

Var(m̂)5
s2

M2 �
M

m51

1

RmH

, (A4a)

Var(âm)5Var(m̂)1
s2

RmH

�
M2 2

M

�
, (A4b)

Var(b̂F)5
s2

M2 �
M

m51

�
Rm.

RmHRmF

�
, (A4c)

Var(ĝmF)5Var(b̂F)1s2

�
Rm.

RmHRmF

��
M2 2

M

�
, (A4d)

and

Var(ŷmsr)5s2/Rms , (A4e)

whereRm. 5RmH1RmF. However, s2 is unknown, so it

is replaced by the estimate s2 from Eq. (A3).

b. Derivation of additive framework

The log likelihood of the additive framework in Eq. (5)

is

l(m,am,bs,s
2; y)

52
N

2
log(2p)2N log(s)

2
1

2s2 �
M

m51
�

s2fH,Fg
�
R

ms

r51
(ymsr 2m2am2bs)

2, (A5)

with the usual constraints �M
m51am 5 0 and bH 5 0. Es-

timation proceeds as for the two-way framework with

interactions. Solving the set of simultaneous equations

yields the ML estimates

m̂5
1

M
�
M

m51

�
ym.: 2

RmF

Rm.

b̂F

�
, (A6a)

âm 5

�
ym.: 2

RmF

Rm.

b̂F

�
2 m̂ , (A6b)

and
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b̂F 5
1

�
M

m51
Wm

�
M

m51
Wm(ymF . 2 ymH.

) , (A6c)

where

Wm 5
RmHRmF

RmH 1RmF

. (A7)

The variances of the estimates are given by

Var(m̂)5
s2

M2

2
6664 �

M

m51

1

Rm.

1
1

�
M

m51
Wm

 
�
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m51

RmF

Rm.

!237775 ,

(A8a)

Var(âm)5
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RmF
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2
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�
M

m51

RmF
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1
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1
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Var(b̂F)5
s2

�
M

m51
Wm

, (A8c)

and

Var(ŷmsr)5
s2

Rm.

1
s2

R2
m. �

M

m51

Wm

(R2
m.2R2

ms22Rm.
Wm) ,

(A8d)

but s2 is unknown, so it is replaced by the estimate s2

from Eq. (A3) with P5M1 1 and ŷmsr 5 m̂1 âm 1 b̂s .

c. Derivation of one-way framework

The log likelihood of the one-way framework in

Eq. (7) is

l(m,am,s
2; y)

52
N

2
log(2p)2N log(s)

2
1

2s2 �
M

m51
�

s2fH,Fg
�
R

ms

r51
(ymsr 2m2bs)

2 , (A9)

with the usual constraint bH 5 0. Estimation proceeds

as for the two-way framework with interactions.

Solving the set of simultaneous equations yields the

ML estimates

m̂5
1

�
M

m51
RmH

�
M

m51
RmHymH.

, and (A10a)

b̂F 5
1

�
M

m51
RmF

�
M

m51
RmFymF . 2 m̂ . (A10b)

The variances of the estimates are given by

Var(m̂)5
s2

�
M

m51
RmH

, (A11a)

Var(b̂F)5
s2

�
M

m51
RmH

1
s2

�
M

m51
RmF

, (A11b)

and

Var(ŷmsr)5s2/R
.s , (A11c)

but s2 is unknown, so it is replaced by the estimate s2

from Eq. (15) with P 5 2 and ŷmsr 5 m̂1 b̂s.

d. The F tests for model dependence in the historical
climate and climate response of the ensemble

The standard theory of the normal linear model

(Krzanowski 1998) states that Fg has a F distribution

with M 2 1 and N 2 2M degrees of freedom under

the null hypothesis of no model dependence in the

climate response (H0: gmF 5 0 for all models). The

null hypothesis is rejected at the a% level if Fg .
F(1002a)%,M21,N22M, where F(1002a)%,M21,N22M is the

(100 2 a)% quantile of the F distribution with M 2 1

and N 2 2M degrees of freedom.

Similarly, Fa has a F distribution withM2 1 and N2
(M 1 1) degrees of freedom under the null hypothesis

of no model dependence in the historical climate (H0:

am 5 0 for all models). The null hypothesis is rejected

at the a% level if Fa . F(1002a)%,M21,N2(M11), where

F(1002a)%,M21,N2(M11) is the (1002 a)% quantile of the

F distribution with M 2 1 and N 2 (M 1 1) degrees of

freedom.

e. The t tests and confidence intervals

The estimates of the expected climate response b̂F in

Eqs. (A2c), (A6c), and (A10b) are linear combinations
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of the gmsr. The ymsr is assumed to be normally distrib-

uted. Linear combinations of normal random variables

are also normally distributed. However, s2 is unknown

and must be estimated by s2 in Var(b̂F). Therefore, b̂F

has a t distribution withN2 P degrees of freedom. Here

P is the number parameters to be estimated and depends

on which framework is being used for estimation.

Since b̂F is t distributed, then Tb has a standard t

distribution with N 2 P degrees of freedom under the

null hypothesis of no climate response (H0: bF 5 0).

The null hypothesis is rejected at the a% level if Tb .
t[1002(a/2)]%,N2P, where t[1002(a/2)]%,N2P is the [1002 (a/2)]%

quantile of the t distribution with N 2 P degrees of

freedom.

A 100(1 2 a)% confidence interval for the actual

value of the expected climate response bF is given by

b̂F 2 t
[(1002(a/2)]%,N2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(b̂F)

q
#bF

# b̂F 1 t
[(1002(a/2)]%,N2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(b̂F)

q
. (A12)

The same theory applies to the estimates m̂, âm, ĝmF , and

ŷmsr, all of which also have t distributions with N 2 P

degrees of freedom. Therefore, the significance tests on

the individual model effects am and gmF may be con-

ducted as above by substituting for b̂F and Var(b̂F). The

same applies to confidence intervals for the actual values

of m, am, gmF, and ymsr.
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