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Relaxation of surface tension in the liquid-solid interfaces of Lennard-Jones liquids

Alex V. Lukyanov, Alexei E. Likhtman
School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX, UK

We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-
Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The
main result is that the relaxation time is found to be almost independent of the molecular structures
and viscosity of the liquids (at seventy-fold change) used in our study and lies in such a range that
in slow hydrodynamic motion the interfaces are expected to be at equilibrium. The implications of
our results for the modelling of dynamic wetting processes and interpretation of dynamic contact
angle data are discussed.

I. INTRODUCTION

The wetting of solid materials by a liquid is at the heart of many industrial processes and natural phenomena. The
main difficulty in theoretical description and modelling of wetting processes is the formulation of boundary conditions
at the moving contact line [1–3]. For example, the standard no-slip boundary condition of classical hydrodynamics
had to be relaxed to eliminate the well-known non-integrable stress singularity at the contact line [1–5].

The principal parameter of the theoretical description is the dynamic contact angle, which is one of the boundary
conditions to determine the shape of the free surface [1–3]. The notion of the contact angle has two meanings in
macroscopic modelling. One is apparent contact angle θa, which is observed experimentally at some distance from the
contact line defined by the resolution of experimental techniques (usually about a few µm) and another one is true
contact angle θ right at the contact line. When the contact line is moving, the apparent contact angle deviates from
its static values and becomes a function of velocity. For example, quite often the contact-angle-velocity dependence
θa(U) observed in experiments can be accurately described by

cos θa = cos θ0 − a1 sinh−1(a2U), (1)

where a1, a2 are material parameters depending on temperature and properties of the liquid-solid combination, U is the
contact-line velocity and θ0 is the static contact angle [3]. However useful relationship (1) may be, it is neither general,
due to the well known effects of non-locality [6, 7], nor it can be directly used in macroscopic modelling since it is the
true contact angle which enters the boundary conditions used in macroscopic analysis. While the apparent contact
angle can be experimentally observed, the true contact angle can be only inferred from theoretical considerations or
from microscopic modelling such as MD simulations. This is the one of the main fundamental problems of wetting
hydrodynamics, and that problem, despite decades of research, is still far from a complete understanding. The main
question still remains open and debates continue: how (and why) does the true dynamic contact angle change with
the contact-line velocity?

The simple hypothesis that θ = θ0 has been used in the so-called hydrodynamic theories, for example [8], where
the experimentally observed changes in the apparent contact angle were attributed to viscous bending of the free
surface in a mesoscopic region near the contact line. Some early observations of the meniscus shapes at the contact
line have indicated that indeed the meniscus curvature may strongly increase at the contact line [9]. The subsequent
analysis has shown that while the dynamic contact angle effect may be purely apparent in some cases, it was difficult
to rule out variations in the true contact angle. Later on, a numerical study of slip models has shown that whereas
viscous bending can contribute to the observed changes in the apparent contact angle, this effect alone is insufficient to
explain observations [10]. Moreover, recent MD simulations of spreading of LJ liquid drops have shown that the true
contact angle does change with the velocity and produce a contact-line-velocity dependence similar to (1), [11–13].
The results of MD simulations have been successfully compared against the molecular-kinetic theory (MKT) [11, 12].
In the MKT, which is also in a good agreement with experiments [3], the true contact angle is a function of velocity.
This velocity dependence comes from the difference in the probability (asymmetry) of molecular displacements parallel
to the solid substrate at the moving contact line, according to the phenomenological assumptions made in the model.
The asymmetry is proportional to the contact-line velocity and, on the other hand, to the work done by a macroscopic
out-of-balance surface tension force fc = γLV (cos θ0 − cos θ) acting on the contact line. The net result is (1) with
a1 = 2kBT/γLV λ2, a2 = (2k0λ)−1, where γLV is surface tension at the liquid-gas interface, kB is the Boltzmann
constant, T is the temperature and k0 is the frequency of displacements over the distance λ, which is regarded as
the inverse relaxation time of the surface phase (k0)−1 = τLS which is supposed to be proportional to the viscosity
τLS ∝ µ. The key feature of the model is the concentrated force fc acting on the contact line, similar to the resistive
force introduced in [14], so that the MKT is local.
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FIG. 1: Profiles of the integrand of (2) in static (at ε12 = 0.9, γLS(5) = −0.89, θ0 = 15◦, and ε12 = 0.37, γLS(5) = 0.68,
θ0 = 138◦, in the plain geometry) and dynamic (slug geometry, Fig. 4, averaged over ∆za = 10 at the contact line, U = 0.1
and ε12 = 0.9) conditions for a liquid with NB = 5 at T = 0.8. The dashed line shows surface tension level at θ0 = 138◦.

Since the MKT is local, it would be difficult to explain effects of non-locality solely within the model. A more
general and potentially universal approach to modelling the dynamic wetting, the interface formation theory, has
been proposed by Shikhmurzaev [1, 2]. The self-consistent macroscopic approach naturally introduces dynamic contact
angle through dynamic values of surface tension on forming liquid-solid interfaces. The approach is very appealing
and has shown excellent agreement with experimental observations [15], but requires the knowledge of macroscopic
surface tension relaxation time τLS of the liquid-solid interface which is also supposed to be proportional to viscosity,
τLS ' 4µ × 10−6 Pa−1, [15]. As a consequence, the theory is truly non-local, that is able to explain effects of non-
locality [6, 7, 16, 17], with the key characteristic feature, the relaxation tail of the dynamic surface tension with the
length scale ∼ UτLS(CaSc)−1, Ca = µU/γLV , Sc ' 5(τLS/6× 10−9 s)1/2(1.5× 10−3Pa s/µ)1/2 is a non-dimensional
material parameter defining the strength of the interface formation effect cos θ0 − cos θ ∼ CaSc [15].

In summary, we have at least two principally different models of dynamic wetting, both of them seem to be in a
very good agreement with experimental data, [3, 15]. But, which mechanism does actually determine the dynamic
contact angle? To what extent the dynamic interfaces can be in non-equilibrium conditions and contribute into the
dynamic contact angle effect?

The key to answering those questions appears to be the surface tension relaxation time τLS of the liquid-solid
interface, and in this Letter, we directly establish this fundamental parameter by MD simulations. The simulations
have been conducted in a model system consisting of LJ particles and/or chain molecules. We investigate τLS
dependence on liquid viscosity and temperature, and conduct direct MD experiments with dynamic contact angle to
get insights into the mechanism of dynamic wetting.

II. THE MODEL

The MD model we use is similar to [18] but with the LJ potentials ΦijLJ(r) = 4εij
((σij

r

)12 − (σij

r

)6) and the cut
off distance 2.5σij . Here i and j are either 1 or 2 to distinguish between liquid and solid wall particles with the
masses mi. Note, hereafter, all units are non-dimensional, the length is measured in σ11, energy and temperature in
ε11, mass in m1 and time in σ11

√
m1/ε11. The beads interacting via LJ potentials are connected into linear chains of

NB beads by the finitely extensible non-linear elastic (FENE) springs, and the strength of the springs is adjusted so

that the chains cannot cross each other, ΦFENE(x) = −k2R
2
0 ln

(
1−

(
x
R0

)2
)

. Here R0 = 1.5 is the spring maximum

extension and k = 30 is the spring constant.
The idea of our MD experiment is simple and is similar to experimentally designed reversibly switching surfaces [19].
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FIG. 2: Relaxation of liquid-solid surface tension (integrated to ym = 5) at different temperatures T and molecular compositions
NB after switching the interaction parameter ε12 from 0.2 to 0.65 at t0 = 100 during ∆ts = 1. The data are averaged over
∆ta = 1 and 200 independent experiments. The dashed line is fit f0, τ0 = 7.8, applied to an average of all four profiles. The
inset shows individual dependence at T = 0.8 and NB = 5. The solid (red) line in the inset is fit f1.

First, we equilibrate a square (Lx = 30 × Lz = 20) of a liquid film of thickness Ly ' 20 (the y-axis is perpendicular
to the film surface and periodic boundary conditions are applied in the x, z-directions) consisting of 12000 particles
during ∆teq = 5000 with the time integration step ∆tMD = 0.01, which is used in the study. The temperature
0.8 ≤ T ≤ 1.2 is controlled by means of a DPD thermostat with friction ςdpd = 0.5. The film was positioned between
two solid substrates consisting of three [0, 0, 1] fcc lattice layers of LJ atoms with the shortest distance between the
beads σ22, σ22 = 0.7, m2 = 10 and ε22 = 0. The pressure in the system was kept close to the vapour pressure at given
temperature T by adjusting Ly accordingly and making the second wall potential at y = Ly purely repulsive. This
has allowed for a small gap between the wall and the liquid phase to establish the gas phase. The solid wall particles
were attached to anchor points via harmonic potential Φa = ξx2, with the strength ξ = 800 chosen such that the
root-mean-square displacement of the wall atoms was small enough to satisfy the Lindemann criterion for melting√
< δr2 > < 0.15σ22 [20]. The anchor points in the layer of the solid wall facing the liquid molecules have been

randomised in the vertical y direction to increase/vary the surface roughness. The amplitude
√
< δy2 > = 0.1σ22

was shown to be sufficient to prevent the substrate from having large and shear-rate divergent/dependent actual
slip length [21]. The slip length measured in our experiments, as in [21], was lslip ' 2 − 4σ11. After equilibration,
parameter ε12 of the wall at y = 0 is changed from one value to another and we observe relaxation of interfacial
parameters, including the surface tension.

The surface tension of a plane liquid-solid interface is calculated according to [22], in the assumption of the rigid
solid substrate

γLS = lim
ym→∞

∫ ym

0

{
Tt − Tn − yρ(y)

dψ

dy

}
dy. (2)

Here ρ(y) is distribution of density, ψ(y) is the substrate potential generated by the solid wall particles, Tt,n(y) are
the tangential and normal components of the microscopic stress tensor evaluated according to [23], all quantities are
averaged in the (x, z) plane. We note here that (2) is an approximation in our case of the weakly rough wall consisting
of moving particles, [22, 24, 25]. So that the numerical procedure has been verified using the Young-Dupré equation
by placing a substantially large cylindrical liquid drop (about 30000 particles) on the solid substrate and measuring
the static contact angle θ0 applying a three-parameter circular fit (y−y0)2 + (z−z0)2 = R2 to the free surface profile.
The free-surface profile was defined in the study as the locus of equimolar points. The obtained values of θ0 were
found to be within 3◦ of the contact angles calculated directly from the Young-Dupré equation using independently
evaluated values of the surface tensions. The liquid-gas γLV surface tension has been calculated using large liquid
drops (radius ∼ 30), similar to [26]. Typical dependencies of the integrand of (2), γLS(y), in static conditions are
shown in Fig. 1 at different values of ε12.
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FIG. 3: Evolution of the density distributions ρ(y, t), the main plot, and surface density (ρs(t) − ρs(0))/ρs(0), the inset, at
T = 0.8, NB = 5 after switching the interaction parameter ε12 from 0.2 to 0.65 at t0 = 100 during ∆ts = 1, ∆t = t− t0. The
solid (red) line in the inset is fit f1.

III. RESULTS AND DISCUSSION

In the dynamic experiments parameter ε12 was switched from 0.2 to 0.65 (equivalently θ0 = 165◦ to 90◦ at T = 0.8,
NB = 5) during ∆ts = 1 with fixed σ12 = 0.7. The evolution of surface tension, density distribution and surface
density ρs = (ρBym)−1

∫ ym=5

0
ρ(y)dy are shown in Figs. 2 and 3 for different liquid compositions and temperatures.

One can see that in general the relaxation is very quick and almost independent of viscosity of the liquid at the
first glance (the results are insensitive to lowering ςdpd to 0.3). Simple fit, f0 = C1 + C2 exp(−(t − t0)/τ0), applied
to an average of normalised surface tension evolution data reveals τ0 = 7.8, Fig. 2. The individual dependencies,
inset Fig. 2, reveal more complex behaviour, which can be approximated by f1 = C1 + C2 exp(−(t − t0)/τ1) +
C3 exp(−(t− t0)/τ2) sin(ω(t− t0) +φ0), Table I. One can see that both τ1 and τ2 are almost independent of molecular
structure/viscosity despite the seventy-fold variation in µ. The observed values of τ1 (the major relaxation) are close
to the relaxation times found in the free surfaces of LJ liquids, [26], and thus correspond to the local relaxation on
the length scale of the individual density peaks, Fig. 3, that is on the beads level rather than on the level of the
whole molecules. This is similar to the multi-scale relaxation commonly observed in polymer dynamics, [27]. In our
case, initial, early times relaxation is defined by the mean square displacement of individual monomers over relatively
short distance of the order of the half of the distance between the density peaks (∆y = 0.5), Table I, while the liquid
viscosity is defined by the much slower molecular relaxation. This is also consistent with the weak dependence on the
destination value ε12(t > t0), Table I the last row.

The second, oscillatory relaxation, τ2 and ω, is likely to be due to the collective excitation of the particle motion
triggered by the sharp change of the solid wall potential, since the amplitude of oscillations decreases with increasing
the switching time interval ∆ts. In this case, τ2 is simply the time during which the excited wave of frequency ω
travels some distance l2 comparable to the interfacial layer width. Indeed, the product τ2ω = 2πl2/λ2, where λ2 is
the wave length, varies within 3.1 ≤ τ2ω ≤ 5.8, < τ2ω >= 4.4, Table I. Then on average < l2/λ2 >' 0.7 which means
that the wave length of the excitations is roughly the width of the interfacial layer.

We would like to note that the observed weak dependence τ1,2(µ) is in contrast to the relaxation time scaling
τLS ∝ µ found in the MKT and in the interface formation theory. While the first peak density characteristic time
scale found in the MD simulations [12] τdp ' 16.5 is roughly comparable to our results, Table I, the observed weak
dependence τ1,2(µ) rules out possible connections between τLS and the MKT parameter (k0)−1.

The relaxation times revealed by the dynamic experiments directly imply that in the liquid compositions used in
our study, in the slow hydrodynamic motion, parameter UτLS/L << 1 (L >> 1 is any macroscopic length scale) and
surface tension is expected to be at equilibrium. This in turn implies that the dynamic surface tension is unlikely to
be the cause of dynamic angle in our case, Sc << 1. To verify this conclusion, we have performed a series of MD
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FIG. 4: Snapshots and free surface profiles (the circular fits) in static and dynamic (U = 0.1) situations at T = 0.8, NB = 5
and ε12 = 0.9 (θ0 = 15◦). The observed static and dynamic contact angles are θ0 = 12± 3◦ and θ = 138± 4◦. The direction of
the moving solid wall particles is indicated by the arrow.

T NB γLV ρB µ† τ1 τ2 ω τρ1 τρ2 ωρ
√
< r2M >

0.8 1†† 0.36± 0.02 0.73 1.2 2.4± 0.6 15.3± 2.2 0.20 5.5± 0.5 16.1± 0.4 0.20 0.61

0.8 5 0.92± 0.04 0.91 10.5 3.9± 0.3 10.7± 0.8 0.43 3.8± 0.1 9.3± 0.2 0.39 0.40

0.8 10 1.01± 0.05 0.93 20.2 4.3± 0.3 9.2± 0.7 0.48 3.6± 0.1 8.7± 0.2 0.44 0.42

0.8 15 1.05± 0.05 0.93 30.1 3.5± 0.6 13.8± 1.8 0.35 4.6± 0.3 12.1± 0.5 0.32 0.38

0.8 20 1.08± 0.05 0.94 41.1 3.9± 0.5 9.2± 1.1 0.45 3.8± 0.2 9.2± 0.3 0.40 0.40

0.8 30 1.1± 0.06 0.94 71.3 3.6± 0.2 5.3± 0.3 0.79 3.0± 0.1 5.5± 0.2 0.72 0.38

1.0 5 0.71± 0.03 0.86 5.7 4.0± 0.5 12.2± 1.2 0.33 4.5± 0.2 13.2± 0.3 0.3 0.56

1.0 8 0.78± 0.03 0.87 9.4 3.7± 0.5 13.2± 1.2 0.33 4.0± 0.2 11.9± 0.3 0.32 0.54

1.0 50 0.92± 0.05 0.89 61.8 4.4± 0.8 27.5± 2.9 0.21 5.1± 0.3 27.2± 1.2 0.21 0.55

1.2 5 0.52± 0.03 0.79 3.8 2.3± 0.6 20.7± 3.2 0.23 4.5± 0.3 17± 0.7 0.24 0.56

0.8 5††† 0.92± 0.04 0.91 10.5 4.3± 0.3 9.6± 0.8 0.44 3.7± 0.1 8.3± 0.2 0.42 0.44

TABLE I: Parameters of the liquids (equilibrium surface tension γLV , bulk density ρB , dynamic viscosity µ†) and characteristic
times of the liquid-solid interface formation (τ1,2, ω for the surface tension and τρ1,2, ω

ρ for the surface density ρs applying fit

f1) at different molecular compositions (number of beads NB) and temperatures T . † Viscosity was obtained as in [27] at the
bulk conditions. The last column is the end-monomer mean-square displacement during ∆t = τ1 across the interface at the
bulk conditions. †† 400 independent experiments. ††† ε12(t > t0) = 0.9.

experiments with a large cylindrical liquid slug (60000 particles) forced between two identical rough solid plates, Fig.
4. The geometry is periodic in the x-direction with reflective boundary conditions at the simulation box ends in the
z-direction. The solid wall particles are moving with velocity U in the z-direction to mimic forced wetting regime.
After initial equilibration during ∆teq = 5000, we measure the dynamic contact angle and interface parameters in
steady conditions. The dynamic contact angle can be clearly seen in the snapshot and in the developed free surface
profile, Fig. 4. This is an extreme case (Ca = 1.1) of typical profiles observed in the case of long-chain molecules
when the dynamic contact angle θ is changing monotonically with the substrate velocity U from its equilibrium value.
We have checked that the system size has already no dramatic effect on the observed contact angle. For example, in
a similar case ε12 = 0.65, θ0 = 90◦, U = 0.1, at 60000 particles θ = 143.7±3◦, at 40000 particles, θ = 142.4±3◦, while
at 10000 particles θ = 129± 3◦.

The direct measurements of surface tension and distribution of density, in the case shown in Fig. 4, right after
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FIG. 5: Density distribution at different distances from the contact line ∆z averaged over ∆za = 1.25 in the dynamic case
shown in Fig. 4 at U = 0.1, ε12 = 0.9 (slug geometry) and in static conditions (plain geometry) at T = 0.8, NB = 5, and
ε12 = 0.9 (θ0 = 15◦) and ε12 = 0.37 (θ0 = 138◦).

the contact line (the contact line width is taken at ∆cl = 6 counting from the intersection of the free surface and
the substrate at zcl = 0, Fig. 4, just to fully cover the interfacial zones of both interfaces) are shown in Figs. 1,
5. One can see that indeed while the liquid motion has some effect on the first layer of particles, the overall effect
is not large, and both the surface tension and the density are close to equilibrium, and far away from the values in
the case ε12 = 0.37 (θ0 = 138◦ similar to the observed dynamic angle). How had then that dynamic angle (different
from θ0 = 15◦) been generated? We analysed the tangential force acting on the interface molecules in the region
(0 ≤ y ≤ ym = 2, zcl ≤ z ≤ zcl + ∆cl) at the contact line. We found that the tangential force f clz acting on the liquid
from the solid substrate is concentrated within ∆cl and then drops significantly. This is not a coincidence, of course,
since ∆cl ' lslip. The value of the force per unit length of the contact line is found to be sufficient to generate the
observed contact angle according to the balance of all forces acting on the contact line, the modified Young-Dupré
equation, that is f clz = 1.52±0.13 and from γLV cos(θ) = −γLS−f clz , θ = 133◦±10◦. But this effect will need further
studies.

IV. CONCLUSIONS

In conclusion, we have directly established relaxation time of the liquid-solid interfaces in a model system consisting
of LJ molecules. The relaxation time, importantly, appears to depend very weakly on the molecular structure and
viscosity (at seventy-fold change) and is found to be in such a range that interfacial tension γLS should be in equilibrium
in slow hydrodynamic motion. This has been also verified in the MD experiments on dynamic wetting, where the
dynamic contact angle was observed. Our results have direct repercussions on the theoretical interpretation and
modelling of the dynamic contact angle.
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