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Abstract. We present a benchmark system for global veg-demonstrably more accurately. Benchmarking also identified
etation models. This system provides a quantitative evalseveral weaknesses common to both DGVMs. The bench-
uation of multiple simulated vegetation properties, includ- marking system provides a quantitative approach for evalu-
ing primary production; seasonal net ecosystem productionating how adequately processes are represented in a model,
vegetation cover; composition and height; fire regime; andidentifying errors and biases, tracking improvements in per-
runoff. The benchmarks are derived from remotely sensedormance through model development, and discriminating
gridded datasets and site-based observations. The datasetsafhong models. Adoption of such a system would do much
low comparisons of annual average conditions and season&b improve confidence in terrestrial model predictions of cli-
and inter-annual variability, and they allow the impact of mate change impacts and feedbacks.

spatial and temporal biases in means and variability to be
assessed separately. Specifically designed metrics quantify

model performance for each process, and are compared to

scores based on the temporal or spatial mean value of thé Introduction

observations and a “random” model produced by bootstrap

resampling of the observations. The benchmark system is ag?ynamic global vegetation models (DGVMs) are widely
plied to three models: a simple light-use efficiency and water-Used in the assessment of climate change impacts on ecosys-
balance model (the Simple Diagnostic Biosphere Model:tems, and feedbacks through ecosystem processes (Cramer
SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processet al., 1999; Scholze et al., 2006; Sitch et al., 2008; Scheiter
and eXchanges (LPX) dynamic global vegetation modelsand Higgins, 2009). However, there are large differences in
(DGVMSs). In general, the SDBM performs better than either model projections of the vegetation response to scenarios of
of the DGVMs. It reproduces independent measurements ofuture changes in atmospheric g@@oncentration and cli-

net primary production (NPP) but underestimates the amp”ma.te (Friedlingstein et a.l., 2006; Denman et al., 2007; Sitch
tude of the observed GGseasonal cycle. The two DGVMs et al., 2008). Assessing the uncertainty around vegetation-
show little difference for most benchmarks (including the model simulations would provide an indicator of confidence
inter-annual variability in the growth rate and seasonal cy-in model predictions under different climates. Such a sys-

comparing the performance of different models; identifying
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processes in a particular model that need improvement; andess and compare the performance of two biogeochemical
checking that improvements in one part of a model do notmodels (CLM-CN and CASA) against net primary produc-
compromise performance in another. tion (NPP) and CQ concentration data, including the defi-
Benchmarking is a routine component in the assessmemition of comparison metrics tailored to the benchmark ob-
of climate-model performance, including investigation of pa- servations and a composite skill score that combined met-
rameter uncertainties (e.g. Murphy et al., 2004; Piani et al.ric scores for each observation into an overall measure of
2005) and multi-model comparison (Randall et al., 2007; Re-model performance. The Randerson et al. (2009) composite
ichler and Kim, 2008), and is used both to inform model de- score was a weighted combination of scores across differ-
velopment (e.g. Jackson et al., 2008) and to interpret the reent metrics, where the weights were based on a qualitative
liability of projections of future climate (e.g. Shukla et al., and necessarily somewhat subjective assessment of the “im-
2006: Hall and Qu, 2006). In recent years, there has beeportance” and uncertainty of each process (Randerson et al.,
considerable effort spent on the development of standar@009). Luo et al. (2012) recommended the development of a
metrics for climate-model evaluation (Taylor, 2001; Gleck- working benchmarking system for vegetation models that in-
ler et al., 2008: Lenderink, 2010; Moise and Delage, 2011;corporates some of the approaches used in these various stud-
Yokoi et al., 2011). In comparison, there has been little quan-ies including a set of standard target datasets for benchmarks,
titative assessment of DGVM performance under recent cona scoring system; and a way of comparing across model pro-
ditions. Although most studies describing vegetation-modelcesses in order to evaluate model strengths and weaknesses
development provide some assessment of the model’'s prde guide model development. Luo et al. (2012) reject the idea
dictive ability by comparison with observational datasets of a single composite metric because of the subjectivity in-
(e.g. Sitch et al., 2003; Woodward and Lomas, 2004; Prenticevolved in choices of relative weightings.
et al., 2007), such comparisons often focus just on one as- Our purpose here is to demonstrate a benchmarking
pect of the model where recent development has taken placgystem including multiple observational datasets and
(e.g. Gerten et al., 2004; Arora and Boer, 2005; Zeng et al.fransparent metrics of model performance with respect to
2008; Thonicke et al., 2010; Prentice et al., 2011). It has noindividual processes. We have tested the system on three
been standard practice to track improvements in (or degradaregetation models to demonstrate the system’s capabilities
tion of) general model performance caused by new developin comparing model performance, assigning a level of
ments. confidence to the models’ predictions of key ecosystem
A benchmarking system should facilitate more compre-properties, assessing the representation of different model
hensive model evaluation, and help to make such trackingprocesses and identifying deficiencies in each model.
routine. The land modelling community has recently recog-
nized the need for such a system (e.g. the International Land
Model Benchmarking Project, ILAMBhttp://www.ilamb.
orgl), and some recent studies have designed and applied Materials and methods
benchmarking systems. Blyth et al. (2009, 2011) compared

results of the JULES land-surface model with site-based wa2-1 Principles

ter and CQ flux measurements and satellite vegetation in- . . .
: o . The benchmarking system consists of a collection of
dices, quantifying the difference between model output and : S
: . datasets, selected to fulfil certain criteria and to allow system-
observations using root mean squared error (RMSE) as a_. . .
. . atic evaluation of a range of model processes, and metrics,
metric. Beer et al. (2010) used a gridded dataset of gross pri-, . . .
- . . designed with the characteristics of each benchmark dataset
mary productivity (GPP), derived from up-scaling GPP from . " )
. in mind. We selected site-based and remotely sensed obser-
the FLUXNET network of eddy covariance towers (Jung et vational datasets that, as far as possible, fulfil the followin
al., 2009, 2010) to assess and compare the Lund-Potsdarpé Lirements: ' P ' 9
Jena (LPJ), LPIJmL, ORCHIDEE, CLM-CN and SDGVM q ’
W|th the tOWer'deriVed gl’ldded GPP dataset (Beer et al., data’ they should Samp'e reasonab'y well the differ-
2010) to evaluate the calibration of the CLM4 model. Cadule ent biomes on each continent. This criterion excludes
et al. (2010) used the model-to-data deviation, normalised  “campaign mode” measurements, and datasets assem-
standard deviation and Pearson’s correlation to quantify the  pjed only for one continent or region.
“distance” between simulated and observed,@Oncentra-
tion and applied these to compare three coupled climate— — They should be independent of any modelling approach
vegetation models that incorporate two DGVMs: TRIFFID that involves calculation of vegetation properties from
and ORCHIDEE. All of these studies focus on a very lim- the same driving variables as the vegetation models be-
ited number of simulated processes, and use metrics that are  ing tested. This criterion allows remotely sensed frac-
difficult to interpret across processes and models. Randerson tion of absorbed photosynthetically active radiation (fA-

et al. (2009) introduced a more systematic framework to as- PAR) products but excludes the MODIS NPP product

Biogeosciences, 10, 3313340 2013 www.biogeosciences.net/10/3313/2013/
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used by Randerson et al. (2009), or remotely sensed
evapotranspiration (e.g. Fisher et al., 2008, 2011; Mu
et al., 2011). It allows use of flux measurements and
CGO; inversion products, but excludes, for example, the
up-scaled GPP used by Beer et al. (2010).

They should be available for multiple years and sea-
sonal cycles to allow assessment of modelled seasonal
and inter-annual variation, for variables that change on
these time scales.

3315

is measured independently of meteorological data by
gauges in rivers.

— Atmospheric CQ concentration is measured at high

precision at a globally distributed set of stations in re-
mote locations (distant from urban and transport cen-
tres of CQ emission). The pattern of the seasonal cycle
of atmospheric C@concentration at different locations

provides information about the sources and sinks of
CGO; inthe land biosphere (Heimann et al., 1998), while

the inter-annual variability of the increase in €@ro-
vides information about C&uptake at the global scale.
Ocean impacts on the seasonal cycle are small (Nevi-
son et al., 2008). For inter-annual variability we use
inversion products which selectively remove the ocean
contribution (about 20 % of the signal: Le & et al.,
2003).

— Datasets should be freely available, so that different
modelling groups can evaluate their models against the
same benchmarks.

The selected datasets (Table 1) provide information for the
following: fAPAR, the fractional coverage of different plant

life and leaf forms, GPP and NPP, height of the canopy,
fire, as burnt fraction; runoff, as river discharge, and season

Z?Ig |rit)('ar—annual variation in atmospheric £encentration grid and masked to a Ia}nd mask_common to qll three models.

T Data—model comparison metrics were designed to be easy

— fAPAR is the fundamental link between primary pro- t0implement, intuitive to understand, and comparable across
duction and available energy (Monteith, 1972). It mea- Multiple benchmarked processes. Metric scores for compar-

sures the seasonal cycle, inter-annual variability andiSon of models with these datasets were compared against
trends of vegetation cover. Of all ecosystem propertiesscores from two null models: one corresponding to the ob-
derived from spectral reflectance measurements, fAPARServational mean and the other obtained by randomly resam-

is closest to the actual measurements. pling the observations.
To demonstrate whether the benchmark system fulfilled

— Fractional cover of different life forms and leaf forms the functions of evaluating specific modelled processes and
provides basic information about vegetation structurediscriminating between models, we applied it to three global
and phenology. models: a simple light-use efficiency and water-balance

.model introduced by Knorr and Heimann (1995), known as

- GPPand NPP are the two fundamental measures of Plihe Simple Diagnostic Biosphere Model (SDBM: Heimann
mary production. et al., 1998) and two DGVMs. The SDBM is driven by ob-

— Vegetation height is a key variable for characterising Served precipitation, temperature and remotely sensed obser-
vegetation structure, function and biomass. vations of fAPAR. The model has two tunable global param-

eters representing light-use efficiency under well-watered

— Remotely sensed data on fire (as fractional burnt areaponditions, and the shape of the exponential temperature de-
have been available for a few years (e.g. Carmonapendence of heterotrophic respiration. The DGVMs are the
Moreno et al., 2005; Giglio et al., 2006). The latest Lund-Potsdam-Jena (LPJ) model (version 2.1: Sitch et al.,
dataset (Giglio et al., 2010; van der Werf et al., 2010) 2003, as modified by Gerten et al., 2004) and the Land sur-
is derived from active fire counts and involves empir- face Processes and eXchanges (LPX) model (Prentice et al.,
ical (biome-dependent) modelling to translate between2011). LPX was developed from LPJ-SPITFIRE (Thonicke
active fire counts and burned area. Our criteria excludeet al., 2010), and represents a further refinement of the fire
the use of the accompanying fire @@missions prod- module in LPJ-SPITFIRE.
uct (van der Werf et al., 2010), however, as this de-
pends strongly on the use of a particular biogeochemicaR.2 Benchmark datasets
model.

aAII remotely sensed data were re-gridded to & @esolution

2.2.1 fAPAR
— Annual runoff is an indicator of ecosystem function, as

it represents the spatial integration of the difference be-fAPAR data bttp://oceancolor.gsfc.nasa.gov/SeaW|F%-
tween precipitation and evapotranspiration — the latterble 1) were derived from the SeaWiFS remotely sensed fA-
primarily representing water use by vegetation. It is a PAR product (Gobron et al., 2006), providing monthly data
sensitive indicator, because a small proportional error infor 1998—-2005. fAPAR varies between 0 and 1, and the aver-
modelled evapotranspiration translates into a larger pro-age uncertainty for any cell/month is 0.05 with highest uncer-
portional error in runoff (Raupach et al., 2009). Runoff tainties in forested areas. Reliable fAPAR values cannot be

www.biogeosciences.net/10/3313/2013/ Biogeosciences, 10, 334§-2013
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Table 1. Summary description of the benchmark datasets.

Dataset Variable Type Period Comparison Reference
SeaWiFS Fraction of absorbedGridded  1998-2005 Annual average, seasonal phas€obron et al. (2006)
photosynthetically and concentration, inter-annual
active radiation variability
(fAPAR)
ISLSCP Il vege- Vegetation Gridded Snapshot — Fractional cover of bare ground, DeFries and Hansen (2009)
tation continuous fractional cover 1992/1993 herbaceous and tree; comparison
fields of tree cover split into evergreen
or deciduous, and broadleaf or
needleleaf
Combined net Net primary Site Various Direct comparison with grid cell Luyssaert et al. (2007),
primary production  production (NPP) 1950-2006 in which site falls Olson et al. (2001)
Luyssaert gross Gross primary Site Various Direct comparison with grid cell Luyssaert et al. (2007)
primary production  production (GPP) 1950-2006 in which site falls
Canopy height Annual average Gridded 2005 Direct comparison Simard et al. (2011)
height
GFED3 Fractional burntarea  Gridded 1997-2006 Annual average, seasonal ph@sglio et al. (2010)
and concentration, inter-annual
variability
River discharge River discharge Site 1950-2005 for Annual average discharge per  Dai et al. (2009)
(at or near river LPJ and LPX; river basin, inter-annual
mouths) 1998-2005 for variability in global runoff
all models
CDIAC atmospheric Atmospheric CQ Site 1998-2005 Seasonal phase and CDIAC: cdiac.ornl.gov
CO, concentration  concentration concentration
COy inversions Atmospheric CD Site 1980-2006 Inter-annual comparisons Keeling (2008), Bousquet
concentration et al. (2000), Rdenbeck et

al. (2003), Baker et al. (2006),
Chevalier et al. (2010)

obtained for times when the solar incidence angle B0°. ences therein). The VCF product provides separate informa-
This limitation mostly affects cells at high latitudes, or with tion on life form, leaf type and leaf phenology at Dfgso-
complex topography, during winter. Cells where fAPAR val- lution for 1992-1993. There are three categories in the life-
ues could not be obtained for any month were excluded fronform dataset: tree (woody vegetatisrb m tall), herbaceous

all comparisons. Annual fAPAR, which is the ratio of total (grass/herbs and woody vegetatio® m), and bare ground
annual absorbed to total annual incident PAR, is not the sameover. Leaf type (needleleaf or broadleaf) and phenology (de-
as the average of the monthly fAPAR. True annual fAPAR ciduous or evergreen) is only given for cells that have some
was obtained by averaging monthly values weighted by PARtree cover. Tree cover greater than 80 % is not well delineated
Monthly PAR values were calculated using Clime Researchdue to saturation of the satellite signal, whereas tree cover
Unit (CRU) TS3.1 monthly fractional cloud cover (Jones of less than 20 % can be inaccurate due to the influence of
and Harris, 2012) as described in Gallego-Sala et al. (2010)soil and understorey on the spectral signature (DeFries et al.,
Monthly and annual fAPAR values were used for annual av-2000).

erage, inter-annual variability and seasonality comparisons. The 0.5 dataset was derived from a higher resolution
The monthly fAPAR data are used as a driver for the SDBM, (1 km) dataset (DeFries et al., 1999). Evaluation of the 1 km

but as a benchmark for the DGVMs. dataset against ground observations shows it reproduces the
distribution of the major vegetation types: the minimum
2.2.2 Vegetation cover correlation is for bare ground at high latitude$ & 0.79)

whereas grasslands and forests have?asf 0.93.
Fractional cover data (Table 1) were obtained from Interna-

tional Satellite Land-Surface Climatology Project (ISLSCP)
Il vegetation continuous field (VCF) remotely sensed prod-
uct (Hall et al., 2006; DeFries and Hansen, 2009 and refer-

Biogeosciences, 10, 3313340 2013 www.biogeosciences.net/10/3313/2013/


cdiac.ornl.gov

D. I. Kelley et al.: Benchmarking system for evaluating global vegetation models 3317

a) VCF tree cover d) VCF evergreen tree cover h) fAPAR 1) Burnt fraction

[ |
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¢) VCF Bare ground
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Rodenbeck et af. (2003) Baker et ai. (2006)
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Fig. 1. lllustration of the benchmark datasets: ISLSCP Il continuous vegetation fields based on a snapshot for 1992-1993 (DeFries and
Hansen, 2009) give the proportions(aj woody vegetatiors- 5 m in height (tree)(b) grass/herb and woody vegetatiarb m (herbaceous),

and(c) bare ground; for areas with tree cover, the datasets also give the propor{idnevergreen(e) deciduous(f) broadleaf andg)
needleleaf(i) annual average fAPAR value for 1998-2005 from SeaWiFS (Gobron et al., Z)0&nual average burnt fraction for 1997—

2006 from the GFED3 dataset (Giglio et al., 201(); sites with measurements of net primary production, NPP(Bndeasurements of

gross primary production, GPP are both from the Luyssaert et al. (2007) détasglobal atmospheric C&concentrations for 1980-2005

based on inversion datasets (Bousquet et al., 2008eRbeck et al., 2003; Baker et al., 2006; Chevalier et al., 2@@Pgnnual average

river runoff from 1950-2005 from the Dai et al. (2009) dataset, displayed over associated GRDC iysitieni/w.bafg.de/GRDYE and

(m) vegetation height based on a snapshot from 2005 (Simard et al., 2011). Hashed @yehdamws areas without comparison data.

2.2.3 NPP the latitude, data collection and analysis methods. The NPP
estimates in the EMDI database were collected from the pub-
éished literature, and therefore derived using a similar variety

f methodologies as used in the Luyssaert et al. (2007) com-
pilation. The individual studies were divided into 2 classes
\}i)_ased on an assessment of data quality. Here, we use only the
op class (class A), which represents sites that are geolocated,
ave basic environmental metadata, and have NPP measure-

The NPP dataset (Table 1) was created by combining sit
data from the Luyssaert et al. (2007) and the Ecosyste
Model/Data Intercomparison (EMDI: Olson et al., 2001)
databases. We exclude sites from managed or disturbed en
ronments; i.e. we do not use class B records from EMDI, an

we exclude sites classified as “managed”, “recently burnt”, " both ab d bel d ts. Th
“recently cut clear”, “fertilized” or “irrigated” in Luyssaert ments on both above- and below-ground components. 1he

et al. (2007) . The Luyssaert et al. (2007) data used here arEMDI datqbase dpeg n.ot. includ_e estimates of the uncertain-
all from woody biomes, and all but two of the EMDI data ties associated with individual sites.

used are from grasslands. The NPP estimates in Luyssaert ?tz 4 GPP

al. (2007) were obtained by summing direct measurements o

the following: (a) year-round leaf litter collection, (b) stem Gpp data were obtained from the Luyssaert et al. (2007)
and branch NPP (from measurements of basal area, scalgghtabase, and are estimated from flux tower (eddy covari-
using allometric equations), (c) fine root NPP from soil cor- ance) measurements. The sites used here are, again, only
ing, isotopic turnover estimates or upscaling of root lengthrepresentative of woody biomes. The uncertainty of the site-
production as observed in mini-rhizotrons, or indirectly via pased estimates ranges from 75-677 g@magain depend-

soil respiration, and (d) understorey NPP through destructivqng on latitude, data collection and analysis methods.
harvests. The uncertainty in the NPP estimate is provided for

each site, and ranges from 110-656 g Cndepending on

www.biogeosciences.net/10/3313/2013/ Biogeosciences, 10, 334§-2013
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2.2.5 Canopy height the component of variability in the CQgrowth rate due to
land—atmosphere exchanges. The differences between these

The forest canopy height dataset (Table 1; Simard et al.inversions (maximum difference 3.8 ppm) give a measure of

2011) is derived from Ice, Cloud, and land Elevation Satel-the associated uncertainty.

lite/Geoscience Laser Altimeter System (ICESat/GLAS) es-

timates of canopy height and its relationship with forest type,2.3 Metrics

MODIS percent tree cover product (MOD44B), elevation

and climatology variables (annual mean and seasonality oMany measures with different properties are used in the

precipitation and temperature). Only GLAS and MODIS datageosciences literature to compare modelled and observed

from 2005 were used. The canopy height product was vali-duantities. These typically fall into three categories: non-

dated with globally distributed field measurements. Canopynormalised metrics; metrics normalised by observational un-

he|ght ranges from O to 40 m, and uncertainty is of the Ordercertainty; and metrics normalised by observational variance.

of 6m (root mean squared error). There are no estimates dion-normalised metrics, which include RMSE (used e.g. by

the uncertainty for individual grid cells. Blyth et al., 2009, 2011) and mean squared error (MSE), can-
not be compared directly between different variables as they
2.2.6 Burntfraction are in different units. Metrics normalised by observational

uncertainty require uncertainty estimates to be given for each
Burnt fraction data (Table 1) were obtained for each monthsite/grid cell in a dataset. Most of the datasets used in this
from 1997-2006 from the third version of the Global study do not have such estimates, ruling out the use of met-
Fire Emissions Database (GFED3: Giglio et al., 2010).rics normalised by observational uncertainty. We therefore
Burnt fraction was calculated from high-resolution, remotely use metrics normalised by observational variance, allowing
sensed daily fire activity and vegetation production using stametrics based on both mean deviations (modulus-based) and
tistical modelling. Quantitative uncertainties in the estimatesmean squared deviations as alternative “families”.
of burnt fraction, provided for each grid cell, are a combina-  The mean, variance and standard deviation provide a basic
tion of errors in the higher resolution fire activity data and measure of global agreement between model and observa-
errors associated with the conversion of these maps to lowtion. Our basic normalised metrics for taking the geographic

resolution burnt area. patterning into account in data—model comparisons of annual
] ) averages or totals were the normalised mean error (NME)
2.2.7 River discharge and the normalised mean squared error (NMSE) (for defini-

tions, limits and applications, see Table 2):
River discharge (Table 1) was obtained from monthly mea- PP )

surements at station gauges between 1950 and 2005 (D&ME = Z yi —xi|/2- lx; — x|, (1)

et al., 2009). Dai et al. (2009) use a model-based infill- ! !

ing procedure in their analyses, but the dataset used here is

based only on the gauge measurements. The basin associated

with gauges close to a river mouth was defined using infor-NMSE= Zl. (i — xi)%/ Zi (x; — )2, (2
mation from the Global Runoff Data Centre (GRDKtp: . o
Iwww.bafg.de/GRDG. Average runoff for the basin was ob- V\{hereyi is the modelled yalue of variablein grid cell (or at
tained by dividing discharge by total basin area. Although in-Sit€)/, x; the corresponding observed value, antihe mean
dividual gauge measurements may have measurement erropdserved value across all grid cells or sngs. NMSE is (_eq_ual to
of the order of 10-20 %, the use of spatially integrated dis-the one-complement of the Nash-Sutcliffe model efficiency

charge values means that the uncertainties are considerabfjetric (Nash and Sutcliffe, 1970). NMSE thus conveys the
less than this (Dai et al., 2009). Annual average and interSame information as the Nash—Sutcliffe metric. As NME and

annual variability comparisons for runoff were made only NMSE are normalised by the spatial variability of the obser-
for years in which there were 12 months of data, to avoigVations, these scores provide a description of the spatial error

seasonal biases. of the model. NME differs from NMSE only in the use of
mean deviations, which are less sensitive to extreme values
2.2.8 CO concentration than standard deviations. We prefer NME, but retain NMSE

because of its direct relation to a metric established in the
CO, concentration (Table 1) data were taken from 26 Carborliterature. Both metrics take the value zero when agreement
Dioxide Information Analysis Center (CDIACcdiac.ornl.  is perfect, unity when agreement is equal to that expected
gov) stations (Fig. 3) for seasonal cycle comparisons. Forwhen the mean value of all observations is substituted for
inter-annual comparisons, we used several inversion productthe model, and values 1 when the model’s performance is
(Bousquet et al., 2000;&lenbeck et al., 2003; Baker et al., worse than the null model.
2006; Keeling, 2008; Chevalier et al., 2010), processed as in
Prentice et al. (2011). The inversions are designed to isolate

Biogeosciences, 10, 3313340 2013 www.biogeosciences.net/10/3313/2013/
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Table 2. Summary description of the benchmark metrigsis the modelled ang; is the corresponding observed value in cell or sitend
X is the mean observed value across all grid cells or site& the modelled phase, agg is the observed phasg;; is the modelled ang;
observed proportion of iterpin cell or site:.

Metric Equation Limits Use in this study
Normalised NME =", lyi —x;il/> i lxi — % 0 — Perfect agreement For burnt fraction and fAPAR: annual
mean error averages, phase concentration, inter-
(NME) 1 — Model performs as well as annual variability.
observational mean
Normalised ~ NMSE=Y"; (v; —x))%/ Y ; (x; — X)? For runoff: annual averages,
mean 2 — complete disagreement for inter-annual variability
squared step 3
error For COy: phase concentration
(NMSE) Infinity — complete disagree-
ment for step 1 and 2 For NPP, GPP and height: annual
averages
Mean phase @ MPD= (1/n)arccos{cos(w,» — qb,-)/n] 0 —in phase Assessing difference in seasonality for
difference fAPAR, burnt fraction and C®
(MPD) 1 — 6 months out (out of phase)
Manhattan MM = Z,-j |q,'j — Dij |/n 0 — Perfect agreement Vegetation cover comparisons for life
metric (MM) forms, tree, grassland, bare ground,
2 — Perfect disagreement evergreen vs. deciduous tree and
Squared SCD=3";; (Vaij — \/ﬁj)z/n broadleaf vs. needleleaf tree.
chord dis-

tance (SCD)

Table 3.Mean, absolute variance (as defined in Eq. 3) and standard deviation (SD) of the annual average values of observations. The variance
for most variables is from the long-term mean of the gridded or site data, wheresis €© variance of the inter-annual differences.

Variable Measure Mean Variance SD
Fraction of photosynthetically Annual average fAPAR 0.18 0.18 0.20
active radiation (fAPAR)
Vegetation cover Tree cover 0.22 0.22 0.26
Herb cover 0.52 0.25 0.29
Bare ground 0.20 0.24 0.30
Evergreen 0.44 0.33 0.37
Needleleaf 0.59 0.41 0.43
Net primary production (NPP) Annual average NPP 688 242 325
Gross primary production (GPP)  Annual average GPP 1540 642 820
Canopy height Annual average canopy height 18.3 11.8 13.7
Burnt fraction Annual average burnt fraction  0.028 0.043 0.094
runoff Annual average 1950-2005 307 12 15
Annual average 1998-2005 331 8.4 10.6
Atmospheric CQ concentration  Bousquet N/A 0.93 1.10
Rodenbeck N/A 0.89 1.13
Baker N/A 0.86 1.09
Chevalier N/A 0.86 1.06
Average (all inversions) N/A 0.919 1.11
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2.3.1 Annual average where 6, is the direction corresponding to month with
month 1 (January) arbitrarily set to an angle of zero. A mean

Annual average comparisons were made using the meawectorL was calculated by averaging the real and imaginary
mean deviation (Eq. 3) and standard deviation of simulatedharts of the 12 vectors;.

and observed values (Table 3). NME and NMSE compar- .
isons were conducted in three stagesx{1andy; take mod-  Lx = Zt x;cos(f;) and Ly = szl sin(6:) (6)
elled and observed values; (%) andy; become the differ- . o1 o the mean vector divided by the annual value

ence between observed or modelled values and their respec: co
. . Stands for seasonal concentrati@h,its direction stands for
tive meansX; — x; — x); and (3)x; andy; from step 2 are

divided by either the mean deviation or standard deviationphasep:

(xi = x;/d(x)): /L2 + 12

for NME, dwe (x) = ) 1 — &|/n; @ =Ty "

for NMSE, dawse() = /Y, (xi — /. (4) P=arctan(L./Ly). (8)

Stage 2 removes the influence of the mean, and stage 3 rdhus, if the variable is concentrated all in one month, sea-
moves the influence of the variability, on the measure. TheSonal concentration is equal to 1 and the phase corresponds
NMSE at stage 3 is related to the correlation coefficientt0 thatmonth. If the variable is evenly spread over all months,
(Barnston et al., 1992). Van Oijen et al. (2011) showed thatthe” concentration is equal to zero and phase is undefined. If
MSE can be decomposed into three elements similar to stag%'ther modelled or observed values have zero values for all
1, 2 and 3 here, but as MSE is not normalised the 0|ecompor_nonths in a given cell or site, then that cell/site is not in-

sition is not directly applicable for this study. cluded in the comparisons. Concentration comparisons use
Egs. (1) and (2) and steps 1, 2 and 3. Modelled and observed

2.3.2 Inter-annual variability phase are compared using mean phase difference (MPD):

Inter-annual variability comparisons were made by calculat-MPD = (1/7) arccogcos(w; — ¢;) /n], 9)

ing global values for each year of the model output and Obserilvherewi is the modelled phase, apgis the observed phase.

vgtlons,band ctohmpeTrllr;glthem ufsmg (Iqu”sd(l) almd (?)’ bL,'t WlthThe measure can be interpreted as the average timing error, as
i now being the global sum of modelied values tfor ygar proportion of the maximum error (6 months). For seasonal

gndﬁ]thi cor:re\?vpcr)ndr;ng dobser;/r(]a d vtalue. 1OanyViSc§agen2 a)r:t O, concentrations, where the data are monthly deviations
> comparisons were made, as the stage L provides no extig, , \he mean C@ we compared the seasonal amplitude in-
information from the annual-average comparisons. Stage

tead of seasonal concentration by comparing the simulated

comparison measures whether a model has the corre_ct tIrY}alnd observational sum of the absolutef&gviation for each
ing or phasing of inter-annual peaks and troughs. For inter-

. . month using Egs. (1) and (2).
annual CQ concentration, the observational data were de- using Egs. (1) (2)
trended to remove the effect of anthropogenic emissions. 2 34 Relative abundance

2.3.3 Seasonality Relative abundance was compared using the Manhattan met-
ric (MM) and squared chord distance (SCD) (Gavin et al.,

The seasonal expression of change can be characterised 03 cha 2007):
e 1 1 .

terms of the length and timing of the season, as well as th
magnitude of differentiation between seasons. For exampleyiM = Z |qu. — pij |/n; (10)
in simulating the fire regime at a particular place, the length Y '
of the fire season and the time that fires occur are as impor-
tant as correctly predicting the area burnt. Seasonality com; 2

. . D= JGii — /Dij 11
parisons were conducted in two parts: seasonal concentra- Zij( 4ij P ”’) /n (11)

tion (whiph is invgrgely related to season Iength) and phas‘%vhereq,-j is the modelled abundance (proportion) of itgm
(expressing the timing of the season). Each simulated or oby;, grid cell i, p; the observed abundance of itefrin grid

served month was represented by a vector in the compleXg||; andx the number of grid cells or sites. So in the case

plane, the length of the vector corresponding to the magnivt comparing life forms, itemg would be trees; herbaceous;

tude of the variable for each month and the directions of theand bare ground. The sum of items in each cell must be equal

vector corresponding to the time of year: to one for these metrics to be meaningful. They both take the
0, =27 (t —1)/12, (5) valucta of O for perfect agreement, and 2 for complete disagree-
ment.
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2.3.5 Null models 140
To facilitate interpretation of the scores, we compared each 120} Bettr‘;lghoarﬂ \r/;/%soer;ha”
benchmark dataset to a dataset of the same size, fillec UC’mO_resampling resamping

with the mean of the observations (Table 4). We also com- _8

-

I

pared each benchmark dataset with “randomized” datasets g 80}
(Table 4). This was done using a bootstrapping procedureg
(Efron, 1979; Efron and Tibshirani, 1993), whereby we con- © 60f
structed a dataset of the same dimensions as the benchmai ©
set, filled by randomly resampling the cells or sites in the Z°
original dataset with replacement. We created 1000 random- 20}
ized datasets to estimate a probability density function of
their scores (Fig. 2). Models are described as better/worse | : 1.5
than randomized resampling if they were less/more than two Score
standard deviations from the mean randomized score. . . . .
Fig. 2. Results of bootstrap resampling of inter-annual variability

_AS NME and MM are the sum of the a.bsolute spatial Va‘_r" in global burnt fraction (1997—2005) from the GFED3 dataset. The
ation between the model and observations, the comparisofgierisks labelled LPX and LPJ show the scores achieved by the
of scores obtained by two different models shows the rela4 px and LPJ models respectively. The limits for better than and
tive magnitude of their biases with respect to the observaworse than random resampling are set at two standard deviations
tions, or how much “better” one model is than another. If away from the mean bootstrapping value (vertical lines).
a model has an NME score of 0.5, for example, its match
to the observations is 50 % better than the mean of the data
score of 1.0. Similarly, when this model is compared to a
model with an NME score of 0.75, it can be described as Y NPP
33 % better than the second model as its average spatial e = tT/lO
ror is 0.5/0.75 =67 % the size. Conversely, the second model 20010
would need to reduce its errors/improve by 33 % in order to

(14)

GPP was assumed to be twice simulated NPP (Poorter et

provide as good a match to observations as the first.
2.4 Models
2.4.1 SDBM

The SDBM simulates NPP and heterotrophic respiratity) (

al., 1990). Runoff was assumed to be the difference between
observed precipitation and evapotranspiration. Groundwater
exchanges are disregarded. The free parametarsl Q19
were assigned values of 1.0 and 1.5 respectively, following
Knorr and Heimann (1995) who obtained these values by
tuning to observed seasonal cycles of CO

as described in Knorr and Heimann (1995) while the embed-
ded water-balance calculation models evapotranspiration and-4.2  LPJ

therefore implicitly runoff. NPP is obtained from a simple re-
lationship:

NPP= ¢ - fapar- Ipar- «, (12)

wheres is light-use efficiency, set at 1 g C M3; Ipar is in-
cident PAR; andy is the ratio of actual to equilibrium evap-

LPJ (version 2.1: Gerten et al., 2004) simulates the dynamics
of terrestrial vegetation via a representation of biogeochemi-
cal processes, with different properties prescribed for a small
set of plant function types (PFTs). Each PFT is described by
its life form (trees or herbaceous), leaf type (needleleaf or
broadleaf) and phenology (evergreen or deciduous). A mini-

otranspiration, calculated as in Prentice et al. (1993) andmal set of bioclimatic limits constrain the global distribution

Gallego-Sala et al. (2010Ry, was calculated as a function of the PFTs. Nested time steps allow different processes to
of temperature and water availability and for each cell is as-be simulated at different temporal resolution: photosynthe-
sumed to be equal to NPP each year (i.e. assuming the respisis, respiration and water balance are calculated on a daily
ing pool of soil carbon is in equilibrium): time step while carbon allocation and PFT composition are
updated on an annual time step. A weather generator con-
verts monthly data of precipitation and fractional rain days
to a daily time series of precipitation amounts. Fire is calcu-
whereQ1is the slope of the relationship betweenR{and  |ated annually and is based upon a simple empirical model
temperature (expressed in units of proportional increase pefhich calculates the probability of fire based on daily mois-
10K warming) and takes the value of 1.5; d@hds tempera-  tyre content of the uppermost soil layer as a proxy for fuel

Rh=8-011% 0, (13)

ture CC). B is calculated by equating annug}, and annual
NPP:

www.biogeosciences.net/10/3313/2013/

moisture (Thonicke et al., 2001). Assuming ignitions are al-
ways available, burnt fraction and its associated carbon fluxes
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fire spread, intensity and residence time based on climate
data and modelling the drying of different fuel types between
rain days. Fire intensity influences fire mortality and carbon
fluxes. The fire model runs on a daily time step.

2.5 Model protocol

All models were run on a 0%global grid using the CRU
TS3.0 land mask as in Prentice et al. (2011). Soil texture was
prescribed using the FAO soil data (FAO, 1991). The spin-up
and historical drivers for the DGVM simulations were ex-
actly as used for LPX by Prentice et al. (2011). For compara-
bility, the same climate data were used to drive the SDBM. In
addition SDBM was driven by fAPAR values from SeaWiFS
observations. For cells lacking fAPAR values, values were
constructed for the missing months by fitting the following
equation to available data for each year:

fAPAR (1) = % {(U = LYcos[ 2 (m — mmay) /1 + U + L.} (15)

where fAPAR(n) is the fAPAR for monthsn with data; U

is the maximum fAPAR value in monttymayx; and L is the
minimum fAPAR value. As the maximum fAPAR value typ-
ically occurs in spring or summer (Prince, 1991) when Sea-
WIFS data are generally available, and the minimum occurs
in the winter when data may be unavailabléjs set to the
highest fAPAR value, whilsL is tuned to fit the function to
the data.

The SDBM was only run for 1998-2005, a limitation im-
posed by the availability of fAPAR data, and comparisons
were confined to this period. For LPX and LPJ, outputs and
therefore comparisons were possible from 1950-2006. Com-
parisons with NPP, GPP, annual average basin runoff, global
inter-annual variability in runoff, and the seasonal cycle of
CO, concentration were made for all three models. LPX and
LPJ are compared across a wider range of benchmarks.

Comparisons of the seasonal £Q@ycle were based
on simulated monthly net ecosystem production (NEP:
NPP— Ry, — fire carbon flux). NEP for the SDBM was taken

Fig. 3. Observed seasonal cycle of atmospherig@@ncentrations

at 26 CQ stations over the period 1998-2005 (black line), taken which simulates fire on an annual basis. monthlv fire car-
from the CDIAC website (cdiac.ornl.gov) compared to the simu- ’ y

lated seasonal cycle from the Simple Diagnostic Biosphere Modelbon ﬂux was set to 1/12 Fhe annual value. With LPX, it was
(SDBM) (green line); LPJ (red); and LPX (blue). The y-axis indi- POSsible to use monthly fire carbon flux. For each model, de-
cates variation in atmospheric G@oncentration about the mean. trended monthly values of NEP for each grid cell were in-
The x-axis is months from January through 18 months to June.  put into the atmospheric transport matrices derived from the
TM2 transport model (Kaminski et al., 1996), which allowed
us to derive the C@seasonal cycle (Heimann, 1995; Knorr
are calculated from the summed annual probability of fire,and Heimann, 1995) at the locations of the observation sites.
using a simple relationship. Average basin runoff was calculated by summing the
runoff from all model grid cells within a GRDC-defined
basin and dividing by the basin area. If a grid cell fell into
more than one GRDC basin, the runoff was divided be-
LPX (Prentice et al., 2011), which is a development of LPJ-tween basins in proportion to the fraction of the cell within
SPITFIRE (Thonicke et al., 2010), incorporates a process<€ach basin. Inter-annual changes in runoff were calculated by
based fire scheme, with ignition rates based on the seasonalmming runoff over all cells in basins for which there were
distribution of lightning strikes and fuel moisture content and data for a given year. Seasonal cycles of runoff are dependent

as the difference between monthly NPP ak¢l For LPJ,

243 LPX
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on the dynamics of water transport in the river, which was not3.1.3 NPP/GPP

modelled.
The models have NME scores for NPP of 0.58 (SDBM),

0.83 (LPJ) and 0.81 (LPX) (Table 5) — better than values
3 Results obtained for the mean of the data (1.00) and random resam-
pling (1.35+ 0.09). Removing the biases in mean and vari-
ance (Table 5) improves the performance of all three models.
311 fAPAR The SDBM simulates 1.13 times higher NPP than observed,
o but correctly predicts the spatial variability shown by the ob-

LPJ scores 0.82 and LPX scores 0.86 using NME for annuaf€rvations, whereas the two DGVMs overestimate NPP but
average fAPAR (Table 5). This difference in score is equiv_underestimate the spatial variance in NPP. As a result, remov-

alent to a negligible (i.e< 5%) change in the match to the ing the biases in the mean produces a much larger improve-

observations. Both values are considerably better than valMent in the DGVMs. In LPJ, for exa(r)nple, the score goes
ues for the mean of the data (1.00) and random resamplin§f©m 0-83 to 0.69, equivalent to a 29 % better match to the
(1.19+ 0.004), with the match to observations being 15 94 Observations. The improvement in the SDBM is equivalent

closer and 30 % closer respectively. The models also perfornt® ONly & 9 % better match to observations. The two DGVMs

well for seasonal timing (Fig. 4), with scores of 0.19 (LPJ) Perform worse for GPP than NPP. LPX has an NME scoreoof
and 0.18 (LPX) or the equivalent of an average of 34 dayso'81 for NPP but 0.98 for GPR —this is equivalent to a 17 Yo
different from observations. For comparison, the seasonaPetter match to NPP observations than to GPP observations.

timing of the mean of the data and random resampling is'"€ SDBM performs better for GPP than the DGVMs, ob-

ca. 3months different from observations. The models alsdNing an NME score of 0.71, which is better than the mean
perform well for inter-annual variability: LPJ scores 0.60 °f the data (1.00) and randomly resampling (1436.22).

and LPX scores 0.50 using NME for inter-annual variability,
compared to a mean score of 1.00 and a score of£ @284

from random resampling. The DGVM scores represent, 1eq pj gcores 1.00 and LPX scores 1.04 using NME for the
spectively, a 40 % and 50 % better match to observations thag e giction of height (Table 5). These values lie between the
the mean of the data. LPJ scores 1.07 and LPX scores 1.14 . - (1.00) and random resampling (1438.004) scores.

using NME for seasonal concentration, compared t0 1.00rpis poor performance is due to modelled mean heights
for the mean and 1.4% 0.006 for random resampling. This ca. 60-65% lower than observed and muted variance (Ta-

means that the seasonal concentration of fapar in the DGVMg¢ 5 Fig. 6). Removing the mean bias improves the score for
is, respectively, 7% and 14 % worse than the mean of the datgh pGvMs to 0.71 for LPJ and 0.73 for LPX equivalent to
compared to observations. a 29 % and 30 % improvement in the match to observations.
Model performance is further improved by removing bias in
the variance, to 0.64 for LPJ (ca. 11 %) and 0.68 for LPX

LPJ scores 0.78 and LPX scores 0.76 using the MM for the(8- 6 %)-
prediction of life forms (Table 5), again a negligible dif-
ference in performance<(3 %) compared to observations.
Both values are better than obtained for the mean of the datgnqre is 5 major difference between the two DGVMs for an-
(0.93) or by randomly resampling (0.880.002). Both mod- 1, 5 fractional burnt area (Fig. 7): LPJ scores 1.58, while
els were also better than mean and randomly resampling fof py scores 0.85 for NME (Table 5). Thus, LPX produces

bare ground. However, both models overestimate tree covet 46 o4 petter match to the observations than LPJ. The LPJ

and underestimate herb cover by around a factor of 2 (Tagcgre is worse than the mean (1.00) and random resam-

ble 5). The scores for tree cover (LPJ: 0.62, LPX: 0.56) pling (1.02+0.008). The same is true for NME compar-
show, respectively, a 38% and 24 % poorer match {0 0bjsong of inter-annual variability, with LPJ scoring 2.86, worse
servations than the mean of the data (0.45), and a 15% angan the mean (1.00) and random resampling (£8534),
4% poorer match to observations than randomly resampling,hereas the LPX score of 0.63 is better than both. LPX
(0.54+0.002). In the same way, the two DGVMS show a ¢4 also be benchmarked against the seasonality of burnt
40 % poorer match to observed grass cover than the mean Qf,ction. It scores 0.10 for MPD comparison of phase,
the data and a 6 % poorer match than randomly resamplingy, ,ch petter than the mean (0.74) and random resampling
Both models are worse than mean and random resamplingy 47+ 0.001). However, it did not perform well for seasonal
for phenology (Table 5). concentration, scoring 1.38 compared to the mean (1.00) and
random resampling (1.380.006).

3.1 Benchmark results

3.1.4 Canopy height

3.1.2 \Vegetation cover

3.1.5 Burnt fraction
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Table 4.Scores obtained using the mean of the data (Data mean), and the mean and standard deviation of the scores obtained from bootstray
ping experiments (Bootstrap mean, Bootstrap SD). NME/NMSE denotes the normalised mean error/normalised mean squared error, MPD
the mean phase difference and MM/SCD the Manhattan metric/squared chord distance metrics.

Variable Metric  Measure Absolute Square
used

Data Bootstrap Bootstrap Data Bootstrap Bootstrap

mean mean SD mean mean SD
fAPAR NME/ Annual average 1.00 1.19 0.004 1.00 1.95 0.01
NMSE — with mean removed 1.00 1.21 0.003 1.00 1.93 0.01
— with mean and variance removed 1.00 1.23 0.004 1.00 2.08 0.01
Inter-annual variability 1.00 1.21 0.34 1.00 1.92 0.79
— with variance removed 1.00 1.30 0.36 1.00 2.15 0.84
Seasonal concentration 1.00 1.41 0.006 1.00 2.02 0.02
— with mean removed 1.00 1.41 0.006 1.00 2.02 0.02
— with mean and variance removed 1.00 1.40 0.005 1.00 2.00 0.01
MPD Phase 0.54 0.49 0.001 N/A N/A N/A
Vegetation MM Life forms 0.93 0.88 0.002 0.37 0.47 0.002
cover
Tree vs. non-tree 0.45 0.54 0.002 0.14 0.27 0.001
Herb vs. non-herb 0.50 0.66 0.002 0.17 0.33 0.002
Bare ground vs. covered ground 0.48 0.56 0.002 0.18 0.35 0.002
Evergreen vs. deciduous 0.68 0.87 0.003 0.30 0.580 0.003
Broadleaf vs. needleleaf 0.77 0.94 0.004 0.36 0.75 0.004
Net primary NME/ Annual average 1.00 1.35 0.09 1.00 2.00 0.24
production NMSE — with mean removed 1.00 1.35 0.09 1.00 2.00 0.24
— with mean and variance removed 1.00 1.35 0.08 1.00 2.01 0.20
Gross primary  NME/ Annual average 1.00 1.36 0.22 1.00 2.01 0.56
production NMSE — with mean removed 1.00 1.36 0.22 1.00 2.00 0.55
— with mean and variance removed 1.00 1.36 0.17 1.00 2.00 0.43
Canopy height NME/  Annual average 1.00 1.33 0.004 1.00 1.98 0.009
NMSE — with mean removed 1.00 1.33 0.004 1.00 1.98 0.009
— with mean and variance removed 1.00 1.33 0.004 1.00 2.00 0.009
Burnt fraction NME/  Annual average 1.00 1.02 0.008 1.00 1.98 0.03
NMSE — with mean removed 1.00 1.09 0.005 1.00 1.99 0.03
— with mean and variance removed 1.00 1.14 0.004 1.00 2.36 0.02
Inter-annual variability 1.00 1.35 0.34 1.00 1.93 0.77
— with variance removed 1.00 1.39 0.32 1.00 2.15 0.76
Seasonal concentration 1.00 1.33 0.006 1.00 1.99 0.01
— with mean removed 1.00 1.33 0.006 1.00 1.99 0.02
— with mean and variance removed 1.00 1.33 0.005 1.00 2.00 0.01
MPD Phase 0.74 0.47 0.001 N/A N/A N/A
Runoff NME/ Annual average 1950-2005 1.00 1.18 0.48 1.00 1.95 0.99
NMSE — with mean removed 1.00 1.35 0.52 1.00 1.89 0.96
— with mean and variance removed 1.00 1.76 0.71 1.00 2.02 1.03
Annual average 1998-2005 1.00 1.17 0.28 1.00 1.97 0.94
— with mean removed 1.00 1.27 0.33 1.00 1.96 0.93
— with mean and variance removed 1.00 1.18 0.05 1.00 2.00 0.16
Inter-annual variability 1.00 1.40 0.14 1.00 2.00 0.32
1950-2005
— with variance removed 1.00 1.45 0.172 1.00 2.01 0.60
Inter-annual variability 1.00 1.33 0.34 1.00 1.83 0.83
1998-2005
— with variance removed 1.00 1.34 0.34 1.00 1.87 0.82
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Table 4. Continued.

Variable Metric  Measure Absolute Square
used

Data Bootstrap Bootstrap Data Bootstrap Bootstrap

mean mean SD mean mean SD
Atmospheric NME/ Inter-annual variability — Bousquet ~ 1.00 1.36 0.058 1.00 2.00 0.15
CO, concen- NMSE  (Jan 1980-June 1998)
tration — with variance removed 1.00 1.36 0.058 1.00 2.00 0.15
Inter-annual variability — BRdenbeck  1.00 1.38 0.081 1.00 1.99 0.22
(Jan 1982—-Dec 2001)
— with variance removed 1.00 1.38 0.082 1.00 1.99 0.22
Inter-annual variability — Baker 1.00 1.39 0.07 1.00 1.99 0.19
(Jan 1988-Dec 2004)
— with variance removed 1.00 1.40 0.07 1.00 1.99 0.19
Inter-annual variability — Chevalier ~ 1.00 1.38 0.07 1.00 2.00 0.17
(Jul 1988—Jun 2005)
— with variance removed 1.00 1.39 0.07 1.00 2.00 0.17
Inter-annual variability — Average 1.00 1.37 0.05 1.00 2.00 0.14
(Jan 1980—Jun 2005)
— with variance removed 1.00 1.37 0.05 1.00 2.00 0.14
Amplitude 1.00 1.38 0.28 1.00 2.04 0.81
— with mean removed 1.00 1.40 0.39 1.00 2.00 0.78
— with mean and variance removed 1.00 1.39 0.14 1.00 2.02 0.40
NME Phase 0.33 0.42 0.051 N/A N/A N/A
3.1.6 River discharge 3.1.7 CG concentration

Comparing average runoff for 1950—2005, both DGVMs The generalised form of the seasonal cycle ino@0ncen-
score 0.28 for NME, better than the mean (1.00) and ran4rations at different sites can be compared for all three mod-
dom resampling (1.1& 0.48). The models perform much els. The SDBM scores 0.21 whereas LPJ scores 0.34 and
less well for inter-annual comparisons, with NME scores of LPX 0.34 in the MPD comparisons of seasonal timing, com-
1.33 (LPJ) and 1.32 (LPX), worse than 1.00 for the mean ancpared to the mean of the data (0.33) and random resam-
1.45+0.17 for random resampling. Agreement is slightly pling (0.42+ 0.051). Thus, the SDBM produces an estimate
improved by removing variance bias (LPJ: 1.07, LPX: 1.11). of peak timing that is 22 days closer to observations than
Neither of the DGVMs examined here treat water-routing ex-the mean of the data, while the DGVMs produce estimates
plicitly. Introducing a one-year lag for inter-annual compar- that are 6 days further away from the observations than the
isons (Fig. 8) produces a 21% (LPJ) and 19% (LPX) im- mean of the data (Fig. 3). The scores for NME comparison
provement in the match to observations, confirming that tak-of seasonal concentration for the SDBM (0.68), LPJ (0.46)
ing account of delays in water transport is important whenand LPX (0.58) are all better than the mean (1.00) and ran-
assessing the inter-annual variation in runoff. All three mod-dom resampling (1.3& 0.28). Thus, although the difference
els were compared for 1998—-2005. For annual average cormrbetween the models is non-trivial (ca. 30 %), all three models
parisons, they all performed better than the mean and randorare ca. 30-50 % closer to observations than the mean of the
resampling (Table 5). However, all models performed poorly data. Only the DGVMs can be evaluated with respect to inter-
for inter-annual variability, obtaining similar scores (1.64 to annual variability in global C@concentrations. Both models
2.38) compared to the mean (1.00) and random resamplingapture the inter-annual variability relatively well (Table 5).
(1.34+0.34). Removing variability bias and introducing a LPJ scores 0.89 and LPX scores 0.83 for the average of all
one-year lag improved performance, with the SDBM scoringinversion datasets, compared to the mean of the data (1.00)
1.37,LPJ 1.36 and LPX 1.35. and random resampling (1.370.05).
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Table 5. Comparison metric scores for model simulations against observations. Mean and variance rows show mean and variance of simula-
tion for annual average values, followed in brackets by the ratio of the mean/variance with observed mean or variance in Table 3. Numbers in
bold indicate the model with the best performance for that variable. Italic indicates model scores better than the mean of the data score listed
in Table 4. Asterisks indicate model scores that are significantly better than randomly resampling listed in Table 4. NME/NMSE denotes
the normalised mean error/normalised mean squared error, MPD the mean phase difference and MM/SCD the Manhattan metric/squarec
chord distance metrics. fAPAR is the fraction of absorbed photosynthetically active radiation, NPP net primary productivity, and GPP gross
primary productivity.

Variable Metric  Measure SDBM LPJ LPX
used
Absolute Squared Absolute Squared Absolute Squared
fAPAR Mean Annual average N/A N/A 0.30 N/A 0.26 N/A
(ratio) (1.63) (1.44)
Variance N/A N/A 0.15 0.17 0.16 0.18
(ratio) (0.85) (0.86) (0.91) (0.90)
NME/ Annual average N/A N/A 0.82* 1.04* 0.86* 1.09*
NMSE — with mean removed 0.75* 0.76* 0.76* 0.78*
— with mean and variance removed 0.80* 0.83« 0.82* 0.90*
Inter-annual variability N/A N/A 0.60* 0.36* 0.50* 0.27*
— with variance removed 0.73* 0.36* 0.44* 0.23*
Seasonal concentration N/A N/A 1.07* 1.28* 1.14 1.37*
— with mean removed 1.02* 1.20* 1.05 1.25
— with mean and variance removed 1.03* 1.26* 1.06¢ 1.3
MPD Phase N/A N/A 0.19* N/A 0.18* N/A
Vegetation Mean Tree vs. non-tree N/A N/A 0.49 N/A 0.42 N/A
cover (ratio) (2.23) (2.91)
Herb vs. non-herb N/A N/A 0.28 N/A 0.31 N/A
(0.54) (0.60)
Bare ground vs. covered ground N/A N/A 0.23 N/A 0.27 N/A
(1.14) (2.33)
Evergreen vs. deciduous N/A N/A 0.34 N/A 0.28 N/A
(0.79) (0.73)
Broadleaf vs. needleleaf N/A N/A 0.67 N/A 0.65 N/A
(1.08) (1.10)
Variance Tree vs. non-tree N/A N/A 0.45 0.45 0.46 0.46
(ratio) (2.03) (1.73) (2.06) (2.75)
Herb vs. non-herb N/A N/A 0.30 0.35 0.32 0.36
(1.18) (1.21) (1.27) (1.24)
Bare ground vs. covered ground N/A N/A 0.30 0.36 0.32 0.37
(1.26) (1.20) (1.33) (1.23)
Evergreen vs. deciduous N/A N/A 0.35 0.39 0.36 0.41
(1.06) (2.07) (1.18) (1.18)
Broadleaf vs. needleleaf N/A N/A 0.40 0.43 0.43 0.46
(2.02) (1.02) (1.07) (2.07)
MM Life forms N/A N/A 0.78* 0.44* 0.76* 0.42*
Tree vs. non-tree N/A N/A 0.62 0.39 0.56 0.33
Herb vs. non-herb N/A N/A 0.71 0.39 0.67 0.36
Bare ground vs. covered ground N/A N/A 0.23* 0.10* 0.30* 0.156
Evergreen vs. deciduous N/A N/A 0.93 0.47* 0.94 0.48*
Broadleaf vs. needleleaf N/A N/A 0.89* 0.47* 0.92* 0.55*
NPP Mean  Annual average 612 N/A 688 N/A 685 N/A
(ratio) (1.13) (1.28) (2.27)
Variance 297 351 242 325 283 355
(ratio) (1.00) (0.96) (0.81) (0.887) (0.95) (0.97)
NME/ Annual average 0.58* 0.35* 0.83* 0.68* 0.81* 0.67*
NMSE — with mean removed 0.53* 0.32* 0.69* 0.52* 0.68* 0.51*

— with mean and variance removed0.53* 0.33* 0.75* 0.57* 0.69* 0.53*
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Table 5. Continued.
Variable Metric  Measure SDBM LPJ LPX
used
Absolute Squared Absolute Squared Absolute Squared
GPP Mean  Annual average 1231 N/A 1354 N/A 1127 N/A
(ratio) (0.80) (0.88) (0.73)
Variance 316 492 288 388 240 304
(ratio) (0.49) (0.60) (0.45) (0.47) (0.37) (0.37)
NME/ Annual average 0.71 0.5% 0.80* 0.63* 0.98 1.1
NMSE — with mean removed 0.63 0.40« 0.82* 0.58* 1.0 0.9%
— with mean and variance removed0.59 0.3% 0.90* 0.63* 1.3% 1.45
Canopy Mean Annual average N/A N/A 6.92 N/A 6.36 N/A
height (ratio) (0.38) (0.35)
Variance N/A N/A 6.17 6.70 6.69 7.18
(ratio) (0.52) (0.49) (0.57) (0.52)
NME/ Annual average N/A N/A 1.00* 1.22* 1.04 1.2%
NMSE — with mean removed 0.71* 0.53* 0.7% 0.55
— with mean and variance removed 0.64* 0.50* 0.68 0.58
Burnt Mean Annual average N/A N/A 0.014 N/A 0.022 N/A
fraction (ratio) (0.50) (0.81)
Variance N/A N/A 0.016 0.027 0.032 0.46
(ratio) (0.37) (0.29) (0.75) (0.49)
NME/ Annual average N/A N/A 1.58 1.18 0.85* 1.01*
NMSE — with mean removed 1.55 1.17 0.91* 1.01*
— with mean and variance removed 1.72 1.29 0.99* 1.60*
Inter-annual variability N/A N/A 2.86 8.10 0.63* 0.49
— with variance removed 1.90 3.08 0.77 0.56
Seasonal concentration N/A N/A N/A N/A 1.38 2.00
— with mean removed 1.37 1.99
— with mean and variance removed 1.26* 1.77*
MPD Phase N/A N/A N/A N/A 0.10* N/A
Runoff Mean Annual average 1950-2005 N/A N/A 388 N/A 396 N/A
(ratio) (1.26) (1.29)
Annual average 1998-2005 466 N/A 426 N/A 429 N/A
(1.41) (1.29) (1.30)
Variance Annual average 1950-2005 N/A N/A 17.8 22.7 16.6 21.0
(ratio) (1.44) (1.50) (1.35) (1.38)
Annual average 1998-2005 119 156 15.9 18.9 14.3 17.1
(1.42) (1.48) (1.90) (2.79) (1.70) (1.62)
NME/ Annual average 1998-2005 N/A N/A 0.28* 0.067 0.28 0.054*
NMSE — with mean removed 0.34* 0.065 0.35 0.052*
— with mean and variance removed 0.20* 0.021* 0.2%4 0.03*
Annual average 1998-2005 0.42* 0.28* 0.23* 0.039* 0.23* 0.026*
— with mean removed 0.55* 0.26* 0.26* 0.039* 0.26* 0.025*
— with mean and variance removed0.22* 0.033* 0.18* 0.013* 0.20* 0.018*
Inter-annual variability N/A N/A 1.33 1.91* 1.32* 1.88*
1950-2005 1.07* 1.11* 11r 1.25
— with variance removed
Inter-annual variability
1950-2005 with 1yr lag 1.03* 1.21* 1.06* 1.19*
— with variance removed 0.84* 0.70* 0.90* 0.79*
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Table 5. Continued.

Variable Metric  Measure SDBM LPJ LPX
used
Absolute Squared Absolute Squared Absolute Squared
Inter-annual variability 1.64 291 2.38 4.59 2.27 4.09
1998-2005 1.48 2.65 1.59 221 1.63 2.28

— with variance removed

Inter-annual variability

1950-2005 with 1yr lag 1.49 2.00 2.10 4.23 1.94 3.64
— with variance removed 1.37 1.06 1.36 1.95 1.35 1.95
CO, Variance Inter-annual variability — Bousquet N/A N/A 1.12 1.35 1.09 1.37
(ratio) (Jan 1980—June 1998) (1.21) (1.22) (1.18) (1.24)
Inter-annual variability — Bdenbeck N/A N/A 1.15 1.32 1.02 1.24
(Jan 1982—-Dec 2001) (1.30) (1.16) (1.15) (2.09)
Inter-annual variability — Baker N/A N/A 1.11 1.30 0.94 1.16
(Jan 1988-Dec 2004) (1.28) (1.19) (2.09) (2.07)
Inter-annual variability — Chevalier N/A N/A 1.08 1.28 0.96 1.19
(Jul 1988-Jun 2005) (1.26) (1.20) (1.12) (1.12)
NME/ Inter-annual variability — Bousquet N/A N/A 0.98 1.1* 0.95* 1.1*
NMSE  (Jan 1980-June 1998) 0.86* 0.82* 0.87* 0.81*
— with variance removed
Inter-annual variability — Bdenbeck N/A N/A 0.82 0.59 0.70* 0.41*
(Jan 1982-Dec 2001) 0.67 0.48 0.64* 0.37*
— with variance removed
Inter-annual variability — Baker N/A N/A 0.85 0.78 0.78* 0.64*
(Jan 1988-Dec 2004) 0.66* 0.62 0.72 0.60*
— with variance removed
Inter-annual variability — Chevalier N/A N/A 0.9% 0.7 0.73* 0.51*
(Jul 1988-Jun 2005) 0.79 0.56" 0.68* 0.44*
— with variance removed
Inter-annual variability — Average  N/A N/A 0.89% 0.82 0.83* 0.82*
(Jan 1980—Jun 2005) 0.73* 0.62* 0.7%4 0.64
— with variance removed
Amplitude 0.68* 0.60* 0.46* 0.27* 0.58* 0.40*
— with mean removed 0.50* 0.26« 0.40* 0.17* 0.48* 0.25*

— with mean and variance removed0.10« 0.02* 0.50* 0.23* 0.59* 0.34*

Phase 0.21* N/A 0.34 N/A 0.34 N/A
3.2 Sensitivity tests site or gridded values. However, the GFED burnt fraction
(Giglio et al., 2010) and the Luyssaert et al. (2007) NPP
3.2.1 Incorporating data uncertainties datasets do provide quantitative estimates of uncertainty. We

use these datasets to evaluate the impact of taking account

In calculating the performance metrics, we have disregarde@bservational unce_rtainty in the evaluation of model perfor-
observational uncertainty. Few land-based datasets provid@ance by calculating NME scores for annual averages of
quantitative information on the uncertainties associated with®ach variable using the maximum and minimum uncertainty
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a) SeaWifs fAPAR seasonal phase d) SeaWifs fAPAR seasonal concentration
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b) LPJ fAPAR seasonal phase

c) LPX fAPAR seasonal phase
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Fig. 4. Comparison of observed and simulated seasonal phase and seasonal concentration of fraction of absorbed photosynthetically active
radiation (fAPAR) averaged over the period 1998-2005 f{ajrseasonal phase from SeaWiFS (Gobron et al., 2006) and as simulated by

(b) LPJ and(c) LPX; seasonal concentration frofd) SeaWiFS(e) LPJ and(f) LPX. Hashed area ifa) and(d) shows areas where no
comparison is possible.

values at each site or grid cell to calculate the maximum andHowever, the range of scores obtained for the SDBM taking
minimum potential distance between models and observainto account the observational uncertainties after removing
tions. the high bias is 0.21-1.25. As this overlaps with the scores
In the standard NME comparison for annual fractional obtained prior to removing these biases (0.26—1.36), the im-
burnt area, LPJ scores 1.58 while LPX scores 0.85. Takingprovement gained from removing the influence of the mean
into account the uncertainties produces minimum and maxiin NPP in the SDBM is less than the observational uncer-
mum scores of 1.27 and 1.85 for LPJ, and 0.35 and 1.17 fotainty.
LPX. Since these ranges are non-overlapping, the improve- Another approach to estimating the influence of uncer-
ment in the match to observations shown by LPX comparedainty is to use alternative realizations of the observations.
to LPJ is demonstrably larger than observational uncertaintyThis approach has been used by the climate-modelling com-
This is not the case for the Luyssaert et al. (2007) only sitedmunity to evaluate performance against modern climate ob-
based annual average NPP comparisons, where the ranges aervations (e.g. Gleckler et al., 2008) and is used here for
0.26-1.36 (SDBM), 0.37-1.43 (LPJ) and 0.39-1.50 (LPX). CO; inter-annual comparisons. The scores obtained in com-
Similarly, the apparent biases in mean annual NPP shown bparisons with individual inversion products range from 0.82
all three models are within the observational uncertainty. Reto 0.98 for LPJ, and from 0.70 to 0.95 for LPX. Thus, the
moving the slight high bias in mean annual NPP producedconclusion that the two DGVMs capture the inter-annual
an improvement in the performance of the SDBM, with a variability equally well, based on the average scores of all
change in the Luyssaert et al. (2007) only score from 0.72 tanversion datasets, is supported when taking into account un-
0.59, equivalent to a 18 % better match to the observationscertainty expressed in the differences between the inversions.
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a) SDBM GPP d) SDBM NPP Table 6. Mean annual gross primary production (GPP) normalised
mean error (NME) comparison metrics using Luyssaert et al. (2007)
. 2.0 and Beer et al. (2010) as alternative benchmarks. In the case of Beer
. 1.5 et al. (2010), the comparisons are made for all grid cells (global)
g 10 505 % and also from the grid cells which contain sites in the Luyssaert et
XA Xx el w al. (2007) dataset (at sites).
x 05 XX %X X
0 0 Variable Measure SDBM LPJ LPX
&-E\ @ 14 =9 BB A4 9 g3 49 18 GPP from global N/A N/A N/A
) Luyssaert et al. (2007) at sites 0.71 0.80 0.98
g b) LPJ GPP e) LPJ NPP GPP from global 0.56 0.60 0.51
Beer et al. (2010 at sites 0.34 0.84 0.74
.5 3.0 2.0 ( )
S20 § y L2 x x
B Ll 1.0 ; |
a 10| = X ox . * global coverage of variables that may not b_e as well repre-
- * ~l § x sented in other datasets and thus could provide a useful alter-
-.% 0 0 native realization of the observations.
= 0 1.0 20 3.0 40 0 05 10 15 Here, we test the use of the Beer et al. (2010) dataset as an
E alternative to the Luyssaert et al. (2007) GPP dataset. The
2 c) LPX GPP f) LPX NPP Beer et al. (2010) GPP dataset is based on a much _Iarger
50 50 number of flux-tower measurements than are mcluded_ in the
" Luyssaert et al. (2007) dataset, but uses both diagnostic mod-
20 1.5 ok x els and statistical relationships with climate to scale up these
x Lok 1.0 L mIx measurements to provide global coverage. We compare the
10| 7« o5l w5 annual average GPP scores using Beer et al. (2010), calcu-
x xx Sl A lated using all grid cells and considering only those grid cells
00 0 20 30 40 00 55 10 15 which correspond to locations with site data in the Luyssaert

Observed Production (kgC/m?)

et al. (2007) dataset. These comparisons (Table 6) show that
LPX and SDBM perform better against the Beer et al. (2010)
dataset than against the Luyssaert et al. (2007) at the site lo-

Fig. 5. Comparisons of observed and simulated NPP and GPP in:ations, while the results obtained for LPJ against the two
kg C m™*. The NPP observations (x-axis) are from the dataset madeyaasets are roughly similar. There is a further improvement
by combining sites from the Luyssaert et al. (2007) dataset anq, performance when the models are compared against all the

the Ecosystem/Model Data Intercomparison dataset (Olson et al.

2001). The GPP observations are derived from the Luyssaert eg”d cells. The improvement in performance at the site loca-

al. (2007) dataset. The simulated values (y-axis) are annual avetlons presumably refl'e(':ts the fagt that the Beer .Et_al' (2010)
ages for the period 1998-2005. The observations are compared witataset smooths out idiosyncratic site characteristics; the ad-
NPP(a) and GPRb) from the Simple Diagnostic Biosphere Model ditional improvement in performance in the global compari-
(SDBM), NPP(c) and GPRd) from LPJ and NPRe) and GPH(f) son reflects both the smoothing and the much larger number
from LPX. The solid line shows the 1: 1 relationship. of flux sites included in the Beer et al. (2010) dataset. Never-
theless, the conclusion that the SDBM performs better than
the DGVMs is not influenced by the choice of dataset. LPJ
performs marginally better than LPX when the Luyssaert et
al. (2007) dataset is used as the benchmark (0.8 versus 0.98),
The use of alternative datasets for a given variable impliesbut worse than LPX when the Beer et al. (2010) dataset is
that there are no grounds for distinguishing which is moreused as a benchmark (0.6 versus 0.51). This indicates that
reliable. It also highlights the fact that there is an element ofthe difference between the two DGVMs is less than the ob-
subjectivity in the choice of datasets and that this introducesservational uncertainty.

another source of uncertainty into the process of benchmark- The release of new, updated datasets poses problems for
ing. We have explicitly excluded from the benchmarking pro- the implementation of a benchmarking system, but could be
cedure any datasets that involve manipulations of originalregarded as a special case of the use of alternative realizations
measurements based on statistical or physical models thaif the observations. The GFED3 burnt fraction dataset, used
are driven by the same inputs as the vegetation models bdiere, is a comparatively recent update of an earlier burnt frac-
ing tested (e.g. MODIS NPP, remotely sensed evapotranspition dataset (GFED2: van der Werf et al., 2006). When LPJ
ration, upscaled GPP). However, such products often providend LPX are evaluated against GFED2, the NME score for

3.2.2 The influence of choice of dataset
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a) Observed canopy height

0 5 10 15 20 25 30 35 40 >40m

Fig. 6. Comparisons of observed and simulated hei@)tObserved canopy height (in 2005) from the Simard et al. (2011) dataset compared
to (b) simulated height in the same year from LRX) LPX-simulated height, multiplied by a factor of 2.67 so that the simulated global
mean height is the same as the observati@)eight from(c) with values reduced by a factor of 1.40 about the mean so that the simulations
have the same global mean and variance as the observations.

the annual average burnt fraction changes from 1.58 (againgonal amplitude score to 0.51. In the baseline simulation, the
GFED?3) to 1.91 (against GFEDZ2) for LPJ and from 0.85 Q19 for Ry is 1.5 (Eqg. 13). Changing this response by in-
(GFED3) to 0.92 (GFED?2) for LPX (i.e. both models pro- creasingQio to 2 degrades the simulation of the seasonal
duce a better match to GFED3 than to GFED?2), but the dif-amplitude and phase of GOwhile decreasingD o to 1.3
ference between the two models is preserved (i.e. LPX, withimproves the simulation of the seasonal amplitude and phase
its more explicitly process-based fire model, is more realisticof CO, (Table 7). Removing the seasonal responsg&pfo
than LPJ). moisture (i.e. removing from Eq. 13) improves the score
for seasonal amplitude (0.39) but does not change the score
3.2.3 Benchmarking the sensitivity to parameter tuning  for the phase. However, this degrades its performance against
annual average NPP from 0.58 to 0.82. We expect fhat
Benchmarking can be used to evaluate how much tuning oghould be sensitive to soil moisture changes, but this analysis
individual parameters improves model performance and tosuggests that the treatment of this dependency in the SDBM
ensure that the simulations capture specific processes cois unrealistic.
rectly. We examine how well the current system serves in this
respect by running sensitivity experiments using the SDBM.
The SDBM underestimates the amplitude of CO2 seasonall Discussion and conclusion
cycle (Fig. 3). A better match to CQOobservations can be
achieved by tuning the light-use efficiency parametein(  Model benchmarking serves multiple functions, including (a)
Eq. 12). The best possible match to CO2 seasonal amplishowing whether processes are represented correctly in a
tude (0.18) is obtained whenis equal to 1.73 g C M3, but model, (b) discriminating between models and determining
this increases both the mean and the variance of NPP conwhich performs better for a specific process, and (c) compar-
pared to observations: the overall performance of the SDBMing between the model scores and those obtained by com-
is therefore worse (Table 7). The seasonal amplitude of CO paring mean and random resampling of observations, thus
depends on simulating the correct balance between NPP arfielping to identify processes that need improvement.
Rp. Thus, given that the model produces a reasonable simula- As found by Heimann et al. (1998), the SDBM produces
tion of annual average NPP, improvement in{¥@asonality  a good simulation of the seasonal cycle of atmospherig CO
should come from changes in the simulationRpf Remov-  concentration. However, we show that the simulated ampli-
ing the requirement that NPP am®y, are in equilibrium, by  tude of the seasonal cycle is too low (Table 5; Fig. 3). The
setting total NPP to be 1.2 timdg,, improves the CQsea- SDBM'’s performance depends on getting the right balance
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Table 7.Comparison metric scores for simulations with the Simple Diagnostic Biosphere Model (SDBM) against observations of the seasonal
cycle of atmospheric C®concentration and annual average NPP. Numbers in bold indicate the model with the best performance for that
variable. Italic indicates model scores better than the SDBM simulation tuned usinge&a®onal observations. NME/NMSE denotes the
normalised mean error/normalised mean squared error and MPD the mean phase difference. The details of each experiment are explained |
the text.

Measure SDBM SDBM tuned SDBM SDBM SDBM SDBM constant
standard run to C@seasonal amplitude  NPP = Ix2Rp, Q010=13 010=2 o
NME NMSE NME NMSE NME NMSE NME NMSE NME NMSE NME NMSE
CO, Amplitude 0.68 0.60 0.18 0.04 0.51 0.34 0.15 0.02 1.04 1.34 0.39 0.19
— mean removed 0.50 0.26 0.18 0.04 0.39 0.160.11 0.01 0.74 0.54 0.30 0.09
— mean and variance 0.10 0.02 0.10 0.02 0.10 0.02 0.10 0.01 0.18 0.07 0.12 0.02
removed
MPD 0.21 N/A 0.21 N/A 0.20 N/A 0.20 N/A 0.26 N/A 0.21 N/A
NPP Annual Average 0.58 0.36 1.76 3.00 0.58 0.36 0.58 0.36 0.58 0.36 0.82 0.70
— mean removed 0.53 0.32 0.96 0.99 0.53 0.32 0.53 0.32 0.53 0.32 0.63 0.42
—mean and variance 0.53 0.33 0.53 0.33 0.53 0.33 0.53 0.33 0.53 0.33 0.63 0.44

of NPP andry,. Improved simulation of C@seasonal ampli- both models include a low bias in canopy height (Table 5;
tude can be achieved through tuning the light-use efficiencyFig. 6), poor simulation of the seasonal concentration of fA-
using CQ station data, but this degrades the simulated NPPPAR and of the balance of tree and grass cover (Table 5),
The seasonal variation @, can be altered by changing the and poor simulation of the inter-annual variability in runoff
response oRRy to temperature@10). Although many mod-  (Fig. 8).
els (e.g. Potter et al., 1993; Cox et al., 2000) gsg val- Both DGVMs score poorly against the canopy height
ues of 2, benchmarking shows that the value of 1.5 used irbenchmark (Fig. 6), averaging around 1/3 of observed
the SDBM provides a better match to seasonap ©Gfiserva-  heights (Table 5). However, they capture the spatial pattern
tions. However, reducing th@1oto 1.3 improves the simula- of the differences in height reasonably well. A good match
tion still further. Mehecha et al. (2010), based on an analysigo canopy height was not expected, because LPJ and LPX
of FLUXNET data, have shown th&t;o values are 1.4 0.1 do not simulate a size- or age-structured tree population but
independent of temperature or vegetation type. Thus, bothmather represent the properties of an “average individual”. In
the initial and “improved’Q1o values used here are consis- contrast, the canopy height dataset represents the mean top
tent with observations, whereas values of 2 are not. Sensikeight of forests within the grid cell. However, the models
tivity analyses show that the SDBM can produce a seasonashould, and do, capture broad geographic patterns of varia-
cycle comparable to observations with respect to both am#tion in height. The canopy height benchmark could provide
plitude and phase by removing the assumption that NPP and rigorous test for models that explicitly simulate cohorts
Ry, are in equilibrium, and the dependenceRgfon seasonal  of different ages of trees, such as the Ecosystem Demogra-
changes in moisture availability. The idea that NPP &gd  phy (ED) model (Moorcroft et al., 2001). For models adopt-
are notin equilibrium is realistic; the idea that moisture avail- ing a similar strategy to the LPJ/LPX family, the key test is
ability has no impact oy, is not. Thus, these analyses il- whether the spatial patterns are correctly simulated. In either
lustrate how benchmarking can be used to identify whetheicase, the use of remotely sensed canopy height data repre-
processes are represented correctly in a model, and pinpoirsents a valuable addition to the benchmarking toolkit.
specific areas that should be targeted for investigation in fur- Poor performance in the simulation of seasonal concen-
ther developments of the SDBM. tration of fAPAR (Table 5) demonstrates that both DGVMs
The benchmarking system can discriminate between modpredict the length of the growing season inaccurately: the
els. LPJ and LPX are closely related models, differing pri- growing season is too long at low latitudes and too short at
marily in the complexity of their treatment of fire and mid-latitudes. This poor performance indicates that the phe-
the feedbacks from fire disturbance to vegetation. The twanology of both evergreen and deciduous vegetation requires
DGVMs perform equally well against the benchmarks, improvement. Both models overestimate the amount of tree
e.g. for NPP (Fig. 9), inter-annual GOconcentrations cover and underestimate grass cover (Table 5). The oversharp
(Fig. 10) and inter-annual and annual average runoff (Fig. 8)boundaries between forests and grasslands suggest that the
However, LPX performs better than LPJ with respect to all models have problems in simulating the coexistence of these
measures associated with fire (Fig. 7). life forms. This probably also affects, and is exacerbated by,
We were able to show several areas where both DGVMshe simulation of fire in the models (Fig. 7).
perform poorly against the benchmarks, and use the compar- The DGVMs simulate annual average runoff reason-
isons to evaluate possible reasons. Deficiencies common tably well, but inter-annual variability in runoff is poorly
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Fig. 8. Observed inter-annual runoff for 1950—2005 averaged over

basins from the Dai et al. (2009) dataset (black line) compared to av-
erage simulated runoff over the same basins from LPJ (red line) and
no 0.1 0.3 10 30 >30% LPX (blue line).(a) shows inter-annual runoff, ar{d) shows inter-

fire annual variability in runoff where the simulated values are lagged

by a year.

Fig. 7. Annual average burnt fraction between 1997-2005 ftam
GFED3 observations (Giglio et al., 2010) and as simulatebly
LPJ and(c) LPX.

inter-annual variability in runoff than the version examined
here.

In this paper, we have emphasised the use of global met-
simulated. In large basins, water can take many months teics for benchmarking, although both the NME and MM met-
reach the river mouth (Ducharne et al., 2003) and this delayics provide a measure of the impact of the correct simula-
has a major impact on the timing of peaks in river discharge tion of geographical patterning on global performance. How-
Neither LPX nor the version of LPJ evaluated here includesever, the metrics could also be used to evaluate model perfor-
river routing; runoff is simulated as the instantaneous differ-mance at smaller geographic scales (e.g. for specific latitudi-
ence in the water balance. Thus, it is unsurprising that neinal bands, or individual continents or biomes). For example,
ther model produces a good match to observations of intercomparison of the mean annual burnt fraction scores for spe-
annual variability. Murray et al. (2011) have pointed out that cific latitudinal bands shows that the two DGVMs simulate
inclusion of a river routing scheme should improve the sim-fire in tropical regions better than in extratropical regions or
ulation of runoff in LPX, and this is supported by the fact overall, with NME scores for the tropics of 1.27 (LPJ) and
that introducing a one-year lag improved model performanced.82 (LPX) compared to the global scores of 1.58 (LPJ) and
against the runoff benchmark (Fig. 8). There is already a ver0.85 (LPX).
sion of LPJ (LPJmL v3.2: Rost et al., 2008) that incorporates Some variables, such as runoff and burnt fraction, dis-
a water storage and transport model (and also includes huplay considerable inter-annual variability linked to cli-
man extraction), and produces a more realistic simulation ofnate (e.g. changes in ENSO: van der Werf et al., 2004;
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a) Observed NPP b) SDBM, NPP
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Fig. 9. Comparison of observed and simulated annual average net primary production (NPP). Observed values are from the Luyssaert et
al. (2007) and Ecosystem/Model Data Intercomparison datasets (Olson et al., 2001), and the simulated valuea&iritpla Diagnostic

Biosphere Model (SDBM)(c) LPJ and(d) LPX. The symbols inb), (c) and(d) indicate the magnitude and direction of disagreement
between simulation and observed values, where the upward and downward facing triangles represent over- and undersimulation respectively
Double triangles indicate a difference in NPP>0400g C n2, single filled triangles a difference between 200 and 400 g‘(z:,mingle

empty triangles a difference 100 and 200 g Cimand empty circles a difference @f100 g C n12

post-volcanic cooling events: Ria et al., 2007), and valu- than performance against the site-specific estimates of GPP
able information is obtained by considering this variabil- in the Luyssaert et al. (2007) dataset — a function of the much
ity. The vegetation cover and canopy height datasets usetigher number of flux-tower measurements included in the
for benchmarking here are single-year “snapshots”: this isnewer dataset and the smoothing of individual measurements
entirely appropriate for variables that change only slowly. inherent in the interpolation of these measurements to pro-
Nevertheless, given that vegetation is already responding tduce a gridded dataset. We do not use the Beer et al. (2010)
changes in climate (Parmesan, 2006; Hickling et al., 2006dataset as a standard benchmark, because it was derived,
Fischlin et al., 2007), additional “snapshots” of these vari-in part, using the same climate variables that are used for
ables would be useful adjuncts to a benchmarking systenthe simulation of GPP in the vegetation models. However,
allowing evaluation of models’ ability to reproduce decadal- the apparent improvement in model performance against the
scale variability in vegetation properties. Beer et al. (2010) dataset at the Luyssaert et al (2007) sites
In general, remote sensing data are most likely to providendicates the importance of making quality-controlled sum-
the global coverage necessary for a benchmark dataset. Nemaries of the primary flux-tower data available to the mod-
ertheless, we have found considerable value in using siteelling community for benchmarking purposes.
based datasets for river discharge,,COPP and NPP. River GPP and NPP have also been derived from remotely
discharge data are spatially integrated over basins that tasensed products (e.g. Running et al., 2004; Turner et al.,
gether cover much of the global land surface, while;G@-  2006). This is not an optimal approach because the results are
tion measurements intrinsically integrate land—atmospherdeavily influenced by the model used to translate the spectral
CO; fluxes over moderately large areas through atmospherizegetation indices, and the reliability of the product varies
transport. The coverage of the site-based GPP and NPRith spatial scale and for a given ecosystem type (Lu and Ji,
datasets is more limited and currently does not represent th2006).
full range of biomes. We have shown that model performance A more general issue with the development of benchmark-
against the Beer et al. (2010) gridded GPP dataset is betténg systems is the fact that target datasets are constantly
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Fig. 10.Twelve-month running mean of inter-annual variability in global atmospherig @@centration between 1998—2005 from Bousquet
et al. (2000), Rdenbeck et al. (2003), Baker et al. (2006) and Chevalier et al. (2010) compared to simulated inter-annual variability from
LPJ and LPX.

being extended in time and upgraded in quality. This is po-certainties. Approaches such as the use of multiple datasets
tentially problematic if the benchmark system is to be used to(e.g. our use of multiple C&inversions) may be one way of
evaluate improvements in model performance through timeassessing uncertainty where there are no grounds for select-
since this requires the use of a fixed target against which tang a particular dataset as being more accurate or realistic.
compare successive model versions, but this target may havdowever, the only comprehensive solution to the problem is
been superseded in the interim. In the current system, for exfor measurement uncertainties to be routinely assessed for
ample, we use the Dai et al. (2009) dataset for runoff, whicheach site/grid cell and included with all datasets.
supersedes an earlier product (Dai and Trenberth, 2002) and We have not attempted to provide an overall assessment
improves upon this earlier product by including more and of model performance by combining the metric scores ob-
longer records. The use of an updated version of the samt&ined from each of the benchmarks into a composite skill
target dataset may change the numeric scores obtained faicore, although this has been done in some previous analy-
a given simulation, but our comparison of the GFED2 andses (e.g. Randerson et al., 2009), because this requires sub-
GFED3 datasets suggests this is unlikely to change the injective decisions about how to weight the importance of
terpretation of how well a model performs. Any benchmark- each metric. Composite skill scores have been used in data-
ing system will need to evolve as new data products becomassimilation studies to obtain better estimates of model pa-
available. In practical terms, this may mean that data—modetameters (e.g. Trudinger et al., 2007). The choice of weights
comparisons will have to be performed against both the oldused in these multi-variable composite metrics alters the
and new versions of the products in order to establish howoutcome of parameter optimization (Trudinger et al., 2007;
different these products are from one another and to estabAeng and Luo, 2011; Xu et al., 2006). Decisions about
lish a new baseline comparison value for any given model.how to weight individual vegetation-model benchmarks may
As with the datasets used in this study, any new datasetheavily influence model performance scores (Luo et al.,
should be freely available to the scientific community, to 2012).
allow different modelling groups to undertake comparable The community-wide adoption of a standard system of
benchmarking exercises. benchmarking, as first proposed by C-LAMP (Randerson et
A major limitation of the benchmarking approach pre- al., 2009) and by ILAMB (Luo et al., 2012), would help
sented here is that it does not take into account observationalsers to evaluate the uncertainties associated with specific
uncertainties, because very few datasets provide a quantitaregetation-model simulations and help to determine which
tive estimate of such uncertainties. We have shown that obprojections of the response of vegetation to future climate
servational uncertainty is larger than differences in modelchanges are likely to be more reliable. As such, it will help
performance with respect to site-based annual average NP#® enhance confidence in these tools. At the same time, as we
measurements, and these observational uncertainties are alkave shown here, systematic benchmarking provides a good
greater than model biases in NPP. However, differences in thevay to identify ways of improving the current models and
performance of LPJ and LPX with respect to annual averageshould lead to better models in the future.
burnt fraction are considerably larger than observational un-
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