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Abstract. Quasi-uniform grids of the sphere have become
popular recently since they avoid parallel scaling bottle-
necks associated with the poles of latitude–longitude grids.
However quasi-uniform grids of the sphere are often non-
orthogonal. A version of the C-grid for arbitrary non-
orthogonal grids is presented which gives some of the
mimetic properties of the orthogonal C-grid. Exact energy
conservation is sacrificed for improved accuracy and the re-
sulting scheme numerically conserves energy and potential
enstrophy well. The non-orthogonal nature means that the
scheme can be used on a cubed sphere. The advantage of
the cubed sphere is that it does not admit the computa-
tional modes of the hexagonal or triangular C-grids. On var-
ious shallow-water test cases, the non-orthogonal scheme on
a cubed sphere has accuracy less than or equal to the orthog-
onal scheme on an orthogonal hexagonal icosahedron.

A new diamond grid is presented consisting of quasi-
uniform quadrilaterals which is more nearly orthogonal than
the equal-angle cubed sphere but with otherwise similar
properties. It performs better than the cubed sphere in ev-
ery way and should be used instead in codes which allow
a flexible grid structure.

1 Introduction

Quasi-uniform grids of the sphere have become popular re-
cently since they avoid parallel scaling bottlenecks associ-
ated with the poles of latitude–longitude grids. The predomi-
nant groups of quasi-uniform grid are hexagonal icosahedral,
triangular icosahedral and cubed sphere (Weller et al., 2009).
There is also an octagonal grid (Raňcić et al., 2008) that has
not been used much but has similar properties to the cubed

sphere and there are reduced or skipped lat–long grids which
are not much used except in conjunction with spectral trans-
form models (Hortal and Simmons, 1991; White, 2003). The
details of the grid are critically important for low-order finite
volume methods that rely on super-convergence for accuracy
(second-order accuracy only for a sufficiently smooth grid).

The hexagonal C-grid has become popular sinceThuburn
(2008), Thuburn et al.(2009) and Ringler et al. (2010)
worked out how to calculate the Coriolis term so as to get
steady geostrophic modes. This has been named TRiSK.
TRiSK has mostly been used on Voronoi tessellations of the
sphere (e.g.Ringler et al., 2008) which are orthogonal (the
primal and dual edges cross at right angles) and each shape
has more than (or occasionally equal to) four sides. C-grids
based on primal cells with more than four sides in 2-D will
have more than twice as many velocity degrees of freedom
(DOFs) as mass DOFs and will therefore suffer from spu-
rious computational modes (Staniforth and Thuburn, 2012).
The hexagonal C-grid suffers from a branch of spurious
Rossby modes (Thuburn, 2008) which do not interact cor-
rectly with the mass. The triangular C-grid does not have
enough velocity DOFs and so suffers from spurious diver-
gent modes (Danilov, 2010; Gassmann, 2011). The spuri-
ous modes on triangles can be controlled by strong diffu-
sion (Gassmann, 2011) or strong hyper-diffusion (Wan et al.,
2013). The spurious modes on hexagons can be controlled
using upwinded advection of potential vorticity (e.g.Weller,
2012) which does not destroy energy. However, a more ef-
ficient discretisation would have the correct ratio of DOFs
and would not need to control spurious behaviour in the ex-
cess DOFs. The correct ratio of DOFs can be achieved by
using grids of quadrilaterals, such as the cubed-sphere grid.
However, grids of the sphere using quadrilaterals are either
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780 H. Weller: Diamond C-grid

non-orthogonal (e.g. the equal-angle cubed sphere,Fournier
et al., 2004), have large variations of cell size (e.g. the con-
formal cubed sphere,Raňcić et al., 1996) or are locally in-
homogeneous (such as kite grids,Weller et al., 2012). This
provides motivation for more nearly orthogonal quadrilateral
grids of the sphere and a C-grid discretisation with the re-
quired mimetic properties on non-orthogonal grids.

Thuburn and Cotter(2012) describe some desirable
mimetic properties of atmospheric models (mimicking the
properties of the continuous equations). Their mimetic prop-
erties are 1–6. Property 7 is clearly also desirable:

1. C-grid staggering (assuming a finite difference or finite
volume approach) for accurate dispersion of inertio-
gravity waves;

2. mass conservation;

3. curl-free pressure gradients;

4. energy-conserving pressure terms;

5. energy-conserving Coriolis term;

6. steady geostrophic modes;

7. second-order accuracy (or higher).

The TRiSK scheme (Thuburn et al., 2009; Ringler et al.,
2010) gives properties 1–6 on orthogonal polygonal grids
but it will be demonstrated that the discretisation of the per-
pendicular (perp) operator (for calculating dual grid fluxes
from primal grid fluxes) is inconsistent (i.e. zeroth-order ac-
curate) even on the smoothest hexagonal icosahedral grids of
the sphere. Extending TRiSK to non-orthogonal grids may
ameliorate the lack of convergence of TRiSK since points
other than the Voronoi generating points can be used as the
cell centre in order to optimise aspects of the grid to improve
accuracy of the perp operator.

Thuburn and Cotter(2012) set out the mathematical con-
straints for mimetic C-grid discretisations on non-orthogonal
grids but did not give an example of such a scheme. Sub-
sequently,Thuburn et al.(2014) proposed a scheme suitable
for grids whose duals consist of only triangles and quadri-
laterals and whose duals are centroidal (primal vertices are
at the centroids of the dual cells). However, the results on
cubed-sphere grids were much less accurate than those using
similar resolution hexagonal icosahedra. A variety of mixed
finite-element schemes for grids of triangles or quadrilater-
als have been proposed which give the above properties and
second-order accuracy by constructing and inverting global
mass matrices at every time step (Cotter and Shipton, 2012;
Cotter and Thuburn, 2014).

Hollingsworth et al.(1983) described an instability that
can grow when solving the primitive equations in 3-D using
the vector-invariant form of the momentum equation, con-
serving energy and enstrophy but not momentum.Gassmann
(2013) found that this mode could grow when solving

the fully compressible Euler equations on a hexagonal-
icosahedral grid of the sphere using a C-grid discretisation
and described how it can be controlled. It is possible that
this mode grows more quickly when it interacts with the
computational modes of the hexagonal C-grid but this is not
proved and has not been demonstrated. If the discretisations
described on various grids of quadrilaterals were extended to
3-D, the behaviour of the Hollingsworth instability could be
compared on hexagonal and quadrilateral grids.Gassmann
(2013) found that this mode is triggered at the pentagons of
the icosahedral grids. The cube corners of the cubed-sphere
grid have larger distortions than the pentagons of the icosa-
hedral grid. Therefore, it seems likely that this mode would
also be triggered on a cubed-sphere grid.

A new diamond grid of quadrilaterals is introduced in
Sect.2 which is more nearly orthogonal than the equal-angle
cubed sphere and nearly as uniform. The properties of the
diamond grid are compared with those of the cubed sphere
and orthogonal and non-orthogonal versions of the hexago-
nal icosahedron. In Sect.3, a more accurate non-orthogonal
model is proposed that forgoes energy conservation for better
accuracy than the scheme ofThuburn et al.(2014) and which
can be used on grids with non-centroidal duals. The accuracy
of the perp operator and the non-orthogonal correction is ex-
plored in Sect.5 and the results of shallow-water test cases
are presented in Sect.6.

2 Quasi-uniform grids of the sphere

Seven types of grid are considered, some of which are dis-
played in Fig.1.

1 The Heikes and Randall(1995) optimised version of
the orthogonal hexagonal icosahedron (referred to as
the HR grid). Neither this grid nor its dual are cen-
troidal.

2 A non-orthogonal version of the hexagonal icosahe-
dron with dual vertices moved from the Voronoi gen-
erating points to the centroids of the polygons, making
the primal grid centroidal.

3 The centroidal equal angle cubed sphere (with dual
vertices at the primal cell centroids).

4 A diamondised version of the cubed sphere. The dia-
mond grid is constructed by replacing each edge of the
cubed sphere with a primal cell whose vertices consist
of the two vertices of the original edge and the cell cen-
tres either side of the edge (bottom right of Fig.1). The
dual vertices are then placed at the primal cell centres
to make the primal grid centroidal.

5–7 Versions of 2–4 above but with centroidal dual grids
rather than centroidal primal grids. So once the duals
are defined, the primal vertices are moved to be at the
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Fig. 1. Orthogonality and skewness of some grids. Non-
orthogonality (from black, orthogonal, to blue) is shown on the pri-
mal edges whereas skewness of the primal grid (from red, no skew-
ness, to yellow) is shown on the dual edges.

centroids of the dual grids. These grids are used since
the non-orthogonal algorithm defined byThuburn et al.
(2014) is only consistent if the dual grid is centroidal.

The diamond grid is topologically different from the cubed
sphere and different from the dual of the cubed sphere al-
though it still suffers from the problem of having three
quadrilaterals meet at one vertex at eight locations in the
grid. The panels of the cubed sphere and diamond grids are
shown in Fig.2. The diamond grid for an equal-angle cubed-
sphere grid at a cube corner is also shown in Fig.2. This
shows that, near the cube corners, the diamond grid cells be-
come rectangles with aspect ratio

√
3 and, along the edges,

the cells are kite shaped. In the limit of high resolution, it
would be possible to construct the diamond grid to be orthog-
onal but then both the primal and dual grids would be highly
non-centroidal, leading to large truncation errors. Instead di-
amond grids with either centroidal primal or dual grids are
used.

The skewness and non-orthogonality of coarse versions of
these grids are shown in Fig.1. The non-orthogonality is the
difference between the angle between the primal and dual
edges (in degrees) and 90◦. The non-orthogonality is shown
from black (orthogonal) to blue (non-orthogonal) on the pri-
mal grid edges. The skewness of edgee, se, measures the de-
parture from the edge centre of the primal–dual edge cross-
over point:

se =

dist
(
xe,

1
2(xv + xw)

)
dist(xv,xw)

, (1)

cubed sphere panels

diamond panels

b

a
c

equal angle cubed sphere grid boxes

diamond
grid boxes

Fig. 2. The panels of the cubed-sphere primal grid (dashed) and
the diamond primal grid (grey) and the grid boxes for an equal-
angle cubed-sphere grid. In the plane limit for the diamond grid,
b = a sin30 andc = a cos30 implyingc/b =

√
3.

wherexv and xw are the primal vertices at either end of
edgee. The skewness of the primal and dual meshes is dif-
ferent but the skewness of the primal mesh is shown from
red (no skewness) to yellow on the dual edges. In Fig.1, the
diamond grid is more nearly orthogonal and has less skew
than the cubed sphere, a result that holds at all resolutions
considered.

The Heikes and Randall(1995) (HR) grid (top left of
Fig. 1) is orthogonal and optimised to minimise skewness.
This grid has recently been revisited byHeikes et al.(2013).
The HR optimisation minimises the error of discretising
a Laplacian but the value at the dual vertex is not a second-
order approximation of the primal cell average because the
dual vertex is not at the centroid. In moving the dual vertex
to the centroid of the primal cell (top right of Fig.1), the grid
becomes centroidal but non-orthogonal and also the skew-
ness is increased. An alternative is the centroidal Voronoi
grid (Ringler et al., 2008) which is orthogonal but more skew
than the HR grid. Using non-orthogonal grids opens up many
more options for optimising a combination of the orthogonal-
ity, skewness, uniformity and centroidality of both the primal
and dual grids. However, this has not been done.

Some of the properties of the grids at different resolutions
are shown in Tables1 and 2. The non-centroidality of the
primal is defined as the distance between the dual vertex and
the cell centroid of a primal cell divided by the square root
of the primal call area:

non-centroidality=
dist(xi,centroid(i))

√
Ai

. (2)

By making the primal centroidal, the dual may become less
centroidal. The centroidal hexagonal grid (Table1) has non-
orthogonality of less than 1◦ and skewness similar to the
orthogonal version whereas the hexagonal grid with a cen-
troidal dual (Table2) has much larger non-orthogonality –
up to 13◦.

The centroidal cubed sphere (Table1) has non-
orthogonality increasing with resolution up to 30◦ for the
resolutions considered and maximum skewness of 0.25 at
the corners. The ratio of maximum to minimum grid spacing

www.geosci-model-dev.net/7/779/2014/ Geosci. Model Dev., 7, 779–797, 2014



782 H. Weller: Diamond C-grid

Table 1.Properties of the orthogonal hexagonal HR grid and the centroidal grids.

Number of 1x 1xmax
1xmin

Non- Skewness Non-
mean orthogonal (◦) centroidality

cells DOFs (km) mean max mean max mean max

Orthogonal HR grid (Centroidality of the primal given. Dual is less centroidal.)

3 162 642 1906 1.23 0 0 0.035 0.059 0.0096 0.020
4 642 2562 956 1.26 0 0 0.020 0.031 0.0063 0.019
5 2562 10 242 479 1.27 0 0 0.010 0.016 0.0033 0.017
6 10 242 40 962 239 1.27 0 0 0.0052 0.0087 0.0018 0.017
7 40 962 163 842 120 1.27 0 0 0.0026 0.0053 0.0010 0.017
8 163 842 655 362 60 1.28 0 0 0.0013 0.0045 0.0007 0.017

Centroidal hexagonal grid (Centroidality of the dual given.)

3 162 642 1905 1.18 0.29 0.88 0.035 0.094 0.067 0.13
4 642 2562 956 1.23 0.15 0.82 0.020 0.069 0.068 0.14
5 2562 10 242 479 1.25 0.099 0.79 0.011 0.047 0.067 0.13
6 10 242 40 962 239 1.26 0.063 0.86 0.0056 0.038 0.066 0.13
7 40 962 163 842 120 1.27 0.039 0.86 0.0029 0.036 0.066 0.13
8 163 842 655 362 60 1.28 0.029 0.89 0.0015 0.035 0.066 0.13

Centroidal equal-angle cubed sphere (Centroidality of the dual given.)

6× 6 216 648 1557 1.41 3.73 16.30 0.021 0.21 0.045 0.13
12× 12 864 2592 782 1.60 4.60 23.48 0.010 0.23 0.032 0.19
17× 17 1734 5202 553 1.66 4.86 25.50 0.007 0.24 0.025 0.22
24× 24 3456 10 368 392 1.70 5.03 26.87 0.005 0.24 0.018 0.23
32× 32 6144 18 432 294 1.73 5.14 27.68 0.004 0.24 0.014 0.24
48× 48 13 824 41 472 196 1.75 5.24 28.47 0.003 0.25 0.010 0.25
72× 72 31 104 93 312 131 1.77 5.31 28.99 0.002 0.25 0.006 0.26
144× 144 124 416 373 248 65 1.78 5.38 29.50 0.0008 0.25 0.003 0.26
191× 191 218 886 656 658 49 1.78 5.39 29.62 0.0006 0.25 0.003 0.26
288× 288 497 664 1 492 992 33 1.78 5.41 29.75 0.0004 0.25 0.002 0.26

Centroidal diamond grid (Centroidality of the dual given.)

6× 6 432 1296 1102 1.48 2.03 5.18 0.015 0.12 0.024 0.11
12× 12 1728 5184 552 1.69 2.16 5.73 0.0068 0.10 0.018 0.15
17× 17 3468 10 404 390 1.78 2.19 6.42 0.0047 0.10 0.014 0.17
24× 24 6912 20 736 277 1.87 2.20 6.99 0.0033 0.09 0.010 0.18
32× 32 12 288 36 864 208 1.93 2.21 7.32 0.0024 0.09 0.008 0.19
48× 48 27 648 82 944 138 1.99 2.22 7.64 0.0016 0.09 0.006 0.20
72× 72 62 208 186 624 92 2.03 2.22 7.86 0.0011 0.09 0.004 0.20
144× 144 248 832 746 496 46 2.08 2.22 8.08 0.0005 0.08 0.002 0.21
191× 191 437 772 1 313 316 35 2.09 2.22 8.14 0.0004 0.08 0.001 0.21

reaches 1.78 for the grids presented in Table1, which is
larger than the asymptotic value of 1.3 given byStaniforth
and Thuburn(2012). This is because we are measuring the
cell centre to cell centre distance rather than grid edge length.
In moving the dual vertices to the primal cell centroids, cell
centres have become closer together at the cube corners. The
cubed sphere with a centroidal dual (Table2) has similar
properties but is slightly less skewed at the corners.

Both diamond grids are more orthogonal than the cubed
sphere in the mean and maximum (less that 9◦) and the skew-
ness and non-centroidality are also smaller. The diamond
grid is slightly less uniform that the cubed sphere (1xmax

1xmin
<

2.09 for the diamond grid whereas1xmax
1xmin

< 1.8 for the cubed
sphere) but otherwise does not appear to suffer from any de-
ficiencies relative to the cubed sphere. Again, like the cubed
sphere, the cell centre to cell centre distances vary more than
the edge lengths. (The maximum to minimum edge length
for the diamond grid should approach

√
3 ≈ 1.7.)

The impacts of the different grid structures on the accu-
racy of the perp operator (for estimating the velocity per-
pendicular to the normal velocity at each edge) and on the
non-orthogonal correction will be seen in Sect.5 and on the
solution of the shallow-water equations in Sect.6.

Geosci. Model Dev., 7, 779–797, 2014 www.geosci-model-dev.net/7/779/2014/
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Table 2.Properties of the grids with centroidal duals.

Number of 1x 1xmax
1xmin

Non- Skewness Non-
mean orthogonal (◦) centroidality

cells DOFs (km) mean max mean max mean max

Hexagonal grid with centroidal dual (Centroidality of the primal given.)

3 162 642 1921 1.23 3.46 8.56 0.02 0.026 0.025 0.056
4 642 2562 963 1.26 4.58 10.9 0.01 0.015 0.015 0.069
5 2562 10 242 482 1.27 4.98 11.7 0.005 0.009 0.0096 0.071
6 10 242 40 962 241 1.27 5.16 12.3 0.003 0.006 0.0053 0.072
7 40 962 163 842 120 1.27 5.25 12.9 0.001 0.005 0.0030 0.074
8 163 842 655 362 60 1.28 5.30 13.1 0.0007 0.004 0.0019 0.074

Equal-angle cubed sphere with centroidal dual (Centroidality of the primal given.)

6× 6 216 648 1571 1.70 2.56 8.53 0.027 0.19 0.039 0.064
12× 12 864 2592 784 1.74 3.91 19.16 0.013 0.18 0.027 0.08
17× 17 1734 5202 553 1.75 4.35 22.49 0.009 0.18 0.022 0.09
24× 24 3456 10 368 392 1.77 4.66 24.77 0.007 0.17 0.017 0.10
32× 32 6144 18 432 294 1.77 4.86 26.12 0.005 0.17 0.013 0.11
48× 48 13 824 41 472 196 1.78 5.06 27.45 0.003 0.17 0.009 0.12
72× 72 31 104 93 312 131 1.78 5.18 28.31 0.002 0.17 0.006 0.12
144× 144 124 416 373 248 65 1.79 5.31 29.16 0.001 0.17 0.003 0.13
191× 191 218 886 656 658 49 1.79 5.35 29.37 0.0008 0.17 0.002 0.13
288× 288 497 664 1 492 992 33 1.79 5.38 29.58 0.0006 0.17 0.002 0.13

Diamond grid with centroidal dual (Centroidality of the primal given.)

6× 6 432 1296 1104 1.58 0.53 1.31 0.015 0.15 0.010 0.016
12× 12 1728 5184 552 1.70 1.70 4.60 0.0092 0.14 0.012 0.036
17× 17 3468 10 404 390 1.76 2.01 6.27 0.0071 0.14 0.011 0.045
24× 24 6912 20 736 276 1.82 2.16 7.21 0.0054 0.14 0.009 0.052
32× 32 12 288 36 864 207 1.86 2.22 7.67 0.0043 0.13 0.007 0.058
48× 48 27 648 82 944 138 1.90 2.25 8.03 0.0030 0.13 0.005 0.063
72× 72 62 208 186 624 92 1.95 2.26 8.21 0.0021 0.13 0.004 0.067
144× 144 248 832 746 496 46 2.03 2.24 8.40 0.0011 0.13 0.002 0.071
191× 191 437 772 1 313 316 35 2.06 2.24 8.44 0.0009 0.13 0.001 0.072

3 The non-orthogonal C-grid discretisation

We present a discretisation of the rotating, nonlinear shallow-
water equations in vector-invariant form in which the conti-
nuity and momentum equations are

∂φ

∂t
+ ∇ · (φv) = 0, (3)

∂v

∂t
+ ζv⊥

+ ∇

(
φ +

|v|
2

2

)
= 0, (4)

whereφ is the geopotential (hg, fluid depth times gravity),
v is the horizontal velocity,v⊥

= k × v wherek is the local
unit vertical vector,ζ = f +ξ is the absolute vorticity, where
f = 2k ·� is the Coriolis parameter associated with rotation
�, andξ = k · (∇ × v) is the relative vorticity.

3.1 Notation

The notation has some minor differences fromThuburn and
Cotter (2012). The primal (solid) and dual (dashed) grids
from Thuburn and Cotter(2012) are shown in Fig.3 with
the surface normal vectors, lengths and fluxes. Edgee of the
primal grid has lengthp = |p|, normal vectorp and tangen-
tial vectorp⊥. Edgee of the dual grid has normal vectord
and tangential vectord⊥. Here we restrict our attention to
a low-order finite-volume discretisation so that the volume
(or area) flux across edgee is Ue = ve ·p and the circulation
along dual edgee is Ve = v · d⊥. Lowercase variable names
indicate values sampled at a point whereas uppercase names
are integrated values. Primal cells are indexed or denoted by
i or j and dual cells are indexed or denoted byv or w. These
definitions and some of the finite-volume approximations are
given in Table3.

www.geosci-model-dev.net/7/779/2014/ Geosci. Model Dev., 7, 779–797, 2014



784 H. Weller: Diamond C-grid

Table 3.Variables used in the discretisation and some of their finite-volume representations. Extensive quantities are upper case.

Variable Definition Description

Indexing

i,j Indexing for primal cells (dual vertices)
e,e′ Indexing for (primal and dual) edges
v,w Indexing for primal vertices (dual cells)

Geometry

xi , xv Location of dual/primal vertexi, v

xe Primal/dual edgee cross-over point
pe pep̂e Surface normal vector to primal edgee

p⊥
e k × pe Perpendicular with same magnitude

de ded̂e Surface normal vector to dual edgee

d⊥
e k × de Perpendicular with same magnitude

Ai , Av Area of celli, v

Aiv Overlap area between primal celli and dual cellv
Ae Area associated with edgee
Aie Fraction ofAe in cell i
Aive Fraction ofAie in dual cellv
nei sign(pe · (xe − xi)) Edge orientation indicator
nev sign(de · (xe − xv))

Intensive quantities

φi Geopotential atxi

φe Geopotential atxe

qv
f +ξ

h
Potential vorticity atxv

qe Potential vorticity atxe

ki
1

2Ai

∑
e∈EC(i)

Aie
Ae

UeVe Kinetic energy atxi

Extensive quantities

Ue ve · pe = HV Flux through primal facee
Ve ve · d⊥

e Circulation along dual edgee

3.2 Discretised momentum and continuity equations

The prognostic variables of the shallow-water equations of
a C-grid are usually cell average geopotential,φi , and the
normal component of the velocity at the cell edges,ue =

v ·p̂e. However, on the non-orthogonal C-grid, the prognostic
velocity variable isVe (Thuburn and Cotter, 2012). We con-
sider split space–time discretisation and so the discretisation
of the temporal derivatives is considered separately. The spa-
tially discretised continuity equation forφi and momentum
equation forVe can be written as

∂φi

∂t
+ ∇ · H (φeVe) = 0 (5)

∂Ve

∂t
+

1

2

(
qe (φeUe)

⊥
+ (qeφeUe)

⊥

)
+ ∇d (φ + k) = 0. (6)

The discretisation of each of the terms will now be described,
including theH operator and the gradient along a dual edge,
∇d.

3.3 Perp operator,⊥

The perp operator⊥ in Eq. (6) is the discrete operator de-
scribed inThuburn et al.(2009) for mapping from fluxes on
the primal grid to fluxes on the dual grid. This operator en-
sures that the divergence of the mapped fluxes is a convex
combination of the divergence of the fluxes on the primal
grid. This is why the discrete perp operator acts on the flux
Ue (in thep direction) and maps to thed direction, despite
p andd not being at right angles. This operator is inconsis-
tent (zeroth-order accurate) even on an orthogonal grid but
does not always prevent convergence with resolution of the
shallow-water equations (see Sects.5.1and6). The perp op-
erator is defined to be

U⊥
e =

∑
e′∈EC(i),EC(j)

wee′Ue′ , (7)

where primal cellsi andj are the cells either side of edge
ep, EC(i) means the edges of celli andThuburn et al.(2009)
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Fig. 3. Primal grid (solid) and dual grid (dashed) with surface nor-
mal vectorsp and d, perpendicular vectorsp⊥ and d⊥, lengths
p = |p| = |p⊥

| andd = |d| = |d⊥
|, flux Ue = v ·p and circulation

Ve = v · d⊥, for edgee of the primal or dual.

derived the weightswee′ :

wee′ = ±

(
1

2
−

∑
v

Aiv

Ai

)
, (8)

where thev are the vertices in a walk between edgese and
e′. If the walk starts in thep⊥ direction and ifnei = 1 then
the sign is positive.

3.4 Mapping from primal cell averages to edges

In order to ensure energetic consistency, the mapping ofφ

from cells to edges (φi → φe) must use the same weighting
as will be used for calculating the kinetic energy (Eq.10):

φe =
Aie

Ae

φi +
Aje

Ae

φj , (9)

where cellsi andj are either side of edgee. This is the re-
verse of linear interpolation and ensures an exact transfer be-
tween kinetic and potential energy. However, higher-order
upwind interpolations can be used instead, foregoing this
form of energy conservation in favour of a smoother geopo-
tential field. Here, we will present results using CLUST
(Weller, 2012) with a blending of 50 % between linear and
linear-upwind differencing which gives smoother advection
of geopotential (see Sect.3.6).

3.5 Potential vorticity and curl on dual cells

FromRingler et al.(2010), qv is discretised as

qv =
fv + curl(Ve)v

φv

,

whereφv =
∑

i∈CV(v)

Aivφi is the conservative mapping ofφ

from the primal to the dual grid and, fromThuburn and Cot-
ter (2012), the curl is discretised as

curl(Ve)v =
1

Av

∑
e∈EC(v)

nevVe.

3.6 Mapping potential vorticity from dual cells to edges

The potential vorticity (PV) at the edge,qe, is interpreted as
the PV at the primal and dual edges. It is interpolated from
surroundingqv values from an upwind-biased stencil using
CLUST which was developed for mapping PV from vertices
to edges of the polygonal C-grid (Weller, 2012). The CLUST
blending coefficient between linear differencing and linear
upwind used is 0.5. It is essential to use CLUST for this work
rather than a conventional high-order upwind or monotonic
advection scheme such as quadratic-upwind, linear-upwind
or a TVD scheme such as that of van Leer. The conventional
schemes have switching between upwind on either side of an
edge when the flow is aligned with the edge. When used for
interpolating PV on the dual of the C-grid, this leads to er-
rors. The advantage of CLUST is that it blends smoothly with
linear when the flow is aligned with the edge so there is no
switching. APVM (Ringler et al., 2010, which is equivalent
to Lax–Wendroff) could also be used as it does not involve
switching but CLUST was found to control the grid-scale PV
noise better (Weller, 2012).

3.7 Energy conserving Coriolis flux averaging

The averaging betweenqe (φeUe)
⊥ and(qeφeUe)

⊥ in Eq. (6)
is necessary for the Coriolis force to be energetically neutral
(Ringler et al., 2010). Without this averaging (if this term is
simply represented asqe (φeUe)

⊥) the PV evolves exactly as
if it were advected by the fluxesU⊥

e by the advection scheme
used to map PV from dual cells to edges. Thus high order,
monotonic advection of PV can be obtained. However, nu-
merical tests byRingler et al.(2010) and further unpublished
work have found the energy-conserving version to generate
more accurate solutions without serious oscillations in PV.
The non-energy-conserving version is used byThuburn et al.
(2014).

3.8 Gradients along dual edges

The gradient ofφ along dual edgee, integrated along the
edge, between cellsi andj is

∇dφ = d
nei

(
φj − φi

)
d

= nei

(
φj − φi

)
.
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This gradient is also used for the kinetic energy.

3.9 Kinetic energy

The kinetic energy in primal celli is defined as

ki =
1

2Ai

∑
e∈EC(i)

dist(xe,xi)

d
UeVe

=
1

2Ai

∑
e∈EC(i)

Aie

Ae

UeVe, (10)

where dist(xe,xi) is defined in Sect.3.13. Ringler et al.
(2010) weighted the edge contributions by 1/2 rather than
Aie/Ae. Then, in order to achieve energetic consistency,
they useAi = 1/4

∑
e Ae which gives the correct area on

Voronoi grids for which the edges bisect the lines between
the Voronoi generating points.Weller et al.(2012) suggest
the weighting as in Eq. (10) for non-Voronoi grids. For ener-
getic consistency, the same weighting must be used for map-
ping the geopotential from cells to edges (see Sect.3.4).

3.10 Divergence operator

The divergence of a vectorve defined at edges in celli is
given by Gauss’s divergence theorem:

(∇ · v)i =
1

Ai

∑
e∈EC(i)

neive · p =
1

Ai

∑
e∈EC(i)

neiUe. (11)

Thuburn and Cotter(2012) suggest operatorH to transform
Ve into Ue so that

(∇ · (φv))i =
1

Ai

∑
e∈EC(i)

neiφeUe

=
1

Ai

∑
e∈EC(i)

neiH (φeVe) . (12)

TheH operator is described further in Sect.3.11.

3.11 H operator

TheH operator transforms from the set ofV values to theU
values and is therefore referred to as a non-orthogonal cor-
rection.

3.11.1 SymmetricH

Thuburn and Cotter(2012) proved that energetic consistency
is achieved ifH is symmetric and positive definite but they
did not suggest the form ofH for non-orthogonal grids.
Thuburn et al.(2014) suggest anH operator with the desired
properties for grids whose dual consists of quadrilaterals or
triangles and for which the dual grid is centroidal:

Ue = H(Ve) =

∑
e′(6=e)

1

fe′

(
Ved

⊥

e′ − Ve′d⊥
e

)
· d⊥

e′

|d⊥
e × d⊥

e′ |
, (13)

where the stencil of edgese′ consists of the edges of the
dual sharing one vertex withe andfe = 4 when dual edgese
ande′ are edges of the same quadrilateral andfe = 6 when
e and e′ are edges of the same triangle. All Voronoi grids
and many other grids of polygons have dual grids consist-
ing of only triangles and the dual of the cubed-sphere grid
consists of quadrilaterals and eight triangles. So this operator
should cover most of the grids anyone would be interested in
as long as the primal vertices are moved to the dual cell cen-
troids. The centroidal dual constraint is necessary to ensure
first-order accuracy. However, for grids with triangular duals,
the off-diagonal terms ofH do not vanish as the grids tends
towards an orthogonal grid. The accuracy of solutions using
this operator will be presented in Sect.6.

3.11.2 Asymmetric/diagonalH

It would seem logical to have anH operator with vanishing
off-diagonal terms as the grid becomes orthogonal, regard-
less of the cell shapes. It would also be desirable to use an
operator that is at least first-order accurate on any grid. The
first/second-order operator for reconstructing cell centre vec-
tors from normal components at edges inOpenFOAM(2013)
is

vi = T −1
i

∑
e∈EC(i)

p̂eUe, (14)

whereTi =
∑

e∈EC(i)

p̂epe. Ti is a 3× 3 tensor so not compu-

tationally expensive to invert and is only dependent on ge-
ometry and so can be pre-computed. It can be shown that
this operator will exactly reconstruct a uniform velocity field
and for non-uniform velocities, it is a least-squares fit. This
is similar to Perot’s reconstruction (Perot, 2000) but a com-
parison of the two methods has not been done. Alternatively,
to reconstruct dual cell velocity,vv from Ve, we can use

vv = T −1
v

∑
e∈EC(v)

d̂
⊥

e Ve, (15)

whereTv =
∑

e∈EC(v)

d̂
⊥

e d⊥
e . We can then interpolate thevvs

from the dual cells to the dual edges using any centred
or upwind-biased interpolation. We will show results in
Sect.6 using mid-point interpolation. The resulting veloc-
ity on edges is referred to asv′

e, with the prime because
this is not the final velocity that will give usUe. We require

Ue = pe/deVe for an orthogonal grid (̂p = d̂
⊥

) so we can

correctv′
e to give exactlyVe in the direction̂d

⊥

e :

ve =
Ve

de

d̂
⊥

e + v′
e −

(
v′

e · d̂
⊥

e

)
d̂

⊥

e (16)
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from which we can write downUe = H (Ve):

Ue = ve · pe (17)

=
d̂

⊥

e

de

· peVe + v′
e ·

(
pe − d̂

⊥

e

(
d̂

⊥

e · pe

))
. (18)

For nearly orthogonal grids this operator is close to diagonal
so the requirement for positive definiteness should easily be
met for most grids. However, this operator is not symmetric
(unless of course it is diagonal). In fact the requirement for
symmetry is not consistent with the requirement thatHee′ =

0 for all e 6= e′ if p̂e · d̂
⊥

e = 1, since if we also havêpe′ · d̂
⊥

e′ 6=

1 then we may haveHe′e 6= 0.
The H operator described in this section is referred to

as the asymmetric/diagonalH operator (or just the asym-
metric operator for short) since it is asymmetric for a non-
orthogonal grid and diagonal for an orthogonal grid. The rel-
ative merits and accuracy of the symmetric and asymmet-
ric/diagonalH will be assessed in Sect.6.

3.12 Full velocity field at cell edges

The full velocity field at cell edges is needed in CLUST and
for post-processing such as calculating errors and error met-
rics. Due to the inconsistency of the perp operator, Eq. (16)
is used to reconstruct the full velocity field.

3.13 Spherical areas and distances

All distances (or lengths) are great circle distances so that the
distance between pointsxv andxw is

dist(xv,xw) = 2a sin−1 1

2
|xv − xw|, (19)

wherea is the magnitude of bothxv andxw. The areas on
the surface of the sphere are calculated to be consistent with
the distances to retain the correct mimetic properties. Thus
the area of a triangle with pointsx, y andz on a sphere of
radiusa is

a2/2 dist(y,x)dist(z,x)|(̂z − x) × ̂(y − x)|. (20)

AreasAie, Aiv, Ai andAv are composed of the sums of tri-
anglesAive, as shown in Fig.3.

3.14 Semi-implicit solution technique

The momentum and continuity equations are solved semi-
implicitly using Crank–Nicolson for the implicit terms. Two
outer iterations are used so that, for the first iteration, the ex-
plicit terms are solved with Euler-explicit and the second iter-
ation uses 50–50 weighting of the old and new values so that
the explicit terms are second order, with the same weighting
as the implicit terms. For the simplest possible implemen-
tation, H is split into diagonal and off-diagonal elements:
H = Hd + Hoff and only the diagonal terms are included in

the implicit part. The off-diagonal terms are lagged correc-
tions. Between time levelsn andn + 1 this gives

φn+1
i − φn

i

1t
+

1

2
∇ ·H

(
φn

e V n
e

)
+

1

2
∇ ·Hd

(
φ`

eV
n+1
e

)
+

1

2
∇ ·Hoff

(
φ`

eV
`
e

)
= 0, (21)

V n+1
e − V n

e

1t
+

1

4

(
qe

(
φn

e Un
e

)⊥
+
(
qn
e φn

e Un
e

)⊥)
+

1

2
∇d
(
φn

+ kn
)
+

1

4

(
q`
e

(
φ`

eU
`
e

)⊥

+

(
q`
eφ

`
eU

`
e

)⊥
)

+
1

2
∇d

(
φn+1

+ k`
)

= 0, (22)

where values at time level̀ are at time leveln for the first
iteration and they are the most up to date value (but not im-
plicit) for the second iteration. Using just two iterations, the
explicit scheme is the Heun scheme which is weakly unsta-
ble. However, the instability is not seen in the simulations
undertaken. An additional explicit step would remove the in-
stability if needed. Equations (21) and (22) are solved simul-
taneously forφn+1 by substitutingV n+1 from Eq. (22) into
Eq. (21) (taking the Schur complement) to form a Helmholtz
equation which is solved using a conjugate gradient solver
with incomplete Cholesky pre-conditioning (OpenFOAM,
2013).

4 Linear stability

The normal modes (eigenvectors) and corresponding ampli-
fication factors (eigenvalues) of the model for the linearised
shallow-water equations

∂u

∂t
+ f u⊥

= −g∇h,
∂h

∂t
+ H∇ ·u = 0 (23)

are found using the method ofWeller et al.(2012) which in-
volves multiple model runs with different initial conditions
in order to evaluate the matrix that represents the model. The
model usesf = 2k · � where� = (0,0,0.1)s−1, H = 1 m
andg = 1 m s−2. The corresponding eigenvalues give us the
amplification factors of the normal modes and are shown
in Fig. 4 for coarse versions of the cubed-sphere and dia-
mond grids. Crank–Nicolson time stepping with a time step
of 1 s is used with the Coriolis term treated explicitly and
updated four times per time step. More explicit updates are
not needed because, after two, the fields do not change for
this small time step (to within machine precision) so the time
stepping is effectively Crank–Nicolson.

Crank–Nicolson time stepping is neutrally stable and the
symmetricH operator is energy conserving and therefore
the eigenvalues using the symmetricH have magnitude 1
for both grids in Fig.4. Use of the asymmetricH does
not formally guarantee energy conservation but, on the grids
with centroidal duals, the eigenvalues still have magnitude 1.
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Table 4. Grid resolutions and time steps used for all test cases and resulting advective Courant numbers (Ca) and gravity-wave Courant
numbers (Cg).

Test 2 Test 5 Jet

DOFs 1t (s) Ca Cg 1t (s) Ca Cg 1t (s) Ca Cg

Hexagonal grid

3 642 3600 0.07 0.36
4 2562 3600 0.14 0.72 1800 0.04 0.5
5 10 242 1800 0.14 0.72 900 0.04 0.5
6 40 962 900 0.14 0.72 450 0.04 0.5
7 163 842 450 0.14 0.72 225 0.04 0.5
8 655 362 225 0.14 0.72 240 0.3 1.4

Cubed-sphere

6× 6 648 3600 0.10 0.46
12× 12 2592 3600 0.21 1.0 1200 0.04 0.5
17× 17 5202 2400 0.20 0.97 900 0.04 0.6
24× 24 10 368 1800 0.22 1.0 600 0.04 0.5
32× 32 18 432 1200 0.20 0.94
48× 48 41 472 900 0.22 1.1 300 0.04 0.6
72× 72 93 312 600 0.22 1.1 225 0.04 0.6
144× 144 373 248 300 0.23 1.1 100 0.04 0.6
191× 191 656 658 225 0.22 1.1 240 0.45 2.4
288× 288 1 492 992 150 0.23 1.1

Diamond grid

6× 6 1296 3600 0.12 0.7
12× 12 5184 2400 0.18 1.0 900 0.04 0.6
17× 17 10 404 1800 0.21 1.2 600 0.04 0.6
24× 24 20 736 1200 0.20 1.1 450 0.04 0.6
32× 32 36 864 900 0.21 1.2
48× 48 82 944 600 0.22 1.2 225 0.04 0.7
72× 72 186 624 450 0.25 1.4 150 0.04 0.7
144× 144 746 496 225 0.25 1.4 240 0.4 3.1
191× 191 1 313 316 150 0.22 1.2

However, using the centroidal grids, some eigenvalues have
magnitude greater than 1, implying instability. (The symmet-
ric H gives the same eigenvalue magnitudes on the centroidal
grids but this is not shown because the symmetricH is incon-
sistent on grids without centroidal duals.) We can conclude
that the asymmetricH should not affect stability but that the
use of a non-centroidal dual grid may affect stability.

The zero-frequency modes confirm the existence of steady
geostrophic modes.

5 Accuracy of individual operators

5.1 Accuracy of the TRiSK perp operator

The accuracy of the TRiSK perp operator (Eq.7) is assessed
by reconstructing the solid body rotation velocity field of test
case 2 ofWilliamson et al.(1992) from the normal compo-
nents of this velocity field at each edge. The maximum errors

in the reconstructed velocity in comparison to the analytic
profile for each grid at each resolution are shown in Fig.5.
Total degrees of freedom (number of cells plus number of
edges) is used as a proxy for both resolution and computa-
tional cost although it is not directly proportional to either. It
can be argued that models with a non-ideal ratio of DOFs will
have lower effective resolution since some DOFs must be
slaved to others in order to avoid computational modes. How-
ever, for consistency with other studies (e.g.Weller et al.,
2012; Thuburn et al., 2014), we will stick with using total
DOFs as a measure of resolution.

The errors of the TRiSK perp operator on the centroidal
grids in Fig.5 saturate at quite low DOF count and are high-
est on the cubed sphere. It is surprising how much more ac-
curate the perp operator on the centroidal hexagonal grid is
in comparison to the orthogonal version. On the grids with
centroidal duals, there is no convergence with resolution of
the TRiSK perp operator.
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Centroidal Centroidal dual Centroidal dual
with asymmetric H with asymmetric H with symmetric H
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Fig. 4.Real and imaginary parts of the eigenvalues of the linearised shallow-water equations discretised on both the centroidal and centroidal
dual versions of the cubed-sphere and diamond grids using the symmetric and asymmetric versions of the non-orthogonal correction,H . The
solid line is the unit circle and each cross represents an eigenvalue.
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Fig. 5.Maximum errors in the velocity normal to the dual edges reconstructed from components normal to the primal edges of the solid-body
rotation velocity field from test case 2 ofWilliamson et al.(1992). Errors are normalised by the maximum velocity of 38 m s−1. Least squares
perp calculated using Eq. (16).
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Centroidal primal, Centroidal dual, Centroidal dual,
asymmetric H asymmetric H symmetric H
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Fig. 6. Maximum errors in the velocity component normal to each edge reconstructed from the velocity in the cell centre to cell centre
direction from the velocity field from test case 2 ofWilliamson et al.(1992). Errors are normalised by the maximum velocity of 38 m s−1.

Fig. 7. Height errors (coloured) and total height (contours every 50 m) forWilliamson et al.(1992) test case 2 after 5 days. Time step of
1800 s.

The perp operation can also be evaluated using a least-
squares fit (Eq.16) which is also shown in Fig.5. The
least-squares fit is much more accurate than the TRiSK perp
and converges with resolution but does not satisfy the im-
portant mimetic property that the divergence on the dual

is a convex combination of the divergence of the primal.
Therefore, if the shallow-water equations are solved using
the least-squares operator, steady geostrophic modes would
not be maintained which leads to considerably less accurate
solutions (not shown).
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Centroidal Centroidal dual Centroidal dual
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Fig. 8. Time series of normalised energy and enstrophy change forWilliamson et al.(1992) test case 2. Same simulations as Fig.7. Dashed
lines show negative normalised energy and enstrophy change.

5.2 Accuracy of theH operator

The accuracy of the symmetric and asymmetricH operators
(Sect.3.11) are assessed by reconstructing the velocities nor-
mal to each edge from the velocity component in the cell
centre to cell centre direction for the solid body rotation ve-
locity field of test case 2 ofWilliamson et al.(1992). The
maximum errors for each of the non-orthogonal grids at each
resolution are shown in Fig.6. The centroidal primal grid
is particularly beneficial for the hexagonal grid, presumably
because this grid is so close to orthogonal. The diamond grid
with a centroidal dual has insufficient convergence with res-
olution using bothH operators but it is particularly bad for
the symmetricH . This is contrary to the analysis ofThuburn
et al. (2014) that the symmetricH is first-order accurate on
centroidal grids. But it should be noted that the grid is chang-
ing as resolution increases. In particular, the centroidal dual
diamond grid is getting less orthogonal.

On the centroidal dual grids, the asymmetricH is more
accurate than the symmetricH .

6 Results of shallow-water test cases

The time steps used for each test case, each grid and each
resolution are shown in Table4. Time steps are chosen to give
similar advective and gravity wave Courant numbers for each
grid. However, the Courant numbers chosen are different for

each test case, as described in the sections describing the test
case results below.

6.1 Solid-body rotation (Williamson et al., 1992,
test case 2)

Height errors and height contours after 5 days for the
Williamson et al.(1992) solid-body rotation, test case 2 are
shown in Fig.7 for coarse versions of the grids, each with
similar numbers of total DOFs.

The height errors on the orthogonal, hexagonal HR grid
are the lowest but the errors on the centroidal hexagonal and
centroidal diamond grids are also low. These are the grids
that are the most orthogonal but they do not necessarily have
the lowestH errors (Fig.6) or the lowest perp errors (Fig.5).
All of the cubed sphere grids and the diamond grids with cen-
troidal duals have much higher errors, regardless of theH

operator used. The centroidal dual hexagonal grid has high
errors along the lines of non-centroidal primal cells. The ver-
sion ofH used for this makes little difference.

The disadvantage of the asymmetricH is that it spoils the
energy conservation properties of the spatial discretisation.
In order to judge the extent of this problem, the normalised
energy change for symmetric and asymmetric/diagonalH for
the simulations shown in Fig.7 are shown in Fig.8. (The ki-
netic energy is defined as in Eq. (10) and the energy change is
normalised as described byWilliamson et al.(1992) by divid-
ing by the initial total energy.) Positive changes are solid and
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Fig. 9.Convergence of error metrics with resolution forWilliamson et al.(1992) test case 2 after 5 days.

negative changes are dashed. The symmetricH does indeed
have marginally better energy conservation. The centroidal
hexagonal and centroidal diamond grid have energy conser-
vation very similar to the orthogonal hexagonal grid which
formally conserves energy. The good energy conservation of
the simulations using the asymmetricH are consistent with
the results of the linear stability analysis in Sect.4. How-
ever, the energy conservation of the centroidal cubed sphere
is less good, consistent with the high truncation errors seen
in Fig. 7.

The motivation for the grids of quadrilaterals is to avoid
the computational modes of the hexagonal C-grid. The com-
putational Rossby modes manifest themselves as grid-scale
enstrophy. This is controlled using upwind advection of PV
(CLUST is used here on all grids and for both model ver-
sions). The solid-body rotation test on the orthogonal and
centroidal hexagonal grids loses total enstrophy (bottom left
of Fig. 8), related to the existence of (controlled) compu-
tational modes. The cubed-sphere and diamond grids do
not have these computational modes and their enstrophy

conservation is about an order of magnitude better. Enstro-
phy conservation on the grids with centroidal duals is better
but there are more instances of increasing enstrophy (solid
lines) rather than decreasing enstrophy (dashed lines) which
is consistent with growing grid-scale noise.

Convergence with degrees of freedom for the solid-body
rotation test on all grids of thè2 and `∞ error norms of
geopotential and velocity is shown in Fig.9. Degrees of free-
dom (number of cells plus number of edges) is used as an
approximate measure of resolution. Time steps are chosen
(see Table4) to maintain an advective Courant number of
about 0.14 and a gravity wave Courant number of about 0.7,
apart from at the lowest resolutions which need a shorter time
step in order to represent the scale-independent Coriolis term
accurately. Larger Courant numbers could have been chosen
but the largest time step cannot go much above 3600 s on the
coarsest grid in order to maintain accuracy of the Coriolis
term.

Convergence with resolution of all error metrics of this
shallow-water test case is much better than the convergence
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Fig. 10.Height errors (coloured) and total height (contours every 50 m) forWilliamson et al.(1992) test case 5 after 15 days.

with resolution of the perp operator alone. It seems that hav-
ing the right divergence on the dual is more important for
accuracy than convergence of the perp operator. In Fig.5,
the non-orthogonal HR grid has the lowest errors of the perp
operator whereas solving the shallow-water equations with
the same initial wind field, the orthogonal HR grid has the
lowest errors, implying that other aspects of the discretisa-
tion are controlling the errors of the shallow-water model for
this test case, not the perp operator.

The orthogonal HR grid has the best convergence with res-
olution. On the centroidal cube and diamond grids, the errors
are low but the convergence of even the`2(φ) error norm
slows to less than first order at high resolution. This is solved
on the centroidal dual grids with bothH operators. Of the
grids with centroidal duals only the hexagonal grid has at
least first-order convergence of`∞(φ). For all cubed-sphere
and diamond grids, thè∞(φ) errors stop converging with
resolution after about 10 000 DOFs.

A least-squares fit is used to calculate the velocity for the
error norms and so the inconsistent perp errors do not appear

directly in the error norms. As a consequence, the`2(u) error
norms all converge with second order and the`∞(u) between
first and second.

From this section, we have learnt the following.

– The centroidal grids give lower errors but the cen-
troidal dual grids give better convergence with reso-
lution.

– The asymmetricH on the centroidal dual grids gives
similar accuracy to the symmetricH and does not de-
grade accuracy on an orthogonal grid.

– Making the hexagonal grid centroidal increases the er-
ror a little in comparison to the orthogonal HR grid.

– The cubed-sphere grids have higher errors at all reso-
lutions considered and lower order of accuracy in com-
parison to the hexagonal grids.

– The centroidal diamond grid has better convergence
with resolution and lower errors in comparison to the
centroidal cubed-sphere grid.
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Fig. 11.Convergence of error metrics with resolution forWilliamson et al.(1992) test case 5 after 15 days.

– The accuracy of the solution of the shallow-water
equations for this test case is not directly related to the
accuracy of the perp operator.

6.2 Mid-latitude mountain (Williamson et al., 1992,
test case 5)

TheWilliamson et al.(1992) flow over a mountain (test case
5) does not have an analytic solution and so numerical so-
lutions are compared with results of a version of the NCAR
spectral transform shallow-water model (STSWMHack and
Jakob, 1992) revised by Pilar Rípodas from Deutscher Wet-
terdienst (Rípodas et al., 2009) and run at T426 resolution
and using a time step of 90 s and a hyper-diffusion coefficient
of 4.96× 1011 m4 s−1. The spectral model results are inter-
polated from the native spectral model grid (640×1280) onto
the computational points of the C-grids using the bicubic in-
terpolation code available also from Deutscher Wetterdienst.
As resolution increases, the errors for this test case become
very sensitive to time-stepping errors (J. Thuburn, personal
communication, 2012) due to the shock of the initialisation.
Therefore small gravity wave Courant numbers are used for
all grids, as shown in Table4.

The height contours and errors in comparison to the ref-
erence solution for some mid-resolution results are shown in
Fig. 10. For this test case, the differences between using the
centroidal and centroidal dual grids and between the sym-
metric and asymmetricH are tiny. Additionally, considering
the different resolutions used for each grid type, the errors

using each grid are very similar and the errors do not impact
significantly on the total height pattern. The errors are plotted
piecewise constant on every cell and so it is clear that there
is no obvious grid imprinting or grid-scale noise apart from
on the cubed sphere using the asymmetricH , for which the
cube edges are visible in the error fields.

The convergence with resolution for all grids of the`2 and
`∞ errors of geopotential are shown in Fig.11. The symmet-
ric and asymmetricH results give nearly identical results and
all grids show remarkably similar errors with convergence
between first and second for`2(φ) and first order for̀ ∞(φ).
Due to the more undulating nature of the flow, the mountain
test case does not suffer due to lack of grid alignment with the
flow and so the problems, particularly with the cubed-sphere
grid, do not show up.

6.3 Galewsky et al.(2004) unstable jet

The Galewsky et al.(2004) barotropically unstable jet is
challenging because the instability can be released prema-
turely by truncation errors related to lack of grid alignment
(Marras et al., 2014), grid inhomogeneity, or asymmetries in
the discretisation. The test case is used with an initial per-
turbation and without viscosity. There is no analytic solution
and so the results are compared with the STSWM reference
model run at T426 using a time step of 30 s and a hyper-
diffusion coefficient of 4.97×1011 m4 s−1. The relative vor-
ticity after 6 days for the reference solution and for high res-
olution versions of the orthogonal HR grid and the centroidal
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Fig. 12.Vorticity after 6 days for theGalewsky et al.(2004) unstable jet. Asymmetric/diagonalH , centroidal primal grids.

grids are shown in Fig.12. The results of the spectral model
are interpolated onto HR grid 8 and the vorticity is plotted
piecewise constant in exactly the same way as for the C-
grid results. All of the C-grids use the asymmetric/diagonal
H and the results using the symmetricH and/or centroidal
duals are visually identical. All of the C-grid model runs in
Fig. 12use a time step of 240 s but this results in different ra-
tios of initial advective to gravity wave Courant number for
each grid (Table4) since the initial jet is to the north of the
smallest cells of the cubed-sphere and diamond grids and the
advective Courant number is based on the normal velocities
and the initial, zonal velocities are not normal to any of the
edges of the diamond grid. However, the results are not very
sensitive to the time step.

The unstable jet using both versions of the hexagonal grid
is very similar to the reference solution except that the hexag-
onal grid results have spurious vorticity stripes upstream of
steep gradients caused by phase errors of the vorticity when
using the energy-conserving version of TRiSK. In contrast,

the results using the cubed-sphere or the diamond grid con-
tain dramatic wave number 4 patterns which are not showing
any signs of lessening with increasing resolution. This is in
contrast to the results ofThuburn et al.(2014) for this test
case, who use a higher-order advection scheme for PV and
do not use an energy-conserving Coriolis operator. If this test
case is indicative of models that do not work well in 3-D as
weather or climate forecasting models, then the cubed-sphere
or diamond grids should not be used with this low-order dif-
ferencing scheme.

7 Conclusions

A new C-grid discretisation of the shallow-water equations
suitable for non-orthogonal grids has been proposed. Unlike
the scheme ofThuburn et al.(2014), the new scheme does
not rely on the dual grid being centroidal. This has advan-
tages since centroidal grids, rather than grids with centroidal
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duals, often lead to lower errors. The new scheme formally
loses energy conservation of the spatial discretisation, but in
tests, the energy conservation is very similar to the scheme of
Thuburn et al.(2014). The new scheme will extend to three
dimensions and so can be used for non-orthogonal grids over
orography.

It has been demonstrated that the TRiSK perp operator is
inconsistent (zeroth-order accurate) but that this does not pre-
vent convergence with resolution of shallow-water test cases.
The perp operator leads to fluxes on the dual grid which have
divergence, which is a convex combination of the divergence
on the primal, and so an aspect of the perpendicular velocity
is exactly correct. This helps the accuracy of the shallow-
water test cases.

A new diamond grid of the sphere has been proposed
which consists of quadrilaterals, is more nearly orthogonal
and nearly as uniform as the equal-angle cubed sphere. It
mostly outperforms the cubed sphere in the tests undertaken.

The grids of quadrilaterals do not admit the computational
modes of the hexagonal C-grid and hence enstrophy is bet-
ter conserved. (Growth of the computational mode can lead
to enstrophy increase whereas control of the computational
mode can lead to enstrophy decrease.) However, they do
not outperform the hexagonal C-grid in any way and the
hexagonal-icosahedral grid gives more accurate results in
most test cases. However, the lack of computational modes
could be more beneficial in 3-D where the computational
modes of the hexagonal C-grid could interact with, for ex-
ample, the Hollingsworth instability.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/7/
779/2014/gmd-7-779-2014-supplement.zip.
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