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Abstract: This paper introduces and evaluates DryMOD, a dynamic water balance model 

of the key hydrological process in drylands that is based on free, public-domain datasets. 

The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical 

Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a 

spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments 

in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in 

response to varying rainfall data inputs and soil properties. The results highlight the need 

for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for 

the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, 

TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce 

substantial changes to soil moisture storage. The outcomes from the sensitivity analysis 

show that topsoil porosity is the most important soil property for simulation of runoff and 

soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, 

for which reliable information on soil profile characteristics exists and which is sufficiently 

fine to account for the heterogeneities of these. Where such information is available, 

application of DryMOD can assist in the spatial and temporal planning of water harvesting 
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according to runoff-generating areas and the runoff ratio, as well as in the optimization of 

agricultural activities based on realistic representation of soil moisture conditions. 

Keywords: TRMM; drylands; Africa; rainfall; runoff; soil moisture; runoff harvesting 

 

1. Introduction: Motivation and Objectives 

Dryland regions are prone to desertification processes that are triggered by surface and soil water 

deficits. Thus, regional-scale management of water resources in drylands requires detailed information 

on water available as surface runoff and soil moisture over large heterogeneous landscapes. Plot-scale 

studies are representative of a relatively limited spatial heterogeneity and temporal variability that  

is effectively limited by highly variable and ephemeral hydrological fluxes [1]. A range of such 

experiments was carried out across the Mediterranean region, under the European projects EFEDA 

(European Field Experiment in Desertification-threatened Areas) and MEDALUS (Mediterranean 

Desertification And Land Use) [2], which led to a sequence of plot-scale modeling studies [3].  

Large-scale hydro-climatologic modeling, on the other hand, usefully characterizes climate variability, 

including spatial and temporal patterns of rainfall, but fails to capture the complexity of hydrological 

fluxes in response to heterogeneity in soil properties at the regional scale, at which desertification 

processes operate and water resource management decisions are made [4,5]. 

The gap in scope, complexity, and scale between plot- and large-scale remote sensing and modeling 

techniques is addressed here through a new, purpose-built model, DryMOD. DryMOD is developed to 

bridge the scale-gap between fine- (~30 m spatial resolution) and coarse-scale (~8 km spatial 

resolution) models and is implemented within the framework of DeSurvey, one of the European 

Commission’s integrated projects on desertification [6]. The regional spatial-scale, at which DryMOD 

operates, is directly relevant to policy decisions on rainwater harvesting and agricultural water 

management activities. 

DryMOD is a remote sensing based dynamic model of the dryland water balance. DryMOD aims to 

provide (a) regional-scale maps of surface runoff generating areas and soil moisture stores and (b) an 

effective means of interpreting remote sensing data for policy-relevant decision support. In order to 

achieve these aims, DryMOD is a spatially distributed (grid based) model, which represents the 

processes that are most relevant to the onset of desertification, namely rainfall-runoff generation and 

changes in soil moisture due to infiltration of rainfall in the soil profile. Rainfall, evapotranspiration, 

infiltration, groundwater recharge, and runoff, as well as soil moisture distribution—the key 

hydrological fluxes—are estimated for each grid throughout a study region (Figure 1). 

In DryMOD, the representation of the key processes and variables is based on improved spatial and 

temporal detail from free, public-domain remote sensing data. Specifically, this study builds on the 

novel method for rainfall intensity correction and spatial disaggregation of satellite-based rainfall 

estimates, which combines a coarse spatial but high temporal resolution dataset (providing information 

on rainfall intensity) and a coarse temporal but relatively high spatial resolution dataset (providing 

information on rainfall totals) [7]. Both datasets are based on rainfall retrievals from the Tropical 

Rainfall Measurement Mission (TRMM) sensor, and are used to provide the rainfall forcing for 
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DryMOD in raw form (non-corrected time-series) and as time-series corrected for the fractional cover 

of rainfall (FCR) at finer than 0.25 spatial resolution [7]. Here, we evaluate the DryMOD model at two 

pilot study regions in the belts north and south of the Sahara desert, respectively. As well as providing 

specific regional insight, we use DryMOD to explore the sensitivities of simulated runoff and soil 

moisture to the heterogeneity of soil parameters and to rainfall time-series with and without the 

fractional cover of rainfall (FCR) correction, and demonstrate the hydrological importance of applying 

the FCR-corrected time-series. 

Figure 1. Schematic diagram of the soil profile and the processes represented in the 

DryMOD water balance model. 

 

2. Background and Rationale 

2.1. Description of the DryMOD Model: Spatial and Temporal Scales 

DryMOD uses a grid cell representation of the study region with spatial resolution of 1 km, as 

determined by the spatial resolution of the available rainfall time-series, temperature climatology, and 

soil parameter databases used in the model. The 1-km spatial resolution is relevant to the spatial scale, 

at which rainfall generation processes operate. Rainfall in drylands is associated with cumulus 

convection systems, which operate at spatial scales of approximately 1 km and sub-daily temporal 

scales, while frontal systems are associated with scales exceeding 1,000 km and more than a day [8]. 

The importance of representing the spatial variability of rainfall (specifically convective rainfall) for 

hydrological modeling at resolutions below 2 km has been demonstrated in previous work in  

dryland catchments [8–11]. 

The spatial extent of the model is determined according to the boundaries of the study regions, 

which are defined following standard procedures for hydrological catchment delineation [12].  

While runoff routing is not explicitly considered in DryMOD, modeling is still relevant at the 

hydrological catchment scale as the aim is to identify runoff-generating areas within a catchment and 



Remote Sens. 2013, 5 6694 

 

 

to assess seasonal variability of runoff generation, the runoff ratio, and soil moisture stores. This 

information is valuable for effective planning of water harvesting and agricultural activities in  

water-limited environments. 

A wealth of data allows for running hydrological models with daily to monthly time steps. 

However, representation of rainfall variability (specifically convective rainfall dominant in summer 

months in drylands) requires sub-daily temporal resolution for accurate partitioning of rainfall into 

infiltration and runoff [8]. Sub-daily information on rainfall is only available from remote sensing 

datasets, with spatial resolutions coarser than 1 km, and from some ground weather stations but 

generally not free of charge. Thus, DryMOD is designed with rainfall forcing at the required spatial 

and temporal resolutions from intensity corrected and spatially disaggregated TRMM-based rainfall 

forcing time-series generated from free, public-domain datasets [7]. 

The temporal coverage of the model is constrained only by the availability of historical data, i.e., 

the 1998–2006 TRMM based rainfall datasets, which drive the rainfall simulation model [13,14]. 

Monthly outputs are generated automatically as part of the model applications in the pilot study regions. 

2.2. Catchment-Based Modeling of Water Balance in Drylands with DryMOD 

The water balance in DryMOD follows a general soil moisture budget approach, in which soil 

moisture storage is derived from rainfall as the main water input, and runoff, infiltration, 

evapotranspiration, and groundwater recharge as the key water “loss” components. Rainfall, 

temperature, and the hydraulic properties of soils play a key role in the water balance as the main 

controls of surface runoff dynamics, and the rates of infiltration and groundwater recharge, and 

ultimately determine soil moisture distribution. In DryMOD, rainfall reaching the surface is partitioned 

into infiltration and runoff, temperature is used to derive potential evapotranspiration (PET), and soil 

databases are used to derive soil hydraulic parameters in order to estimate soil moisture storage in the 

root zone for each 1-km grid over a given simulation period. In general form, the water balance 

equation at a point for time t can be written as: 

 (1)

where ∆SM is change in soil moisture storage, I is infiltration (vertical flow of rainfall into the root 

zone), ET is evapotranspiration (water loss from the soil profile), and GWR is groundwater recharge or 

drainage (vertical flow beyond the root zone layer). Currently, in DryMOD, leaf interception and water 

inputs from irrigation and runon contributions of water from runoff routing are not considered as 

vegetation cover is sparse in the pilot study regions considered here (Section 2.3) and a simplified 

water balance approach is found to represent well the key hydrological fluxes in drylands [15]. Rather 

than estimating effective runoff and soil moisture through horizontal runoff routing, DryMOD aims to 

(i) assess the sensitivity of the rainfall partitioning into runoff and infiltration to spatially and temporally 

distributed rainfall inputs, and (ii) calculate vertical fluxes (runoff and soil moisture) according to 

spatially heterogeneous soil properties. This is useful in order to identify runoff-generating areas and 

characterize soil moisture patterns at the regional scale, and these key fluxes are temporally aggregated 

at the monthly time step. The objective here is to provide a model that is tightly integrated with the 

required data and which is based on few parameters so that it can make use of improved remote 

ΔSM = I − ET − GWR
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sensing data with adequate spatial and temporal resolution and coverage. Thus, DryMOD can be used 

to gain insight into process dynamics across the spatio-temporal scales of the model, and to 

characterize regional-scale runoff and soil moisture over seasonal catchments as considered here. 

2.3. Pilot Study Regions 

Two hydrological catchments, in Tunisia and Senegal, are selected for the model evaluation 

undertaken here (Figure 2). The catchment boundaries are delineated from SRTM-3 (Shuttle Radar 

Topography Mission) Digital Elevation Model (DEM) data [16] using the catchment analysis function 

in the PCRaster GIS [12], and are used to define the model domain for DryMOD. 

Figure 2. Hydrological catchment boundaries and elevation maps derived from the Shuttle 

Radar Topography Mission (SRTM) digital elevation model (DEM) for the pilot study 

regions in (a) Tunisia, and (b) Senegal. 

The catchment in Tunisia (~85,000 km2) is a closed basin of an ephemeral salt lake, characterized 

by a strong N-S gradient of semi-arid to arid climate (400 to 70 mm annual rainfall) and predominantly 

winter precipitation. Rainfall intensity and frequency is important to this region as high-intensity rainfall 

of up to 360 mm·h−1 observed in the north can generate large volumes of surface runoff [17]. The main 

soil groups are regosols, which lie on soft rock, and lithosols, which lie on hard rock [18]. The 

catchment in Senegal (~43,280 km2), an ephemeral stream in the Ferlo region, is part of the  
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Sahel bioclimatic zone. The area is characterized by arid to semi-arid climate with a cool dry season 

(November to June), hot humid summer (July to September), and annual rainfall between 200 and 500 

mm (monthly maximum rainfall of 120 mm measured at the Linguère station) [19]. Soils in the region, 

especially brown and brown-red sub-arid soils, are not rich in minerals and are prone to degradation [20]. 

Both study sites are characterized by vegetation with sparse ground cover and relatively deep rooting 

systems (2.5–4.0 m), such as olive trees in Tunisia, and open shrubland species in Senegal that are well 

adapted to arid conditions. 

3. Data and Methods 

A flowchart of DryMOD, including the rainfall forcing, the inputs and parameterization data 

sources, as well as the processes represented and the relevant outputs is shown in Figure 3. This is 

followed by a description of the rainfall forcing, model stabilization and applications in the catchments 

considered here, and the methods for sensitivity analyses. 

Figure 3. Flowchart of the DryMOD model: data inputs and outputs (parallelograms), 

parameters (rectangles), and decisions (diamond shape).  

 

3.1. Rainfall Forcing 

Distributed hydrological modeling requires information on rainfall intensities with temporal 

resolutions at scales smaller than monthly and daily means (ideally hourly or sub-hourly), as well as 

spatially continuous coverage and sufficiently high spatial resolution to capture the typical size of 

rainstorms (ideally 1–2 km spatial resolution). Rainfall data are increasingly provided at relatively high 

temporal resolution from remote-sensing based products. However, both high spatial and temporal 

resolutions are not provided by any one of the currently available global gridded rainfall datasets. 

In order to combine the spatial and temporal detail from two different rainfall datasets, a novel 

method was developed for intensity correction and spatial disaggregation of TRMM 3B42 based  
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data [7,14] from 0.25° to 1-km resolution using a TRMM 2B31-based rainfall climatology [7,13]. The 

two datasets are derived from the standard NASA TRMM 2B31 and 3B42 V6 products [21,22]. The 

rainfall forcing dataset corrected for fractional cover of rainfall (FCR) and disaggregated to 1-km 

spatial resolution is referred to as FCR-corrected hereafter, while the dataset subjected only to 

disaggregation without intensity correction is termed non-corrected [7]. In the stochastic rainfall field 

generator (weather generator) of DryMOD, wet and dry hours are determined, based on the TRMM 

2B31-based 1-km rainfall climatology. The gamma distribution function Γ(x) parameters α and β 

(inferred from the 3-hour TRMM 3B42 based product [14]) are used to determine rainfall intensities at 

each hourly time step. Further details are provided in Section 1, Supplementary Material. This 

approach allows for simulation of rainfall with an hourly time step as relevant for dynamic partitioning 

of rainfall into infiltration and surface runoff, and for modification of soil moisture storage and 

infiltration rate. Monthly outputs of total simulated rainfall, runoff, infiltration, groundwater recharge, 

evapotranspiration, and resultant changes in soil moisture are automatically generated. Sections 4.1.2 

to 4.1.4 describe the impact of this disaggregation and rainfall simulation on runoff and soil moisture 

dynamics and patterns. 

3.2. Model Parameterization and Boundary Conditions 

3.2.1. Soil Hydraulic Parameters 

Soil water conditions and hydraulic conductivity are determined on the basis of soil information 

from the 1-km Harmonized World Soil Database (HWSD) [23] (see Section 2, Supplementary 

Material). Bulk density for the subsoil layer, which is used for calculating the recharge rate from the 

base of the soil profile, is derived according to the depth-dependency bulk density model for dryland 

soils in the Mediterranean [24] and Australia [25]. Bulk density increases with depth, while porosity 

decreases (hence, infiltration capacity into deeper layers of the soil profile decreases). The remaining 

soil parameters determining hydraulic properties are calculated using root depth to represent the soil 

profile in a spatially distributed manner on the basis that water reaching the profile below the rooting 

depth will generally be unavailable for transpiration and thus, available for recharge and deep 

percolation. Root depth is determined according to the 1-km spatial resolution AVHRR Global Land 

Cover (GLC) dataset [26] and the IGBP (International Geosphere-Biosphere Programme) vegetation 

codes (Table 2 in [27]) for the land cover types found in the two pilot study regions (see Section 2, 

Supplementary Material). 

Based on the bulk density adjustment for root depth, an overall increase of bulk density by  

0.2–0.6 g·cm−3 with increasing depth is observed for most soil profiles in the study regions. Since 

calculated bulk density values for the subsoil layer increase with depth, the porosity decreases. The 

decrease of porosity expressed with depth as volume fraction is between 0.1 and 0.4 for soil profiles in 

the two study regions. The general range of b-values (power of the soil moisture characteristic curve, 

see Section 2, Supplementary Material) is between 2.0 and 24.0 [28]. In both study regions b-values 

fall in the range of 2.0–8.0 with the exception of the clayey Solonchak soil profiles in the Tunisia study 

region where computed b-values are in the 12.0–14.0 range, that is approximately double those for 

other soil profiles. These soils are characterized by low bulk density, low sand content, and high clay 



Remote Sens. 2013, 5 6698 

 

 

content and their porosity decreases by half from 0.4–0.5 to 0.2–0.3 with increasing depth, as 

calculated for topsoil and subsoil layers. Saturated hydraulic conductivity Ksat determines the ability of 

saturated soil to transmit water at a rate determined by hydraulic conductivity and depends mainly on 

pore size distribution but also on the properties of liquid water and vapor. In DryMOD, Ksat is derived 

in kg·s·m−3 and converted to rate in mm·h−1 for the calculation of infiltration and recharge rates. The 

Ksat values for subsoil layers (not shown) decrease with increasing depth to values below 1.0 mm·h−1 

for all soil profiles in the Tunisia (Ksat = 0.1–1.0 mm·h−1) and Senegal (Ksat = 0.2–0.7 mm·h−1)  

study regions. 

3.2.2. Potential Evapotranspiration 

The atmospheric moisture demand, potential evapotranspiration PET in mm, is estimated in 

DryMOD for months from January to December over each study region using mean monthly air 

temperature data from the WorldClim temperature climatology and the Thornthwaite model [29–32] 

including an adjustment for day length and solar angle [33] and heat index calculation (see Section 3, 

Supplementary Material). The WorldClim dataset provides a monthly air temperature climatology at 

approximately 1-km spatial resolution (30-arc seconds horizontal grid spacing) and covers the  

1950–2000 time period [34]. As inter-annual changes of temperature are not considered in the 

DryMOD model, the January–December values (Section 3, Supplementary Material) are used to drive 

PET in the model for the stabilization and application runs over each study area. 

3.2.3. Actual Evapotranspiration 

Most ground weather stations provide meteorological data for calculation of PET, not AET. Various 

methods have been developed to derive AET as a function of PET and soil dryness [35,36]. In 

DryMOD, AET is derived from PET and soil dryness using the Budyko bucket model (Budyko and 

Zubenok, 1961 in [35–37]), according to which AET is specified as a function of PET in  

mm month−1 and moisture availability θ as follows:  

 (2)

This general formulation allows for a reduction of evapotranspiration by available soil moisture 

where the AET ~ f(θ) relationship can be defined in different forms (Table 1, [36]). Equation (2) is 

implemented here due to its simplicity and because it was developed for the bucket-type soil moisture 

storage model implemented in DryMOD. 

3.2.4. Soil Moisture 

In DryMOD, soil moisture θ expressed as volumetric fraction (m3 water · m−3 soil) is calculated 

every monthly time step t according to the following equation: 

 (3)

where θt−1 is soil moisture at the previous time step plus net soil moisture change for the current time 

step t, calculated as infiltration I less actual evapotranspiration AET and groundwater recharge GWR; 

all units are converted to fractional water content through division by the root depth. The change in 

AET = PET × f (θ)

θt = θ t −1 + (It − AETt − GWRt )
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soil moisture ∆θ is the amount of water added or removed from the initial soil moisture level and the 

values range between zero and field capacity minus wilting point. Specifically, in DryMOD, soil 

moisture is calculated according to a bucket type model where soil moisture content θ is limited at the 

lower and upper bounds, respectively, by soil moisture at wilting point θWP (dry soil) and soil moisture 

at field capacity θFC (wet soil) as follows:  

 

(4)

For the stabilization run θ is initialized as θFC, i.e., assuming nearly saturated conditions (because θ 

can be different than θFC and is usually smaller than porosity due to entrapped air in the soil), and 

rapidly reaches a dynamic equilibrium. Initial infiltration and recharge rates expressed in mm·h−1 are 

calculated using hydraulic conductivity equations (detailed in Supplementary Material, Section 2) with 

the parameters for topsoil and subsoil as indicators of hydraulic properties at the soil surface and at the 

base of the soil profile, respectively. At the monthly time step of the model, soil moisture is calculated 

according to Equation (3), taking into account antecedent moisture conditions from the previous 

month, and the net change of soil water content, i.e., infiltration less AET and GWR. Thus, soil 

moisture calculated in DryMOD describes the quantity of moisture gains and losses, as well  

as the frequency of hydrological deficits as these have critical implications for optimization of 

agricultural activities. 

Table 1. Soil parameter values and summary statistics for the randomly selected 1-km 

pixel in (a) Tunisia, and (b) Senegal considered in the sensitivity analysis. 

Parameter (Units) Nominal Value 
−50% of  

Nominal Value 

+50% of  

Nominal Value 
Min Max Mean Std. Dev. 

(a) Tunisia  

X1: porosity topsoil (-) 0.47 0.24 0.71 0.36 0.54 0.43 0.05 

X2: porosity subsoil (-) 0.28 0.14 0.43 0.12 0.34 0.20 0.08 

X3: ksat_topsoil (kg·s·m−3) 7.08 3.54 10.63 2.01 13.51 4.84 3.33 

X4: ksat_subsoil (kg·s·m−3) 4.10 2.05 6.16 1.57 6.15 2.86 1.20 

X5: b-value (-) 0.25 0.12 0.37 0.00 0.98 0.52 0.34 

X6: root_depth (m) 2.50 1.25 3.75 1.50 6.00 3.89 0.33 

(b) Senegal  

X1: porosity topsoil (-) 0.48 0.24 0.71 0.35 0.48 0.39 0.06 

X2: porosity subsoil (-) 0.32 0.16 0.48 0.13 0.99 0.19 0.08 

X3: ksat_topsoil (kg·s·m−3) 7.22 3.61 10.83 2.35 7.22 3.93 2.24 

X4: ksat_subsoil (kg·s·m−3) 3.14 1.57 4.71 1.46 4.10 2.15 0.89 

X5: b-value (-) 0.26 0.13 0.39 0.22 0.67 0.51 0.18 

X6: root_depth (m) 2.50 1.25 3.75 1.50 4.00 3.05 0.48 

3.2.5. Infiltration and Groundwater Recharge 

DryMOD uses the hydraulic conductivity of the soil to calculate hourly infiltration and recharge 

rates, along with a water mass balance approach to calculate recharge [28]. Monthly cumulative 

θ −θFC if θ ≥θFC

θ −θWP

θFC −θWP

if θWP < θ < θFC

0 if θ ≤ θWP
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Infiltration I for a given grid cell is the sum of hourly-based infiltration for wet hours during that 

month if the soil profile is not saturated; at saturation (i.e., when accumulated soil moisture exceeds 

soil moisture at field capacity), water infiltrated through the soil profile percolates to groundwater 

recharge. The hydraulic conductivity of subsoil layers determines the rate of recharge in bucket-type 

soil water models (for details, see [25,38] and Supplementary Material, Section 2). The water 

percolating to the bottom layer of the soil is cumulated as groundwater recharge GWR expressed as 

mm month−1 and used in the soil water balance model (Equation (3)). Thus, in DryMOD cumulative 

infiltration and groundwater recharge are recorded as model outputs for each monthly time step. 

3.2.6. Runoff 

Surface water runoff is a major and important source of freshwater in dryland regions characterized 

by low rainfall amounts, high spatial and temporal variability of rainfall, and high salinity of 

groundwater sources [39]. Runoff in drylands is commonly collected through traditional water 

harvesting techniques and presents an important contribution to available water mainly for agricultural 

uses such as dryland farming and livestock. Thus, knowledge of runoff generation areas is essential for 

the effective planning of water harvesting systems in drylands, as well as for optimization of 

agricultural activities. Hence, the aim here is to estimate the fraction of rainfall that becomes runoff 

(runoff ratio) and to identify areas in the pilot study regions that are likely to generate runoff. 

Measurements of runoff are generally unavailable in dryland regions mainly due to the costs and 

logistics involved in maintaining stream gauges in rivers with infrequent but sediment-laden storm 

flow [40], as well as in ephemeral streams in dryland countries [10,11]. Instead, runoff is estimated 

through water balance models, in which rainfall arriving at the soil surface is partitioned into 

infiltration and runoff according to soil hydraulic properties. In DryMOD, this is achieved by allowing 

for occurrence of both infiltration excess and saturation excess runoff. Within a given monthly time 

step, the runoff process is driven by the hourly rainfall simulation model, in which rainfall is 

partitioned into infiltration and changes in groundwater recharge and soil moisture according to a 

saturation excess model [41] (Section 2, Supplementary Material). 

For non-saturated profiles, infiltration occurs (at the infiltration rate) until soil moisture reaches 

field capacity, i.e., the profile is nearly saturated. The hourly infiltration rate is updated according to 

the exponential model illustrated in Figure S1 (Supplementary Material, Section 2). For saturated soil 

profiles, groundwater recharge occurs (at the groundwater recharge rate) and any excess water is 

cumulated. The bucket-type model allows for recharge under soil moisture at saturation because 

features such as fractured soils and salt depressions with moist surface due to shallow water table are 

common to interior drainage basins in drylands [42]. At the end of the monthly time step, runoff is the 

excess rainfall at the surface that did not evaporate or infiltrate into the soil profile. From month to 

month, soil moisture is updated according to Equation (3), which accounts for antecedent moisture 

conditions, infiltration, actual evapotranspiration, and groundwater recharge. 
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3.3. DryMOD: Model Stabilization, Applications, and Sensitivity Analysis 

3.3.1. Model Initialization and Stabilization 

DryMOD is initialized with a stabilization (spin-up) run over 10 years driven by seasonally and 

inter-annually varying rainfall and seasonally varying temperature. In the spin-up run, initial soil 

moisture is set at θFC, and initial infiltration and groundwater recharge rates are calculated according to 

the method based on hydraulic conductivity, soil depth, and porosity of the topsoil and subsoil layers, 

respectively. The aim of the model spin-up run is to (a) provide realistic estimates of initial soil 

moisture conditions for the model applications over each pilot study region considered here; and  

(b) assess the effect of using the non-corrected and FCR-corrected rainfall forcing data on soil 

moisture stabilization. The spin-up run ensures that the model parameters are at equilibrium  

with initial conditions at the start of the model applications and avoids errors associated with  

model equilibration. 

A trend toward stabilization of soil moisture from initial values of 0.215 m3·water·m−3 soil for 

Tunisia and 0.19 m3·water·m−3 soil for Senegal is apparent in the first two years of the model spin-up 

run (i.e., time steps 1–24 of 120) for both study sites and both the non-corrected and FCR-corrected 

rainfall forcing datasets (results not shown). However, soil moisture derived with the non-corrected 

rainfall stabilizes at lower values than soil moisture derived with the FCR-corrected rainfall forcing. 

Specifically, soil moisture stabilizes around 0.11–0.12 and 0.12–0.13 m3·water·m−3 soil for Tunisia, 

and between 0.11–0.13 and 0.11–0.14 m3·water·m−3 soil for Senegal with the non-corrected and  

FCR-corrected rainfall data forcing, respectively. 

3.3.2. Model Applications to Pilot Study Regions 

The model applications for the two study sites in Tunisia and Senegal use the soil moisture 

distribution maps produced by the stabilization runs with the non-corrected and FCR-corrected rainfall 

datasets, respectively, as initial maps of soil moisture conditions and run over 10 years for each 

simulation. This is to test the sensitivity of the key hydrological components, surface water and soil 

moisture, to changes in the representation of input variables with a specific focus on the use of  

non-corrected and FCR-corrected rainfall data. If the model is found to be sensitive to the rainfall data 

inputs, the expectation is that using the FCR-corrected TRMM based data will produce rainfall that 

generates runoff as compared to non-corrected data, which underestimates rainfall intensities and thus, 

is not expected to result in realistic runoff [7]. If the model is found to be insensitive to the different 

rainfall inputs, this would mean that the runoff generation is either uniformly distributed within the 

study region regardless of the spatial characteristics of simulated rainfall time-series, or the rainfall 

simulation technique fails to represent the characteristic spatial distribution of rainfall at the 1-km 

spatial scale. The expectation is that the rainfall simulated with the FCR-corrected data will 

realistically represent the rainfall properties as observed in the 1-km TRMM 2B31-based rainfall 

climatology and will result in simulation of higher runoff due to accounting for the sub-grid spatial 

variability of rainfall [7]. Model applications in the two pilot study regions in Tunisia and Senegal 

allow for an assessment of the hydrological significance of simulating rainfall with spatial and 

temporal disaggregation. Results from the model applications with rainfall simulations based on  
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the non-corrected and FCR-corrected TRMM based data are presented and evaluated through 

sensitivity analysis. 

3.4. Sensitivity Analysis 

The objective here is to examine the sensitivity of rainfall simulation (Section 4.1.1) and  

runoff-generating areas and soil moisture distribution (Section 4.1.2) to data inputs from the  

non-corrected and FCR-corrected rainfall datasets. This also includes analysis of runoff and soil 

moisture dynamics over selected ground weather stations (Section 4.1.3) and characterization of runoff 

generating rainfall intensities (Section 4.1.4). The second part of the sensitivity analysis (Section 4.2) 

evaluates the sensitivity of runoff and soil moisture simulations with the non-corrected and  

FCR-corrected rainfall intensities to varying hydraulic properties over each study region. For this 

purpose, soil parameters are varied one at a time, while the changes in the output (simulated monthly 

runoff and soil moisture) are monitored. Specifically, six input soil parameters, to which runoff and 

soil moisture are expected to be sensitive (Table I in [43])—topsoil and subsoil porosity, topsoil and 

subsoil saturated hydraulic conductivity, the b-value, and root depth—are varied over 12 months for a 

randomly selected location in each pilot study region. The base run uses the nominal values of all soil 

hydraulic parameters for the selected location, while in each sensitivity analysis run one of the soil 

parameters is varied from −50% to +50% of its nominal value at that location with a 10% step change, 

while the other soil parameters remain fixed. The results are reported as percentage change PC in the 

output variable Y according to the following equation:  

 
(5)

where Y(x) is simulated runoff or soil moisture when varying the input soil parameter x and  

Ybase is simulated runoff or soil moisture in the base run. Additionally, the first order sensitivity  

index FOSI [44] is calculated based on the variance Var of Y(x) and Ybase according to the  

following equation:  

 
(6)

While the PC measure can be used to assess the magnitude of changes in the output variable driven 

by individual input soil parameters, the FOSI variance-based measure can be used as a guide in 

prioritizing subsequent model calibration and optimization tasks [44]. The FOSI measure also provides 

information on the relative importance of individual soil parameters in driving changes in the output 

variables runoff and soil moisture. 

4. Results and Discussion 

4.1. Model Applications to the Pilot Study Regions 

The soil moisture fields derived in the model stabilization run with non-corrected and  

FCR-corrected TRMM based data are used for model initialization here, over 10 years, for each pilot 

region. In the absence of detailed information for validation, estimates of runoff and soil moisture 

PCY (x ) =
Y(x) −Ybase

Ybase

 

 
 

 

 
 ×100

FOSIY (x ) =
Var(Y (x))

Var(Ybase )
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generated with the DryMOD model using the non-corrected and FCR-corrected rainfall datasets are 

compared with values reported in the literature for similar dryland environments. Additionally, runoff 

and soil moisture dynamics are examined for a selected location in each pilot study region. This 

section concludes with analyses of hourly-based rainfall-runoff dynamics allowing for characterization 

of runoff-generating rainfall intensities. 

Figure 4. Density plots of mean monthly rainfall simulated over 10 years with the  

non-corrected and corrected for fractional cover of rainfall (FCR) TRMM 3B42 based 

rainfall data against TRMM 2B31 based mean monthly rainfall climatology across the 

catchments in (a,b) Tunisia and (c,d) Senegal. Red indicates high, white indicates low  

1-km pixel densities. 

 

4.1.1. Sensitivity of Rainfall Simulations to TRMM-Based Input Datasets 

The evaluation of the algorithm for spatial disaggregation and intensity correction of the TRMM 

based rainfall time-series [7] encouraged further investigation of its contribution to water balance 

modeling in drylands. As there is little ground-based data for direct comparison against spatial rainfall 

fields of hourly rainfall intensity, the contribution of improving the rainfall representation in the model 
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is assessed through sensitivity analysis of monthly rainfall fields simulated with the non-corrected and 

FCR-corrected rainfall forcing, respectively. Simulated monthly rainfall fields generated with the  

non-corrected and the FCR-corrected data are averaged over 10 years for comparison with the original 

TRMM 2B31-based rainfall climatology (Figure 4). This helps to identify if the non-corrected or the 

FCR-corrected TRMM-based rainfall intensities provide a more realistic representation of rainfall 

according to the 1-km TRMM 2B31-based rainfall climatology. 

As expected, the simulated intensities are unrealistically small for the non-corrected TRMM-based 

rainfall data (Figure 4). Given the generally low probability of rainfall, when the non-corrected rainfall 

data are used the maximum number of possible rain hours is exceeded before the mean monthly 

rainfall for a given 1-km pixel is reached according to the TRMM 2B31 based climatology ±20% 

variance. This results in substantially lower mean monthly rainfall estimated with the non-corrected 

(Figure 4a,c) as compared to the FCR-corrected rainfall data (Figure 4b,d). While the annual average 

of mean monthly rainfall ranged between 0 and 80 mm for Tunisia and between 0 and 160 for Senegal 

in the TRMM 2B31-based data, the use of the non-corrected dataset failed to generate sufficient 

rainfall for all 1-km pixels in both study regions (Figure 4a,c). The FCR-corrected dataset resulted in 

mean monthly totals that more closely represent those derived from the TRMM 2B31 based rainfall 

climatology across both study regions (Figure 4b,d). This confirms that it is not realistic to assume 

even distribution of non-corrected TRMM-based rainfall intensities at the sub-0.25° grid-cell scale as 

these values represent an average over large area covered by a given 0.25° grid cell and fail to capture 

localized convective storms. Thus, FCR-correction of TRMM 3B42-based rainfall intensities is a 

recommended step of the disaggregation to 1-km for detailed analysis of rainfall intensities, such as in 

hydrological model forcing. 

4.1.2. Sensitivity of Runoff and Soil Moisture to Rainfall Forcing with TRMM-Based Input Datasets 

Runoff Generating Areas 

As non-corrected TRMM based rainfall data underestimate rainfall intensities and monthly totals, 

when used in a stochastic weather generation algorithm these will produce unrealistically low runoff. 

Thus, the expectation is that rainfall simulations based on the FCR-corrected dataset will generate 

more runoff in parts of the pilot study regions during high-intensity rainfall events. 

As shown in Figure 5, for both study regions, the mean monthly runoff generated with the  

non-corrected dataset is very small, partly due to no runoff generated for most summer months, which 

are dominated by convective rainfall. The results here are in agreement with those reported in previous 

work on the spatial and temporal resolutions required for realistic hydrological modeling in drylands. 

As demonstrated in several studies [9–11], spatial averages of rainfall intensities over areas larger than 

2 km2 fail to generate runoff due to their inability to capture the space-time variability of convective 

rainfall, which operates at hourly and sub-hourly temporal scales and spatial scales of 1–2 km2. 

Moreover, previous work in similar dryland regions showed that the highest rainfall intensities are 

sustained over small space-time scales [10,11,45]. For example, the spatial variability of rainfall over 

small distances in the Sahel can be approximately 20 mm over a 3 km distance [46]. Indeed this 

characteristic spatio-temporal variability of rainfall provided the motivation for the spatial disaggregation 
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and intensity correction of the TRMM 3B42-based time-series introduced here. The evaluation 

presented here confirms the relevance of the FCR correction, which allows for dynamic simulation of 

rainfall making best use of TRMM 3B42 and TRMM 2B31-based datasets, and highlights the 

sensitivity of runoff to rainfall forcing. 

Figure 5. Mean monthly runoff calculated as a 10-year average from the regular model 

runs with the non-corrected and FCR-corrected TRMM-based rainfall forcing for the pilot 

study regions in (a,b) Tunisia and (c,d) Senegal. 

On average, approximately 50% more runoff is generated in the Senegal than in the Tunisia 

catchment as estimated from the 10-year long regular run of the model, reflecting the fact that runoff is 

dominated by higher rainfall in Senegal as compared to Tunisia (Figure 5). While runoff harvesting is 

widespread in Tunisia, the results presented here suggest that the Senegal study region can also benefit 

substantially from water harvesting schemes, especially during the rainy summer months between  

June and September. Although the Senegal study region is relatively flat, rainwater harvesting and 

encouragement of re-infiltration of overland flow can take many forms (e.g., small water-retention 

dams, small dykes or gradients) and can enhance water supply in months of water scarcity as 

demonstrated for crop cultivation, especially in the western and southern part of the region [46]. For 

the study region in Tunisia, the results indicate that agriculture can benefit from water harvesting 

schemes throughout nearly the entire year, albeit with relatively lower volumes of runoff than in 

Senegal as estimated here. 

In summary, the application of the model for the two pilot study regions confirms the contribution 

of FCR-corrected TRMM-based data for simulation of important hydrological fluxes such as runoff. 
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Indeed the runoff component was shown to be sensitive to the different input rainfall datasets and the 

use of the FCR-corrected rainfall dataset is recommended unless a full model validation for a gauged 

catchment can be carried out. 

Soil Moisture Distribution 

The focus here is on the spatial distribution of soil moisture estimated in the regular model runs 

over Tunisia and Senegal using the FCR-corrected rainfall data, as soils play a key role in storing 

water so that it is available for vegetation growth. The seasonal distribution of soil moisture is 

represented for each month as a 10-year average, derived from the regular runs of DryMOD using the 

FCR-corrected rainfall data for Tunisia and Senegal (Figure 6). 

Figure 6. Mean monthly soil moisture calculated as a 10-year average from the regular model 

runs with the FCR-corrected TRMM-based rainfall forcing for (a) Tunisia and (b) Senegal. 

(a) (b)

The temporal variability of soil moisture is directly related to the variability of water inputs through 

rainfall with peaks of soil moisture during and shortly following rainy months for each study region. 

Where soil moisture is lowest, the artifacts related to the 0.25° TRMM grid cells observed in the runoff 

maps are also present in the soil moisture maps for both study regions. Mean soil moisture fractional 

content ranged between 0.07 and 0.30 m3·water·m−3 soil in the Tunisia study region and between 0.07 

and 0.25 m3·water·m−3 soil in the Senegal study region. This is at least partially explained through the 

higher runoff generated over the Senegal study region than that over the Tunisia catchment, the type of 
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vegetation cover (shallower rooting depths in the Senegal region), and the water holding capacities of 

soils in the Senegal as compared to the more arid Tunisia study region. It is worth noting that soil 

moisture in the northern part of the Tunisian catchment is higher than in the south, due to higher 

rainfall, more pronounced topography (thus, lower temperatures) and differences in vegetation cover, 

affecting rooting and, thus, soil depth. 

Unlike runoff maps, the soil moisture maps more clearly express the effects of soil mapping units, 

for which soil data was used for model initialization, especially that of calculated saturated hydraulic 

conductivity Ksat. Soils with higher Ksat values remained relatively wet throughout the year. The effects 

of temperature and root depth through evapotranspiration are also reflected in the spatial distribution of 

soil moisture. In both study regions higher soil moisture values are observed for areas of higher rainfall 

and lower temperatures with more expressed seasonal patterns of wetting and drying for soils with 

lower Ksat and higher root depths. 

4.1.3. Runoff and Soil Moisture Dynamics over Selected Ground Weather Stations 

Further examination of runoff and soil moisture changes for locations selected over a ground 

weather station in each study region shows clear seasonal response of these to rainfall forcing based on 

the non-corrected and FCR-corrected TRMM-based datasets, as well as to soil properties and root 

depth. The pixel selected in the Tunisia study region over the Tozeur station represents loamy-sand 

soils with root depth of 4.0 m characteristic to vegetation types with sparse ground cover and deep root 

systems that are well adapted to arid conditions. The pixel in the Senegal study region over the 

Linguère station represents a sandy soil with root depth of 3.1 m corresponding to the open shrubland 

cover type. Figure 7 shows the evolution of runoff and soil moisture in response to different rainfall 

input datasets over the monthly time steps of the 10-year model runs. 

Water storage capacities (difference between volumetric soil moisture content at field capacity and 

that for dry soils) are generally between 3% and 6% for sand and 15%–25% for clay [47]. Similar 

water storage capacity values were reported for experimental plots in semi-arid Spain for loamy sand  

(5.2%–10%), sand (around 6.1%), and sandy loam (6.3%–7.1%) soils [48]. Increasing water storage 

capacity from 6.2% to 11.5% to 17.6% for decreasing sand fraction content from 94% to 65% and 

23%, respectively, were reported for semi arid soil conditions [49]. For the locations selected here, soil 

moisture values expressed as percent are higher than reported figures, i.e., between 20% and 28% for 

the pixel with loamy sand soils in Tunisia and between 20% and 40% for the pixel with sand soils in 

Senegal. While the reported figures are from plot-scale field experiments, the estimates here are 

dependent on the soil databases and root depth information used for model parameterization. 

As with the results for runoff averaged across each catchment, the non-corrected TRMM based 

rainfall forcing fails to produce runoff in the selected locations or produces very low runoff  

(Figure 7a,c). Runoff in both locations occurs in months of relatively high water input through rainfall 

(i.e., April–May and September–October in Tunisia and August–September in Senegal) with no runoff 

during most other time steps of the model runs. Runoff generation also depends on soil texture and 

physical properties with lower runoff from soils with high sand content than from those with high clay 

content [47]. However, for the locations selected more runoff was generated for the pixel with sand 

soils (90% sand) in Senegal than for that with loamy sand soils (86% sand) in Tunisia. This highlights 
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the importance of rainfall intensities for runoff generation, and the focus of the next section is on 

characterization of runoff generating rainfall intensities. 

Figure 7. Sensitivity of runoff and soil moisture to the non-corrected and FCR-corrected 

TRMM based rainfall forcing for the location of the Tozeur ground weather station in 

Tunisia (a,b) and the Linguère ground weather station in Senegal (c,d) over the 10-year 

regular model runs (i.e., 120 monthly time steps). 

 

4.1.4. Runoff Generating Rainfall Intensities 

An investigation of hourly dynamics of rainfall and runoff generation helps to identify the rainfall 

intensities that generate runoff in each of the catchments. Hourly rainfall intensities for each location 

are summarized into frequency distributions for the non-corrected and FCR-corrected TRMM-based 

rainfall datasets. For both study regions, substantially higher rainfall intensities are observed when the 

FCR-corrected rainfall datasets are used in the regular run of the DryMOD model (Figure 8). 

For the Tozeur station in Tunisia most frequent are rainfall intensities of approximately  

4–8 mm·h−1, while for the Linguère station in Senegal, most frequent are intensities around  

5–20 mm·h−1 (Figure 8). However, the non-corrected rainfall dataset fails to produce rainfall intensities 

higher than 7.19 mm·h−1 for the location in Tunisia and 5 mm·h−1 for the location in Senegal, while the 

FCR-corrected dataset produced rainfall intensities of up to 230 mm·h−1 for Tozeur and 40 mm·h−1 for 

Senegal. Although rainfall intensity data are not available for the selected stations, previous work 

indicates that 50% of rainfall in similar regions reaches the surface with intensities ≥ 27 mm·h−1 [46] and 

≥32 mm·h−1 [50]. Thus, the FCR-corrected rainfall intensities appear more realistic. 

Runoff-initiating rainfall rates depend on soil properties (soil type, texture, chemical properties)  

and in similar dryland environments range between 4.5 and 11 mm·h−1 with final infiltration rates of  

5–50 mm·h−1 [39]. As illustrated in Figure 8, 95% of rainfall intensities ≥14.38 mm·h−1 generated 

runoff in the selected 1-km pixel for the Tunisia catchment. Similarly, Figure 8 shows that 96% of 
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rainfall intensities ≥ 5 mm·h−1 generated runoff for the selected 1-km pixel in the Senegal catchment. 

Although model-based estimates are difficult to validate against field-based measurements, and such 

measurements are not available here, the estimates here agree with reported observations of the  

non-linear response of runoff generation in arid regions (Brown and Wheater, 1989 in [10,39]). It is 

worth noting that while in the selected location in Tunisia the runoff generating rates are spread across 

a range of rainfall intensities, in the selected location in Senegal most of the runoff is generated by 

lower-intensity but more frequent rainfall events. 

Figure 8. Frequency distributions of hourly rainfall and infiltration rates, and runoff 

derived from the 10-year model runs with non-corrected and corrected for fractional cover 

of rainfall (FCR) TRMM-based datasets for a 1-km pixel over (a,b) the Tozeur station in 

Tunisia and (c,d) the Linguère station in Senegal. 

 

The analysis of hourly-based dynamics of runoff generation confirms the effectiveness of the 

intensity correction and spatial disaggregation of the TRMM 3B42-based data and suggests that the 

DryMOD model is robust for the regional applications in Tunisia and Senegal under differing  

hydro-climatic characteristics. 

4.2. Sensitivity Analysis of Runoff and Soil Moisture to Soil Hydraulic Parameters 

The sensitivity of the main hydrological fluxes (runoff and soil moisture) to six key soil  

hydraulic parameters that control the processes of infiltration, runoff, groundwater recharge, and 

evapotranspiration are examined here. A modified version of DryMOD for sensitivity analysis is 
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initialized here with the soil moisture conditions derived from the stabilization run of the DryMOD 

model using the FCR-corrected rainfall forcing for a randomly selected location in each study region. 

This represents the base run, against which subsequent sensitivity analysis runs are compared. In each 

of the six sensitivity analysis runs of the DryMOD model for the selected location, one of the six 

parameters was varied in a range from −50% to +50% of its nominal value with a 10% increment, 

while the other five remained fixed at their nominal value (Table 1). The base run and all subsequent 

runs are carried out over one year for each pilot study region. The sensitivity analysis plots are 

presented in Figure 9 for Tunisia and in Figure 10 for Senegal. 

Figure 9. (a,b) Percent change and (c,d) first order sensitivity index (FOSI) for  

runoff (left) and soil moisture (right) for Tunisia.  

 

The plots of percent change for both study regions show that runoff (Figures 9 and 10, left) is more 

sensitive than soil moisture (Figures 9 and 10, right) to most of the parameters considered. With 

respect to runoff, both sensitivity metrics, PC and FOSI, are generally higher for Tunisia than for 

Senegal, while for soil moisture there are no substantial differences between the two pilot study 

regions. According to the PC metric with values above 100% for Tunisia (Figure 9, top) and above 

30% for Senegal (Figure 10, top), runoff calculations are sensitive to the majority of parameters 

considered. With respect to the PC metric, soil moisture calculations show the largest sensitivities to 

porosity of the topsoil and subsoil for both study sites. The FOSI plot for Tunisia (Figure 9, bottom) 

shows that most variance in runoff is caused by changes in porosity and Ksat of topsoil. For Senegal 

(Figure 10, top), the most variance in runoff is induced by saturated hydraulic conductivity of topsoil. 

The FOSI plots of soil moisture for both study regions show that most of the variance is due to the 
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decrease of root depth and changes in the porosity of the topsoil and subsoil (Figures 9 and 10,  

bottom right). 

The greatest changes in runoff and soil moisture are in response to changes in porosity of the topsoil 

and subsoil with the latter affecting drainage from the bottom of the soil profile and thus, infiltration 

capacity. As the porosities of the topsoil and subsoil increase, soil moisture increases due to increased 

infiltration capacity; as topsoil porosity decreases, runoff increases due to reduced infiltration capacity 

of the soil surface layer. Additionally, as root depth decreases, runoff increases as the soil profile is 

shallower and saturates more rapidly. For both study sites, greatest variances in runoff were observed 

when the input parameters decreased with the exception of Senegal where topsoil and subsoil porosity 

increase resulted in substantial variances in soil moisture calculations (Figure 10, bottom right). Most 

expressed were the impacts of a decreasing topsoil porosity and Ksat on runoff, and that of a decreasing 

root depth on soil moisture (i.e., due to decreasing depth of the soil profile and, thus, decreasing water 

storage capacity). 

Figure 10. (a,b) Percent change and (c,d) first order sensitivity index (FOSI) for runoff 

(left) and soil moisture (right) for Senegal. 

 

It is worth noting that changes in Ksat and the b-value do not induce substantial changes in soil 

moisture (Figures 9 and 10). As saturated hydraulic conductivity is only crudely approximated through 

soil textural information, Ksat values can vary greatly for sandy versus clayey soils. Thus, this shows 

that DryMOD is more robust for assessing soil moisture conditions than runoff and both runoff and 

soil moisture calculations depend on the realistic characterization of topsoil hydraulic properties 

through reliable soil parameterization. 
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In summary, the sensitivity analysis highlights the importance of soil parameterization to water 

balance modeling. The parameterization here was carried out on the basis of information derived from 

the 1-km spatial resolution HWSD database and information derived from the 1-km AVHRR-based 

land-cover dataset with reference values for root depth. However, spatial patterns relevant to the 

boundaries of soil mapping units at spatial scales coarser than 1-km were observed in the soil moisture 

maps. This suggests that soil parameterization at better spatial resolutions is advisable for more 

accurate derivation of the runoff and soil moisture components in water balance modeling. 

5. Conclusions 

This study presented and evaluated a new dynamic water balance model, DryMOD, which benefits 

from a novel means for spatial disaggregation and intensity correction of hourly rainfall at 1-km spatial 

resolution derived from Tropical Rainfall Measuring Mission (TRMM) datasets. Model performance 

was evaluated for two pilot catchments in Tunisia and Senegal through sensitivity analysis using the 

non-corrected and corrected for fractional cover of rainfall (FCR) TRMM-based rainfall forcing. 

The results from model application to the study catchments in Tunisia and Senegal confirm the need 

for intensity correction and spatial disaggregation of the TRMM 3B42-based data implemented in 

DryMOD, which allows for hourly-based rainfall simulation and estimation of runoff and soil  

moisture at 1-km spatial resolution. Specifically, the model applications demonstrated that using the 

non-corrected TRMM based data fails to simulate realistic rainfall intensities and monthly totals as 

represented in the 1-km TRMM 2B31 climatology. While the annual average of mean monthly rainfall 

was up to 80 mm in Tunisia and 160 mm in Senegal in the TRMM 2B31-based dataset, the use of  

non-corrected TRMM 3B42 time series only generated annual average rainfall of up to 15 and 20 mm, 

respectively. This suggested that realistic hydrological fluxes such as runoff and soil moisture  

cannot easily be derived from TRMM 3B42 data. Indeed, simulated mean monthly runoff with the 

non-corrected dataset was below 0.2 mm for Tunisia and below 1.7 mm for Senegal, while using the 

FCR-corrected time series were used as the rainfall forcing in DryMOD resulted in mean monthly 

runoff of up to 26.5 and 54.9 mm, respectively. When the FCR-corrected dataset was used as the 

rainfall forcing for DryMOD, simulated mean soil moisture ranged between 0.07 and 0.30 m3·water·m−3 

soil for Tunisia and between 0.07 and 0.25 m3·water·m−3 soil for Senegal with pronounced spatial 

patterns of key soil hydraulic properties such as Ksat. 

As runoff in drylands is generated by high-intensity events with localized spatial extent, correction 

of rainfall intensities for the fractional cover of rainfall is required for realistic hydrological modeling. 

The analysis of runoff generating intensities showed that using the non-corrected TRMM based dataset 

fails to produce rainfall intensities higher than 7.19 mm·h−1 and 5 mm·h−1, while using the  

FCR-corrected dataset resulted in runoff generating intensities of up to 230 mm·h−1 and 40 mm·h−1 for 

the locations selected in Tunisia and Senegal, respectively. Although rainfall intensity data were not 

available for direct validation, previous work reported that 50% of rainfall in similar regions reaches 

the surface with intensities higher than 27 mm·h−1 and 32 mm·h−1. Additionally, our results indicated 

that 95% of rainfall intensities above 14.38 mm·h−1 and 95% of rainfall intensities above  

5 mm·h−1 generated runoff in the selected 1-km pixel in the Tunisia and Senegal catchments, 

respectively. The results from the sensitivity analysis of runoff and soil moisture to six soil parameters 
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showed that for both pilot study catchments the greatest changes in runoff and soil moisture are in 

response to changes in the topsoil and subsoil porosities parameterization in DryMOD. Additionally, 

runoff and soil moisture showed sensitivity to changes in saturated hydraulic conductivity and root 

depth with most marked effects of root depth decrease below 2.5 m as it limits the soil depth and, thus, 

soil water storage capacity, and promotes saturation overland flow. 

The following conclusions can be drawn from the analyses presented here: 

• Improved realism of rainfall simulation allows for realistic estimation of the runoff ratio and help to 

identify runoff-generating areas in both study regions, representing differing dryland conditions in 

the belts north and south of the Sahara. Analysis of the runoff response to rainfall shows seasonal 

variability and provides information potentially useful for planning of water harvesting activities in 

the study regions. 

• The sensitivity analysis revealed that changes in porosity of the topsoil and subsoil exert the 

maximum changes in runoff and soil moisture. This highlights the importance of soil 

parameterization through better information on soil properties at the regional-scale where detailed 

maps of hydrological fluxes are important for optimal planning of agricultural activities. 
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