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Abstract 

This paper proposes two new tests for linear and nonlinear lead/lag relationships between time series 

based on the concepts of cross-correlations and cross-bicorrelations respectively. The tests are then 

applied to a set of Sterling-denominated exchange rates. Our analysis indicates that there existed 

periods during the post-Bretton Woods era where the temporal relationship between different 

exchange rates was strong, although these periods have become less frequent over the past twenty 

years. In particular, our results demonstrate the episodic nature of the nonlinearity, and have 

implications for the speed of flow of information between financial series. The method generalises 

recently proposed tests for nonlinearity to the multivariate context. 
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1. Introduction 

Researchers in economics and finance have been interested in testing for nonlinear dependence in 

time series for almost a decade now. Following relatively early work by Brock (1986), Hsieh (1989), 

and Scheinkman and LeBaron (1989a & 1989b), the number of applications has increased 

dramatically. There appear to be at least two reasons for the popularity of this line of research. First, 

if evidence of nonlinearity is found in the residuals from a linear model applied to a financial time 

series, this must cast doubt on the adequacy of the linear model as an adequate representation of the 

data. Second, if the nonlinearity is present in the conditional first moment, it may be possible to 

devise a trading strategy based on nonlinear models which is able to yield higher returns than a buy-

and-hold rule.  

 

The most popular portmanteau tests for nonlinearity employed have been the BDS test of Brock, 

Dechert and Scheinkman (1987), now published as Brock, Dechert, Scheinkman and LeBaron (1996), 

and the bispectrum test  of Hinich (1982). The vast majority of researchers to use these tests have 

found strong evidence for nonlinearity (see Brock et al. (1991), and Brooks (1996) for surveys and 

applications), although the usefulness of nonlinear time series models for yielding superior 

predictions of asset returns is still undecided; see, Nachane and Ray (1993), Weigend and 

Gerschenfeld (1993), LeBaron (1993) etc.  Although Baek and Brock (1992), Hiemstra and Jones 

(1994) and  Gallant, Rossi and Tauchen (1994) provide contradictory results, the majority of studies 

to date examining the issue of nonlinearity have been entirely univariate in nature, considering each 

series in isolation. This is highly restrictive, since relationships between variables over time are 

clearly of importance.  

 

There also exists a parallel literature which seeks to determine whether observed nonlinearities in 

financial time series are due to the existence of stochastic nonlinear relationships or fully 
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deterministic (chaotic) dynamics. Although there is almost no evidence in favour of the latter; see 

Cecen and Erkal (1996a & 1996b), Ramsey, Sayers and Rothman, (1990) or Brooks (1998), it appears 

that most of the nonlinearity can be explained by reference to the GARCH family of models; for 

example see Baillie and Bollerslev (1989) and Hsieh, (1989a & 1989b). 

 

This paper attempts to draw the two somewhat disparate areas of research into nonlinearity and 

multivariate time series analysis together proposing a new  test for nonlinearity which allows for 

cross-bicorrelations between pairs of series. Tests of simple cross-correlations are also considered. 

These tests can be viewed as natural multivariate extensions of the Hinich (1996) portmanteau 

bicorrelation and whiteness statistics which search for nonlinear co-features between time series. The 

method is more general than the tests for common features that are proposed by Engle and Kozicki 

(1993), since no knowledge of the kind of dynamics purported to be present in the data is required to 

detect the dependence
2
. The present paper hopefully provides an additional tool to the nonlinear 

Granger causality tests employed in the t literature (by Baek and Brock (1992) and Hiemstra and 

Jones (1994). The test proposed in this paper is able to pick up any form of nonlinear dependence of 

the third order statistic between two series and might also help researchers to determine the functional 

form of the nonlinear relationship between the two series by determining in which directions the 

bicorrelations flow and which of the lags are significant . 

 

The remainder of this paper is organised as follows. Section 2 outlines the testing methodology used; 

section 3 describes the data employed, while section 4 offers some analysis and concluding remarks. 

 

 

2. Testing Methodology 



 3 

Let the data be a sample of length N, from two jointly covariance stationary time series {x(tk)} and 

{y(tk)} which have been standardised to have a sample mean of zero and a sample variance of one by 

subtracting the sample mean and dividing by the sample standard deviation in each case. Since we are 

working with small sub-samples of the whole series, stationarity is not a stringent assumption. The 

null hypothesis for the test is that the two series are independent pure white noise processes, against 

an alternative that some cross-covariances, Cxy(r) = E[x(tk)y(tk+r)]  or cross-bicovariances Cxxy(r,s) = 

E[x(tk)x(tk+r)y(tk+s)] are non-zero. As a consequence of the invariance of E[x(t1)x(t2)y(t3)] to 

permutations of (t1,t2), stationarity implies that the expected value is a function of two lags and that 

Cxxy(-r,s) = Cxxy(r,s). If the maximum lag used is L < N, then the principal domain for the 

bicovariances is the rectangle {1rL, -LsL}. 

 

Under the null hypothesis that {x(tk)} and {y(tk)} are pure white noise, then Cxy(r) and Cxxy(r,s) = 0  

r,s except when r = s = 0. This is also true for the less restrictive case when the two processes are 

merely uncorrelated, but the theorem given below to show that the test statistic is asymptotically 

normal requires independence between the two series. If there is second or third order lagged 

dependence between the two series, then , Cxy(r) or Cxxy(r,s)  0 for at least one r value or one pair of r 

and s values respectively. The following statistics give the r sample xy cross-correlation and  the r,s 

sample xxy cross-bicorrelation respectively: 

 C r N r x t y t rxy k k
t

N r

( ) ( ) ( ) ( )  





1

1

, r  0     (1) 

and 

 C r s N m x t x t r y t sxxy k k

t

N m

k( , ) ( ) ( ) ( ) ( )   





1

1

 where m = max(r,s).  (2)  

                                                                                                                                                                                     
2
 Although generality can be viewed as a virtue of a test, one might also reasonably argue that it reduces the test’s 

power. 



 4 

The cross-bicorrelation can be viewed as a correlation between the current value of one series and the 

value of previous cross-correlations between the two series. Note that the summation in the second 

order case (1) does not include contemporaneous terms, and is conducted on the residuals of an 

autoregressive fit to filter out the univariate autocorrelation structure so that contemporaneous 

correlations will not cause rejections. For the third order test, we estimate the test on the residuals of a 

bivariate vector autoregressive model containing a contemporaneous term in one of the equations. The 

motivation for this pre-whitening step is to remove any traces of linear correlation or cross-correlation 

so that any remaining dependence between the series must be of a nonlinear form. It can then be 

shown that 

 E[Cxy(r)] = 0          (3)

 E[Cxxy(r,s)] = 0         (4)

 E[Cxy
2
(r)] = (N-r)

-1
         (5) 

E[Cxxy
2
(r,s)] = (N-m)

-1
         (6)    

under the null hypothesis. Let L=N
c
 where 0 < c < 0.5 

3
. The test statistics for non-zero cross-

correlations and cross-bicorrelations are given by 

 H N N r C rxy xy

r

L

( ) ( ) ( ) 


 2

1

       (7)

 and 

 H N N m C r s sxxy

s L

L

xxy

r

L

( ) ' ( ) ( , ), (' , , )    
 

  2

1

11 0     (8) 

respectively. These tests are joint or composite tests for cross-correlations and cross-bicorrelations (in 

a similar vein to the Ljung-Box Q* test for autocorrelation), where the number of correlations tested 

for is L and the number of cross-bicorrelations tested for is L(2L-1). We use theorem 1 from Hinich 

(1996), namely  

                                                           
3
 In this application, we use c=0.25, although the results and the null distribution of the test are not very sensitive 

to changes in this parameter. 
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Theorem 1: Hxy and Hxxy are asymptotically chi-squared with L and L(2L-1) degrees of freedom 

respectively as N , 

 

which is proved in the appendix to Hinich (1996) for the univariate bicorrelation test statistic. An 

extension of this theorem to the multivariate test proposed in this paper, is presented in abbreviated 

form in the appendix to this article. The full version is available from the authors upon request. 

  

3. The Data and Preliminaries 

The analysis presented here is based on 5192 daily mid-price spot exchange rates of the Austrian 

schilling, the Danish krone, the French franc, the German mark, the Italian lira, the Japanese yen, and 

the U.S. dollar data, denominated against the UK pound. The sample period taken covers the whole of 

the post-Bretton Woods era, specifically from 2 January 1974 until 1 July 1994 inclusive. We analyse 

the differences of the log of the exchange rates, which can be interpreted as continuously 

compounded daily returns. The cross-correlations and cross-bicorrelations are examined via pair-wise 

comparisons between all combinations of two of the exchange rates from the set of seven (21 pairs). 

The three currencies with the largest world turnover
4
 denominated against the pound are the U.S. 

dollar / pound (8.5% of average daily world turnover), the German mark / pound (4.9%), and the 

Japanese yen / pound (<1%).  These three exchange rates are considered together with a number of 

less frequently traded European currencies
5
 to consider whether these smaller-volume currencies 

returns follow those of the other European currencies, or whether they take their lead from the larger 

(mostly non-European) currencies.  

                                                           
4
All figures quoted in this section refer to the year 1992, and are taken from International Capital Movements 

and Foreign Exchange Markets: A Report to the Ministers and Governors by the Group of Deputies Rome, 23 

April, 1993. 
5
Excluding the German Mark / Pound, all other intra-EMS currency pairs make up only 7% of world daily 

average turnover. 
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The data are split into a set of 148 non-overlapping windows of length 35 observations (i.e. about 7 

trading weeks). Samples of this size suggest a use of L = 35
0.25

, which is rounded to 2. The reason for 

using many short windows is that potential arbitrage opportunities induced by non-contemporaneous 

cross-correlations or cross-bicorrelations are not likely to last long. Hence the use of long data series 

would probably yield very little
6
, and hence nonlinearities which persist only for short periods of time 

would remain hidden. This is a major advantage of the testing approach used here relative to many of 

its competitors which require large volumes of data to have sufficient power, and which have poor 

small sample properties.  

 

The results of a small Monte Carlo study to determine size of the test for samples of the length used 

here are given in table 1. Two series, each of length 35 are generated using a Gaussian, uniform or 

Student’s t distribution with 5 or 10 degrees of freedom. The two series drawn from the same 

distribution are then tested for cross-correlations or cross-bicorrelations. This procedure is repeated 

6000 times. 

[table 1 here] 

The results of the simulation clearly demonstrate that the tests are conservative at small samples for 

the uniform distribution, and the empirical sizes of the tests are close to their nominal values for the 

Gaussian data. The last two columns of table 1 also show the empirical size of the test when data are 

drawn from a t-distribution with 5 and 10 degrees of freedom respectively; these distributions are 

more likely to be representative of financial asset return series since they are fat-tailed. The 

simulation shows that the test is only modestly over-sized for the t with 5 degrees of freedom, and is 

appropriately sized for the slightly less fat-tailed distribution. Thus the test statistic is well behaved 

                                                           
6
Indeed, an application of an identical procedure to that used here for the whole data series used as one single 

window gave no significant cross-correlations or cross-bicorrelations for any of the currencies, even at the 10% 

level. 
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with respect to the asymptotic theory, even for rather small samples. One should also be able to obtain 

similar results for x and y being drawn from different distributions (e.g. one set of Gaussian draws and 

one set of uniform), so long as the two were independent processes with finite first six moments . 

 

4. Results 

The p-values for the cross-correlations that are significant at the 1% level are shown in table 2 

together with the dates of the windows in which this occurred. 

[table 2 here] 

These cross-correlation statistics are calculated on the residuals of an AR(3) fit to each series to filter 

out any linear autoregressive dependence
7
. Many significant test statistics are caused by 

contemporaneous cross-correlations, but there are also many that are not contemporaneous. The 

former is hardly surprising, and could be interpreted as arising from Sterling-related news which 

affected two bilateral exchange rates against sterling in a similar fashion. The lead / lag cross-

correlations are, however, of considerably greater interest, and indicate that for some currencies, there 

may have been a degree of predictability at certain times over the past twenty years. For example, 

there was a correlation of 0.66 between the Austrian schilling / pound lagged two periods, and the and 

the German mark / pound, indicating that if the German mark rises one day during that period, we 

would have expected the Austrian Schilling to rise two trading days later. Many such relationships 

exist between the currencies, although there are many more cross-correlations between the intra-

European currency pairs than between pairs containing the Japanese Yen or U.S. Dollar.  

 

                                                           
7
 The test is asymptotically invariant to linear filtering, and so may be applied to the residuals of a linear model, 

or to the raw data. It is important that linear dependence in the data is removed, for its presence could lead to 

spurious rejections of the null hypothesis. In theory, it would also be possible to apply the tests to the residuals 

from a nonlinear model - for example, the MA(1)-GARCH(1,1) model is often used to summarise the first two 

moments of financial returns. However, such a step is unnecessary with the correlation and bicorrelation tests 

since the presence or otherwise of ARCH-effects will not cause a rejection of the null hypotheses. This arises 



 8 

The number and percentage of significant cross-bicorrelation windows for each pair of exchange rates 

are given in column 2 of table 3. 

[table 3 here] 

The results for cross-bicorrelations outlined in the ensuing analysis are estimated on the residuals of a 

bi-variate vector autoregression of order 3 in each equation (a BVAR(3,3)). The proportion of 

significant cross-bicorrelation windows is much larger than the nominal 1% threshold used, indicating 

that significant nonlinear lead/lag relationships existed between currencies. Correlations between the 

values of the xxy and yyx statistics are given in column 3 of table 3. On the whole, they show a very 

high degree of correlation, indicating that the nonlinear relationships may be bi-directional. The 

correlation between the values of the cross-correlation (xy) and the cross bicorrelation (xxy) statistics 

are much lower, however, indicating that linear and nonlinear relationships between the series need 

not occur at the same time.  A more detailed analysis of the significant cross-bicorrelation is given in 

table 4. 

 

[table 4 here] 

Only bicorrelations with xxy or yyx values that are greater than 0.5 in absolute value are shown in 

table 4 due to space constraints, so that we concentrate on only the very largest bicorrelations. It is 

evident that there are many more significant cross-bicorrelations than cross-correlations, although the 

former are much more difficult to interpret. The majority of the significant cross-bicorrelations occur 

for the smaller-volume European exchange rates, particularly the Austrian Schilling / Pound and the 

Italian Lira / Pound. The p-values associated with the test statistics are typically much smaller than 

would be generated by a fat-tailed distribution if the data were iid (such as those given in the Monte 

Carlo study outlined above). It is also evident that there are more significant cross-bicorrelations 

during the earlier part of the series. The significant windows appear to occur in clusters; the most 

                                                                                                                                                                                     

from the fact that the tests are effectively tests for cross-relationships in the conditional mean rather than in the 

conditional variance. 
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recent prolonged period of dependence was during late 1992, around the time of Sterling’s departure 

from the European Exchange Rate Mechanism (ERM). 

 

A recent paper by Karolyi and Stulz (1996), has shown that cross-correlations between the shares of 

U.S. and Japanese companies trading in the U.S. are not significantly affected by macroeconomic 

announcements, or interest rate shocks. They show that co-movements between the series are high 

when the individual markets are volatile, or when “the markets move a lot” (p984). The cross-

correlation framework proposed here provides a natural testing ground for this conjecture. If the 

markets do indeed move closely together, this will imply that the cross-correlation and cross-

bicorrelation statistics (the latter being calculated after pre-whitening using a VAR), should have 

small values when the individual variances of the series are high. In other words, we would expect 

Corr(xy,VarX), Corr(xy,VarY), Corr(xxy,VarX), Corr(xxy,VarY), Corr(yyx,VarX), Corr(yyx,VarY) to 

be negative and fairly large. The results of table 5 show, however, that this hypothesis is not borne 

out, with no strong relationship (either positive or negative) between the test statistics and the 

variances, except in the case of the  Danish Krone / U.S. Dollar, where the simple cross-correlation 

statistics are negatively correlated with the individual variances. These results contrast with those of 

Karolyi and Stulz (1996), where comovements and variances did tend to be positively related. 

However, Karolyi and Stulz considered only linear cross-correlations, and they examined stock 

returns rather than exchange rates.  

[insert table 5 here] 

Our findings have important implications for the ability of investors to internationally diversify 

portfolios, since strong contemporaneous co-movements between series coupled with high individual 

variances imply that fewer apparently country-specific risks are internationally diversifiable, so that 

the riskiness of the portfolio overall increases. This issue is becoming increasingly important 

following increases in capital mobility and the openness of trade. Also, countries which are part of the 
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European Exchange Rate Mechanism (ERM) co-ordinating fiscal and monetary policies more closely 

in order to meet the “convergence criteria” for forming a single currency mans that the correlations 

between currencies within Europe are likely to become stronger over the next few years.  

 

5. Conclusions  

In this paper, we have examined a new approach to testing for nonlinear interactions between series, 

and we have illustrated the method on a set of exchange rates. The method provides a complement to 

Granger causality analysis, and is general enough to detect many types of nonlinear dependence 

between series in their conditional means. We find a much larger number of significant cross-

correlations and cross-bicorrelations than one would expect if the data were generated by independent 

white noise processes. Moreover, this type of structure cannot be generated by one of the GARCH 

family of models, so long as the GARCH model is a Martingale difference sequence. A Martingale 

difference has zero bicorrelations except for E[x(t)x(t+r)y(t+r)], which is not included in the sum for 

the bicorrelation statistics. Therefore GARCH models should give rise to third order statistics that are 

not significantly different from zero. 

 

The episodic nature of the observed linear and nonlinear co-dependence should be noted. We find 

that, in common with Ramsey and Zhang’s (1997) analysis of the univariate case, multivariate activity 

in financial markets are relatively short-lived and surrounded by longer periods of apparent 

randomness. It is, perhaps, also not surprising that the cross-correlations and cross-bicorrelations all 

feature a small-volume European exchange rate on at least one side, and that there is little dependence 

between, for example, the Japanese Yen and the U.S. Dollar. The currencies which are less frequently 

traded and which are likely to be less closely scrutinised by dealers, are also likely to be slower to 

respond to new information. So, for example, the return on one of these currencies today may still be 

reflecting information that was fully incorporated into the “bigger” currencies yesterday. Thus the 
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return of the “smaller” exchange rate today will be correlated with the return of the larger exchange 

rate yesterday. This will manifest itself as a non-zero cross-correlation or cross-bicorrelation, for the 

relationship between the two need not necessarily be linear. This argument was first suggested by 

Fisher (1966), to explain serial correlation in stock market indices and portfolios containing the stocks 

of small firms (see Perry, 1985 or Chelley-Steeley and Steeley, 1995, for more recent applications of 

this logic). This argument has been played down in much of the recent literature, which argues that 

the effects of this phenomenon will be small for data sampled at daily or lower frequencies. 

Boudoukh et al. (1994), however, argue that this nonsynchronous trading effect has been understated 

in the literature, and that most of the apparent predictability observed by, for example, Cohen et al. 

(1986), can be explained by this effect.  

 

The dependencies observed in this paper must, by definition, be present for more than a few days to 

be detected. Hence we conjecture that the observed level of cross-correlation and cross-bicorrelation 

between currencies cannot be entirely attributed to nonsynchronous trading, and their existence must 

be considered evidence inconsistent with the weak form of the efficient markets hypothesis. Although 

further research is required to determine whether profitable trading strategies could be developed 

from this analysis, and building an appropriate multivariate nonlinear model of the switching type is 

not a simple task, our results are encouraging, and suggest that further investigation is worth while. 

The cross-bicorrelation test is, however, suggestive of an appropriate functional form for a nonlinear 

model since the cross-bicorrelation is essentially a test of E[x(t)x(t+r)y(t+s)]. If we restrict ourselves 

to consider the case where r and s are negative, then one might be able to predict x(t) on the basis of 

the lags of x(t+r)y(t+s); a brief description of one method of implementing such models is given in 

Brooks and Hinich (1998).  
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Table 1: Size of the Cross-Correlation and Cross-Bicorrelation Test Statistics for Small Samples 

Test 

Under 

Study 

Nominal  

Size of Test 

Actual Size of 

Test for 

Gaussian Data 

Actual Size of 

Test for 

Uniform Data 

Actual Size of test 

for Student’s t with 5 

Degrees of Freedom 

Actual Size of test for 

Student’s t with 10 

Degrees of Freedom 

 5% 3.8% 2.3% 4.9% 4.5% 

xxy 1% 1.4% 0.4% 2.2% 1.4% 

 0.1% 0.4% 0.1% 0.8% 0.3% 

 5% 4.1% 2.7% 5.4% 4.4% 

yyx 1% 1.6% 0.6% 2.2% 1.4% 

 0.1% 0.6% 0.1% 0.9% 0.4% 

 5% 3.3% 3.7% 4.1% 3.9% 

xy 1% 0.4% 0.8% 0.6% 0.7% 

 0.1% 0.1% 0.1% 0.2% 0.2% 
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Table 2: Dates and p-Values for Test Statistics for Cross-Correlations, and Values of Most Significant 

Cross-Correlations 

Series 

(x / y) 

Dates (start - end) p-value for 

xy statistic 

Most significant 

 correlation (at lag
a
) 

Austrian Schilling / Danish Krone No significant cross-correlations 

Austrian Schilling / French Franc 10/9/74-28/10/74 

20/6/85-7/8/85 

27/3/92-19/5/92 

0.0043 

0.0098 

0.0082 

0.49(-1) 

0.52(-1) 

0.53(1) 

Austrian Schilling / German Mark 2/8/77-20/9/77 

15/1/81-4/3/81 

20/6/84-7/8/85 

0.0000 

0.0038 

0.0070 

0.66(-2) 

0.48(2) 

0.52(1) 

Austrian Schilling / Italian Lira 2/8/77-20/9/77 0.0003 0.39(-2) 

Austrian Schilling / Japanese Yen 15/12/78-6/2/79 0.0047 0.46(-2) 

Austrian Schilling / U.S. Dollar 17/3/80-7/5/80 0.0078 0.35(2) 

Danish Krone / French Franc 30/4/85-19/6/85 

13/3/89-3/5/89 

0.0070 

0.0032 

0.33(1) 

0.43(2) 

Danish Krone / German Mark 28/8/75-15/10/75 

15/1/81-4/3/81 

30/4/85-19/6/85 

13/3/89-3/5/89 

0.0054 

0.0093 

0.0065 

0.0002 

0.49(1) 

0.49(-2) 

0.31(-1) 

0.42(2) 

Danish Krone / Italian Lira 13/9/82-29/10/82 

13/3/89-3/5/89 

0.0018 

0.0011 

0.62(2) 

0.44(2) 

Danish Krone / Japanese Yen 15/12/78-6/2/79 0.0011 0.48(-2) 

Danish Krone / U.S. Dollar No significant cross-correlations 

French Franc / German Mark 10/9/74-28/10/74 

15/1/81-4/3/81 

26/10/87-11/12/87 

13/3/89-3/5/89 

0.0009 

0.0009 

0.0049 

0.0065 

-0.56(2) 

0.58(2) 

-0.55(1) 

0.34(-2) 

French Franc / Italian Lira 27/10/78-14/12/78 0.0037 0.39(2) 

French Franc / Japanese Yen 20/8/84-8/10/84 0.0075 0.29(2) 

French Franc / U.S. Dollar 20/8/84-8/10/84 0.0031 0.31(2) 

German Mark /Italian Lira 10/9/74/28/10/74 

2/8/77-20/9/77 

15/1/81-4/3/81 

13/3/89-3/5/89 

0.0020 

0.0031 

0.0091 

0.0043 

0.44(-1) 

0.46(2) 

0.50(-2) 

0.33(2) 

German Mark / Japanese Yen No significant cross-correlations 

German Mark / U.S. Dollar No significant cross-correlations 

Italian Lira / Japanese Yen 15/12/78-6/2/79 0.0054 0.45(0) 

Italian Lira / U.S. Dollar 20/8/84-8/10/84 0.0036 -0.63(1) 

Japanese Yen / U.S. Dollar 28/8/92-15/10/92 0.0076 0.49(1) 
a
 x leads for positive lags, y leads for negative lags 
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Table 3: Number and Percentage of Significant (at the 1% level) Cross-Bicorrelation Windows and 

Correlations Between xxy and yyx, and between xxy and the simple cross-correlation for all windows 

Series 

(x / y) 

No. (%) sig. cross-

bicorrelation 

windows 

Corr(xxy,yyx) Corr(xxy,xy) 

Austrian Schilling / Danish Krone 40 (27.0%) 0.646 0.205 

Austrian Schilling / French Franc 40(27.0%) 0.680 0.285 

Austrian Schilling / German Mark 44(29.7%) 0.643 0.238 

Austrian Schilling / Italian Lira 37(25.0%) 0.490 0.160 

Austrian Schilling / Japanese Yen 36(24.3%) 0.438 0.132 

Austrian Schilling / U.S. Dollar 29(19.6%) 0.452 0.320 

Danish Krone / French Franc 42(28.4%) 0.695 0.275 

Danish Krone / German Mark 44(29.7%) 0.695 0.271 

Danish Krone / Italian Lira 46(31.1%) 0.620 0.118 

Danish Krone / Japanese Yen 29(19.6%) 0.446 0.202 

Danish Krone / U.S. Dollar 28(18.9%) 0.365 0.281 

French Franc / German Mark 43(29.1%) 0.728 0.322 

French Franc / Italian Lira 47(31.8%) 0.652 0.069 

French Franc / Japanese Yen 31(20.9%) 0.406 0.334 

French Franc / U.S. Dollar 29(19.6%) 0.395 0.201 

German Mark /Italian Lira 42(28.4%) 0.478 0.207 

German Mark / Japanese Yen 32(21.6%) 0.415 0.256 

German Mark / U.S. Dollar 26(17.6%) 0.394 0.197 

Italian Lira / Japanese Yen 34(23.0%) 0.413 0.187 

Italian Lira / U.S. Dollar 36(24.3%) 0.413 0.072 

Japanese Yen / U.S. Dollar 30(20.3%) 0.521 0.239 
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Table 4: Dates and p-values for Cross-Bicorrelation Tests Statistics together with Values of Most Significant 

Bicorrelations 

Series 

(x / y) 

Dates (start - end) p-value 

for xxy 

statistic 

p-value 

for yyx 

statistic 

Most significant 

xxy bicorrelations 

(at lags) 

Most significant 

yyx bicorrelations 

(at lags) 

Austrian Schilling / Danish Krone No significant cross-bicorrelations 

Austrian Schilling / French Franc 1/4/75-19/5/75 

27/1/76-15/3/76 

25/6/76-12/8/76 

26/2/86-17/4/86 

0.0121 

0.0003 

0.0200 

0.0301 

0.0003 

0.0302 

0.0029 

0.0671 

0.41 (2,0) 

0.56 (2,1) 

0.61 (2,2) 

0.54 (1,1) 

0.78 (2,1) 

0.47 (1,1) 

0.48 (1,2) 

0.26 (1,2) 

Austrian Schilling / German Mark 29/10/74-16/12/74 

24/9/81-11/11/81 

9/10/84-26/11/84 

8/8/85-27/9/85 

15/11/85-7/1/86 

0.0499 

0.0076 

0.7268 

0.0001 

0.3863 

0.0005 

0.0001 

0.0019 

0.4955 

0.0001 

0.51 (2,1) 

0.35 (1,2) 

- 

0.75 (1,2) 

- 

0.28 (1,1) 

0.51 (1,0) 

0.53 (1,2) 

- 

0.58 (2,1) 

Austrian Schilling / Italian Lira 23/4/90-12/6/90 

1/1/91-18/2/91 

17/8/93-10/5/93 

0.0047 

0.7781 

0.4963 

0.7926 

0.0033 

0.0001 

0.62 (2,2) 

- 

- 

- 

0.55 (1,2) 

0.80 (1,2) 

Austrian Schilling / Japanese Yen No significant cross-bicorrelations 

Austrian Schilling / U.S. Dollar 10/9/74-28/10/74 

15/4/82-6/3/82 

0.0239 

0.6949 

0.0005 

0.0098 

0.64 (2,1) 

- 

0.69 (1,0) 

0.59 (1,1) 

Danish Krone / French Franc 28/8/75-16/10/75 

27/1/76-15/3/76 

0.0000 

0.0000 

0.0303 

0.0066 

0.44 (2,2) 

0.58 (2,1) 

0.56 (2,2) 

0.59 (1,1) 

Danish Krone / German Mark 21/9/77-8/4/77 

13/9/82-29/10/82 

1/11/82-17/12/82 

10/6/86-28/7/86 

0.0001 

0.0045 

0.0000 

0.0068 

0.9981 

0.9714 

0.2576 

0.4884 

0.62 (1,1) 

0.64 (2,2) 

0.87 (2,0) 

0.62 (1,0) 

- 

- 

- 

- 

Danish Krone / Italian Lira 6/5/76-24/6/76 

13/8/76-1/10/76 

20/6/85-7/8/85 

28/8/92-15/10/92 

0.6116 

0.0693 

0.0001 

0.0008 

0.0000 

0.0000 

0.7395 

0.9582 

- 

0.48 (1,2) 

0.69 (1,1) 

0.56 (2,1) 

0.75 (1,1) 

0.63 (1,0) 

- 

- 

Danish Krone / Japanese Yen 24/5/83-12/7/83 0.8143 0.0032 - 0.65 (1,2) 

Danish Krone / U.S. Dollar 21/9/77-11/8/77 

15/4/82-3/6/82 

8/3/85-29/4/85 

0.0000 

0.8218 

0.0003 

0.4406 

0.0044 

0.1219 

0.54 (1,2) 

- 

0.60 (2,1) 

- 

0.52 (1,1) 

- 

French Franc / German Mark 27/1/76-15/3/76 

2/8/77-20/9/77 

15/1/81-4/3/81 

15/11/85-7/1/86 

26/2/86-17/4/86 

0.0230 

0.0000 

0.0006 

0.5314 

0.0018 

0.0000 

0.0021 

0.8692 

0.0008 

0.8432 

0.52 (1,1) 

0.61 (1,2) 

0.77 (2,2) 

- 

0.51 (1,1) 

0.35 (2,1) 

0.56 (1,2) 

- 

0.56 (1,2) 

- 

French Franc / Italian Lira 6/5/76-24/6/76 

13/8/76-1/10/76 

4/6/82-22/7/82 

1/11/82-17/12/82 

20/12/82-9/2/83 

13/3/89-3/5/89 

28/8/92-15/10/92 

17/8/93-5/10/93 

7/3/94-26/4/94 

0.0038 

0.3210 

0.0092 

0.0049 

0.0000 

0.0054 

0.0006 

0.5460 

0.0202 

0.0061 

0.0000 

0.4661 

0.5174 

0.8099 

0.0971 

0.9862 

0.0064 

0.0084 

0.59 (2,1) 

- 

0.77 (1,1) 

0.56 (1,1) 

0.59 (2,2) 

0.53 (1,1) 

0.70 (2,1) 

- 

0.52 (2,1) 

0.53 (1,1) 

0.59 (1,0) 

- 

- 

- 

0.32 (1,1) 

- 

0.55 (1,1) 

0.45 (2,1) 

French Franc / Japanese Yen 13/8/76-1/10/76 0.4363 0.0001 - 0.60 (1,2) 

French Franc / U.S. Dollar 27/1/76-15/3/76 

22/4/77-13/6/77 

10/2/83-30/3/83 

0.0479 

0.0000 

0.0421 

0.0000 

0.88660

.0008 

0.54 (1,1) 

0.53 (2,2) 

0.32 (1,1) 

0.50 (2,1) 

- 

0.68 (1,1) 

German Mark /Italian Lira 10/9/74-28/10/74 

6/5/76-24/6/76 

13/8/76-1/10/76 

24/9/81-11/11/81 

20/12/82-9/2/83 

0.0068 

0.3530 

0.0864 

0.0142 

0.0000 

0.9694 

0.0057 

0.0006 

0.0013 

0.5858 

0.71 (1,1) 

- 

0.37 (1,2) 

0.54 (1,2) 

0.54 (2,2) 

- 

0.59 (1,1) 

0.58 (1,0) 

0.30 (1,0) 

- 
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Series 

(x / y) 

Dates (start - end) p-value 

for xxy 

statistic 

p-value 

for yyx 

statistic 

Most significant 

xxy bicorrelations 

(at lags) 

Most significant 

yyx bicorrelations 

(at lags) 

26/12/86-13/2/87 

28/8/92-15/10/92 

19/8/93-10/5/93 

0.00660

.0002 

0.7725 

0.6078 

0.9992 

0.0024 

0.60 (1,1) 

0.73 (2,1) 

- 

- 

- 

0.57 (1,1) 

German Mark / Japanese Yen No significant cross-bicorrelations 

German Mark / U.S. Dollar 10/9/74-28/10/74 0.0023 0.0377 0.56 (1,1) 0.44 (1,0) 

Italian Lira / Japanese Yen 27/1/76-15/3/76 

13/8/76-1/10/76 

8/9/78-26/10/78 

9/10/84-26/11/84 

18/1/85-7/3/85 

0.8231 

0.0000 

0.0072 

0.0000 

0.0001 

0.0051 

0.0000 

0.7623 

0.2005 

0.3889 

- 

0.71 (1,0) 

0.69 (1,1) 

0.65 (1,1) 

0.57 (2,0) 

0.53 (1,2) 

0.55 (1,2) 

- 

- 

- 

Italian Lira / U.S. Dollar 4/12/75-26/1/76 

6/5/76-24/6/76 

13/8/76-1/10/76 

22/11/76-11/1/77 

20/2/78-10/4/78 

18/1/85-7/3/85 

8/8/85-26/9/85 

0.0000 

0.0041 

0.9434 

0.0000 

0.0006 

0.0057 

0.9151 

0.5887 

0.0249 

0.0021 

0.9870 

0.8740 

0.0299 

0.0075 

0.72 (2,0) 

0.52 (1,0) 

- 

0.66 (1,1) 

0.58 (2,2) 

0.55 (2,0) 

- 

- 

0.44 (2,1) 

0.69 (1,2) 

- 

- 

- 

0.66 (1,2) 

Japanese Yen / U.S. Dollar No significant cross-bicorrelations 
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Table 5: Correlation of the Correlation and Bicorrelation Test Statistics with the Individual 

Variances of the Series. 

Series 

(x / y) 

Corr 

(xy,VarX) 

Corr 

(xy,VarY) 

Corr 

(xxy,VarX) 

Corr 

(xxy,VarY) 

Corr 

(yyx,VarX) 

Corr 

(yyx,VarY) 

Austrian Schilling / Danish Krone 0.06 0.04 0.01 -0.03 0.05 -0.09 

Austrian Schilling / French Franc 0.05 0.04 0.05 0.04 0.12 0.16 

Austrian Schilling / German Mark 0.01 -0.21 0.14 0.14 0.07 0.12 

Austrian Schilling / Italian Lira -0.08 -0.12 0.18 0.22 0.16 0.16 

Austrian Schilling / Japanese Yen -0.01 0.00 0.10 -0.09 -0.01 -0.02 

Austrian Schilling / U.S. Dollar 0.08 -0.03 0.14 0.05 0.01 -0.03 

Danish Krone / French Franc 0.00 0.02 -0.14 0.02 0.00 0.11 

Danish Krone / German Mark -0.03 -0.01 0.05 0.04 -0.05 0.03 

Danish Krone / Italian Lira -0.08 -0.04 0.15 0.28 0.11 0.18 

Danish Krone / Japanese Yen -0.09 -0.06 0.13 0.03 0.03 -0.03 

Danish Krone / U.S. Dollar -0.37 -0.37 0.03 0.19 -0.01 -0.01 

French Franc / German Mark -0.05 -0.05 -0.03 0.11 0.00 0.12 

French Franc / Italian Lira -0.05 -0.01 0.13 0.01 0.20 0.15 

French Franc / Japanese Yen -0.08 0.00 0.02 -0.02 0.02 0.04 

French Franc / U.S. Dollar -0.04 -0.05 0.03 -0.16 0.11 0.00 

German Mark /Italian Lira -0.05 0.00 0.23 0.21 0.16 0.19 

German Mark / Japanese Yen 0.01 0.10 0.16 -0.05 0.06 0.04 

German Mark / U.S. Dollar -0.02 0.03 0.05 -0.03 0.06 0.11 

Italian Lira / Japanese Yen -0.08 -0.09 0.10 -0.02 0.02 0.08 

Italian Lira / U.S. Dollar -0.03 -0.14 0.11 -0.08 -0.06 -0.01 

Japanese Yen / U.S. Dollar 0.18 0.14 0.04 -0.04 0.01 0.07 
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Proof of theorem 1 in the paper: The null hypothesis is that {x(tk)} and {y(tk)} are mutually 

independent i.i.d. zero mean series. Set x = y = 1. Redefine the three time points in the triple 

product x(tk) x(tk+r) y(tk+s) for a given (r,s) as follows: 

t t t t r t t s k lk k k k k k1 2 3
1     , , ( , ). Then a) E[x(t x(t y(tk k k1 2 3

) ) )]  0, and b) 

E[x(t x(t y(tk k k1 2 3
) ) )]2 1 . 

 

The n
th
 order cumulant of a product of variates can be related to the joint cumulants of the variates, 

but the relationship is more complicated than the one between the moments and cumulants stated 

above. There is no simple approach to deal with the combinatorial relationships between the n
th
 order 

joint cumulants of the triple product P(t t t x(t x(t y(tk k k k k k1 2 3 1 2 3
) ) ) )  for various values of tk, r, 

and s, and the cumulants of u(t) even though the x(tk)’s and y(tk)’s are independent. The relationships 

rest on a definition of indecomposable partitions of two dimensional tables of subscripts of the t’s 

(see Leonov and Shiryaev, 1959, and Sec. 2.3 of Brillinger, 1975). We display the table of the t’s next 

to the table of their subscripts which Brillinger uses in his exposition. 

 

Consider the following l  3 tables of t t t t r t t s k lk k k k k k k k1 2 3
1     , , ( , ): 

 

Times

t11 t t

t t tl l l

12 13

1 2 3

  
    

Using Delay Notation

t1 t r t s

t t r t sl l l l l

1 1 1 1 

 

  
   

Let     1 M  denote a partition of the kji in this table into M sets where j=1,...,l and i=1,2,3. 

There are many partitions of the l X 3 times from the single set of all the elements to l  3 sets of one 

element.  

 

The m
th
 set in the partition is denoted 

 m j i j ik k
m m m m

 ( ,..., )
( ) ( ) ( ) ( )1 1

 where ( )m is the number 

of elements in the set. The cumulant of [ ( ),..., ( )]
( ) ( ) ( ) ( )

x k x kj i j im m m m1 1  
 is 


 

[ ( ) ( )]
( ) ( ) ( ) ( )

x k x kj i j im m m m1 1
   . The symbol  [ ( )]m  will be used for this joint cumulant. 

 

If no two ji are equal for a set ( )m , then ( )m  is called a chain. A partition is called 

indecomposable if there is a set with at least one chain going through each row of the table (all the 
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rows are chained together). A partition is decomposable if one set or a union of some set in   equals 

a subset of the rows of the table. Consider, for example, the following 2 X 3 table: 

 
k11 k k

k k k

12 13

21 22 23
 

The decomposable partitions are: (k11, k12, k13 )(k21, k22, k23 ) , which is the union of the two rows and 

all its sub-partitions. Three indecomposable partitions of this 2  3 table are (k11, k21) (k12, k22) (k13, 

k23), (k11, k22) (k12, k21) (k13, k23), and (k11, k21, k12, k22) (k13, k23). Each pair of these partitions are 

chains. 

 

Let   r Mr
   1 denote the r

th
 indecomposable partition of table (A3) into Mr sets. The joint 

cumulant of (x(t x(t y(t (x(t x(t y(tk k k k k k11 12 13 1 2 3
) ) ),..., ) ) ))

  
 is the sum over r of the products 

of the Mr cumulants  [ ( )]m of the m  in each indecomposable r . 

 

It is easy to check that [x(t x(t y(t x(t x(t y(tk k k k k k1 1 1 l l l
) ) ),..., ) ) )]    r s r s 0  unless 

t t tk kl1
     . It then follows by an enumeration of each of the cumulants of the sets in the 

indecomposable partitions      1 p that most of the products of cumulants are zero for a 

given partition. A summary of the second order joint cumulants of the triples is as follows: 

[x(t x(t y(t x(t x(t y(t1 1 1 2 2 2) ) ) ) ) )]    r s r s1 1 2 2 0 unless t1=t2=t, r1=r2=r, and s1=s2=s. If 

so, then [ ( , , )]p t t r t s2 1   . 

 

The covariance of Cxxy(r1,s1) and Cxxy(r2,s2) is [(N-s1)(N-s2)]
-1/2

 times a double sum of covariances of 

the P’s. There are N-s non-zero terms (all equal to one) in the double sum of covariances. Then from 

the theorem. Var[Cxxy(r,s)] = (N-s)/(N-s2) = 1 and Cov[Cxxy(r1,s2), Cxxy(r2,s2)] = 0. 

 

To obtain the third order joint cumulants, consider the following 3 X 3 table of 0 < rk < sk: 

 

t11 t t

t t t

t t t

12 13

21 22 23

31 32 33

    

t1 t r t s

t t r t s

t t r t s

1 1 1 1

2 2 2 2 2

3 3 3 3 3

 

 

 

 

Using the delay notation for indices, first consider the following indecomposable partition: 

1 1 2 3 1 1 2 2 3 3 1 1 2 2 3 3        ( , , ) ( , , ) ( , , )t t t t r t r t r t s t s t s . If 1) t1= t2= t3, 2)  r1= r2= r3, 
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3)  s1= s2= s3, then the third order cumulants of the three columns equal  and thus the product of the 

cumulants is  3
. If any one of these equalities in 1), 2), or 3) do not hold then the product is zero. 

 

Now consider the indecomposable partition 

2 1 2 3 1 1 2 1 3 3 1 1 2 2 3 3        ( , , ) ( , , , ) ( , )t t t t r t r t r t s t s t s . The only non-zero product 

of cumulants holds for t1= t2= t3=t, r1= r2= r3=r,  and s1= s2= s3=s, which yields 

 [ ( , , )]p t t r t s3

1 1

3   . 

 

Suppose that s3  r1. Consider the indecomposable partition ( a sub-partition of 2 ) 

3 1 2 3 1 1 2 1 3 3 1 1 2 2 3 3         ( , , ) ( , ) ( , ) ( , )t t t t r t r t r t s t s t s . Then if t1= t2= t3=t and 

r1= r2, s2= s3, r3=s1, the product of the cumulants is near zero since x(t+s1) and y(t+s1) are 

independent. The pattern should be clear. All the other indecomposable partitions have at least one 

zero cumulant. From the theorem, the third order joint cumulant of the Cxxy are zero. 

 

We also require an understanding of the higher order joint cumulants to prove the asymptotic 

properties of our test statistic. The general form can be deduced from the fourth order case by 

enumerating the sets in the indecomposable partitions of the 4  3 table: 

 

t11 t t

t t t

t t t

t t t

12 13

21 22 23

31 32 33

41 42 43

    

t1 t r t s

t t r t s

t t r t s

t t r t s

1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

 

 

 

 

 

The major term in the error of the approximation is a function of the non-zero products of the 

following two types of indecomposable partitions of this table: 

4 1 3 2 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4             ( , ) ( , ) ( , ) ( , ) ( , ) ( , )t t t t t r t r t r t s t s t s t s t s

5 1 2 3 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4            ( , , , ) ( , ) ( , ) ( , ) ( , )t t t t t r t r t r t s t s t s t s t s If 4) 

t4= t3= t2=t1=t, 5) r1= r3 r2=r4,  and 6) s1= s3s2=s4 then the cumulants of all the pairs in 4  are one 

and the product then one, and the cumulant of the first column in v5 is , which is the product of the 

cumulants of v5. The cumulant products of the other indecomposable partitions of the table are all 

zero given constraints 4), 5), and 6). Thus  [ ( , , ) ( , , )] ( )p t t r t s p t t r t s2 2
2 2 1      . 

 

For each (r1,s1) and (r2,s2), these non-zero cumulant products equalities hold for at most N t’s. Thus 

the fourth order joint cumulant [ ( , ) ( , )]c r s c r sxxy xxy
2

1 2
2

2 2  is 
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[( )( )( )( )] ( )( ) ( )( )/N s N s N s N s N N       
1 2 3 4

1 2 11 1   . There are of order (L
4
) 

such pairs of indices where r1r2 and s1s2 which have these joint cumulants. If r1=r2 or s1=s2, then 

there are a lot more fourth order non-zero cumulants. An enumeration of indecomposable partitions 

with non-zero cumulant products yields the following two results: 

(A.1)    [ ( , , )]p t t r t s4 3 29 27 24            

and 

   [ ( , , ) ( , , )]p t t r t s p t t r t s2
1

2
2

2 6 8           

The same pattern holds of partitions of the general l X 3 table of subscripts into pairs with identical 

indices. The major non-zero cumulants are 

[ ( , , ) ( , , )] ( )/ /p t t r t s p t t r t s Nl l
2

1 1
2

2 2
1          when l is even, and 

[ ( , , ) ( , , ) ( , )] ( )( ) / ( ) /p t t r t s p t t r t s p r s Nl l l l
2

1 1
2

1 2 1 2
1        
  for a restricted set of 

(rk - sk) when l is odd. Thus the l
th
 joint cumulant of the Cxxy’s is of order ( )/N l1 2

. 

 

These results will now be applied to prove that the test statistic HN is asymptotically normal. It has 

already been shown that Var[Cxxy(rm,sm)] = E[Cxxy
2
(rm,sm)] = 1 and thus E(HN) =0 under the null 

hypothesis. From the relationship between the covariances and the fourth order cumulants, 

Var C r s C r s c r s c r sxxy xxy xxy xxy[ ( , ) ( , )] [ ( , ) ( , )] ,2

1 1

2

2 2

2

1 1

2

2 2 2   

Var C r s C r s c r s c r s c r s c r sxxy xxy xxy xxy xxy xxy[ ( , ) ( , )] [ ( , ) ( , )] [ ( , ) ( , )].
2

1 1

2

2 2

2

1 1

2

2 2

2

1 1 2 22   Suppose 

that r4=r3=r2=r1=r,  and s4=s3=s2=s1=s. Then from (A.1),   [ ( , )] ( ( ) / )c r s Nxxy
4    where 

    ( )    3 29 27 24. Thus Var C r s Nxxy[ ( , )] ( ( ) / )2 2    . 

 

If r1=r3r2=r4 and s1=s3s2=s4 (constraints 5) and 6)), then 

 [ ( , ) ( , )] (( ) / )c r s c r s Nxxy xxy
2

1 1
2

2 2 1  . If r1=r2, then the joint cumulant is ( ( ) / )  N , 

where    ( )   2 6 8. Thus Cov C r s C r s Nxxy xxy[ ( , ) ( , )] ( )2
1 1

2
2 2

1  . Since the number 

of C r sxxy m m
2 1( , )   terms in the sum is L

2
/2 (L=N

c
), Var(HN)=1+( L

2
/N)  1 as N   since 0 < 

c < 1/2. There are approximately L
3
 such (r1,s1), (r2,s2), (r3,s3), and (r4,s4) in the double sum which 

satisfies constraints 5) and 6) and thus the error in the variance of HN due to these covariances is of 

the order L
-2

L
3
N

-1
=N 

c-1
. 
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To complete the proof, we will now demonstrate that the cumulants of HN of order l  3 go to zero as 

N  . The l
th
 cumulant of HN depends on the 2l order joint cumulant of the C r sxxy k k

2 ( , ) for k=1,l. 

From above, these cumulants are of order L
2
L

-l
N

1-l/2
 which goes to zero as N   for l  3. 

 


