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Abstract 

This paper explores a number of statistical models for predicting the daily stock return volatility of an 

aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests 

highlights evidence of bi-directional causality, although the relationship is stronger from volatility to 

volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, 

EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also 

augmented by the addition of a measure of lagged volume to form more general ex ante forecasting models. 

The results indicate that augmenting models of volatility with measures of lagged volume leads only to very 

modest improvements, if any, in forecasting performance. 
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Introduction 

Modelling and forecasting stock market volatility has been the subject of much recent empirical and 

theoretical investigation by academics and practitioners alike. There are a number of motivations for this line 

of inquiry. First, volatility, as measured by the standard deviation or variance of returns, is often used as a 

crude measure of the total risk of financial assets. Second, the volatility of stock market prices enters directly 

into the Black-Scholes formula for deriving the prices of traded options. Although in the past, historical 

measures of volatility have been used as estimates of future volatility, there is a growing body of evidence 

that suggests that the use of volatility predicted from more sophisticated time series models will lead to more 

accurate option valuations (see, for example, Akgiray, 1989; or Chu and Freund, 1996). Finally, using 

combinations of options, it is possible to trade volatility as if it were any other commodity, so that accurate 

predictions of future volatility give the forecaster the potential to make a more direct profit. 

 

The vast majority of recent papers which attempt to forecast volatility out-of-sample have been entirely 

univariate in nature, using past realisations of volatility to predict its future path. Akgiray (1989), for 

example, finds the GARCH model superior to ARCH, exponentially weighted moving average, and historical 

mean models for forecasting monthly US stock index volatility. A similar result concerning the apparent 

superiority of GARCH is observed by West and Cho (1995) using one-step ahead forecasts of Dollar 

exchange rate volatility, although for longer horizons, the model behaves no better than their alternatives
i
. 

Pagan and Schwert (1990) compare GARCH, EGARCH, Markov switching regime and three non-parametric 

models for forecasting monthly US stock return volatilities. The EGARCH followed by the GARCH models 

perform moderately; the remaining models produce very poor predictions. Franses and van Dijk (1996) 

compare three members of the GARCH family (standard GARCH, QGARCH and the GJR model) for 

forecasting the weekly volatility of various European stock market indices. They find that the non-linear 

GARCH models were unable to beat the standard GARCH model. Finally, Brailsford and Faff (1996) find 

GJR and GARCH models slightly superior to various simpler models
ii
 for predicting Australian monthly 

stock index volatility. The conclusion arising from this growing body of research is that forecasting volatility 

is a “notoriously difficult task” (Brailsfrod and Faff, 1996, p419), although it appears that conditional 

heteroscedasticity models are among the best that are currently available. In particular, more complex non-

linear and non-parametric models are inferior in prediction to simpler models, a result echoed in an earlier 

paper by Dimson and Marsh (1990) in the context of relatively complex versus parsimonious linear models.  
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At the same time, a parallel but almost entirely separate literature has developed which seeks to consider the 

relationship between price and volume or between volatility and volume. Research by Hiemstra and Jones 

(1994) and Campbell, Grossman and Wang (1993) fall into the former category, although the latter 

relationship is the one of interest here. An early systematic survey of the relationship between stock market 

volume and volatility is undertaken by Karpoff (1987), who argues that it is likely there exists a positive 

contemporaneous correlation between the absolute price and volume measures; this conclusion is supported 

by evidence from a large number of previous studies using a variety of data sets of different frequencies and 

originating from different markets. None of these studies, however, appears to be concerned with whether 

one series leads or causes the other. 

 

There have also been a number of theoretical studies into the relationship between stock market volume and 

return volatility. Although current asset pricing models do not have a place for volume data (see Ross, 1987), 

and researchers are still uncertain as to the precise role of volume in the analysis of financial markets as a 

whole, volume data may contain information useful for modelling other financial quantities of more direct 

interest, such as volatility or the returns themselves. Among the theoretical models of volume and volatility, 

the mixture of distributions hypothesis (MDH) suggests that the two quantities should be positively 

correlated as a consequence of their joint dependence on a common underlying (latent) “mixing” or directing 

variable, the rate of information flow (see Epps and Epps, 1975; Harris, 1984). Epps (1975) model proposes 

a model where volume tends to be higher when stock prices are rising than falling, although there is no 

strong reason why the relationship should be contemporaneous rather than lead-lag, since volume may react 

more quickly to changes in the directing variable than volatility, or vice versa. Another class of models, 

associated primarily with Copeland (1976), and developed by Smirlock and Starks (1984) are known as 

“sequential information” models. These models posit that new information flowing into the market is 

disseminated to investors one at a time, which creates a series of intermediate equilibria prior to the creation 

of a complete equilibrium. This sequential information flow could imply bi-directional causality or a positive 

contemporaneous relationship between volume and volatility. These theoretical models have paved the way 

and provided motivation for for empirical research into this relationship. 
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A further empirical advancement was made by Lamoureux and Lastrapes (1990). A number of previous 

studies had shown that GARCH models were useful descriptions of stock return volatility, and that shocks to 

the conditional variance showed a high degree of persistence (Engle and Bollerslev, 1986). Lamoureux and 

Lastrapes show, however, that this persistence becomes much less pronounced if the variance equation is 

augmented by the addition of a contemporaneous term in volume. They argue that if volume is viewed as a 

proxy for the rate of information flow to the stock market, then once this is taken into account, lagged 

squared residuals add little extra information about stock return volatilities. However, a major weakness of 

this empirical methodology (which they acknowledge in a footnote) is the possibility of simultaneity  

between volume and volatility. If stock volume, which is used as an exogenous RHS variable in the variance 

equation of the GARCH model, is part of a larger system of equations where volume is itself partly 

determined by volatility, failure to appropriately model the system as such will cause a simultaneity bias in 

the coefficient estimates. One potential solution to this problem is to use lagged measures of volume, which 

will be pre-determined and therefore not subject to the simultaneity problem. A necessary condition for this 

“quick fix” to work is that lagged volume is an appropriate instrument for contemporaneous volume, and the 

results on this question are mixed. Lamoureux and Lastrapes (1990) find lagged volume to be a poor 

instrument, while Najand and Yung (1991) find it to be quite acceptable in an analysis of price variability in 

Chicago Board of Trade futures data. In the latter paper, however, the effect on the persistence of shocks to 

the conditional variance equation of including either contemporaneous or lagged volume is minimal in both 

cases. These empirical findings are given theoretical explanation by the modified MDH model of Andersen 

(1996), which demonstrates the kind of reduction in volatility persistence observed by Lamoureux and 

Lastrapes. 

 

A common factor running through all of the papers cited above is that they investigate the relationship 

between volume and volatility, but with the exception of Weigend and LeBaron (1994), none has attempted 

to use the information contained in one series to forecast the other. A natural and obvious extension to the 

existing literature is therefore to consider whether stock market volume has any predictive power for stock 

index volatility, and this is the subject of the present paper. To this end, section 3 describes a methodology 

for testing for both linear and non-linear Granger causality in time series data. To anticipate the findings of 

this part of the paper, displayed in section 4, the tests show some evidence of bi-directional feedback 
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between volatility and volume, although more evidence that changes in volume bring about changes in 

volatility.  

 

Armed with this evidence, section 5 describes a number of forecasting models which have recently been used 

for forecasting volatility, and considers their augmentation to allow for lagged values of market volume as 

predictors of future volatility. Section 6 describes the results of this forecasting exercise, while section 7 

concludes. 

 

2. The Data 

The data used in this study comprises 2431 daily observations on New York Stock Exchange (NYSE) 

aggregate volume together with daily observations on the Dow Jones composite, running from 17 November 

1978 to 30 June 1988. The data is taken from the data set used in Weigend and LeBaron (1994). Stock 

returns are calculated as the first difference of the logarithm of the level of the index, whilst the daily 

volatility measure used here is simply the square of the day’s return. This is a measure commonly used (e.g. 

Chan, Christie and Schultz, 1995; Day and Lewis, 1992; West and Cho, 1995), although others such as the 

difference between the highest and lowest daily prices are possible. The latter is a more efficient volatility 

estimator in terms of approximating the true (unknown) diffusion constant (Parkinson, 1980), particularly for 

small samples, although it is subject to more biases, for example due to the closure of the stock exchange 

over night (Garman and Klass, 1980). 

 

The measure of volume used here as a starting point is the proportion of shares traded each day (i.e. the total 

daily aggregate market turnover divided by the total number of shares outstanding). A fundamental problem 

with this measure is, however, that the series is non-stationary (see Gallant et al., 1992) . Stationarity is 

therefore induced by detrending the series by dividing by a 100-day moving average of turnover and then 

taking the natural logarithm. This is the measure of volume used by Weigend and LeBaron (1994) and 

Campbell et al. (1995), and is the measure used for analysis in this study. 

 

3A. Linear Granger Causality 

The linear Granger causality test is usually constructed in the context of a reduced-form bivariate vector 

autoregression (VAR). Let {Xt} and {Yt} be two stationary time series of length T,  
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X A L X B L Y

Y C L X D L Y
t T

t t t X t

t t t Y t

  

  


( ) ( )

( ) ( )
, ,...,

,

,




1 2      (1) 

where A(L), B(L), C(L), and D(L) are all polynomials in the lag operator with all roots outside the unit circle. 

The error terms, X,t  and Y,t  are separate i.i.d. processes with zero mean and constant variance. The test of 

whether Y strictly Granger causes X is simply a test of the joint restriction that all of the coefficients 

contained in the lag polynomial B(L) are zero. Similarly, a test of whether X strictly Granger causes Y is a 

test of the restriction that all of the coefficients contained in the lag polynomial C(L) are jointly zero. In each 

case, the null hypothesis of no Granger causality is rejected if the exclusion restriction is rejected. Bi-

directional feedback, or causality running in both directions, exists if the elements in both the lag 

polynomials (B(L) and C(L)) are jointly significantly different from zero. 

 

3B. Non-Linear Granger Causality 

Baek and Brock (1992) recently proposed a test for multivariate non-linearity, which can be considered an 

extension of the BDS test (Brock et al., 1996), which uses the concept of the correlation integral based upon 

the closeness of points in hyperspace. If rejections are restricted to one tail of the distribution, a 

rearrangement of the test can be viewed as a non-linear test for Granger causality. This is an important 

generalisation, for there is no reason why causality should be of the linear type, and it is likely that linear 

Granger causality tests will have low power against many types of non-linear causality (Brock, 1991). A 

further modification which improves the small sample properties of the test and relaxes the assumption that 

the series to which the test is applied are i.i.d. is due to Hiemstra and Jones (1994). In particular, the original 

Baek and Brock test is over-sized. Results of Monte Carlo simulations in Hiemstra and Jones (1993) also 

show that their modified test is robust to the presence of structural breaks in the series and contemporaneous 

correlations in the errors of the VAR model used to filter out linear cross- and auto-dependence. 

 

Using the notation above (closely following Hiemstra and Jones, 1994), and additionally, letting X t

m
, 

X Yt Lx

Lx

t Ly

Ly

 ,  denote a lead vector for X of length m, and lag vectors for X and Y of length Lx and Ly 

respectively, i.e. 

X X X Xt

m

t t t m   ( , ,..., ),1 1     m = 1,2,... t = 1,2,... 

X X X Xt Lx

Lx

t Lx t Lx t     ( , ,..., ),1 1    Lx = 1,2, ...  t = Lx + 1, Lx + 2, ...  
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Y Y Y Yt Ly

Ly

t Ly t Ly t     ( , ,..., ),1 1     Ly = 1,2, ...  t = Ly + 1, Ly + 2, ...  

Then for given values of m, Lx, and Ly all  1 and e > 0, if Y does not strictly Granger cause X, then we can 

write 

   Pr , PrX X e X X e Y Y e X X e X X et

m

s

m

t Lx

Lx

s Lx

Lx

t Ly

Ly

s Ly

Ly

t

m

s

m

t Lx

Lx

s Lx

Lx               

           (2) 

where Pr() denotes a probability measure and   denotes a distance measure (in this case the supremum 

norm). Hence non-Granger causality implies that the probability that two arbitrary lead vectors of length m 

are within a distance e of each other is the same conditional upon the two lag vectors of {Xt} being within a 

distance e of each other and the two lag vectors of {Yt} being within a distance e of each other, and 

conditional upon the lag vectors of {Xt} only being within a distance e of each other. In other words, no 

Granger causality means that the probability that the lead vectors are within distance e is the same whether 

we have information about the distances between the {Yt} lag vectors or not.  

 

The conditional probabilities in (2) can be expressed as ratios of a joint and marginal probabilities. Thus 

 
 

 
 

Pr , ,

Pr ,

Pr ,

Pr

X X e X X e Y Y e

X X e Y Y e

X X e X X e

X X e

t

m

s

m

t Lx

Lx

s Lx

Lx

t Ly

Ly

s Ly

Ly

t Lx

Lx

s Lx

Lx

t Ly

Ly

s Ly

Ly

t

m

s

m

t Lx

Lx

s Lx

Lx

t Lx

Lx

s Lx

Lx

     

   


   

 

   

   

 

 

           (3) 

Whether the probability in (3) holds can evaluated by calculating a set of four correlation integrals:  

 
C m Lx Ly e

C Lx Ly e

C m Lx e

C Lx e

1

2

3

4

( , , )

( , , )

( , )

( , )





      (4) 

Letting { xt } and { yt } denote the actual realisations of the process and I(A,B,e) denoting an indicator 

function which takes the value 1 if the vectors A and B are within a distance e of each other and zero 

otherwise and noting that the properties of the supremum norm allow us to write 

 Pr ,X X e X X et

m

s

m

t Lx

Lx

s Lx

Lx      as  Pr X X et Lx

m Lx

s Lx

m Lx







  , then the estimates of the 

correlation integrals in (4) can be expressed as 

C m Lx Ly e n
n n

I x x e I y y et Lx

m Lx

s Lx

m Lx

t Ly

Ly

s Ly

Ly

t s

1
2

1
( , , , )

( )
( , , ) ( , , ) 










 


   (5) 

C Lx Ly e n
n n

I x x e I y y et Lx

Lx

s Lx

Lx

t Ly

Ly

s Ly

Ly

t s

2
2

1
( , , , )

( )
( , , ) ( , , )


   



    (6) 
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C m Lx e n
n n

I x x et Lx

m Lx

s Lx

m Lx

t s

3
2

1
( , , )

( )
( , , ) 

 









      (7) 

C Lx e n
n n

I x x et Lx

Lx

s Lx

Lx

t s

4
2

1
( , , )

( )
( , , )
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

       (8) 

for t,s = max(Lx,Ly)+1, ... , T-m+1,   n = T+1-m-max(Lx,Ly). 

 

Under the null hypothesis that {Yt } does not Granger cause {Xt }, then Hiemstra and Jones (1994, appendix) 

show that the test statistic n
C m Lx Ly e n

C Lx Ly e n

C m Lx e n

C Lx e n

1

2

3

4

( , , , )

( , , , )

( , , )

( , , )












  is asymptotically distributed 

as a normal variate with mean zero and variance that is a complicated function of (m,Lx, Ly, e, n). 

 

4. Granger Causality Results 

A. Linear Granger Causality 

Bivariate VAR models with up to 4 lags of each series are estimated and the joint coefficient restrictions 

representing the linear Granger causality test are calculated and presented in table 1 together with marginal 

significance levels in parentheses. The results clearly show the existence of a bi-directional feedback 

relationship between the two series, although causality from volatility to volume is the greater of the two, and 

this result is also more robust to increases in the numbers of lags used in the VAR.  

 

The first panel of table 1 shows the linear Granger causality test results for  the cases where the same number 

of lags are used in all components of the VAR model for comparison with the nonlinear Granger causality 

results and also to avoid any pre-test problem associated with the choice of lag lengths prior to joint 

hypothesis testing. The null hypothesis that volatility does not Granger cause volume is rejected at the 1% 

level for all the VAR structures considered. The opposite null hypothesis (that volume does not Granger 

cause volatility) is rejected at the 1% level when only one lag of each variable is used in each equation of the 

VAR, but the marginal significance level is increased to nearly 10% when three lags are included, and 

becomes insignificant, even at the 10% level, when 4 lags are added.  

 

Panels B and C of table 1 show the linear Granger causality test results for numbers of lags of each variable 

chosen by minimising Akaike’s or Schwarz’s Bayesian information criterion respectively for each equation 
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of the VAR. The joint hypothesis tests again show strong evidence of rejection (at the 5% level or better) for 

both sets of null hypothesis, although once more causality is stronger from volatility to volume than vice-

versa. 

  

B. Non-linear Granger Causality 

The results of applying the Hiemstra and Jones procedure to the residuals of a VAR(4,4) model
iii

 are 

presented in table 2. The value of e is set to values of 0.5, 1, and 1.5 times the standard deviation of the data, 

and m is set to 1 as suggested by the Monte Carlo experiments of Hiemstra and Jones (1993). The picture is 

similar for that of the linear causality test: that is, there is extensive evidence of bi-directional feedback 

between volume and volatility, but with the line of causation running from volatility to volume being the 

stronger of the two. In contrast to the results of linear the linear causality tests however, this result is not 

qualitatively altered by changes in the length of the lag-vectors used in estimation of the test statistic. 

 

5. Forecasting Volatility 

The previous section has shown linear and non-linear Granger causality runs between volume and volatility 

in both directions. This finding has two important implications for forecasting volatility. First, there is 

evidence of  linear causality running from volume to volatility, which suggests that it may be possible to use 

lagged values of volume to predict volatility. Second, there exists incremental non-linear causality once 

linear cross- and auto-dependence have been removed from the series. This suggests that the set of 

forecasting models containing lagged volume measures should not be limited to the linear class. The 

relationship is stronger from volatility to volume than the other way around, but it is not at all clear how one 

might proceed to turn this relationship into any useful forecasting model since it is not possible to trade 

volume as it is volatility. Hence, although an investigation of the forecastability of measures of stock market 

volume is an interesting exercise for the researcher interested in learning more about the volume series for its 

own sake, or as a route to understanding more about how financial markets operate more generally (as 

Weigend and LeBaron suggest), the remainder of this paper examines the effects of using lagged volume as a 

predictor for volatility. A number of the papers surveyed in section 1 above have attempted to forecast 

volatility, but all have been essentially univariate in nature. Various forecasting models used in recent studies 

are brought together and presented here, and their forecasting properties are evaluated and compared with 

similar models that are augmented by the addition of lagged measures of volume to the forecasting equations. 
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Although the models do not have any rigorous theoretical motivation, they could represent reduced-forms of 

a number of theoretical models incorporating volume. 

 

5A. Construction of Forecasts and Notation 

The total sample of 2,431 observations is split into two parts: the first 2000 observations (approximately 8 

years of  daily trading data) are used for estimation of the parameters of the model, and then a one step ahead 

forecast is calculated. The sample is then rolled forward by removing the first observation of the sample and 

adding one to the end, and another one step ahead forecast of the next day’s volatility is made. This 

“recursive” modelling and forecasting procedure is repeated until a forecast for observation 2431 has been 

made using data available at time 2430. Thus the initial in-sample modelling period for generation of the first 

forecast runs from 17 November, 1978 until 16 October, 1986. Computation of forecasts using a rolling 

window of data should ensure that the forecasts are made using models whose parameters have been 

estimated using all of the information available at that time, while not incorporating old data that is probably 

no longer relevant in the context of a dynamic, rapidly evolving financial market. The procedure used in this 

study closely follows that of earlier studies (e.g. Akgiray, 1989; Pagan and Schwert, 1990; Brailsford and 

Faff, 1996), although the present study differs from its predecessors in an important respect: the latter all 

compute monthly volatility estimates by taking some measure of the added daily volatilities, while this study 

uses the daily data directly. This should have two important advantages: first, it is likely to be daily forecasts 

which are of more use to traders or market-makers who have shorter time-horizons, and second, the use of 

monthly forecasts implies that there will be few observations to compare with actual values (as few as 24 in 

Akgiray), leading to the possibility that a small number of extreme errors for a given model will have a 

profound influence on the accuracy measure.  

 

5B. Forecasting Models 

1. The random walk model 

The simplest possible forecast is one computed using a naive or random walk model, which formulates 

tomorrow’s forecast of volatility as being equal to the realised value today. Letting  f t t,

2

1  denote the one 

step ahead forecast for the variance conditional upon information available at time t-1, where t always runs 

from observation 2001 to observation 2431, then  
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 f t t,

2

1

2            (9) 

 

2. The long term mean 

Assuming that the conditional mean is constant, the best forecast of future volatility would be an average of 

past volatilities: 

 f t

j t

t

t j,

2

2000

1
21

2000


 



         (10) 

 

3. Moving Average Models 

Since the forecasts here are computed using a rolling window, the long term mean is, in a sense, a very long 

term moving average. For comparison, two shorter moving averages, of length 5 days and 100 days 

(equivalent to one trading week and nearly four trading months respectively) are also estimated: 

 f t
j

L

t jL,

2

1

2
1




          (11) 

where L is the length of the moving average (5 or 100 observations). 

 

4. Exponential Smoothing 

Exponential smoothing models volatility as being a weighted average of the previous forecast and realised 

values of volatility: 

   f t f t t, , ( )2

1

2

1

21            (12) 

The value of the smoothing parameter,  is chosen to produce the best fit by minimising the sum of the 

squared in-sample forecast errors. 

 

5. Exponentially Weighted Moving Average 

The exponentially weighted moving average model is essentially an exponential smoothing model in the 

moving average rather than the previous realised value of volatility. The smoothing constant is estimated in 

the same way as for the exponential smoothing parameter, and L is chosen as for equation (11) above. 

   f t f t t j

j

L

L
, , ( )2

1

2 2

1

1
1

   



        (13) 
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Equivalently, the model (13) can be written to make the exponential weighting more transparent 

   f t

j

t j
j

L

, ( )2 1 2

1

1  




          (14) 

 

6. Autoregressive Volatility Models 

This is a simple OLS regression of the current realised value of volatility on p own lags and either a constant 

term or five daily dummy variables which take the value one if the volatility estimate is for that day, and zero 

otherwise. 

     f t j t j

j

p

i i t

i

tD, ,

2

0

2

1 1

5

   

 

    i = 1,2,3,4,5  , and either 0 = 0 or Di = 0  i. 

 (15) 

This model therefore considers whether any predictability can be derived from well-documented day-of-the-

week anomalies or recent past volatility realisations. Values of p = 1,3 and 10 are utilised which covers many 

models used in other research, although this choice is somewhat arbitrary. It is not feasible to use any 

objective criteria (e.g. Akaike’s or Schwarz’s information criteria) to determine the appropriate lag-length 

which optimises the in-sample fit, since the data, and probably the “best” model with it, are changing as the 

observation window moves through the data. In any case, it is not clear that the use of these metrics to 

optimise in-sample model adequacy is conducive to maximising out-of-sample forecast accuracy. 

 

7. Symmetric GARCH Models 

Unlike the models considered thus far, the GARCH family of models entails a joint estimation of the 

conditional mean and conditional variance equations. The model, due to Bollerslev (1986) is formulated as 

rt t t   , N(0,t

2
)                (16) 

and 

    f t t t,

2

0 1 1

2

1 1

2            (17) 

Since both variables on the RHS of the variance equation (17) are known at time t, then a one step ahead 

conditional forecast can be made by simply iterating through the model without the need for successive 

substitutions or complex iterations of the conditional expectations operator. 

 



 12 

8. Asymmetric GARCH Models 

A major criticism of (17) as it stands is that positive and negative innovations have an identical effect upon 

the conditional variance since their sign becomes lost upon taking the square. There is a body of evidence 

that suggests that this restriction is not empirically valid; in other words, it has been noted that often negative 

shocks to the conditional mean equation have a larger effect upon volatility than positive shocks
iv
. Two 

models which remove the assumption of symmetric responses of volatility to shocks of different sign are the 

EGARCH model due to Nelson (1991), and the GJR model due to Glosten, Jaganathan and Runkle (1993). 

Under these formulations, the conditional variance equations (17) become 

       f t t t t tS,

2

0 1 1

2

1 1

2

1

2    



        (18) 

log( ) log( ),    







 f t t

t

t

t

t

2

1

2 1

1

2

1

1

2

2
    

























    (19) 

for the GJR-GARCH and EGARCH models respectively. In (18) the asymmetry arises from the inclusion of 

a dummy variable, St


, which takes the value one when t-1  0 and zero otherwise, while in (19) the 

asymmetry arises from the direct inclusion of the term in t-1, normalised by the standard deviation of the 

data. The latter model also has the advantage that no non-negativity constraints are required of the 

coefficients as they are for the other forms of GARCH model outlined here, since even negative parameter 

values would not cause the variance itself ( f t,

2
) to be negative. 

 

9. A Neural Network 

Artificial neural networks (ANN’s) are a class of nonlinear regression models inspired by the way 

computation is performed by the brain. Their primary advantage over more conventional econometric 

techniques lies in their ability to model complex, possibly nonlinear processes without assuming any prior 

knowledge about the underlying data generating process. The fully flexible functional form makes them 

particularly suited to a financial application where nonlinear patterns are often deemed to be present, but an 

adequate structural model is conspicuously absent. 

 

The success of neural networks in point prediction of financial variables (i.e. pattern recognition in time 

series) is by no means clear. Kuan and Lim (1994), for example, forecast five daily Dollar-denominated 
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exchange rates based on around five years of daily data. Using feed-forward and recurrent networks, they 

find the network models generally perform significantly better than ARMA models, although there were 

considerable differences between the series. In some cases, the ARMA model performed particularly poorly, 

and was unable to predict even 50% of sign changes. Haefke and Helmenstein (1994) find that an ANN can 

out-perform an AR(2) in predicting the Austrian stock index. Tsibouris and Zeidenberg (1995) find up to 

60% correct sign predictions for four U.S. stocks using a neural network with nine inputs and five hidden 

layers. Weigend and LeBaron (1994), however, find no significant improvement over linear predictors. They 

argue that they “...can be fairly confident that this is a fairly general result for the time series and models we 

considered...there is probably little hope of fine tuning the networks we used.” 

 

By far the most popular type of model, and the one studied here, is known as a single hidden layer feed-

forward neural network. The model can be specified as follows; the structure consists of three layers: the 

inputs (akin to regressors in a linear regression model), which are connected to the output(s) (the regressand) 

via a hidden or intermediate layer. From an econometric perspective, the problem reduces to one of 

estimating the synaptic weights or connection strengths between the layers. Formally the network model can 

be written  

 x X w b w Z bN m j ij i j
i

m

j

N



 , ( ; , , ) ( )  
11

     (20) 

where the number of hidden units in the intermediate layer is N. The inputs were selected as own lagged 

values of the series from t-1 to t-m, where m is the number of inputs. x


 is a vector of fitted values, Z is the 

input,  represents the hidden to output weights, and w and b represent the input to hidden weights. Let 

 x x x xt

m

t m t m t    ( , ,..., )1 2        (21) 

The multivariate nonlinear least squares minimisation problem is then given by 

 min [ ( ; , , )]
, ,

,



w b

t m N m t

m

t

T m

x x x w b





 

 2

0

1

      (22) 

Nonlinear least squares (NLS) estimates are computed using an application of the Levenberg-Marquardt  

algorithm (see Marquardt, 1963). The activation function for the hidden layer is the sigmoid 

  ( )
exp( )

p
p


 

1

1
        (23) 



 14 

The number of inputs was fixed at one (a single lag of volatility) or two (one lag of volatility and one of 

volume), and the number of hidden units in the single hidden layer at 8. Hornik et al. (1989) have shown that 

a neural network model with one hidden layer and a sufficient number of hidden nodes can approximate any 

continuous function to an arbitrary degree of accuracy. Hence it is unlikely that any additional hidden layer 

would add to predictive power, and is likely to represent an over-parameterisation
v
. 

 

 10. Augmentation of Forecasting Models using Lagged Volume 

The autoregressive volatility, GARCH, EGARCH, and GJR equations can all easily be augmented by the 

addition of lags of market volume as predictor variables; 1 Vt-1  or 1 Vt-1 +2 Vt-2  are added to the RHS of 

equations (15), (17)-(20). Only up to two lags are considered since it is likely that these will have the largest 

effect upon the current value of volatility (and these lags are the most important in causing rejections in the 

Granger causality tests). 
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5C. Forecast Evaluation 

Three criteria are used here to evaluate the accuracy of the forecasts: mean squared error (MSE), mean 

absolute error (MAE), and proportion of over-predictions. Mean squared error provides a quadratic loss 

function: 

MSE
Tf

t f t
t

Tf

 



1

2 2 2

1

( ),          (24) 

where Tf is the total number of forecasts computed (in this case, 431), t

2
 and  f t,

2
 represent the realised 

volatility at time t and the model’s forecast of it respectively. Mean absolute error is calculated as  

MSE
Tf

t f t
t

Tf

 



1

2 2

1

  ,         (25) 

with notation as (24). The MSE criterion disproportionately weights large forecast errors more heavily 

relative to MAE, and hence the former may be particularly useful in forecasting situations when large 

forecast errors are disproportionately more serious than small errors. The proportion of over-predictions 

should give a rough indication of the average direction of the forecast error (compared with the two previous 

measures which only give some measure of the average size) and whether the models are persistently over- 

or under-predicting the “true” value of volatility. Hence this measure gives an approximate guide as to 

whether the forecasts are biased. 

 

6. Forecasting Results 

The results of the volatility forecasting exercise are given in table 3. The proportion of over-predictions 

given in the last column show that almost all models consistently over-predict the true realised value of 

volatility. The model which comes closest to neither over- nor under-predicting more than half the time is the 

simple random walk; the worst models are the exponential smoothing and exponentially weighted long 

moving average models, which over-predict the true value of volatility 80% of the time.  

 

The mean squared error and mean absolute error are given in the second and fourth columns respectively of 

table 3. The third and fifth columns give relative MSE and MAE respectively, which are calculated by 

dividing the actual error measure by the value of the error measure for the “best” model according to that 

criterion. For example, the model with the lowest MSE and MAE is the first order autoregressive model with 
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daily dummy variables and hence these have relative MSE and MAE of one. The GJR-GARCH model with 

two lags of volume thus has a MSE of 639 times and a MAE 51 times that of the best model. 

 

Figure 1 gives a plot of the actual volatility over the entire sample period. The salient feature of this graph is 

that volatility is very considerably greater around the October 1987 stock market crash than at any other time 

over the life of the modelling and forecasting sample. This reveals a potential flaw in a number of recent 

studies in empirical finance
vi
 in their use of historical time series data which spans the period surrounding the 

October 1987 crash of world equity markets. According to Gallant et al. (1992, p200), on 19 October 1987, 

the S&P Composite Index dropped 22.9% whilst volume hit the second highest figure ever recorded (604 

million shares). The next day, the value of the S&P Index increased by 5.2% on an even higher daily volume 

of 608 million shares. This extreme series of fluctuations, which persisted for some time after that date, was 

exceptional and has not been repeated at such magnitude since. Therefore, whether or not we accept the 

proposition that these observations are “outliers”, it is clear that such huge swings in volume and volatility 

are likely to have a profound influence on models and forecasts of the latter. Thus evaluation of forecasts of 

volatility during this period would represent a severe and probably inappropriate test of the models since 

almost the entire total sum of squares to be explained are attributable to these few observations. 

 

6A. The Possible Effects of the October ‘87 Crash 

In order to ensure that the results of this forecasting study are not unduly influenced by these extreme 

observations, the error measures are re-calculated disregarding all data from October 1, 1987 onwards
vii

. 

This leaves a total modelling and forecasting sample running from 17 November 1978 - 30 September 1987, 

and a hold-out sample of 231 pre-crash observations for evaluation of forecasts in the manner described in 

section 5A. The results of table 4 demonstrate that the MSE and MAE are at least halved for all models once 

the crash period, where by definition we would expect the model errors to be very large, is removed. 

Furthermore, the relative rankings of each of the models is also altered. In particular, the EGARCH models, 

which had performed rather poorly for the whole sample, are now among the best models. Also notably, the 

regression with one lag of volatility and one lag of volume has the lowest MSE of all 29 models. This model 

and the actual values are plotted in figure 2. Adding further lags of volume and/or volatility however slightly 

reduces forecasting accuracy. The autoregressive models and pure volume models of volatility of the same 
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order have similar aggregate forecast errors. This gives further evidence to the arguments in Karpoff (1987) 

that the two are strongly contemporanously correlated.  

 

For the GARCH and the GJR models, lagged volume increases the average forecast errors by orders of 

magnitude. Although this result is perhaps surprising, it may be attributed to the fact that the measure of 

volume used in this study has been transformed in order to induce stationarity, as detailed above, and the 

transformed series can take on negative values. The simpler autoregressive models seem to take this in their 

stride, producing reasonable forecasts; for the GARCH and GJR models, the negativity appears problematic, 

leading to very erratic forecasts, although the forecasts themselves are never negative. The EGARCH model 

is not affected in the same way due to the formulation of the model in logarithms of the variance; thus 

negative values on the RHS of equation (19) need not present a problem for forecasting volatility which, by 

definition, must be positive
viii

. The neural network models give a reasonable performance, but the complexity 

and loss of any diagnostic information associated with the use of this technique renders them hardly worth 

the additional effort in this case. 

 

6B. The Relative Predictive Power of Alternative Forecasts 

The previous section has highlighted which of the models have relatively low or high values of the aggregate 

forecast error measures but although many models, which are very different in formulation, have 

approximately the same average (squared or absolute) forecast error, it is possible that the information 

contained in the forecast series for each model is different. This is likely to become obscured in the error 

aggregation process. Fair and Shiller (1990) suggest a simple encompassing method for evaluating this 

proposition. The actual realised value of volatility is regressed upon a constant and two or more forecasts 

from different models: 

   t j f t t

j

J

j u2

0

2

1

  


 , ( )         (26) 

where  f t j, ( )2
is the forecast for volatility at time t for model j (and J such models are compared), 0 , j 

are parameters to be estimated, and ut is an i.i.d. error term. If the models all contain independent 

information that has power in predicting volatility, then all of the j should be significantly different from 
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zero. If, however, the information contained in one forecast is simply a subset of that contained in the 

other(s), then the coefficient on the former should be insignificant.  

 

The results from application of the encompassing test are given in table 5 for the whole forecast sample, and 

table 6 for the pre-crash sample. The results are fairly inconclusive since the most common result is that none 

of the models have significant explanatory power (a result also observed by Day & Lewis, 1992). Table 

entries in columns 2 to 7 are coefficient estimates followed by heteroscedasticity-consistent t-ratios in 

parentheses; the unadjusted value of R
2
 for each model is given in the last column. The first row in tables 5 

and 6 compare a variety of different models (long term mean, exponential smoothing, daily dummy 

variables, regression on one lag of volume and an EGARCH model). For the entire hold-out sample, only the 

dummy variable forecasts have significant power in “explaining” variations of the actual volatility series, 

although since the coefficient is actually negative, it implies that the dummies significantly confound the 

forecasting of volatility; no forecast series have significant coefficients for the pre-crash sample (table 6). 

Rows 3 to 6 of tables 5 and 6 offer additional comparative evidence on the consequences of adding lagged 

volume measures to volatility forecasting equations. If volume has any additional explanatory power, we 

would expect the coefficient on the forecast series incorporating volume to be statistically significant.  The 

only forecast containing volume which is significant is that for the AR(1) model and for the EGARCH 

model, both with a single lag of volume. This result gives additional weight to the observation that volume 

has a very minor role to play in predicting volatility. The R
2
 values for the forecast series are also interesting. 

For the sample including the crash, the R
2
 values are never above 5%, indicating that the models are 

explaining virtually none of the variability in the actual volatility series. Most of this is entirely due to the 

observations around the October 1987 stock market crash, and once we move to the pre-crash sample, the fit 

of the forecasts to the data improves substantially. The values of R
2
 rise to just over 20%, indicating that still 

none of the forecasts, even taken in groups, have satisfactory explanatory power. This result adds further 

weight to the argument that volatility forecasts with similar MSE’s constructed in this and numerous other 

studies are uniformly poor  rather than uniformly good. 

 

 

 

7. Summary and Conclusions 
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This paper has examined the inter-temporal relationship between stock index volatility and market trading 

volume. An application of linear and non-linear Granger causality shows evidence of bi-directional causality, 

although the relationship is stronger from volatility to volume than vice versa, particularly in the linear case. 

These findings demonstrate that predicting volume using volatility is likely to be more fruitful from the point 

of view of  forecasting accuracy (see also Weigend and LeBaron, 1994), but forecasts of stock index volume 

are of no direct use in terms of an implication for trading or risk management. Hence the second part of this 

study has examined the effect on out-of-sample forecasting performance of including measures of lagged 

volume in equations for forecasting volatility.  

 

The main conclusion of the second part of this study is that lagged stock market volume measures have little 

role to play in improving the out-of-sample forecasting performance of volatility models, almost irrespective 

of the criterion used to evaluate the forecasts. Although the best model for the pre-crash data according to the 

MSE criterion included volume, occasionally, the inclusion of lagged volume can lead to very erratic 

forecasts which are off the mark by orders of magnitude. In terms of the univariate forecasting models, the 

findings of this paper are very much in the spirit of Dimson and Marsh (1990) and Franses and van Dijk 

(1996) in that simpler models are generally preferable, although there is very little to choose between many 

of the models, and there is certainly not a single model which is universally superior. In particular, the GJR 

model recommended by Brailsford and Faff (1996), but maligned by Franses and van Dijk (1996), is inferior 

to the EGARCH formulation which neither paper considers. 

 

These findings have a number of important implications for future research in this area. First, although linear 

Granger causality implies that a linear model should be used for forecasting, no such inference can be made 

for the case of non-linear causality. In fact, evidence of non-linear Granger causality gives the researcher no 

clue as to the appropriate functional form for the non-linear forecasting model, and this may go some way to 

explaining the reason for the disappointing forecasting performances of many non-linear models (see 

Ramsey, 1996): it may be that the variables are correct, but the functional form is wrong. Second, the 

forecasting performance of the entire GARCH family of models is worse than one might have expected. One 

explanation for this may be that although the returns are posited to be generated by some stochastic process, 

the variances, which we use as the measure of volatility, are formulated to be entirely deterministic in nature. 

It is just as likely that volatilities have a stochastic data generating component as the returns themselves, so 
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this is probably a gross over-simplification. It may therefore be the case that stochastic volatility models (see, 

for example, Harvey, Ruiz and Shephard, 1994 or Shephard, 1995) are more useful in this context, although 

no comparisons of their forecasting accuracy have yet been made.  

 

Another explanation for the lack of additional explanatory power of the volume series could be that the 

measure of volume used here has been transformed (in common with many other studies) to induce 

stationarity, but that the newly created series bears insufficient relationship to “true” volume series. 

Moreover, even the literal number of shares traded (the real definition of volume) has a certain degree of 

arbitrariness about it since, if a company decides to issue half as many shares at $10 rather than $5, then 

volume will automatically be halved. Perhaps volume measures should have some value-weighting to bring 

them closer into line with the underlying quantity of financial interest, whatever that might be. More 

theoretical and empirical research on the relationship between volatility and volume, and in particular, what 

useful information (if any) is contained in the latter, is clearly warranted. 
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Table 1 

Results for Linear Granger Causality 

Number of Lags of 

volume, volatility 

H0: Volatility Does not 

Granger cause Volume 

Number of Lags of 

volume, volatility 

H0: Volume Does not 

Granger cause Volatility 

 

Panel A: Equal Numbers of lags of each variable 

1,1 15.795 (0.0001) 1,1 12.395 (0.0004) 

2,2  8.043 (0.0003) 2,2  3.515 (0.0299) 

3,3  5.349 (0.0011) 3,3 2.096 (0.0986) 

4,4 5.4217 (0.0002) 4,4 1.716 (0.1436) 

 

Panel B: Lag length chosen using AIC 

10,1 18.673 (0.0000) 1,3 6.259 (0.0124) 

 

Panel C: Lag Length Chosen using SBIC 

1,1 15.795 (0.0001) 1,1 12.395 (0.0004) 

Notes: Entries in the table are F-test statistics followed by marginal significance levels in parentheses. In 

each case, the null distribution of the test statistic is an F(k,2430-3k), where k is the equal number of lags of 

each variable in the VAR. 
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Table 2 

Results for Non-linear Granger Causality 

Number of Lags 

(Lx = Ly) 

H0: Volatility Does not Granger cause 

Volume 

H0: Volume Does not Granger cause 

Volatility 

e /  0.5 1 1.5 0.5 1 15 

1 0.0068 

(4.683)** 

0.0042 

(3.553)** 

0.0022 

(2.473)** 

0.0016 

(2.095)* 

0.0013 

(2.642)** 

0.007 

(1.996)* 

2 0.0056 

(4.376)** 

0.0034 

(3.478)** 

0.0017 

(2.433)** 

0.0018 

(1.839)* 

0.0016 

(2.448)** 

0.0005 

(1.506) 

3 0.0057 

(4.247)** 

0.0035 

(3.525)** 

0.0016 

(2.396)** 

0.0013 

(1.177) 

0.0012 

(2.080)* 

0.0005 

(1.482) 

4 0.0058 

(4.005)** 

0.0032 

(3.425)** 

0.0015 

(2.448)** 

0.0023 

(2.055)* 

0.0012 

(2.183)* 

0.0003 

(1.078) 

Notes: The first entry in each cell refers to the difference between the two conditional probabilities in 

equation (4), and the second is a standardised test statistic which is asymptotically distributed as a standard 

normal variate. * and ** denote significance at the 5% and 1% levels respectively using a one-sided test. 
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Table 3 

Results for Forecasts of Volatility 

Model Description MSE Relative MAE Relative % 

Over-

predi-

ctions 

1. Random Walk 1.91 1.85 6.17 1.65 49.42 

2. Long term mean 1.05 1.02 3.78 1.01 67.52 

3. Short moving average 1.16 1.13 5.11 1.37 67.98 

4. Long moving average 1.06 1.03 5.37 1.44 78.88 

5. Exponential smoothing 3.15 3.06 7.69 2.06 79.58 

6. Short EWMA 1.22 1.18 5.34 1.43 67.75 

7. Long EWMA 1.06 1.03 5.39 1.45 79.12 

8. AR(1) 5.45 5.29 6.89 1.85 67.52 

9. AR(3) 8.79 8.53 9.36 2.51 68.45 

10. AR(10) 8.79 8.53 11.82 3.17 68.21 

 11. Daily dummies only 1.05 1.02 3.84 1.03 65.43 

12. AR(1) + dummies 1.03 1.00 3.73 1.00 67.05 

13. AR(3) + dummies 1.04 1.01 3.94 1.06 67.75 

14. AR(10) + dummies 1.06 1.03 4.28 1.15 67.52 

15. Regression on 1 lag of volume 1.05 1.02 4.05 1.09 56.15 

16. Regression on 3 lags of volume 1.05 1.02 4.03 1.08 55.22 

17. Regression on 10 lags of volume 1.05 1.02 4.13 1.11 57.08 

18. Regression on 1 lag of volume and 1 lag of volatility 5.31 5.16 7.07 1.90 57.08 

19. Regression on 3 lags of volume and 3 lags of volatility 7.66 7.44 9.50 2.55 61.48 

20. Regression on 10 lags of volume and 10 lags of volatility 9.34 9.07 12.40 3.32 62.18 

21. GARCH(1,1) 1.06 1.03 4.79 1.28 74.01 

22. GARCH(1,1) with 1 lag of volume 20.64 20.04 100.06 26.83 36.66 

23. GARCH(1,1) with 2 lags of volume 63.75 61.89 187.97 50.39 40.14 

24. EGARCH(1,1)  2.30 2.23 6.22 1.67 65.66 

25. EGARCH(1,1) with 1 lag of volume 9.59 9.31 21.80 5.84 66.13 

26. EGARCH(1,1) with 2 lags of volume 32.28 31.34 274.14 73.50 64.97 

27. GJR-GARCH(1,1) 1.10 1.07 5.10 1.37 74.25 

28. GJR-GARCH(1,1) with 1 lag of volume 194.84 189.17 94.72 25.39 35.73 

29. GJR-GARCH(1,1) with 2 lags of volume 658.20 639.03 191.40 51.31 40.37 

30. Neural network 1.06 1.03 3.82 1.05 25.60 

31. Neural network with 1 lag of volume 1.05 1.02 3.75 1.03 28.11 

Notes: MSE and MAE denote mean squared forecast error and mean absolute forecast error respectively. 

The former have been multiplied by  10
5
 and the latter by 10

4
 for ease of comparison. Constants are included 

in any regression which does not include the dummy variables.  
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Table 4 

Results for Forecasts of Volatility for the Pre-Crash Period Only 

Model Description MSE Relative MAE Relative % Over-

predictions 

Random Walk 7.57 1.63 1.55 1.37 50.21 

Long term mean 4.73 1.02 1.15 1.02 70.95 

Short moving average 5.57 1.20 1.38 1.22 66.39 

Long moving average 4.68 1.01 1.26 1.12 75.93 

Exponential smoothing 4.75 1.03 1.27 1.12 74.27 

Short EWMA 5.84 1.26 1.38 1.22 65.98 

Long EWMA 4.70 1.02 1.26 1.12 75.93 

AR(1) 4.67 1.01 1.16 1.03 70.54 

AR(3) 4.71 1.02 1.17 1.04 70.95 

AR(10) 4.82 1.04 1.22 1.08 69.71 

 Daily dummies only 4.72 1.02 1.15 1.02 69.29 

AR(1) + dummies 4.75 1.03 1.17 1.04 69.29 

AR(3) + dummies 4.75 1.03 1.18 1.04 69.71 

AR(10) + dummies 4.75 1.03 1.19 1.05 70.12 

Regression on 1 lag of volume 4.71 1.02 1.15 1.02 71.37 

Regression on 3 lags of volume 4.71 1.02 1.15 1.02 70.54 

Regression on 10 lags of volume 4.75 1.03 1.15 1.02 70.12 

Regression on 1 lag of volume and 1 lag of volatility 4.63 1.00 1.15 1.02 70.54 

Regression on 3 lags of volume and 3 lags of volatility 4.68 1.01 1.17 1.04 70.54 

Regression on 10 lags of volume and 10 lags of volatility 4.88 1.05 1.24 1.10 69.71 

GARCH(1,1) 4.78 1.03 1.23 1.09 72.61 

GARCH(1,1) with 1 lag of volume 127.52 27.54 76.73 67.90 47.72 

GARCH(1,1) with 2 lags of volume 457.58 98.83 153.4 135.75 51.04 

EGARCH(1,1)  4.73 1.02 1.13 1.00 70.54 

EGARCH(1,1) with 1 lag of volume 6.69 1.44 1.25 1.11 71.37 

EGARCH(1,1) with 2 lags of volume 4.73 1.02 1.15 1.02 70.54 

GJR-GARCH(1,1) 4.78 1.03 1.23 1.09 72.20 

GJR-GARCH(1,1) with 1 lags of volume 1220.19 263.54 69.13 61.18 45.64 

GJR-GARCH(1,1) with 2 lag of volume 4692.41 1013.48 157.0 138.94 51.45 

Neural network 4.74 1.03 1.18 1.05 28.92 

Neural network with 1 lag of volume 4.71 1.02 1.16 1.03 29.17 

Notes: MSE and MAE denote mean squared forecast error and mean absolute forecast error respectively. 

The former have been multiplied by  10
8
 and the latter by 10

4
 for ease of comparison. Constants are included 

in any regression which does not include the dummy variables.  
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Table 5 

Forecast Comparisons Using Encompassing Test 

Models Compared  0
 1

 2
 3

 4
 5

 R
2
 

2, 5, 11, 15, 21  0.0003 

(0.8584) 

0.6284 

(0.3613) 

0.0132 

(1.056) 

-1.2069 

(-1.9880)* 

1.5202 

(1.5480) 

0.2669 

(1.5992) 

0.0349 

8, 18 0.0004 

(2.3730)* 

-0.9415 

(-0.9786) 

0.9780 

(1.0009) 

- - - 0.0170 

21, 22, 23 0.0003 

(1.5533) 

0.3238 

(1.8895)* 

0.0059 

(0.6734) 

0.0034 

(0.7014) 

- - 0.0248 

24, 25, 26 0.0004 

(2.4196)* 

-0.0060 

(-1.2168) 

0.0019 

(0.4373) 

-0.0000 

(-0.0126) 

- - 0.0141 

27, 28, 29 0.0004 

(1.4948) 

0.1448 

(0.7134) 

-0.0329 

(-0.9694) 

0.02878 

(1.0348) 

- - 0.0422 

30, 31 0.0004 

(1.2819) 

0.5183 

(0.5819) 

0.0049 

(0.5397) 

- - - 0.0312 

Notes: Model numbers refer to those given in table 3. Figures in parentheses are t-ratios computed from 

standard errors corrected for heteroscedasticity according to White(1980). * and ** denote significance at the 

5% and 1% levels respectively.  

 

Table 6 

Forecast Comparisons Using Encompassing Test on Pre-Crash Data 

Models Compared  0
 1

 2
 3

 4
 5

 R
2
 

2, 5, 11, 15, 21  -0.0008 

(-1.0632) 

11.0438 

(1.0983) 

0.3678 

(1.3554) 

0.4116 

(0.3825) 

2.2076 

(0.4580) 

-3.4370 

(-0.6676) 

0.2328 

8, 18 0.0000 

(-0.0968) 

-4.7195 

(-1.8660) 

6.2018 

(2.7319)** 

- - - 0.2435 

21, 22, 23 0.0002 

(2.0440)* 

-0.4495 

(-0.6700) 

-0.0002 

(-0.1270) 

-0.0002 

(-0.2439) 

- - 0.2141 

24, 25, 26 0.0000 

(-0.1923) 

1.5919 

(1.1210) 

-0.0719 

(-3.719)** 

0.2110 

(0.1112) 

- - 0.2148 

27, 28, 29 0.0001 

(2.0642)* 

-0.3497 

(-0.5588) 

0.0006 

(0.3264) 

-0.0005 

(-0.6968) 

- - 0.2137 

30, 31 0.0006 

(1.5634) 

0.9031 

(1.1395) 

0.1485 

(1.0521) 

- - - 0.2207 

Notes: Model numbers refer to those given in table 3. Figures in parentheses are t-ratios computed from 

standard errors corrected for heteroscedasticity according to White(1980). * and ** denote significance at the 

5% and 1% levels respectively.  
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Figure 1 

Actual Volatility over the Period October 1986 - October 1988 
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Figure 2 

Actual Volatility and Forecasts using A Regression on One Lag of Volume and One Lag of Volatility 

for the Pre-Crash Data 
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i
 The alternative models are the long term mean, IGARCH, autoregressive models, and a nonparameteric 

model based on the Gaussian kernel. 

ii
 The other models employed are the random walk, the historical mean, a short- and a long-term moving 

average, exponential smoothing, an exponentially weighted moving average model, and a linear regression. 

iii
An analysis of these residuals show that there is no remaining linear dependence in the series. 

iv
This has become known as the “leverage effect”, first documented by Black (1976). 

v
The number of inputs and hidden nodes is seveerely constrained by their CPU requirement since these 

models are slow to estimate due to the large number of parameters required to be estimated. For example, the 

case with two inputs and eight hidden nodes entials the estimation of 30 coefficients, and the moving window 

used in the calculation of forecasts implies the estimation of 431 separate such models. 

vi
Examples in the volatility forecasting literature include Brailsford and Faff (1996), Dimson and Marsh 

(1990) and Cao and Tsay (1992). 

vii
 These observations occur close to the end of the sample in any case, so that we lose little of the length by 

removing them. 

viii
Experimentation with squares or absolute values of the volume measure does not lead to improvements in 

the forecasting accuracies of these models.   


