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The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are
modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a
family of nascent ligands, the ‘endocannabinoids’. The function of the ECS is thus defined by
modulation of these receptors—in particular, by two of the best-described ligands (2-arachidonyl
glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by
cell stress, and promote both cell survival and death according to concentration. The ECS appears
to shift the immune system towards a type 2 response, while maintaining a positive energy balance
and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data
suggest that the ECS could potentially modulate mitochondrial function by several different path-
ways; this may help explain its actions in the central nervous system. Dose-related control of
mitochondrial function could therefore provide an insight into its role in health and disease, and
why it might have its own pathology, and possibly, new therapeutic directions.

Keywords: mitochondria; endocannabinoid; hormesis; redox

1. INTRODUCTION

The plasma-membrane-based endocannbinoid system
(ECS) was first ‘identified’ in the 1990s, when a
cognate receptor for tetrahydrocannabinol (THC)
was finally cloned. Since then, innate ligands have
also been isolated, including anandamide (AEA) and
2-arachidonyl glycerol (2-AG). Thus, the ECS is
another component of the arachidonic-acid-based
signalling system. For the purposes of this study, it
will be defined as comprising the cannabinoid type 1
and 2 receptors (CB 1/2), the transient receptor poten-
tial vanilloid-1 receptor (TRPV1R), AEA, 2-AG and
anabolic and catabolic enzymes, as well as its effects
on membrane structure and function, particularly
around lipid rafts.

The ECS, like every ‘system’ in a living organism, has
evolved to ensure the survival of the animal, and because
of this, we believe that it must interact and modulate
other systems—in particular, the mitochondrion. For
instance, the ECS is known to modulate extracellular
signal-regulated protein kinase (ERK), protein kinase
B/mammalian target of rapamycin (Akt/mTOR),
redox, cCAMP, calcium and nitric oxide (NO); these are
also pathways and moieties known to control mitochon-
drial function. It may also be able to directly affect
mitochondrial function via membrane interaction.
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By understanding a potential ECS—mitochondrial
connection, we might be able to further explain the
function of the ECS, especially how it might control
cell fate. In particular, how there may be a very impor-
tant multi-phasic dose effect that may help explain
why it can be both friend and foe. Thus, in this
study, we would like to guide the reader through a
series of reasonably well-established facts, which
would support our hypothesis that the ECS modulates
mitochondrial function. This idea is based on a very
simple concept: any change in plasma membrane
dynamics is coupled to mitochondrial function.

2. ENDOCANNABINOID SYSTEM PATHWAYS
COMMON TO MITOCHONDRIAL CONTROL
The ECS modulates many pathways and ions known
to be involved in controlling mitochondrial function.
This includes inhibition of voltage-gated Ca®" channels
and activation of inwardly rectifying K currents (Kir),
MAPK, eNOS/iINOS (hence nitric oxide, NO) and
PKA [1]. Cannabinoids can also modulate ceramide
production [2], as well as mTOR [3—7]. Furthermore,
endocannabinoids (and their derivatives) could also
potentially modulate mitochondrial function directly.
Figure 1 summarizes the key pathways.
Endocannabinoids are released ‘on demand’ from
membranes—and are just one of many eicosanoid-
based signalling pathways involved in inflammation,
suppression of inflammation and resolution of injury
[8,9]. They are released during exercise [10], fasting

This journal is © 2012 The Royal Society
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Figure 1. ECS pathways to mitochondrial control of cell fate. Pathways/signalling moieties known to both modulate the endo-
cannabinoid system and mitochondrial function. CBR, cannabinoid receptor; ECS-ER, endocannabinoid system endoplasmic
reticulum; ECS-Mit, endocannabinoid system mitochondria; ERK, extracellular receptor kinase; FABP, fatty-acid-binding
protein; FAN, factor associated with neutral sphingomylinase; JNK, c-JUN N-terminal kinase; mTOR, mammalian target of
rapamycin; NOS, NO synthase; PKA, protein kinase A; PL, phospholipase; TRPV1, transient receptor potential vanillioid 1;

VGCC, voltage-gated calcium channel.

[11], by high fat diets [12] and certainly by damage—
especially in the central nervous system (CNS), where
they are thought to be neuroprotective [13]. They play
a critical function, sometimes beneficial, and possibly
detrimental, in ischaemia/reperfusion—and may have
a preconditioning role [14].

At the organismal level, endocannabinoids increase
appetite, but they also tend to reduce an organism’s
reproductive capacity by redirecting energy to storage
[15]. They also reduce temperature and inhibit pain
[16]. We have suggested that they modulate oxidative
stress and energy metabolism (ensuring energy sto-
rage)—and could be described as ‘thrifty’[17]. Thus,
like many biological systems, the ECS is generally ben-
eficial, but can have its own pathology if inappropriately
activated [18].

(a) The endocannabinoid system could
modulate mitochondrial function via calcium
Calcium is critical in controlling mitochondrial function
and cell fate; however, mitochondria are also essential
for controlling calcium flux [19]. The ECS reacts to
(e.g. via calcium-activated phospholipases), and
modulates, calcium flux in a number of ways (e.g. via
mitogen-activated protein kinase (MAPK) and ion chan-
nels and intracellular calcium release). For instance, AEA
can inhibit voltage-gated calcium channels, whereas AEA
and 2-AG can increase intracellular free calcium [20].
Generally speaking, activation of TRPV1 tends to
increase, whereas activation of CB1 tends to decrease
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intracellular calcium—but these two systems clearly inter-
act and the response may vary between cells and be
modulated by their status [21].

Endocannabinoids are generally seen as anti-
proliferative and may induce apoptosis of cancer cells,
mostly via CB1, but also by other mechanisms, such
as via lipid rafts or cytochrome oxidase 2 [22]. In
dorsal root ganglion neurons AEA activates TRPV1
allowing a calcium influx into the cell; this process is
inhibited by concomitant activation of CBl1—and may
inhibit the sensitization process [23]. AEA can also
induce cell death in cultured keratinocytes by increasing
intracellular calcium, and the effect may require
sequential activation of CBI1, which then modulates
the activity of TRPV1 [24]. In the brain, activation of
CB1 by AEA at low doses reduces calcium influx,
and has anxiolytic properties; however, it has now
been suggested that at higher doses, it may activate
TRPV1, which would induce calcium influx and have
the opposite effect—being anxiogenic [25]. Intriguingly,
recent data suggest that not only do CB1 receptors
undergo endocytosis, but many receptors never make
it to the plasma membrane but instead locate to endo-
somal and lysosomal compartments—where direct
injection of AEA can release intracellular calcium
[26]. This therefore suggests, at the broadest level,
that there is a triphasic response involving modulation
of calcium entry into the cell, and its release/sequestra-
tion within the cell; inhibition of calcium flux would
effectively slow the cell down, a small increase could
stimulate it (e.g. by mitochondrial production of
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hydrogen peroxide), while a big increase would tend to
suppress mitochondrial function and eventually induce
cell death—especially, if combined with other signals,
such an increase in reactive oxygen species (ROS).
There is a very tight link between ROS, calcium and
ATP—mitochondrial overload with calcium, and
excessive ROS, rapidly inhibit its function [19].

(b) The endocannabinoid system could modulate
mitochondrial function via nitric oxide

NO is an ancient signalling molecule, which modulates
guanylate cyclase and thus, indirectly, mitochondrial bio-
genesis. It also directly regulates mitochondrial function
by competing with oxygen at cytochrome c oxidase,
the terminal acceptor in the mitochondrial electron trans-
port chain (ETC)—so inhibiting energy production and
increasing hydrogen peroxide. This activates AMPK (a
key energy sensor in the cell) and can induce glycolysis:
AMPK can also be activated by ROS and NO. The
effect is to switch the cell from an anabolic to a catabolic
status to conserve ATP. At higher concentrations, it starts
to inhibit other components of the ETC, and can
form peroxynitrite when combined with ROS and
modulate the mitochondrial permeability transition pore
(MPTP), and thus, cell death. The general consensus is
that low levels produced by constitutive nitric oxide
synthase (INOS), such as nNOS and eNOS (neuronal
and endothelial), induce low-level cytoprotective
mechanisms and mitochondrial biogenesis, whereas
iNOS induces oxidative stress and is important in the
inflammatory process. NOS activity is also modulated
by calcium [27,28].

It has been known for some time that endocannabi-
noids can regulate NOS and NO production [29]. In a
model of neurodegeneration, data suggest that CB2
activation increases nNOS in neurons, but decreases
iNOS in astrocytes—and is thus anti-inflammatory
[30]. Likewise, CB1 agonists can induce nNOS acti-
vation in neuronal cell lines [31], while low levels of
AEA have been shown to stimulate eNOS in platelets
via CB1 [32]. It has also been shown that AEA can
induce NO production via TRPV1 in the endothelium
[33]. INOS is generally activated by proinflammatory
mediators at normal intracellular calcium levels,
whereas eNOS and nNOS require much higher cal-
cium levels to become activated. iNOS tends to
produce the highest levels of NO. In the brain, low-
level NO production is vital for protection, whereas
excessive NO production can become rapidly detri-
mental. This may be mirrored during nephropathy.
Overall, this might suggest that targeting CB2 could
be a useful clinical strategy [34].

The above suggest that among other pathways, NO
levels, both absolute and probably in cellular context,
play a vital role in controlling cell fate via modulation
of mitochondrial function (among other effects, such
as direct protein nitrosylation). For instance, a slight
increase in NO may induce protective signalling in
neurons, and possibly also induce slight increases
in astrocyte glycolysis; this could be modulated via
CB1 and CB2, and even TRPVI1. If the insult was a
bit larger, then it could lead to inflammatory levels
of NO in some cells, but this could be offset by CB2
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suppression of iINOS in inflammatory cells. If the
signal was too large, mitochondrial function would
be severely inhibited, leading to excessive necrotic
cell death—which is inflammatory (apoptosis is nor-
mally a non-inflammatory process). Hence, there is
potential for multiphasic effects, depending on con-
centration. However, the effects of NO would also be
modulated by calcium levels, ROS, hydrogen peroxide
and MAPKs.

(¢) The ceramide link
Many stress pathways also control mitochondrial func-
tion. One of the best described is based on ceramide; it
can directly alter mitochondrial function by inhibiting
the ETC, and can induce mitochondrial fission and
opening of the MPTP. For instance, ceramide is released
during ischaemia/reperfusion. It may even form a chan-
nel in the mitochondrial membrane [35,36]. However,
data suggest that although many ceramides do have
anti-proliferative and apoptotic effects, different chain
lengths may actually have opposing effects, such as
promoting cell survival. The effects may depend further
on intracellular location and isoform [37,38].
Endocannabinoids may also modulate ceramide
production. In lymphoma mantle cells, R (+) metha-
nadamide (a stable analogue of AEA) increased
ceramide levels and induced cell death; the effect
involved activation of both CB1 and CB2 [39]. It is
likely that their effects are highly context dependent
in relation to other signalling but, critically, their
actions can be explained by an integrated effect on
the mitochondrion.

(d) The endocannabinoid system and
mitochondrial function could be coupled

via redox

A critical point during evolution arose with the devel-
opment of an oxygen-rich atmosphere, which provided
an electron acceptor and enabled more energy to be
released from food. As energy production relies on
redox couples, and probably played a role in the evol-
ution from single-celled to multicellular life [40],
redox is critical to modern life—ranging from control
of cell cycle, gene transcription, signal transduction,
to immune cell function and (migration), both intra-
cellularly and extracellularly [41-46]. Hence, it is no
surprise that mitochondrial function is integrated
with control of cell cycle—with redox playing a pivotal
role [47]. However, none of this would be possible
without membranes. Each part of a cell is compart-
mentalized for a different function, and each is kept
at a different potential—with the plasma membrane
being the most oxidized, and the mitochondrion the
most reduced (followed by the nucleus). Within
these compartments, the thioredoxin and glutathione
systems maintain a dynamic redox balance that modu-
lates cysteine status in multiple proteins. In this way,
a cell can rapidly respond to any stress, as all these
systems are coupled together [48,49].

Han et al. [50] have shown that CB1 and CB2 in
macrophages may have opposing effects on ROS,
with the former increasing, and the latter decreasing
ROS and the production of pro-inflammatory
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cytokines. It therefore appears that excessive activation
of CB1 in a tissue that is already inflamed appears to
amplify the inflammatory cascade, which explains the
benefits seen with antagonists in these conditions,
while activation of CB2 appears to suppress this effect.
The most recent example is in a model of cisplatin-
induced nephropathy; pharmacological inhibition
or genetic removal of CB1, greatly reduced AMPK
activation and upregulation of nitrosative and oxidative
stress and cell death [51]. It is therefore likely that the
role of the ECS in relation to redox is contextual (dis-
ease versus normal state) and would be multiphasic.
Activation of AMPK can upregulate PGCla (PPARYy
coactivator la) and induce mitochondrial biogenesis,
as well activating autophagy of damaged mitochondria,
or even inducing apoptosis if the stress is too great.
The AMPK pathways sense energy decrease and
stress, including calcium and ROS, and switch on
catabolic pathways while switching off anabolic
ones—such as mTOR [52].

A recent review of the role of the ECS in diabetes
concluded that activation of the CB1 receptor was lar-
gely inflammatory and was associated with increased
oxidative stress, while activation of the CB2 receptor
had the opposite effect [53]. Certainly, it appears
that CB1 activation in inflammatory states may
amplify the ROS-MAPK pathway, so worsening the
situation. The precise source of the AEA-induced
ROS in endothelial cells was unclear [54]. However,
data relating to propofol (an anaesthetic) may be of
interest here; it partly protects HUVEC cells against
AEA-induced ROS and death, possibly by virtue of
its anti-oxidant properties [55]. Suggestively, propofol
is also known to inhibit mitochondrial function by
depolarizing the membrane, reducing mitochondrial
membrane potential [56]. This might suggest that in
part, mitochondrial ROS induced by AEA may be
important. In this regard, it has been shown that 2-AG,
via a mechanism possibly involving direct membrane
absorption and not CN receptors, induces mitochondrial
ROS production, which leads to the death of hepatic
stellate cells—but not normal hepatocytes. The authors
suggested that the difference was due to the levels of
anti-oxidants in each cell [57]. In short, the response of
a particular cell will depend on its anti-oxidant systems
and mitochondrial function, in effect, its redox status.
This therefore suggests that excessive activation of CB1
would become inflammatory in diabetes—quite possibly,
by inducing severe mitochondrial stress. This could
result in a vicious cycle, if dead cells were not cleared
properly (i.e. they became necrotic).

(e) The endocannabinoid system modulates
mTOR: a key pathway in control of
mitochondrial function

mTOR modulates mitochondrial function and controls
lifespan; inhibiting mTOR tends to increase longevity
and inhibit mitochondrial function, while activation
tends to have the opposite effect [58,59]. Calorie restric-
tion reduces mTOR activity, and may be one of the
pivotal pathways involved in how it increases longevity
[60]. It is now becoming clear that increased mitochon-
drial mass, and subsequent production of ROS and
upregulation of anti-oxidant defences are generally
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associated with differentiation and eventual senescence,
while decreased mitochondrial mass (and thus ROS),
such as induced by hypoxia, is associated with ‘stem-
ness’ in stem cells—indicating an improved ability for
self-renewal and proliferation [61].

Despite much research showing that the ECS is
often anti-proliferative, it is also involved in axonal
path-finding, neural plasticity and neurogenesis [62].
It seems that CB2 receptors maybe primarily located
on undifferentiated neural progenitor cells, and that
activation of CB2 by HU308 induces proliferation
via a mechanism involving mTOR [6]. Likewise,
using specific agonists and antagonists of CB1 and
CB2, Gomez et al. [5] found that activation of
mTOR was involved in inducing differentiation of oli-
godendrocyte progenitor cells obtained from mixed
glial cell cultures. Interestingly, THC may also activate
mTOR in a CB1-dependent way in the hippocampus,
an effect mimicked by the fatty acid amide hydrolase
(FAAH) inhibitor, URB597 [4]. FAAH is the key in
endocannabinoid degradation. By contrast, THC
and JW-015 (a CB2 agonist) induced autophagy in
a cancer cell line in a mechanism that involved up-
regulation of AMPK and suppression of the mTOR
pathway [3]. Thus, at one level, the ECS is capable
of inducing proliferation; activation of mTOR is
associated with both mitochondrial activation and
cell proliferation. The key here is that a small increase
in hydrogen peroxide could stimulate proliferation in
quiescent cells with a low mitochondrial mass and a
highly reduced redox potential; this redox signal
could come from both the mitochondria and MAPK
(see below). In effect, low-level activation of stem
cells by the ECS could be proliferative and would
involve mitochondrial activation.

(f) The endocannabinoid system modulates
MAPK and cAMP: a link to mitochondrial
network ovganization

Another aspect of mitochondria is that they can
form reticular networks throughout the cell; indeed,
‘mitochondria’ means beads on a string. These net-
works constantly break-up and reform in response to
cellular conditions, including during the cell cycle. It
is likely that their function is intimately integrated
with the endoplasmic reticulum (ER), especially in
relation to calcium and redox signalling and stress.
This function is combined with kinase activity, and
kinases are modulated by redox.

One group called the MAPKSs react to external
changes to the cell. For instance, ERK 1&2 tend to
be activated by mitogens (growth signals), whereas
p38 and c-jun N-terminal kinase (JNK) are activated
by inflammation and stress; ERK1/2, P38 and JNK
can translocate to the mitochondrion, and redox
plays a critical role in controlling these pathways
[47,63]. It is now thought that fused mitochondrial
networks can transmit redox signals throughout the
cell [64], demonstrating just how important the
membrane-redox couple is. The ECS is known to
modulate MAPKSs [1], so suggesting a possible role in
controlling mitochondrial networks. This concept is
reinforced by another well-known target of the ECS—
the cAMP pathway [20]; this pathway is critical in
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controlling mitochondrial function, especially mito-
chondrial dynamics and networks in response to
energy demands [65]. This might suggest that the
ECS could play a role in maintaining mitochondrial
networks to transmit redox signals throughout the cell.

3. POSSIBLE DIRECT CONTROL OF
MITOCHONDRIAL FUNCTION BY THE
ENDOCANNABINOID SYSTEM

An important emerging paradigm 1is just how
inter-connected the membrane system of cells is. In
particular, how the ER/caveolae system interacts with
the plasma membrane, and how the ER interacts
with the mitochondria system—itself forming an intra-
cellular reticular network. For instance, it is now well
described that, via mitochondria-associated ER mem-
brane (MAM) junctions, there is close communication
between these organelles, with the ER delivering
calcium to the mitochondria. This system might also
be involved in the transport of cholesterol, ceramides,
ATP and proteins as well as in proteasomal protein
degradation and lipid droplet formation [66]. Further-
more, it is also becoming apparent that both the ER
and the mitochondria also contain lipid rafts [67,68].
These are not unlike those found in the plasma mem-
brane, and play very important roles in controlling
mitochondria function during apoptosis (such as fis-
sion) [69]. Ciritically, some lipophilic anti-cancer
agents appear to be able to induce plasma membrane
lipid rafts to be internalized and transported directly
to the mitochondria [70]. There is thus the potential
not only for plasma-membrane-derived endocannabi-
noids to circulate within the cell, but also for them
to be produced intracellularly and have activity via
an intracellular ECS.

(a) Intracellular eiscosanoid-based pathways
Research to date suggests that most of the eicosanoid-
based signalling pathways are derived from the plasma
membrane. However, there is now evidence that
these pathways also exist in the mitochondria—and
could, potentially, produce endocannabinoids [71]. It
also appears that cannabinoid receptors are active
within lysosomes and are important in controlling
calcium flux involving the ER [26]. Extracellular endo-
cannabinoids are rapidly taken up by the cell and
converted to arachidonic acid by FAAH—a process
that may involve both passive diffusion and facilitated
transport [72]. Some evidence also suggests that fatty-
acid-binding proteins (FABPs) may also be able to
transport endocannabinoids, and could even explain
how they may reach the nucleus to activate PPAR«x
[73]. FABPs are ubiquitous and promiscuous proteins
that carry lipophilic molecules around the cell (such as
lipophilic xenobiotics), targeting them to various orga-
nelles, including the nucleus (to activate transcription
factors), the mitochondria (for oxidation) and the ER
for storage [74,75]. Interestingly, although it remains
to be reproduced by other groups, Benard ez al. [76]
have suggested that not only does CB1 appear to
exist in mitochondria, but that direct suppression of
mitochondrial function by THC or WIN is lost in
isolated mitochondria from CB1 knockout mice.

Phil. Trans. R. Soc. B (2012)

(b) Endocannabinoids and their deritvatives
could directly alter mitochondvrial function

Since the early 1970s, it has been suspected that THC
(a phytocannabinoid) might inhibit components of
the mitochondrial ETC [77]. More recently, data
suggested that as well as THC, AEA and HU210
could also inhibit the function of isolated mitochon-
dria [78]. AEA has also been shown by other groups
to directly inhibit mitochondrial function; Catanzaro
et al. found that it dose-dependently increases mito-
chondrial swelling and reduced cytochrome c release
induced by calcium ions. These effects were indepen-
dent of its target receptors and were paralleled by
decreased membrane potential and increased mem-
brane fluidity [79]. More recently, data suggested
that AEA can inhibit ATP synthesis at the level of
FOF1 ATP synthase at low micromolar concentrations
[80]; 2-AG may also do this, possibly by altering mem-
brane fluidity [81]. FAAH also appears to be located
on mitochondria [82], which suggests that it could
degrade endocannabinoids in this location.

It has been long known that fatty acids, other than
being fuel, also directly modulate mitochondrial func-
tion—one way they do this is by uncoupling, acting
as protonophores that can reduce ROS production
in some circumstances [83,84]. Uncoupling is known
to stimulate PGCla transcription, the master
controller of mitochondrial biogenesis, so suggesting
a built in feedback mechanism to prevent excessive
oxidative stress [85]. Arachidonic acid, in particular,
has potent effects on isolated mitochondria. At high
nanomolar concentrations, it stimulates mitochondrial
coupling, but at low micromolar concentrations,
it induces uncoupling (reduces ROS). As the dose
increases, it progressively inhibits components of the
ETC and induces release of H,O, and, potentially, cyto-
chrome c; it can induce mitochondrial permeability at
high concentrations in the presence of ROS [83]. It
therefore displays a triphasic effect. Critically, it also
appears that stress induces release of arachidonic acid
from mitochondria—for instance, excessive mitochon-
drial calcium influx [86]. Interestingly, arachidonic
acid can protect glial cells against peroxynitrite toxicity
[87], which would support its potential role as a
protonophore. These data therefore hint that either
endocannabinoids could be delivered to the mitochon-
dria (e.g. via lipid rafts or FABPs) or, if the data from
Benard turns out to be true, they might also be pro-
duced n sizu. Either they or arachidonic acid could
therefore modulate mitochondrial function directly.

4. THE IMPORTANCE OF DOSE IN
ENDOCANNABINOID SYSTEM ACTION CAN BE
EXPLAINED BY MITOCHONDRIAL CONTROL

An old, but increasingly recognized paradigm in biology
is the effect of dose, which is epitomized by the ‘hor-
metic’ biphasic adaptive response—whereby a low dose
of a stressor, whether it is a plant compound, cold or
exercise, stimulates adaptation to resist it better the
next time round. In effect, this is preconditioning,
where too high a dose becomes detrimental [88]. The
above discussions clearly highlight how the output of
multiple pathways can be integrated via the
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mitochondrion, with different signal strengths having
different outputs—ranging from stimulus to cell death.
In relation to the ECS, this might suggest that its effects
(depending on the status of the cell) could well be tripha-
sic and possibly even quadriphasic: submicromolar doses
stimulate, while low micromolar doses protect by uncou-
pling. As doses rise, there could be a progressive inhibition
of mitochondrial function eventually leading to cell
death—which could either be apoptotic or necrotic.

A possible example of this effect is that AEA at
concentrations greater than 25 pM induces excessive
necrotic cell death in hepatic stellate cells, while at
lower doses (<10 wM) it inhibits proliferation—an
effect blocked by anti-oxidants [89]. The precise out-
come for each cell could then be explained by their
current redox status, and thus stage in the cell cycle,
and the status of their ECS. The system could have
both local and distant effects, and could transmit stress
information in a dose-related fashion; it could therefore
be said to have hormetic properties—low doses inducing
adaptation and wupregulation of cellular defence
mechanism, while high doses induce cell death [17].

With regard to pathways, mild activation of MAPK,
mTOR and increased calcium influx, especially in a
low ROS or NO environment, might activate mitochon-
drial function—increasing ATP, generating hydrogen
peroxide and stimulating proliferation and/or activation
of function. A slightly different mix may inhibit mito-
chondrial function, for instance, neutral calcium
change but increased NO and suppression of mTOR,
which via retrograde signalling could stimulate mito-
chondrial biogenesis and differentiation. In other cells,
this may actually induce glycolysis and increased stem-
ness. At even higher levels, perhaps with activation of
TRPV1 and JNK, the cell would experience inhibition
of mitochondrial function and production of ROS,
loss of ATP and influx of calcium, and suppression of
mTOR—which could lead, depending on the type of
cell, to quiescence, senescence or apoptosis and criti-
cally, if very active, necrosis. Mitochondrial function
could be further modulated by direct action. Thus,
the ECS could control mitochondrial function by
multiple pathways.

In summary, the ECS can be viewed as a stress
response system, with four actions, depending on
dose: proliferation, suppression and adaptation, apop-
tosis and potentially, necrosis—each of which could be
explained by its actions on the mitochondrion. An
overview of this can be seen in figure 2.

5. THE ENDOCANNABINOID SYSTEM AS
MITOCHONDRIAL AND ENERGY GUARDIAN IN
THE CENTRAL NERVOUS SYSTEM

Neurons are highly differentiated and long-lived
cells, and are very reliant on oxidative phosphorylation
of glucose (although they can use ketones during star-
vation). Mitochondrial quality control is thus a critical
part of maintaining their function—both by ensuring
protein protection (e.g. by chaperones and proteases)
and by continual fission/fusion. Fusion is critical
in maintaining networks and exchanging genetic
material and metabolites, and enhances ATP produc-
tion. However, mitochondrial dysfunction can result
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in fragmentation and mitophagy, so removing damaged
organelles and redistributing them. Indeed, a fall in
mitochondrial membrane potential or matrix ATP can
inhibit fusion [47]. Put simply, neurons are far more
sensitive to mitochondrial dysfunction than most other
cells, which is why their malfunctioning is associated
with many neurodegenerative diseases [90,91].

Inflammation is a common factor in multiple CNS
diseases, but it can suppress mitochondrial function.
The reason is that inflammatory pathways induce an
oxidative environment in the cell and act to suppress
ATP production and metabolite production—these are
ideal conditions to inhibit pathogen growth. Ultimately,
it can induce cell death, so protecting the organism, as
this environment is also damaging to the surrounding
tissues [92,93]. As would be expected, mTOR function
is inhibited during sepsis and inflammation [94]. Criti-
cally, sepsis itself can lead to widespread inhibition of
mitochondrial function, potentially leading to energy
crisis—a process triggered by inflammation-related
oxidative stress [92]. However, inflammation is an
energy-requiring process; activation of the inflamma-
tory transcription factor, nuclear factor kappa B,
increases energy expenditure [95]. In effect, inflam-
mation displays the Warburg effect, whereby glycolysis
is accelerated to provide metabolites for regeneration,
although it is less energy efficient. Hence, in many
ways, it has the opposite effect of ECS activation.

Under normal circumstances, inflammation is an
evolved response to both cell damage and infection;
the two usually (but not always) go hand-in-hand. If
it works correctly, inflammation can lead to resolution
of cellular/organ damage and infection, induction of pro-
liferation of new cells, and removal of infected/damaged
and front line professional apoptotic phagocytes by
professional macrophages (and other phagocytes)—so
minimizing excessive damage. Apoptotic cells tend to
suppress inflammation, but necrotic cells stimulate it
[96]. As resolution proceeds, there is a switch from
Th1 to Th2 (type 1 to type 2 immunity), and suppres-
sion of phagocytic/inflammatory actions and a shift to
humoral immunity; in effect, type 2 immunity is associ-
ated with resolution of cell-mediated immunity [97]. It
is therefore of interest that under normal circumstances,
the ECS appears to modulate a switch from a Thl to a
Th2 response [98]. It is thought that CB2 may play the
most important role in neuromodulation, generally
being anti-inflammatory—reducing activity of NO/
ROS stress-inducing pathways. It is predominantly (but
not exclusively) found in immune cells. However, as
with CBI1, if it becomes too active during inflammation,
it can also induce further damage [99]. Data suggest that
at least AEA might directly suppress NF-kB, the master
regulator of inflammation, via CB2-dependent and
CB2-independent mechanisms [100—102].

At the organismal level, inflammation is associated
with the activation of the acute phase response,
which ensures energy delivery to the brain and damaged
tissues via insulin resistance, while initiating behaviou-
ral changes to ensure healing (thus, loss of libido,
depression, anxiety, generally feeling unwell that
ensure an animal lies down in a corner and conserves
energy) [103]. This is known as cytokine-induced sick-
ness behaviour and could be predicted from inhibition
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Figure 2. ECS dose—response-possible pathway activity. Pathways controlled by the ECS that can modulate mitochondrial
function at different levels of activity. (a) Low-level stimulation—activates mitochondrial function and stimulates growth/
proliferation pathways. Stress pathways at minimal activity. The increased mitochondrial activity in stem cells (which are
highly reduced), triggers growth and would reinforce the hydrogen peroxide growth signal. In differentiated cells, increased
mitochondrial activity would be associated with greater metabolism. Light grey indicates low activity of pathway, while
black/darker grey indicates high activity. () Medium tone—starts to activate some stress pathways and suppress growth path-
ways, ensures adaptability—may induce stemness by upregulating anti-oxidant pathways. Some cells become slightly more
oxidized, with a slight decrease in ATP—so would initially be anti-proliferative. Slight increase in mitochondrial calcium
uptake, but increased ROS may act to suppress activity. Would activate AMPK and autophagy. (¢) High tone—stress pathways
are active and growth pathways switched off by increasing oxidative stress, but there is enough ATP production to ensure apop-
tosis. Cells becoming more oxidized and is associated with increased calcium and ROS production. (d) Excess tone—stress
pathways would be fully active. The growth pathways may be switched on or off, depending on circumstances; hyper-activation
would add to the problems. Mitochondrial function completely suppressed and not compatible with life. Very high oxidant

levels and strongly inflammatory.

of mitochondrial function—especially in the brain.
Hence, as normal activation of the ECS appears to be
associated with anxiolytic activities, energy seeking
and energy storage, suppression of Thl inflammation
and maintenance of neural function, it might be that
the behavioural and metabolic aspects of the ECS
almost diametrically oppose cytokine-induced sickness
behaviour and associated metabolic changes. However,
with one key similarity and one key difference, it would
act to maintain energy supply to the CNS by maintain-
ing a degree of insulin resistance and maintain oxidative
phosphorylation—the most efficient use of energy.
The above therefore suggests that under normal
circumstances, the ECS is biased towards resolution of
inflammation and repair of damage, adaptation to
resist further insult, maintenance of neuronal mitochon-
drial function, as well as behavioural changes that
ensure an animal feels better and seeks and replenishes
energy stores—and keeps energy flowing to the brain. In
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effect, the ECS acts more on resolution from stress and
counteracts mitochondrial dysfunction. In particular,
maintenance of mitochondrial networks in long-lived
neurons could be very important.

However, as would be indicated by figure 2, there
may be well physiological circumstances where its
over-activation might contribute to pathology. One
interesting example may be the metabolic syndrome.
This is a condition that may be caused by removal
of nearly all factors from the environment that stimu-
late the production of efficient mitochondria and
metabolic flexibility (‘hormetins’), such as physical
activity, calorie restriction, temperature extremes and
plant defence compounds. The result is a mitochond-
rially dysfunctional phenotype unable to deal with the
almost unlimited supplies of calories available to many,
which results in an inflammatory spiral and accelerated
ageing [104]. The metabolic syndrome is thus associ-
ated with an increased prevalence of many diseases,
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such as cancer but, critically, it is also associated with
increased rates of depression, which might be related
to mild induction of cytokine-induced sickness behav-
iour [105].

Intriguingly, data also indicate that the ECS is either
dysfunctional or over-active in the metabolic syndrome
[106]. This might suggest that the ECS is responding to
the inflammation and is a counter-regulatory system.
This potentially means that the metabolic syndrome is
a condition that has elements of both an injury and a res-
olution response, both of which, if highly active, might
suppress mitochondrial function (probably in a tissue-
specific manner)—but would ensure glucose supply to
the brain. In the CNS, there is thus probably an ideal
‘Goldilocks’ zone where the right tone of the ECS main-
tains mitochondrial function and prevents excessive/
inflammation. This might explain why antagonizing
CBI1 shows anti-metabolic syndrome effects, but is
associated with CNS side-effects; in highly inflamed
tissues, such as visceral adipose tissue (VAT) or the
liver, it may tone down an over-heated ECS, but in the
CNS, it reduces its protective function. Resolution
may therefore require hormetins such as exercise or cal-
orie restriction, and perhaps, even plant polyphenols
that induce a widespread cellular hormetic response
that breaks the cycle and restores homeostasis. Finding
compounds, or combinations of compounds, that are
both hormetic and antagonistic to an over-heated ECS
may well provide therapeutic benefit—particularly if
they are tissue-specific.

In summary, does the evidence support our hypo-
thesis that the ECS must modulate mitochondrial
function, and does it perhaps provide a deeper
insight? Published data suggest that the ECS does
modulate pathways and molecules well known to control
mitochondrial function. Moreover, they support the
emerging paradigm of biology that all systems are
integrated and do not act in isolation, which allows
for multiple levels of response and redundancy. How-
ever, it also displays a deep simplicity in relation to
stimulus—response and adaptation to a varying environ-
ment—this was as true for our single-celled ancestors as
it is for today’s multicellular organisms. The mitochon-
drion is a single-cell symbiont in a modern cell that has
enabled complex life to evolve; however, this complex
life is still surrounded by a membrane and membrane
signals need to be integrated with its function for adap-
tation and survival. The fact that the ECS controls
multiple pathways that also modulate mitochondrial
function cannot be a coincidence; it would be far more
surprising if the ECS did not modulate mitochondrial
function. We believe that data currently available support
our hypothesis; in particular, it provides an insight into a
stimulus—adaptation multiphasic response. Integration
of membrane and mitochondrial function is a sine qua
non condition of aerobic life in an ever-changing and
challenging environment.
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