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Abstract. Quasi-uniform grids of the sphere have becomesphere and there are reduced or skipped lat—long grids which
popular recently since they avoid parallel scaling bottle-are not much used except in conjunction with spectral trans-
necks associated with the poles of latitude—longitude gridsform models Hortal and Simmonsl991; White, 2003. The
However quasi-uniform grids of the sphere are often non-details of the grid are critically important for low-order finite
orthogonal. A version of the C-grid for arbitrary non- volume methods that rely on super-convergence for accuracy
orthogonal grids is presented which gives some of the(second-order accuracy only for a sufficiently smooth grid).
mimetic properties of the orthogonal C-grid. Exact energy The hexagonal C-grid has become popular sificeburn
conservation is sacrificed for improved accuracy and the re{2008, Thuburn et al.(2009 and Ringler et al. (2010
sulting scheme numerically conserves energy and potentiavorked out how to calculate the Coriolis term so as to get
enstrophy well. The non-orthogonal nature means that thesteady geostrophic modes. This has been named TRiSK.
scheme can be used on a cubed sphere. The advantage TRiSK has mostly been used on Voronoi tessellations of the
the cubed sphere is that it does not admit the computasphere (e.gRingler et al, 2008 which are orthogonal (the
tional modes of the hexagonal or triangular C-grids. On var-primal and dual edges cross at right angles) and each shape
ious shallow-water test cases, the non-orthogonal scheme dmas more than (or occasionally equal to) four sides. C-grids
a cubed sphere has accuracy less than or equal to the orthobased on primal cells with more than four sides in 2-D will
onal scheme on an orthogonal hexagonal icosahedron. have more than twice as many velocity degrees of freedom
A new diamond grid is presented consisting of quasi- (DOFs) as mass DOFs and will therefore suffer from spu-
uniform quadrilaterals which is more nearly orthogonal thanrious computational mode$taniforth and Thuburr2012).
the equal-angle cubed sphere but with otherwise similarThe hexagonal C-grid suffers from a branch of spurious
properties. It performs better than the cubed sphere in evRossby modesThuburn 2008 which do not interact cor-
ery way and should be used instead in codes which allowectly with the mass. The triangular C-grid does not have
a flexible grid structure. enough velocity DOFs and so suffers from spurious diver-
gent modes DPanilov, 2010 Gassmann2011). The spuri-
ous modes on triangles can be controlled by strong diffu-
sion (Gassman2011) or strong hyper-diffusionWan et al,
1 Introduction 2013. The spurious modes on hexagons can be controlled
using upwinded advection of potential vorticity (eWgeller,
Quasi-uniform grids of the sphere have become popular re2012 which does not destroy energy. However, a more ef-
cently since they avoid parallel scaling bottlenecks assocCificient discretisation would have the correct ratio of DOFs
ated with the poles of latitude—longitude grids. The predomi-anq would not need to control spurious behaviour in the ex-
nant groups of quasi-uniform grid are hexagonal icosahedralgess DOFs. The correct ratio of DOFs can be achieved by
triangular icosahedral and cubed sphékeler etal, 2009.  ysing grids of quadrilaterals, such as the cubed-sphere grid.

There is also an octagonal gri4rEic et al, 2008 thathas  However, grids of the sphere using quadrilaterals are either
not been used much but has similar properties to the cubed
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780 H. Weller: Diamond C-grid

non-orthogonal (e.g. the equal-angle cubed spherernier  the fully compressible Euler equations on a hexagonal-
et al, 20049, have large variations of cell size (e.g. the con- icosahedral grid of the sphere using a C-grid discretisation
formal cubed sphereRartic et al, 1996 or are locally in-  and described how it can be controlled. It is possible that
homogeneous (such as kite grifgeller et al, 2012. This  this mode grows more quickly when it interacts with the
provides motivation for more nearly orthogonal quadrilateral computational modes of the hexagonal C-grid but this is not
grids of the sphere and a C-grid discretisation with the re-proved and has not been demonstrated. If the discretisations
quired mimetic properties on non-orthogonal grids. described on various grids of quadrilaterals were extended to
Thuburn and Cotter(2012 describe some desirable 3-D, the behaviour of the Hollingsworth instability could be
mimetic properties of atmospheric models (mimicking the compared on hexagonal and quadrilateral gri@assmann
properties of the continuous equations). Their mimetic prop-(2013 found that this mode is triggered at the pentagons of
erties are 1-6. Property 7 is clearly also desirable: the icosahedral grids. The cube corners of the cubed-sphere
grid have larger distortions than the pentagons of the icosa-

1. C-grid staggering (assuming afinit_e difference (-)rfin?te hedral grid. Therefore, it seems likely that this mode would
volume approach) for accurate dispersion of inertio- also be triggered on a cubed-sphere grid.

gravity waves; A new diamond grid of quadrilaterals is introduced in
2. mass conservation: Sect.2 which is more nearly orthogonal than the equal-angle
_ cubed sphere and nearly as uniform. The properties of the
3. curl-free pressure gradients; diamond grid are compared with those of the cubed sphere
. ) and orthogonal and non-orthogonal versions of the hexago-
4. energy-conserving pressure terms; .
nal icosahedron. In Se@, a more accurate non-orthogonal
5. energy-conserving Coriolis term; model is proposed that forgoes energy conservation for better
_ accuracy than the schemeTiuburn et al(2014 and which
6. steady geostrophic modes; can be used on grids with non-centroidal duals. The accuracy
7

of the perp operator and the non-orthogonal correction is ex-
plored in Sect5 and the results of shallow-water test cases
The TRiSK schemeThuburn et al. 2009 Ringler et al, are presented in Se@.

2010 gives properties 1-6 on orthogonal polygonal grids

but it will be demonstrated that the discretisation of the per- o )

pendicular (perp) operator (for calculating dual grid fluxes 2 Quasi-uniform grids of the sphere

from primal grid fluxes) is inconsistent (i.e. zeroth-order ac-
curate) even on the smoothest hexagonal icosahedral grids
the sphere. Extending TRiSK to non-orthogonal grids may

ameliorate the lack of convergence of TRiSK since points 1 The Heikes and Randa([1995 optimised version of
other than the Voronoi generating points can be used as the  the orthogonal hexagonal icosahedron (referred to as

cell centre in order to optimise aspects of the grid to improve the HR grid). Neither this grid nor its dual are cen-
accuracy of the perp operator. troidal.

Thuburn and Cottef2012 set out the mathematical con-
straints for mimetic C-grid discretisations on non-orthogonal 2 A non-orthogonal version of the hexagonal icosahe-

. second-order accuracy (or higher).

gfeven types of grid are considered, some of which are dis-
played in Fig.1.

grids but did not give an example of such a scheme. Sub- dron with dual vertices moved from the Voronoi gen-
sequently;Thuburn et al(2014 proposed a scheme suitable erating points to the centroids of the polygons, making
for grids whose duals consist of only triangles and quadri- the primal grid centroidal.

laterals and whose duals are centroidal (primal vertices are
at the centroids of the dual cells). However, the results on
cubed-sphere grids were much less accurate than those using

similar resolution hexagonal icosahedra. A variety of mixed 4 A giamondised version of the cubed sphere. The dia-
finite-element schemes for grids of triangles or quadrilater- mond grid is constructed by replacing each edge of the
als have been proposed which give the above properties and cubed sphere with a primal cell whose vertices consist
second-order accuracy by constructing and inverting global of the two vertices of the original edge and the cell cen-
mass matrices at every time stéofter and Shiptor2012 tres either side of the edge (bottom right of Fi}.The

Cotter and Thuburr2014. . . 3 dual vertices are then placed at the primal cell centres
Hollingsworth et al.(1983 described an instability that to make the primal grid centroidal.

can grow when solving the primitive equations in 3-D using

the vector-invariant form of the momentum equation, con- 5-7 Versions of 2—4 above but with centroidal dual grids
serving energy and enstrophy but not momentGassmann rather than centroidal primal grids. So once the duals
(2013 found that this mode could grow when solving are defined, the primal vertices are moved to be at the

3 The centroidal equal angle cubed sphere (with dual
vertices at the primal cell centroids).

Geosci. Model Dev., 7, 779797, 2014 www.geosci-model-dev.net/7/779/2014/
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Fig. 2. The panels of the cubed-sphere primal grid (dashed) and
the diamond primal grid (grey) and the grid boxes for an equal-
angle cubed-sphere grid. In the plane limit for the diamond grid,
b =asin30 and: = a cos 30 implyinge/b = /3.
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wherex, andx, are the primal vertices at either end of
edgee. The skewness of the primal and dual meshes is dif-
ferent but the skewness of the primal mesh is shown from
red (no skewness) to yellow on the dual edges. In Eithe
diamond grid is more nearly orthogonal and has less skew
Fig. 1. Orthogonality and skewness of some grids. Non- than the cubed sphere, a result that holds at all resolutions
orthogonality (from black, orthogonal, to blue) is shown on the pri- considered.

mal edges whereas skewness of the primal grid (from red, no skew- The Heikes and Randal{1999 (HR) grid (top left of
ness, to yellow) is shown on the dual edges. Fig. 1) is orthogonal and optimised to minimise skewness.

This grid has recently been revisited Hgikes et al(2013.

The HR optimisation minimises the error of discretising
centroids of the dual grids. These grids are used sincey Laplacian but the value at the dual vertex is not a second-
the non-orthogonal algorithm defined Bguburn etal.  order approximation of the primal cell average because the
(2014 is only consistent if the dual grid is centroidal. dual vertex is not at the centroid. In moving the dual vertex

The diamond grid is topologically different from the cubed to the centroid of.the primal cell (top right of Fig), the grid
becomes centroidal but non-orthogonal and also the skew-

sphere and different from the dual of the cubed sphere al- o S . .
though it still suffers from the problem of having three ness is increased. An alternative is the centroidal Voronoi

quadrilaterals meet at one vertex at eight locations in thegrid (Ein?_:g et_gl,jo_oa which i;orthog;mg(ljbut more skew
grid. The panels of the cubed sphere and diamond grids argwan € MR grid. Using hon-orthogonal grids opens up many
shown in Fig2. The diamond grid for an equal-angle cubed- more options for optimising a combination of the orthogonal-
sphere grid at a cube corner is also shown in RigThis ity, skewness, uniformity and centroidality of both the primal

shows that, near the cube corners, the diamond grid cells bealnd dual grids. Howevgr, this has pot beep done. .
come rectangles with aspect rati@ and, along the edges Some of t_he properties of the grids at dlfferent_ resolutions
the cells are kite shaped. In the limit of high resolution, it are shown in Tabled and2. The non-centroidality of the

would be possible to construct the diamond grid to be orthogprimal is defined as the distance between the dual vertex and

onal but then both the primal and dual grids would be highly (€ Cell centroid of a primal cell divided by the square root
non-centroidal, leading to large truncation errors. Instead di—Of the primal call area:
amond grids with either centroidal primal or dual grids are

used. non-centroidality=

The skewness and non-orthogonality of coarse versions of VA

these grids are shown in Fig. The non-orthogonality is the By making the primal centroidal, the dual may become less
difference between the angle between the primal and duatentroidal. The centroidal hexagonal grid (Tab)énas non-
edges (in degrees) and®90’he non-orthogonality is shown  grthogonality of less than°land skewness similar to the
from black (orthogonal) to blue (non-orthogonal) on the pri- orthogonal version whereas the hexagonal grid with a cen-

mal grid edges. The skewness of edge., measures the de-  trojdal dual (Table2) has much larger non-orthogonality —
parture from the edge centre of the primal-dual edge crossgp to 13.

dist(x;, centroidi))

&)

over point: The centroidal cubed sphere (Tabl®) has non-
orthogonality increasing with resolution up to°3fbr the
dist(xe, 5(x0 +xw)) resolutions considered and maximum skewness of 0.25 at
Se = dist(x,, x) ’ () the corners. The ratio of maximum to minimum grid spacing

www.geosci-model-dev.net/7/779/2014/ Geosci. Model Dev., 7, 7772014



782 H. Weller: Diamond C-grid

Table 1. Properties of the orthogonal hexagonal HR grid and the centroidal grids.

Number of AX  Axmax Non- Skewness Non-
mean  A¥min orthogonaP] centroidality

cells DOFs  (km) mean max mean max mean max
Orthogonal HR grid (Centroidality of the primal given. Dual is less centroidal.)
3 162 642 1906 1.23 0 0 0.035  0.059 0.0096 0.020
4 642 2562 956 1.26 0 0 0.020 0.031 0.0063 0.019
5 2562 10242 479 1.27 0 0 0.010 0.016 0.0033 0.017
6 10242 40962 239 1.27 0 0 0.0052 0.0087 0.0018 0.017
7 40962 163842 120 1.27 0 0 0.0026 0.0053 0.0010 0.017
8 163842 655 362 60 1.28 0 0

0.0013 0.0045 0.0007 0.017

Centroidal hexagonal grid (Centroidality of the dual given.)

3 162 642 1905 1.18 0.29 0.88 0.035 0.094 0.067 0.13
4 642 2562 956 1.23 0.15 0.82 0.020 0.069 0.068 0.14
5 2562 10242 479 1.25 0.099 0.79 0.011 0.047 0.067 0.13
6 10242 40962 239 1.26 0.063 0.86 0.0056 0.038 0.066 0.13
7 40962 163842 120 1.27 0.039 0.86 0.0029 0.036 0.066 0.13
8 163842 655362 60 1.28 0.029 0.89 0.0015 0.035 0.066 0.13
Centroidal equal-angle cubed sphere (Centroidality of the dual given.)
6x6 216 648 1557 1.41 3.73 16.30 0.021 0.21 0.045 0.13
12x 12 864 2592 782 1.60 4.60 23.48 0.010 0.23 0.032 0.19
17x 17 1734 5202 553 1.66 4,86 25.50 0.007 0.24 0.025 0.22
24 x 24 3456 10368 392 1.70 5.03 26.87 0.005 0.24 0.018 0.23
32x 32 6144 18432 294 1.73 5.14 27.68 0.004 0.24 0.014 0.24
48 x 48 13824 41472 196 1.75 5.24 28.47 0.003 0.25 0.010 0.25
72x 72 31104 93312 131 1.77 5.31 28.99 0.002 0.25 0.006 0.26
144x 144 124416 373248 65 1.78 5.38 29.50 0.0008 0.25 0.003 0.26
191x 191 218886 656 658 49 1.78 5.39 29.62 0.0006 0.25 0.003 0.26
288x 288 497664 1492992 33 1.78 541 29.75 0.0004 0.25 0.002 0.26
Centroidal diamond grid (Centroidality of the dual given.)
6x6 432 1296 1102 1.48 2.03 5.18 0.015 0.12 0.024 0.11
12x 12 1728 5184 552 1.69 2.16 5.73 0.0068 0.10 0.018 0.15
17 x 17 3468 10404 390 1.78 2.19 6.42 0.0047 0.10 0.014 0.17
24 x 24 6912 20736 277 1.87 2.20 6.99 0.0033 0.09 0.010 0.18
32x 32 12288 36864 208 1.93 2.21 7.32 0.0024 0.09 0.008 0.19
48 x 48 27648 82944 138 1.99 2.22 7.64 0.0016 0.09 0.006 0.20
72x 72 62208 186 624 92 2.03 2.22 7.86 0.0011 0.09 0.004 0.20
144x 144 248832 746 496 46 2.08 2.22 8.08 0.0005 0.08 0.002 0.21
191x 191 437772 1313316 35 2.09 2.22 8.14 0.0004 0.08 0.001 0.21

reaches 1.78 for the grids presented in Tahlevhich is  2.09 for the diamond grid where%‘m—ax < 1.8 for the cubed
larger than the asymptotic value of 1.3 given 8taniforth  sphere) but otherwise does not appear to suffer from any de-
and Thuburn(2012. This is because we are measuring the ficiencies relative to the cubed sphere. Again, like the cubed
cell centre to cell centre distance rather than grid edge lengthsphere, the cell centre to cell centre distances vary more than
In moving the dual vertices to the primal cell centroids, cell the edge lengths. (The maximum to minimum edge length
centres have become closer together at the cube corners. Tliar the diamond grid should approaef8 ~ 1.7.)
cubed sphere with a centroidal dual (Tal2lehas similar The impacts of the different grid structures on the accu-
properties but is slightly less skewed at the corners. racy of the perp operator (for estimating the velocity per-
Both diamond grids are more orthogonal than the cubedoendicular to the normal velocity at each edge) and on the
sphere in the mean and maximum (less tliae@d the skew-  non-orthogonal correction will be seen in Ségand on the

ness and non-centroidality are also smaller. The diamond;olution of the shallow-water equations in Sekt

grid is slightly less uniform that the cubed sphefg! e <

Geosci. Model Dev., 7, 779797, 2014 www.geosci-model-dev.net/7/779/2014/



H. Weller: Diamond C-grid 783

Table 2. Properties of the grids with centroidal duals.

Number of AX  Axmax Non- Skewness Non-
mean  A¥min orthogonaP{ centroidality
cells DOFs  (km) mean max mean max mean max

Hexagonal grid with centroidal dual (Centroidality of the primal given.)

3 162 642 1921 123 346 856 0.02 0.026 0.025 0.056
4 642 2562 963 126 458 109 0.01 0.015 0.015 0.069
5 2562 10242 482 127 498 117 0.005 0.009 0.0096 0.071
6 10242 40962 241 127 516 123 0.003 0.006 0.0053 0.072
7 40962 163842 120 127 525 129 0.001 0.005 0.0030 0.074
8

163842 655362 60 128 5.30 131 0.0007 0.004 0.0019 0.074

Equal-angle cubed sphere with centroidal dual (Centroidality of the primal given.)

6x6 216 648 1571 1.70 2.56 8.53 0.027 0.19 0.039 0.064
12x 12 864 2592 784 1.74 3.91 19.16 0.013 0.18 0.027 0.08
17x 17 1734 5202 553 1.75 435 22.49 0.009 0.18 0.022 0.09
24x 24 3456 10368 392 1.77 4.66 24.77 0.007 0.17 0.017 0.10
32x 32 6144 18432 294 1.77 486 26.12 0.005 0.17 0.013 0.11
48 x 48 13824 41472 196 1.78 5.06 27.45 0.003 0.17 0.009 0.12
72x 72 31104 93312 131 1.78 5.18 28.31 0.002 0.17 0.006 0.12
144x 144 124416 373248 65 1.79 5.31 29.16 0.001 0.17 0.003 0.13
191x 191 218886 656 658 49 1.79 5.35 29.37 0.0008 0.17 0.002 0.13
288x 288 497664 1492992 33 1.79 5.38 29.58 0.0006 0.17 0.002 0.13
Diamond grid with centroidal dual (Centroidality of the primal given.)
6x6 432 1296 1104 1.58 0.53 1.31 0.015 0.15 0.010 0.016
12x 12 1728 5184 552 1.70 1.70 4.60 0.0092 0.14 0.012 0.036
17x 17 3468 10404 390 1.76 2.01 6.27 0.0071 0.14 0.011 0.045
24x 24 6912 20736 276 1.82 2.16 7.21 0.0054 0.14 0.009 0.052
32x 32 12288 36864 207 1.86 2.22 7.67 0.0043 0.13 0.007 0.058
48 x 48 27648 82944 138 1.90 2.25 8.03 0.0030 0.13 0.005 0.063
72x 72 62208 186 624 92 1.95 2.26 8.21 0.0021 0.13 0.004 0.067
144x 144 248832 746 496 46 2.03 2.24 8.40 0.0011 0.13 0.002 0.071
191x 191 437772 1313316 35 2.06 2.24 8.44 0.0009 0.13 0.001 0.072

3 The non-orthogonal C-grid discretisation 3.1 Notation

. L . . The notation has some minor differences fréhruburn and
We present a discretisation of the rotating, nonlinear shallow-~ o, (2012. The primal (solid) and dual (dashed) grids

water equations in vector-invariant form in which the conti- ¢, Thuburn and Cotte(2012 are shown in Fig3 with
nuity and momentum equations are

the surface normal vectors, lengths and fluxes. Edgiethe
primal grid has lengthyp = | p|, normal vectorp and tangen-

tial vector p. Edgee of the dual grid has normal vectdr
99 +V - (¢pv) =0, (3) and tangential vectad-. Here we restrict our attention to
ot ) a low-order finite-volume discretisation so that the volume
0 : . . -
8_': fovt v <¢ + %) —0 ) (or area) flux across edgds U, = v, - p and the circulation

along dual edge is V, = v-d*. Lowercase variable names
indicate values sampled at a point whereas uppercase names

are integrated values. Primal cells are indexed or denoted by
whereg is the geopotentialhg, fluid depth times gravity), i or j and dual cells are indexed or denotecubyr w. These

v is the horizontal velocityy: = k x v wherek is the local ~ definitions and some of the finite-volume approximations are
unit vertical vector; = f +£ is the absolute vorticity, where given in Table3.

f = 2k - Q is the Coriolis parameter associated with rotation

®, andé =k - (V x v) is the relative vorticity.

www.geosci-model-dev.net/7/779/2014/ Geosci. Model Dev., 7, 7772014



784 H. Weller: Diamond C-grid

Table 3. Variables used in the discretisation and some of their finite-volume representations. Extensive quantities are upper case.

Variable  Definition Description

Indexing

i,J Indexing for primal cells (dual vertices)
e, e Indexing for (primal and dual) edges

v, w Indexing for primal vertices (dual cells)
Geometry

X, Xy Location of dual/primal vertex, v

Xe Primal/dual edge cross-over point

De DeDe Surface normal vector to primal edge
pr k X pe Perpendicular with same magnitude
d, deﬁe Surface normal vector to dual edge
del kxd, Perpendicular with same magnitude
Aj, Ay Area of celli, v

Apy Overlap area between primal cetind dual celb
Ae Area associated with edge

Aje Fraction ofA, in cell i

Ajve Fraction ofA;, in dual cellv

Nej sign(pe - (xe —x;)) Edge orientation indicator

Ney sign(de - (xe — xv))

Intensive quantities

b Geopotential at;

be Geopotential at,

. % Potential vorticity ate,
e Potential vorticity atx,
k; 27}‘1' Y ecECH) */‘Tf: U,V, Kinetic energy at;

Extensive quantities

U, Ve -pe=HV Flux through primal face
v, Ve -dt Circulation along dual edge
3.2 Discretised momentum and continuity equations 3.3 Perp operator,*

The prognostic variables of the shallow-water equations ofThe perp operatot in Eq. (6) is the discrete operator de-

a C-grid are usually cell average geopotentfal, and the  scribed inThuburn et al(2009 for mapping from fluxes on
normal component of the velocity at the cell edges= the primal grid to fluxes on the dual grid. This operator en-
v- p.. However, on the non-orthogonal C-grid, the prognosticsures that the divergence of the mapped fluxes is a convex
velocity variable isV, (Thuburn and Cotte2012. We con-  combination of the divergence of the fluxes on the primal
sider split space—time discretisation and so the discretisatiogrid. This is why the discrete perp operator acts on the flux
of the temporal derivatives is considered separately. The spa?, (in the p direction) and maps to thé direction, despite
tially discretised continuity equation f@f; and momentum p andd not being at right angles. This operator is inconsis-

equation forV, can be written as tent (zeroth-order accurate) even on an orthogonal grid but
does not always prevent convergence with resolution of the
A shallow-water equations (see Seé&d.and6). The perp op-
-+ V-H(¢.V,)=0 (5)  erator is defined to be
v, 1 N 1
55 (00U T @l ) Va0 +0 =0 ©) iy, @)

¢'€EC(i),EC())
The discretisation of each of the terms will now be described,

including theH operator and the gradient along a dual edge,where primal cells and j are the cells either side of edge
V. ep, EC(i) means the edges of celandThuburn et al(2009

Geosci. Model Dev., 7, 779797, 2014 www.geosci-model-dev.net/7/779/2014/



H. Weller: Diamond C-grid

Fig. 3. Primal grid (solid) and dual grid (dashed) with surface nor-

mal vectorsp andd, perpendicular vectorp andd-., lengths
p=Ipl=|pt|landd =|d| = |d~|, flux U. = v- p and circulation
V., =v-dL, for edgee of the primal or dual.

derived the weights,,:

1 Aiv
wee’:i(z—z Ai)’
v

where thev are the vertices in a walk between edgeasnd
¢'. If the walk starts in thep* direction and ifn,; = 1 then
the sign is positive.

(8)

3.4 Mapping from primal cell averages to edges

In order to ensure energetic consistency, the mapping of
from cells to edges¢; — ¢.) must use the same weighting
as will be used for calculating the kinetic energy (EG):

Aj A;
e = A_l:‘pi + A_je¢j’ (9)

e

where cells and j are either side of edge This is the re-

785

3.5 Potential vorticity and curl on dual cells

FromRingler et al.(2010, g, is discretised as
_ fotcurl(Ve),

o

2
ieCV(v)
from the primal to the dual grid and, frothuburn and Cot-
ter (2012, the curl is discretised as

v

whereg, = A;y¢; is the conservative mapping of

1
curI(Ve),,zA— > newVe.

U ecEC(v)

3.6 Mapping potential vorticity from dual cells to edges

The potential vorticity (PV) at the edge,, is interpreted as
the PV at the primal and dual edges. It is interpolated from
surroundingg, values from an upwind-biased stencil using
CLUST which was developed for mapping PV from vertices
to edges of the polygonal C-grit\eller, 2012. The CLUST
blending coefficient between linear differencing and linear
upwind used is 0.5. It is essential to use CLUST for this work
rather than a conventional high-order upwind or monotonic
advection scheme such as quadratic-upwind, linear-upwind
or a TVD scheme such as that of van Leer. The conventional
schemes have switching between upwind on either side of an
edge when the flow is aligned with the edge. When used for
interpolating PV on the dual of the C-grid, this leads to er-
rors. The advantage of CLUST is that it blends smoothly with
linear when the flow is aligned with the edge so there is no
switching. APVM Ringler et al, 201Q which is equivalent

to Lax—Wendroff) could also be used as it does not involve
switching but CLUST was found to control the grid-scale PV
noise better\(veller, 2012.

3.7 Energy conserving Coriolis flux averaging

The averaging between (¢, U,)* and(g.¢.U,)" in Eq. 6)

is necessary for the Coriolis force to be energetically neutral
(Ringler et al, 2010. Without this averaging (if this term is
simply represented ag (¢.U,)") the PV evolves exactly as

if it were advected by the fluxdg; by the advection scheme
used to map PV from dual cells to edges. Thus high order,
monotonic advection of PV can be obtained. However, nu-
merical tests byringler et al(2010 and further unpublished
work have found the energy-conserving version to generate
more accurate solutions without serious oscillations in PV.
The non-energy-conserving version is used’byburn et al.

verse of linear interpolation and ensures an exact transfer bg2014.

tween kinetic and potential energy. However, higher-order
upwind interpolations can be used instead, foregoing this3.8 Gradients along dual edges

form of energy conservation in favour of a smoother geopo- i )

tential field. Here, we will present results using CLUST The gradient o along dual edge, integrated along the
(Weller, 2012 with a blending of 50 % between linear and €d9€, between celisand j is

linear-upwind differencing which gives smoother advection Noi ((15‘,' — d);)

of geopotential (see Se&.6). Vap =d p

=nei (¢ — ¢1).
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This gradient is also used for the kinetic energy.
3.9 Kinetic energy

The kinetic energy in primal cellis defined as

1 dist(x,, x;)

24; ecEC(i) d
1 A;
er Ve,

24, ecEC(i) Ae

ki U.V.
(10)

where distx,, x;) is defined in Sect3.13 Ringler et al.
(2010 weighted the edge contributions by2l rather than

H. Weller: Diamond C-grid

where the stencil of edges consists of the edges of the
dual sharing one vertex withand f, = 4 when dual edges
ande¢’ are edges of the same quadrilateral gpe= 6 when

e and¢’ are edges of the same triangle. All Voronoi grids
and many other grids of polygons have dual grids consist-
ing of only triangles and the dual of the cubed-sphere grid
consists of quadrilaterals and eight triangles. So this operator
should cover most of the grids anyone would be interested in
as long as the primal vertices are moved to the dual cell cen-
troids. The centroidal dual constraint is necessary to ensure
first-order accuracy. However, for grids with triangular duals,
the off-diagonal terms off do not vanish as the grids tends
towards an orthogonal grid. The accuracy of solutions using

Ai./A.. Then, in order to achieve energetic consistency,this operator will be presented in Seét.

they useA; =1/4)", A, which gives the correct area on

Voronoi grids for which the edges bisect the lines between3 11.2 Asymmetric/diagonalH

the Voronoi generating point§\eller et al.(2012 suggest

the weighting as in Eq1Q) for non-Voronoi grids. For ener-

It would seem logical to have aH operator with vanishing

getic consistency, the same weighting must be used for mapsf_giagonal terms as the grid becomes orthogonal, regard-

ping the geopotential from cells to edges (see S4}.
3.10 Divergence operator

The divergence of a vectar, defined at edges in cellis
given by Gauss'’s divergence theorem:

1 1
(V'v)i:K Z neive'p:K Z nei Ue.

L ecEC() ! ecEC(i)

(11)

Thuburn and Cottef2012 suggest operatalf to transform
V. into U, so that

1
(V- (@) =+

Z Nei e Ue

ecEC(i)

- L > neiH ($eVe).

I ¢cEC(i)

(12)

The H operator is described further in Se8t11
3.11 H operator

The H operator transforms from the set¥fvalues to thd/

less of the cell shapes. It would also be desirable to use an
operator that is at least first-order accurate on any grid. The
first/second-order operator for reconstructing cell centre vec-
tors from normal components at edge©ipenFOAM(2013

is

v, = T.il

Y Pl

ecEC(i)

(14)

whereT; = Y. p,p.. T; is a 3x 3 tensor so not compu-

ecEC()
tationally expensive to invert and is only dependent on ge-
ometry and so can be pre-computed. It can be shown that
this operator will exactly reconstruct a uniform velocity field
and for non-uniform velocities, it is a least-squares fit. This
is similar to Perot’s reconstructioérot 2000 but a com-
parison of the two methods has not been done. Alternatively,
to reconstruct dual cell velocity,, from V., we can use

_ ~1
v=T," > d, V..
ecEC(v)

(15)

values and is therefore referred to as a non-orthogonal cor-

rection.

3.11.1 SymmetricH

Thuburn and Cottef2012 proved that energetic consistency
is achieved ifH is symmetric and positive definite but they
did not suggest the form off for non-orthogonal grids.
Thuburn et al(2014) suggest arlf operator with the desired

whereT, = > Zijdj. We can then interpolate thes
ecEC(v)
from the dual cells to the dual edges using any centred

or upwind-biased interpolation. We will show results in
Sect.6 using mid-point interpolation. The resulting veloc-
ity on edges is referred to asg,, with the prime because
this is not the final velocity that will give ug,. We require

. 1
properties for grids whose dual consists of quadrilaterals olUe = Pe/dc V. for an orthogonal gridg =d °) so we can

triangles and for which the dual grid is centroidal:

1 (Ved) —Vpd}) -d}
U=HWVy)= Y —-—* e,
e'(#e) fe |dé_ x de"

(13)

Geosci. Model Dev., 7, 779797, 2014

. . . Lo~
correctv), to give exactlyV, in the directiord, :
V,~ 1\~
Ve = d—edj+v:,— (v’e~dj)dL (16)
e
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from which we can write doww, = H (V,): the implicit part. The off-diagonal terms are lagged correc-
tions. Between time levels andn + 1 this gives

Ue=v," pe (17) 1

~1 It —gr 1 1

d ~1 (~L T IVCH (V) + 2V Hy(glvitt

== peVetv,- (pe—d, (4, -p.)). (18) SV H (V) + 5V - Ha (V)
¢ 1 eyt

For nearly orthogonal grids this operator is close to diagonal + iv - Hoft (¢e Ve ) =0, (21)

so the requirement for positive definiteness should easily bey»+1 _ yn 1 1
. . . . e e + = )(d)nUn) +( n¢nUn)
met for most grids. However, this operator is not symmetric =, T 2 \9¢\®c e e PeUYe

(unless of course it is diagonal). In fact the requirement for 1 L/ /0t o\t

symmetry is not consistent with the requirement tHat = +5Vd (¢" +&") + I (qe (¢e Ue) + (Qe b Ue) )
e AL o Al

Oforalle #¢'if p,-d, =1, since if we also havp, -d, # 1

1 then we may havél,, # 0. + 5V (¢>"+l + ke) =0, (22)

The H operator described in this section is referred to
as the asymmetric/diagon& operator (or just the asym- where values at time levél are at time levek for the first
metric operator for short) since it is asymmetric for a non-iteration and they are the most up to date value (but not im-
orthogonal grid and diagonal for an orthogonal grid. The rel-plicit) for the second iteration. Using just two iterations, the
ative merits and accuracy of the symmetric and asymmetexplicit scheme is the Heun scheme which is weakly unsta-

ric/diagonalH will be assessed in Se@. ble. However, the instability is not seen in the simulations
o undertaken. An additional explicit step would remove the in-
3.12  Full velocity field at cell edges stability if needed. Equationg{) and @2) are solved simul-

o _ _ taneously forp”+1 by substitutingV”** from Eq. £2) into
The full velocity fleld at cell edges |s_needed in CLUST and Eq. 1) (taking the Schur complement) to form a Helmholtz
for post-processing such as calculating errors and error metéquation which is solved using a conjugate gradient solver

rics. Due to the inconsistency of the perp operator, B ( \yith incomplete Cholesky pre-conditionin@®penFOAM
is used to reconstruct the full velocity field. 2013.

3.13 Spherical areas and distances

. . i 4 Linear stability
All distances (or lengths) are great circle distances so that the

distance between points, andx,, is The normal modes (eigenvectors) and corresponding ampli-
1 fication factors (eigenvalues) of the model for the linearised
dist(x,, x,)) = 2a sin™t §|xv — Xyl (29) shallow-water equations
wherea is the magnitude of botlr, andx,,. The areas on ou + fut =—gVh, ?Th +HV-u=0 (23)
‘ t

the surface of the sphere are calculated to be consistent wittd?

the distances to retain the correct mimetic properties. Thugre found using the method Wfeller et al.(2012 which in-
the area of a triangle with points, y andz on a sphere of  yolves multiple model runs with different initial conditions
radiusa is in order to evaluate the matrix that represents the model. The
. . — model usesf =2k - & whereQ = (0,0,0.1)s, H=1m
a?/2 disi(y, x)dist(z, x)|(z = x) x (y = x)]. (200 andg =1 ms2. The corresponding eigenvalues give us the
amplification factors of the normal modes and are shown
in Fig. 4 for coarse versions of the cubed-sphere and dia-
mond grids. Crank—Nicolson time stepping with a time step
3.14 Semi-implicit solution technique of 1s is used with the Coriolis term treated explicitly and
updated four times per time step. More explicit updates are
The momentum and continuity equations are solved seminot needed because, after two, the fields do not change for
implicitly using Crank—Nicolson for the implicit terms. Two this small time step (to within machine precision) so the time
outer iterations are used so that, for the first iteration, the exstepping is effectively Crank—Nicolson.
plicit terms are solved with Euler-explicit and the second iter- Crank—Nicolson time stepping is neutrally stable and the
ation uses 50-50 weighting of the old and new values so thasymmetric H operator is energy conserving and therefore
the explicit terms are second order, with the same weightinghe eigenvalues using the symmetfit have magnitude 1
as the implicit terms. For the simplest possible implemen-for both grids in Fig.4. Use of the asymmetridd does
tation, H is split into diagonal and off-diagonal elements: not formally guarantee energy conservation but, on the grids
H = Hq+ Hpf and only the diagonal terms are included in with centroidal duals, the eigenvalues still have magnitude 1.

AreasA;., A;y, A; andA, are composed of the sums of tri-
anglesA;,., as shown in Fig3.
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Table 4. Grid resolutions and time steps used for all test cases and resulting advective Courant naigbansl gravity-wave Courant

numbers Cg).

Test 2 Test 5 Jet

DOFs Af(s) Ca Cg At (S) Ca Cg At (S) Ca Cg
Hexagonal grid
3 642 3600 0.07 0.36
4 2562 3600 0.14 0.72 1800 0.04 0.5
5 10242 1800 0.14 0.72 900 0.04 0.5
6 40962 900 0.14 0.72 450 0.04 0.5
7 163842 450 0.14 0.72 225 0.04 05
8 655 362 225 014 0.72 240 03 14
Cubed-sphere
6x6 648 3600 0.10 0.46
12x 12 2592 3600 0.21 1.0 1200 0.04 05
17x 17 5202 2400 0.20 0.97 900 0.04 0.6
24 x 24 10368 1800 0.22 1.0 600 0.04 05
32x 32 18432 1200 0.20 0.94
48 x 48 41472 900 0.22 11 300 0.04 0.6
72x 72 93312 600 0.22 1.1 225 0.04 0.6
144x 144 373248 300 023 1.1 100 0.04 0.6
191x 191 656 658 225 0.22 1.1 240 045 24
288x 288 1492992 150 0.23 11
Diamond grid
6x6 1296 3600 0.12 0.7
12x 12 5184 2400 0.18 1.0 900 0.04 0.6
17x 17 10404 1800 0.21 1.2 600 0.04 0.6
24x 24 20736 1200 0.20 1.1 450 0.04 0.6
32x 32 36864 900 0.21 1.2
48 x 48 82944 600 0.22 1.2 225 0.04 0.7
72x 72 186 624 450 025 14 150 0.04 0.7
144x 144 746 496 225 025 1.4 240 04 3.1
191x 191 1313316 150 0.22 1.2

However, using the centroidal grids, some eigenvalues haven the reconstructed velocity in comparison to the analytic
magnitude greater than 1, implying instability. (The symmet- profile for each grid at each resolution are shown in Big.
ric H gives the same eigenvalue magnitudes on the centroidalotal degrees of freedom (number of cells plus number of

grids but this is not shown because the symméiris incon-

use of a non-centroidal dual grid may affect stability.

geostrophic modes.

5 Accuracy of individual operators

5.1 Accuracy of the TRiSK perp operator

The accuracy of the TRiSK perp operator (E}jis assessed

edges) is used as a proxy for both resolution and computa-
sistent on grids without centroidal duals.) We can concludetional cost although it is not directly proportional to either. It
that the asymmetrié/ should not affect stability but that the can be argued that models with a non-ideal ratio of DOFs will
have lower effective resolution since some DOFs must be
The zero-frequency modes confirm the existence of steadglaved to others in order to avoid computational modes. How-
ever, for consistency with other studies (evgeller et al,
2012 Thuburn et al. 2014, we will stick with using total
DOFs as a measure of resolution.

The errors of the TRISK perp operator on the centroidal
grids in Fig.5 saturate at quite low DOF count and are high-
est on the cubed sphere. It is surprising how much more ac-
curate the perp operator on the centroidal hexagonal grid is
in comparison to the orthogonal version. On the grids with

by reconstructing the solid body rotation velocity field of test centroidal duals, there is no convergence with resolution of
case 2 ofwilliamson et al.(1992 from the normal compo-

the TRiSK perp operator.

nents of this velocity field at each edge. The maximum errors

Geosci. Model Dev., 7, 779797, 2014
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Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H
Cubed sphere. 6 X 6 x 6 = 216 cells, 648 dofs
0.20 020 L L L 0.20
0.15 o F 0.15 o I 0.15 o -
0.10 o F 0.10 o I 0.10 o I
0.05 4 = 0.05 4 F 0.05 4 F
w w w
g 000 g 000 £ 000
-0.05 4 = -0.05 F -0.05 - F
-0.10 A F =0.10 F =0.10 - F
-0.15 - F -0.15 I -0.15 A I
—0.20 T T T —0.20 T T T -0.20 T T T
0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000
Real Real Real
Diamond grid. 3 x 3 x 6 x 2 = 108 cells, 324 dofs
0.20 L 0.20 L L L 0.20
0.15 4 = 0.15 1 F 0.15 4 F
0.10 o F 0.10 o I 0.10 o I
0.05 o F 0.05 o I 0.05 o I
w w w
g 000 - E 000 £ 000
-0.05 4 = -0.05 F -0.05 - F
-0.10 A = =0.10 F =0.10 A F
-0.15 - F -0.15 A I -0.15 o I
020 : : : —0.20 : : : ~0.20 : : T
0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000
Real Real Real

Fig. 4. Real and imaginary parts of the eigenvalues of the linearised shallow-water equations discretised on both the centroidal and centroidal
dual versions of the cubed-sphere and diamond grids using the symmetric and asymmetric versions of the non-orthogonal Hoffeetion,
solid line is the unit circle and each cross represents an eigenvalue.

Centroidal primal Centroidal dual
1 1
0.1 0.1 E
o
5 ool L 001 T e
8 g g -l
M E E R
n 0.001 0.001 i
e —>— Orthogonal HR grid Tl —— Hexagonal TTeel
a4 —O— Centroidal hexagonal —B— Cubed sphere
Il 0.0001 B—C idal-cubed-sphere 0.0001 Di dised-cube:
—&— Centroidal diamonds - -+ - st order
- - - lstorder
le-05 le-05
1000 10000 100000 1000000 1000 10000 100000 1000000
dofs dofs
1 1
—*— Orthogonal HR grid ©— Hexagonal
—&— Centroidal hexagonal —8— Cubgd sphere
0.1 —B— Ceniroidal cubed sphefe 01 Diarnondised cube
E" —<— Centroidal diamonds — - - - 1st order
] - - - - 1st qrder C
= 0.01 0.01
& 5 5
=
8 5 5
g 0.001 0.001
7] X R
@ 0.0001 0.0001
2 X X
s N\
— ™
le-05 le-05
1000 10000 100000 1000000 1000 10000 100000 1000000
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Fig. 5. Maximum errors in the velocity normal to the dual edges reconstructed from components normal to the primal edges of the solid-body
rotation velocity field from test case 2 Williamson et al(1992). Errors are normalised by the maximum velocity of 38T .4_east squares
perp calculated using EqL).
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Centroidal primal, Centroidal dual, Centroidal dual,
asymmetric H asymmetric H symmetric H
! —— Orthogonal HR grid ! !
0.1 (‘Pmmi | hexagonal 0.1 0.1
oot - S i e e e 001 Loe ool oo oo o o
- T - T - sEETegey
e - R A
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s s = B s
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le-06 = 1e-06 ~~Diamondised clibe le-06 ~~Diamondised cube
oo oy L7 Istorder gy 77 tstorder
1000 10000 100000 1000000 1000 10000 100000 1000000 1000 10000 100000 1000000
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Fig. 6. Maximum errors in the velocity component normal to each edge reconstructed from the velocity

in the cell centre to cell centre

direction from the velocity field from test case 2\flliamson et al(1992). Errors are normalised by the maximum velocity of 38™.s

Orthogonal
Hexagonal HR grid —
2,562 cells, 10,242 dofs

J Other hexagonal grids s )
min = -0,8049 1 &
Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H

A

J Cubed sp

min=-3.628 ma

here. 24 x 24 x 6=3,456 cells, 10,368 dofs

10m

Fig. 7. Height errors (coloured) and total height (contours every 50 mWilliamson et al.(1992 test case 2 after 5 days. Time step of

1800s.

The perp operation can also be evaluated using a leasis a convex combination of the divergence of the primal.
squares fit (Eq16) which is also shown in Fig5. The Therefore, if the shallow-water equations are solved using

least-squares fit is much more accurate than the TRiSK perghe least-squares operator, steady

geostrophic modes would

and converges with resolution but does not satisfy the im-not be maintained which leads to considerably less accurate

portant mimetic property that the divergence on the dualsolutions (not shown).
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Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H
Energy

I I S 4 1e-06 3

le-07 1e-07 o

1e-08 7&[\

le-08

“
a ﬁex&gmla]‘ |

1 Orthogonal HR grid ] Hexagonal i ' : ! P
1e-09 o Centroidal hexagonal E le-09 o Cubed sphere PE 1e-09 o ' ——— Cubéd sﬁhcrc P E
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Fig. 8. Time series of normalised energy and enstrophy changd/iliemson et al.(1992 test case 2. Same simulations as Figdashed
lines show negative normalised energy and enstrophy change.

5.2 Accuracy of the H operator each test case, as described in the sections describing the test
case results below.

The accuracy of the symmetric and asymme#fioperators

(Sect3.11) are assessed by reconstructing the velocities norg 1 Solid-body rotation (Williamson et al., 1992

mal to each edge from the velocity component in the cell test case 2)

centre to cell centre direction for the solid body rotation ve-

locity field of test case 2 ofVilliamson et al.(1992. The Height errors and height contours after 5 days for the

maximum errors for each of the non-orthogonal grids at eachpjiamson et al.(1992 solid-body rotation, test case 2 are

resolution are shown in Figs. The centroidal primal grid g0 in Fig.7 for coarse versions of the grids, each with
is particularly beneficial for the hexagonal grid, presumably imilar numbers of total DOFs.

because this grid is so close to orthogonal. The diamond grid 1,0 height errors on the orthogonal, hexagonal HR grid

with a centroidal dual has insufficient convergence with res-5 . the lowest but the errors on the centroidal hexagonal and
olution using both/ operators but it is particularly bad for - centroidal diamond grids are also low. These are the grids
the symmetric?. This is contrary to the analysis 8huburn 5+ are the most orthogonal but they do not necessarily have
et al. (2014 that the symmetrid{ is first-order accurate on  iha |owestd errors (Fig6) or the lowest perp errors (Fif).
centroidal grids. But it should be noted that the grid is chang- )| o the cubed sphere grids and the diamond grids with cen-
ing as resol_ut!on inqreases. In particular, the centroidal dua{roidal duals have much higher errors, regardless offhe
diamond grid is getting less orthogonal. _ operator used. The centroidal dual hexagonal grid has high
On the centroidal dual grids, the asymmetficis more  gprqrg along the lines of non-centroidal primal cells. The ver-
accurate than the symmett. sion of H used for this makes little difference.
The disadvantage of the asymmetHcis that it spoils the
energy conservation properties of the spatial discretisation.
6 Results of shallow-water test cases In order to judge the extent of this problem, the normalised
energy change for symmetric and asymmetric/diagéhgdr
The time steps used for each test case, each grid and eathe simulations shown in Fig.are shown in Fig8. (The ki-
resolution are shown in Tabfe Time steps are chosen to give netic energy is defined as in EGQj and the energy change is
similar advective and gravity wave Courant numbers for eachnormalised as described Wyilliamson et al (1992 by divid-
grid. However, the Courant numbers chosen are different foling by the initial total energy.) Positive changes are solid and
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Fig. 9. Convergence of error metrics with resolution Yfilliamson et al.(1992) test case 2 after 5 days.

negative changes are dashed. The symmetrdoes indeed conservation is about an order of magnitude better. Enstro-
have marginally better energy conservation. The centroidaphy conservation on the grids with centroidal duals is better
hexagonal and centroidal diamond grid have energy consetut there are more instances of increasing enstrophy (solid
vation very similar to the orthogonal hexagonal grid which lines) rather than decreasing enstrophy (dashed lines) which
formally conserves energy. The good energy conservation ofs consistent with growing grid-scale noise.
the simulations using the asymmetft are consistent with Convergence with degrees of freedom for the solid-body
the results of the linear stability analysis in SettHow- rotation test on all grids of thé, and ¢, error norms of
ever, the energy conservation of the centroidal cubed sphergeopotential and velocity is shown in FB.Degrees of free-
is less good, consistent with the high truncation errors seemlom (number of cells plus number of edges) is used as an
in Fig. 7. approximate measure of resolution. Time steps are chosen
The motivation for the grids of quadrilaterals is to avoid (see Tabled) to maintain an advective Courant number of
the computational modes of the hexagonal C-grid. The com-about 0.14 and a gravity wave Courant number of about 0.7,
putational Rossby modes manifest themselves as grid-scalgpart from at the lowest resolutions which need a shorter time
enstrophy. This is controlled using upwind advection of PV step in order to represent the scale-independent Coriolis term
(CLUST is used here on all grids and for both model ver- accurately. Larger Courant numbers could have been chosen
sions). The solid-body rotation test on the orthogonal andbut the largest time step cannot go much above 3600 s on the
centroidal hexagonal grids loses total enstrophy (bottom leficoarsest grid in order to maintain accuracy of the Coriolis
of Fig. 8), related to the existence of (controlled) compu- term.
tational modes. The cubed-sphere and diamond grids do Convergence with resolution of all error metrics of this
not have these computational modes and their enstrophghallow-water test case is much better than the convergence
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Fig. 10.Height errors (coloured) and total height (contours every 50 mi\Mitliamson et al.(1992) test case 5 after 15 days.

with resolution of the perp operator alone. It seems that havdirectly in the error norms. As a consequence /@) error
ing the right divergence on the dual is more important for norms all converge with second order andthgu) between
accuracy than convergence of the perp operator. In%;ig. first and second.

the non-orthogonal HR grid has the lowest errors of the perp From this section, we have learnt the following.

operator whereas solving the shallow-water equations with
the same initial wind field, the orthogonal HR grid has the
lowest errors, implying that other aspects of the discretisa-
tion are controlling the errors of the shallow-water model for
this test case, not the perp operator.

The orthogonal HR grid has the best convergence with res-
olution. On the centroidal cube and diamond grids, the errors
are low but the convergence of even thg¢) error norm
slows to less than first order at high resolution. This is solved
on the centroidal dual grids with botH operators. Of the
grids with centroidal duals only the hexagonal grid has at
least first-order convergence 6f (¢). For all cubed-sphere
and diamond grids, thé,.(¢) errors stop converging with
resolution after about 10 000 DOFs.

A least-squares fit is used to calculate the velocity for the
error norms and so the inconsistent perp errors do not appear

www.geosci-model-dev.net/7/779/2014/

— The centroidal grids give lower errors but the cen-
troidal dual grids give better convergence with reso-
lution.

— The asymmetridd on the centroidal dual grids gives
similar accuracy to the symmetri¢ and does not de-
grade accuracy on an orthogonal grid.

— Making the hexagonal grid centroidal increases the er-
ror a little in comparison to the orthogonal HR grid.

— The cubed-sphere grids have higher errors at all reso-
lutions considered and lower order of accuracy in com-
parison to the hexagonal grids.

— The centroidal diamond grid has better convergence
with resolution and lower errors in comparison to the
centroidal cubed-sphere grid.
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Fig. 11.Convergence of error metrics with resolution Williamson et al.(1992 test case 5 after 15 days.

— The accuracy of the solution of the shallow-water using each grid are very similar and the errors do not impact
equations for this test case is not directly related to thesignificantly on the total height pattern. The errors are plotted

accuracy of the perp operator. piecewise constant on every cell and so it is clear that there
is no obvious grid imprinting or grid-scale noise apart from
6.2 Mid-latitude mountain (Williamson et al., 1992 on the cubed sphere using the asymmefficfor which the
test case 5) cube edges are visible in the error fields.

The convergence with resolution for all grids of theand

TheWilliamson et al(1992 flow over a mountain (test case ‘oo €rTors of geopotential are shown in Fig. The symmet-
5) does not have an analytic solution and so numerical soliC an_d asymmetriél results give nearly |den'F|caI results and
lutions are compared with results of a version of the NCAR @l grids show remarkably similar errors with convergence
spectral transform shallow-water model (STSWdck and ~ Petween firstand second f65(¢) and first order foreo(¢).
Jakoly 1992 revised by Pilar Ripodas from Deutscher Wet- Due to the more undulating nature of thg floyv, the mountain
terdienst Ripodas et a).2009 and run at T426 resolution test case does notsuﬁerduetq lack ofgrld alignment with the
and using a time step of 90 s and a hyper-diffusion coefficienflow and so the problems, particularly with the cubed-sphere
of 4.96 x 10t m* s~L. The spectral model results are inter- 9rid, do not show up.
polated from the native spectral model grid (641280) onto
the computational points of the C-grids using the bicubic in-6.3 Galewsky et al.(2004 unstable jet
terpolation code available also from Deutscher Wetterdienst.
As resolution increases, the errors for this test case becomé&he Galewsky et al.(2004 barotropically unstable jet is
very sensitive to time-stepping errors (J. Thuburn, personathallenging because the instability can be released prema-
communication, 2012) due to the shock of the initialisation. turely by truncation errors related to lack of grid alignment
Therefore small gravity wave Courant numbers are used fo(Marras et al.2014), grid inhomogeneity, or asymmetries in
all grids, as shown in Tabk the discretisation. The test case is used with an initial per-
The height contours and errors in comparison to the ref-turbation and without viscosity. There is no analytic solution
erence solution for some mid-resolution results are shown irand so the results are compared with the STSWM reference
Fig. 10. For this test case, the differences between using thenodel run at T426 using a time step of 30s and a hyper-
centroidal and centroidal dual grids and between the symdiffusion coefficient of 97 x 10t m* s~. The relative vor-
metric and asymmetrié/ are tiny. Additionally, considering ticity after 6 days for the reference solution and for high res-
the different resolutions used for each grid type, the errorsolution versions of the orthogonal HR grid and the centroidal

Geosci. Model Dev., 7, 779797, 2014 www.geosci-model-dev.net/7/779/2014/



H. Weller: Diamond C-grid 795

STSWM reference at T426, Ar = 30s, K = 4.97| x 10 I m4g—! |

SUN min = —0.0001106 _max = 0.0001706

" Orthogonal HR grid, 655,362 dofs, A = 240s |

min = -0.0001092  max = 0.0001493

0.00014

0.00012

0.0001

80N 8e—05

G - 4c-05
10°N T T
I 90 . 1807 270°E o
Non-orthogonal HR grid, 655,362 dofs, Ar = 240s - 2e-05
SN min = —0.000111 max = 0.000149 : '
= 0
45N ﬂ - . |
G = —2e-05
10°N T T
0 Q0T 180°E 270°E o —4e—05

Cubed sphere, 656,658 dofs, Ar = 240s

SO E’mgfn.mom %;0.0@1397 = s
<N—“" y S / - 7 y \\
) ﬁ\é\l Y/ \G\L 7 il :l —8e-05
ey “4 o = '/ = “4
" 0 90 ]Sll)'l'. 270°E W5 =0
Diamonds, 746,496 dofs, At = 240s
SN i = —0.0001561 _max = 0.0001556 ; . : -0.00012
[\ (TF 2\ (lf‘ = (@
| T = B\ 2 S

0 90°L 18071 270°E (1}

Fig. 12.Vorticity after 6 days for th&alewsky et al(2004 unstable jet. Asymmetric/diagonal, centroidal primal grids.

grids are shown in Figl2. The results of the spectral model the results using the cubed-sphere or the diamond grid con-
are interpolated onto HR grid 8 and the vorticity is plotted tain dramatic wave number 4 patterns which are not showing
piecewise constant in exactly the same way as for the Cany signs of lessening with increasing resolution. This is in
grid results. All of the C-grids use the asymmetric/diagonal contrast to the results afhuburn et al.(2014) for this test

H and the results using the symmetfit and/or centroidal case, who use a higher-order advection scheme for PV and
duals are visually identical. All of the C-grid model runs in do not use an energy-conserving Coriolis operator. If this test
Fig. 12 use a time step of 240 s but this results in different ra-case is indicative of models that do not work well in 3-D as
tios of initial advective to gravity wave Courant number for weather or climate forecasting models, then the cubed-sphere
each grid (Tablel) since the initial jet is to the north of the or diamond grids should not be used with this low-order dif-
smallest cells of the cubed-sphere and diamond grids and thierencing scheme.

advective Courant number is based on the normal velocities

and the initial, zonal velocities are not normal to any of the

edge_s_ of the dlamond grid. However, the results are not VerY,  ~onclusions

sensitive to the time step.

The unstable jet using both versions of the hexagonal gridy e\ c.grid discretisation of the shallow-water equations

is very similar to the reference solution except that the hexag—suitable for non-orthogonal grids has been proposed. Unlike
onal grid results have spurious vorticity stripes upstream ofthe scheme oThuburn et al(2014, the new scheme does
steep gradients caused by phase errors of the vorticity Wheﬂot rely on the dual grid being centroidal. This has advan-

using the energy-conserving version of TRISK. In Contras't’tages since centroidal grids, rather than grids with centroidal
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duals, often lead to lower errors. The new scheme formallyFournier, A., Taylor, M., and Tribbia, J.: The Spectral Element

loses energy conservation of the spatial discretisation, but in Atmosphere Model (SEAM): High-Resolution Parallel Compu-

tests, the energy conservation is very similar to the scheme of tation and Localized Resolution of Regional Dynamics, Mon.

Thuburn et al(2014. The new scheme will extend to three  Weather Rev,, 132, 726-748, 2004.

dimensions and so can be used for non-orthogonal grids OVe@alew_sky, J., Scptt, R., and Polvani, L.: An initial-value problem for
testing numerical models of the global shallow-water equations,

orography. Tellus, 56A, 429-440, 2004

. It ha§ been demonstrated that the TRiSK pferp operator I%assmann, A.: Inspection of hexagonal and triangular C-grid dis-

inconsistent (zeroth-order accurate) but that this does not pre-

. . cretizations of the shallow water equations, J. Comput. Phys.,
vent convergence with resolution of shallow-water test cases. 239 2706-2721, 2011.
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