
Testing for non-linearity in daily sterling 
exchange rates 
Article 

Accepted Version 

Brooks, C. ORCID: https://orcid.org/0000-0002-2668-1153 
(1996) Testing for non-linearity in daily sterling exchange 
rates. Applied Financial Economics, 6 (4). pp. 307-317. ISSN 
0960-3107 doi: 10.1080/096031096334105 Available at 
https://centaur.reading.ac.uk/35992/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1080/096031096334105 
To link to this article DOI: http://dx.doi.org/10.1080/096031096334105 

Publisher: Taylor and Francis 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



This is an Author's Accepted Manuscript of an article published 

in Applied Financial Economics (1996) [copyright Taylor & 

Francis], available online at: 

www.tandfonline.com/doi/abs/10.1080/096031096334105#.Uvyzw

mJ_tyw 



 2 

 

Testing for Nonlinearity in Daily  

Sterling Exchange Rates 

 
by 

 

Chris Brooks 

 

 

 

 

 
 

 

 

 

 

 

 

 

Department of Economics, Faculty of Letters, PO Box 218, 

Whiteknights, Reading, RG6 6AA.  England 

 

 

April 1995 

 



Abstract 

A number of tests for nonlinear dependence in time series are presented and 

implemented on a set of ten daily Sterling exchange rates covering the entire post-

Bretton Woods era until the present day. Irrefutable evidence of nonlinearity is shown in 

many of the series, but most of this dependence can apparently be explained by reference 

to the GARCH family of models. It is suggested that the literature in this area has 

reached an impasse, with the presence of ARCH - effects clearly demonstrated in a large 

number of papers, but with the tests for nonlinearity which are currently available being 

unable to classify any additional nonlinear structure. 
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1. Introduction 

Testing for nonlinear dependence has become an important area of research in financial 

econometrics because of its profound implications for model adequacy, market 

efficiency, and predictability. If we find evidence of nonlinearity in financial time series, 

this suggests that, at least in the short term, forecasts may be improved by switching from 

a linear to a nonlinear modelling strategy, and furthermore, the tests may be viewed as 

general tests of model adequacy for linear models in the sense that if there is still 

dependence in the residuals of a linear model (of an albeit more complex form), the 

original linear models can no longer be viewed as an accurate representation of the data 

(Hinich and Patterson, 1989). Evidence of nonlinear dependence in market returns may 

also cast doubts on the informational efficiency of financial markets, since in theory (at 

least), it may be possible to devise a trading strategy which systematically generates 

positive returns with a probability considerably in excess of one half. It is also of interest 

to consider whether there is any difference in general between the extent of nonlinearity 

in widely traded currencies, such as the U.S. Dollar and Deutschmark relative to those 

which are infrequently traded or traded in considerably smaller volumes, such as the 

Austrian Schilling or Danish Krone. One may expect that, a priori, those currencies 

which are frequently traded should more closely follow the random walk model of 

weakly efficient markets (Fama, 1970), since their closer and more detailed inspection by 

traders and analysts should ensure that autoregressive dependencies of any form (i.e. 

linear or nonlinear), are quickly arbitraged away. 

 

The structure of the remainder of the paper is as follows. Section 2 gives a brief survey 

of the findings of other studies which have investigated the use of the tests discussed 

here. Section 3 introduces and explores the data to be used, and section 4 gives a 

theoretical treatment of a number of tests for nonlinear dependence in time series. The 
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results generated thereof are described in section 5. Section 6 offers an analysis of the 

results and concludes. Finally, there follows an appendix of tabulated results. 

 

2. A Summary of Previous Research in the Area 

Since the techniques explored in this paper were popularised by Brock (1986), Hsieh 

(1989b) and co-workers, there has been an explosion of interest in what appears to be the 

science of finding structure where there is none, and forecasting the unforecastable. 

Series of financial returns often appear completely random to standard linear and spectral 

tests (Brock et al., 1991), but there is a rapidly developing literature which argues that if 

a different approach, using more powerful techniques is used, it may be possible to 

uncover a more complex form of dependence in these series. Numerous studies have 

examined the possibility of nonlinear dependence over the last eight years or so, and 

these can be conveniently categorised into tests on macroeconomic and financial data. 

Papers by Brock and Sayers (1988), DeCoster and Mitchell (1991), Frank, Gencay and 

Stengos (1988), and Lee, White and Granger (1993) reside in the former category. 

Studies examining macroeconomic series have not been particularly successful, often 

beset with problems of insufficient data and excessive noise and measurement error 

(Ramsey et al., 1990a, 1990b). The literature employing financial data has been far more 

voluminous, and some of the best examples, are Abhyankar et al. (1995), Hsieh (1989b), 

Scheinkman and LeBaron (1989a, 1989b), and Mayfield and Mizrach, (1992). With the 

notable exception of Willey (1992), the common finding is that there is overwhelming 

evidence of nonlinear structure across many types of financial data (stocks, bonds, 

futures, foreign exchange), which can reasonably be described as a generalised 

autoregressive conditionally heteroscedastic (GARCH) process (Ballie and Bollerslev, 

1989). However, the question of whether this is the only, or indeed the best way to 

represent the nonlinear dependence which is found in these series still remains 

unresolved (Sola and Timmerman, 1994). 
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3. The Data and Preliminaries 

The analysis presented here is based on just over twenty years of daily mid-price spot 

exchange rate data, denominated in Sterling. The sample period taken covers the whole 

of the post-Bretton Woods era until the present day, specifically from 2 January 1974 

until 1 July 1994 inclusive. A set of ten currencies are analysed, namely the Austrian 

Schilling/Pound (hereafter denoted A), the Canadian Dollar/Pound (C), the Danish 

Krone/Pound (D), the French Franc/Pound (F), the German Mark/Pound (G), the Hong 

Kong Dollar/Pound (H), the Italian Lira/Pound (I), the Japanese Yen/Pound (J), the 

Swiss Franc/Pound (S), and the U.S. Dollar/Pound (U). The raw exchange rates were 

transformed into log-returns with all subsequent analysis being performed on these, 

which can be interpreted as a series of continuously compounded daily returns (Brock et 

al., 1991), and constitutes a series of 5191 observations. This transformation has become 

standard in the finance literature, and one possible justification for using returns rather 

than raw data is that the raw data is likely to be nonstationary (see, for example, Corbae 

and Ouliaris, 1988 or Bleaney and Mizen, 1993)
1
. Nonstationarity may cause a spurious 

rejection of  linearity (Hinich and Patterson, 1985) and furthermore, Guillaume et al. 

(1994, p6) argue that “...the changes of prices rather than the prices themselves are the 

variable of interest for traders maximising short-term investment returns”. 

 

Summary statistics for the returns are presented in table 1 of the appendix. All series 

show strong signs of non-normality, with significant excess kurtosis. This is clearly a 

salient feature of most financial data (Hsieh, 1988, 1989a). The Ljung Box (1978) 

                                                 
1
The data were tested for the presence of unit root nonstationarity using the Dickey Fuller (Dickey 

and Fuller, 1979;Fuller, 1976), Phillips Perron ( Phillips, 1987; Perron and Phillips, 1987; Phillips 

and Perron, 1988) and Sargan Bhargava (Sargan and Bhargava, 1983, Bhargava, 1986). The levels 

data and the log-levels data were found in all cases to be strongly I(1), but there was no evidence of 

nonstationarity in the returns series. 
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portmanteau test for the joint significance of the first ten lags, given in the last column of 

the table, are generally significant for most of the series. 

 

3.1 Fitting a Linear Model 

A further issue to be explored at this stage is the question of whether there exists any 

simple linear dependence or daily seasonality in the data. This may need to be filtered 

out before testing for nonlinearity since some of the tests, such as the BDS test, have 

power against linear as well as nonlinear alternatives, and many of the tests employed 

(Tsay’s test, White’s neural network test, Engle’s ARCH test, and Ramsey’s RESET 

test), are calculated from the estimated residuals of a linear fit. The class of ARIMA, or 

Box Jenkins (Box and Jenkins, 1976) models can be used to fit a linear model to a time 

series. In this case, the unit root in the series has already been removed by the process of 

log-differencing, and since any moving average model can also be represented by an 

infinite order autoregression, the class of possible linear specifications is restricted to 

those of an autoregressive form. ARMA and MA models were also tested, but in general, 

the MA component adds little to the model, and can be restricted to zero on likelihood 

ratio grounds. Furthermore, the effects of MA and ARMA filtering on the null 

distribution of the nonlinearity test statistics is not well documented as it is with pure 

autoregressive models
2
. In each case, a dummy variable for the number of successive 

holiday days between trading (excluding weekends) was also included in the estimated 

regressions, together with daily dummies for Monday, Tuesday, Wednesday, and 

Thursday
3
. These dummies are incorporated in order to remove any linear seasonality in 

the data which may arise from the market microstructure or the non-homogeneous arrival 

of information throughout the week. This class of models has been widely used as a 

starting point for filtering linear dependence from time series data prior to testing for 

                                                 
2
Granger et al.(1989), for example, test only AR(p) models “for simplicity”. 
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nonlinearity (Hsieh, 1989a, 1989b, 1991; LeBaron, 1988, for example). Failure to 

remove seasonality from the data may lead to a spurious rejection of whiteness. The 

choice of autoregressive lag length can be made on a number of grounds, including the 

use of the Box Jenkins interactive procedure, or the use of various information criteria. 

Among these are the minimisation of Schwarz’s Bayesian Information Criterion 

(Schwarz, 1978) and Akaike’s Information Criterion (Akaike, 1974), or the maximisation 

of R 2
. An alternative, suggested by Hsieh (1989b), is to use the minimum number of 

lags that ensures that the Ljung Box Q(50) statistic is insignificant at the 10% level 

although this  proposal seems somewhat arbitrary. Only results using the number of lags 

selected by SBIC are shown here, although all the nonlinearity tests were conducted 

using the numbers of lags selected using Hsieh’s criterion and using an arbitrary ten lags 

for all the series, and although these are not shown, the results are virtually 

indistinguishable from those of shorter lag lengths. 

 

It should be emphasised at the outset that the objective of this study is not to build a 

statistically adequate empirical model of exchange rate returns, but rather to choose an 

acceptable specification which will remove linear and linear seasonal components from 

the series, and yet will provide a parsimonious representation of the data. Indeed the 

linear  regressions (not displayed) all perform rather poorly as stand-alone models, in 

common with many other studies (e.g. Scheinkman and LeBaron, 1989; Willey, 1992). 

Few lags are significant beyond the first lag, even at the 10% level, and those that are 

seem randomly placed. The holiday dummy is found to be significant (at the 10% level 

or better) only for the Canadian Dollar and Hong Kong Dollar. Many of the series exhibit 

no daily seasonality (A, D, F, G, S), while in the rest there appears to be a significant, 

positive Wednesday effect. 

                                                                                                                                      
3
A fifth dummy variable for Friday was not included (as it is, for example, in Ellis (1992)) to avoid 

the occurrence of perfect mulitcollinearity between the five daily dummies and the constant term. 
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3.2 Fitting a GARCH  Model 

The ARCH (AutoRegressive Conditional Heteroscedasticity) family of models was first 

suggested by Engle (1982), and has led to a subsequent explosion of articles on the 

subject. Instead of being conditionally fixed over time, the variance of the process is 

modelled as being dependent on lags of past squared residuals
4
. These models have 

found to accurately fit the data from a diversity of financial disciplines, although as Hall, 

Miles and Taylor (1989) note, the ARCH parameterisation of the conditional variance 

does not have any solid grounding in economic theory, but represents “a convenient and 

parsimonious representation of the data.” A generalisation of the ARCH model, known 

as GARCH, was proposed by  Bollerslev (1986), which can be viewed as an infinite 

order ARCH model. It was considered preferable to estimate a GARCH-(1,1) model, 

which embodies a more compact representation, for the purpose of filtering. The 

GARCH models estimated in this study were of the form 

xt  = 0 +  i t i
i

p

x 



1

 + 1 Mo + 2 Tu + 3 We + 4 Th + 5 Hol + t , t   N(0 , ht 
 
) (1) 

ht = 0  + 1  ht-1  + 2 t-1 
2
       (2) 

where xt  represents the first difference of the log of the exchange rate, Mo, Tu, We, and 

Th are daily dummy variables, and Hol is a dummy variable representing the number of  

successive days between trading (excluding weekends), as described above. It is highly 

unlikely that a GARCH model of order greater than one in the autoregressive and moving 

average components would be required since, by definition, a GARCH-(1,1) model 

implies an infinitely long memory with respect to past innovations. Akgiray (1989) finds 

that all higher orders of GARCH from (5,3) to (1,1) can be restricted to zero under a 

likelihood ratio test. The models were estimated using the maximum likelihood algorithm 
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of Broyden, Fletcher, Golfarb and Shanno (BFGS) with mis-specification robust 

estimation of standard errors. 

 

4. A Theoretical Derivation of the Tests 

In this section, a brief theoretical description of each test for nonlinearity used is given 

together with the null distribution with which the test statistic is to be compared. 

 

4.1 Tsay’s  Test 

Tsay’s Test (1986) is a more powerful (Tsay, 1986, p461) generalisation of Keenan’s 

(1985) test, which includes cross-product terms at different lag lengths in the auxiliary 

regression, such as xt-jxt-k. The first step of the test is in common with Keenan’s, that is to 

regress xt on a constant and p own lags, saving the residuals, u


t. Next, define a vector Zt 

as  

 Z vech Y Yt t t' ( ' )' ,       (3) 

where vech denotes the vector half-stacking operation, and Yt =(xt-1,...,xt-p). That is, all 

possible combinations of the lagged terms (with xt-jxt-k and xt-kxt-j counting only once) are 

stacked in a single vector, which hence contains (½p(p-1)) terms. The second step entails 

running a multivariate regression of Zt on a constant and p lags, saving the residuals, v t



. 

This step may be viewed as an estimation of a system of ½p(p+1) separate regressions, 

and hence  v t



 will also have dimension ½p(p+1) X 1. Finally regress  u


t on v


t and 

denote the residuals e


t. The test statistic is given by: 

 F

v u v v v u p p

e T p p p

t t t t t t

t



   


 






   

  



( )( ) ( ) / ( ( ))

/ ( ( ( ))

'
1

2

1

2
1

1

2
1 1

   (4) 

                                                                                                                                      
4
See Bollerslev et al. (1990) for an excellent survey of ARCH models and their derivatives. 
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where the summations are from t=p+1 to T. In the limit, F


 is distributed as a 
2
 variable 

with ½p(p+1) degrees of freedom, but Tsay states that “in practice [he] prefer[s] to use 

the approximate F-distribution” (p463). 

 

4.2 The McLeod and Li Test 

The McLeod and Li (1983) test is similar to the Ljung-Box (1978) test in the sense that it 

is a test based on the autocorrelation of the (in this case squared) residuals. In practice, 

the test is computed as follows. First, fit the “best” ARMA model to the time series, and 

denote the residuals by u


t. The autocorrelation function at lag k is denoted by 

 r k

u u

u

uu

t
t K

T

t k

t
t

T





 

 












 







( )

( )( )

( )

2

1

2
2 2

2

1

2 2

 



     (5) 

where  2 21
 

T
ut  

McLeod and Li show that for fixed p, T r r r puu uu uu

  

 [ ( ),..., ( )]1  is distributed 

asymptotically normally as T. A significance test can then be undertaken using the 

portmanteau statistic 

 Q T T
r i

T iuu

uu

i

p





 




( )

( )

( )
2

2

1

      (6) 

which is asymptotically 
2
(p) if the u



t are independent. It is apparent from the 

formulation of the test statistic that the test is a squared residual analogue of the Ljung 

Box Qa* statistic. Thus the test will be relatively powerful in detecting departures from 

linearity which may be attributed to the presence of  ARCH effects, but as Lee et al. 

(1993) show, the test has some limited power against other nonlinear alternatives. 
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4.3 The RESET Test 

Ramsey’s RESET (Regression Error Specification Test), (Ramsey, 1969) is a general test 

for mis-specification of functional form which could again be viewed as a more general 

formulation of Keenan’s test, which allows for functions of the fitted values of a higher 

order than two. The statistic is formulated via the following steps. First, the multivariate 

regression (with exogenous variables and/or with p own lags) with a constant is run, 

saving the residuals, u


t, and fitted values, yt



. Next, a regression which constitutes the 

alternative model of the form 

 y x y y vt t t k t

k

t    
 

~ ...'  2

2

     (7) 

is run for k2, where ~ 'x t   is a vector containing the original regressors,  and k is the 

highest order of the fitted values from the first regression included in the second 

(auxiliary) equation. In practice, collinearity between the fitted values of different orders 

may be a problem, so the usual procedure is to form the principal components of the 

fitted values ( ,..., )y y
t t

k 2

, and choosing the p
*
 largest, regressing zt on these and ~ 'x t   to 

give the residual e


t. The test statistic is given by 

 RESET
u u e e p

e e t k






   


 

( ' ' ) /

' / ( )

      (8) 

Under the null, RESET ~ F(p*, T-k). A Lagrange Multiplier version of the test is obtained 

by taking the squared multiple correlation coefficient (i.e. R
2 

) from the last regression 

and multiplying it by the sample size to form 

 RESET TR2 2  ~ 
2
(p*) for large T under the null. RESET2 was also 

calculated, but the p-values in each case were almost identical, and hence only those for 

RESET are shown. The sample size is large here, so one would expect the asymptotic 

bounds of the tests to be closely approximated.  
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4.4 Engle’s Test for ARCH 

A test for the presence of ARCH in the residuals of a linear model is calculated as 

follows. First, run a linear regression of the form described above (that is, using the 

dummy variables and m lags of the dependent variable), saving the residuals, 


t . Then 

square the residuals, and regress them on p own lags to test for ARCH of order p. The 

LM test statistic is defined as TR
2
 (the number of observations multiplied by the 

coefficient of multiple correlation) from the last regression, and is distributed as a 2
(p) 

under the null of no order p ARCH effects. 

 

4.5 White’s Neural Network Test 

White’s  (1989, 1990) neural network test for neglected nonlinearity uses a single hidden 

layer feed-forward neural network with additional direct connections from inputs to 

outputs. Network output, o, is given by 

 o x xj
j

q

j 


~ ( ~ )' '   
1

      (9) 

where ~x  is the input vector, j are the connection strengths or weights, j are hidden to 

output weights,  is an “activation” or “squashing” function, and  represent the direct 

connections between input and hidden layers. In this case, the logistic,  () = (1-e
-

)
-1

 is 

used. If the null hypothesis of linearity is true, then the ~x ’ (i.e. the direct connections 

between the inputs and outputs) will describe the structure and hence the optimal j will 

all be zero. The rather complex test statistic is given by 

 M T e W T eT t
t

T

t T t
t

T

t 



  






 ( ) ( )/ /1 2

1

1
1 2

1

      (10) 

where e


t are the estimated residuals of the linear model, 

  t t t qx x ( ( ~ ),..., ( ~ ))' ' ' 1 and  , the hidden unit activations, are chosen at 

random. W T  is a consistent estimator of W T et
t

T

t
 



 var( )/1 2

1

 . The null hypothesis 
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tested in a Lagrange Multiplier framework, is given by  H0: E(tet*) = 0, against a two 

sided alternative that the equality does not hold. MT is asymptotically 
2
(q) under the null 

as T. Bonferroni bounds provide an upper limit on the p-value. If  p1,...,pk denote the 

ascending-ordered p-values corresponding to k draws of  , then the simple Bonferroni 

implies rejection of a linear null at the 100% level if p1/k, so that, in the limit, the 

simple Bonferroni p-value is given by =kp1. Hochberg (1988) suggests an amendment 

to the Bonferroni method, which allows consideration of all the p-values rather than just 

the largest, which may have led to a loss of power. The modified Hochberg Bonferroni 

limit is given by = min
,...,i k1

(m-i+1) pi, so that H0 is rejected if there exists an i such that 

pi/(m-i+1), i=1,...,k. 

 

4.6 The Bispectrum Test 

The bispectrum is the double Fourier transform of the third order cumulant function, and 

this forms the basis of the test for Gaussianity and linearity suggested by Hinich (1982), 

following a previous paper by Subba Rao and Gabr (1980). The general third order 

moment (cumulant)
5
 function  is defined as  

 Cxxx(r,s) = E[x(t+r)x(t+s)x(t)]      (11) 

Since the estimates of the third order cumulants are hard to interpret (Hinich and 

Patterson, 1985), the double Fourier transform is calculated, leading to the bispectrum: 

 Bxxx(f1,f2) = 
sr 







  Cxxx(r,s) exp[-2i(f1r+f2s)]    (12) 

This follows directly as a third order analogue to the normal power spectrum of xt, which 

is given by 

 Sxx(f) = 
s



 Cxx(s) exp [-2ifs]      (13) 
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where Cxx(s) = E[x(t+s)x(t)] is the second order moment function. 

It has been proved (Hinich, 1982), that the skewness function X(f1,f2) is given by 

 X
2
(f1,f2) = 

B f f

S f S f S f f

xxx

xx xx xx

( , )

( ) ( ) ( )

1 2

2

1 2 1 2

3

2

6





    (14) 

where 
2
 = E(t

2
) and 3 = E(t

3
). The modulus of the bispectrum, Bxxx, is taken since in 

general it is a complex number. Ashley, Patterson and Hinich (1986, p174), prove that 

the bispectral linearity test is invariant to linear filtering. Linearity and Gaussianity of xt 

are tested via the null hypotheses that X(f1,f2) is constant over all frequencies and that 

X(f1,f2) is zero over all frequencies respectively. The actual test statistic used in both 

cases reduces to  

 S = 2 X f fm
nm

n( , ) 2
      (15) 

Under the null hypothesis of Gaussianity, the test statistic is distributed asymptotically as 

a standard normal. When the null is of linearity, the test statistic is distributed 

approximately as a 
2
 random variable with two degrees of freedom. The 80% quantile of 

the empirical distribution, scaled by a function of the variance of the series is 

asymptotically distributed as a standard normal variable under the null that the 

underlying data generating process is linear, and constitutes the test statistic shown here, 

as suggested by Hinich and Patterson (1989). One parameter to be set by the user is the 

frame size, denoted M. Hinich and Patterson (1985) use a frame size equal to the square 

root of the number of observations. In this case, that is calculated as 71, but in a personal 

communication, Hinich recommends a reduction in the frame size to 60 to improve the 

power of the test. The relevant test statistics are estimated here using both frame sizes.  

 

4.7 The BDS Test 

                                                                                                                                      
5
As Barnett et. al. (1994) correctly point out, the cumulants are the coefficients of the power series 

expansion of the logarithm of a distribution, rather than of the level, as is the case for the moments. 
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The test of Brock, Dechert and Scheinkman (BDS, 1987) takes the concept of the 

correlation integral and transforms it into a formal test statistic which is asymptotically 

distributed as a standard normal variable under the null hypothesis of independent and 

identical distribution (IID) against an unspecified alternative. The formulation of the test 

statistic is as follows. First, the “m-histories” of the series, xt
m
 = (xt, xt+, .., xt+(m-1)) are 

computed for time t = 1, ..., T-m, for embedding dimension m, and for time delay . The 

correlation integral is defined as  

 C
T m T m

I x xm
t s

t

m

s

m( )
( )( )

( , )
,

 
   


1

1
    (16) 

where I is an indicator function that equals one if x xt

m

s

m  < , and zero otherwise. .  

denotes the supremum norm, which is the most widely used distance measure. Although 

the usual Euclidean norm is equivalent, it is computationally more intensive and hence is 

rarely used in practical applications. The correlation integral thus counts the number of 

points out of a possible total of ½(T(T-1)) that are within a distance  of each other in m-

dimensional space. Next calculate the log of the correlation integral divided by the log of 

the distance, , and take the limit as  is made progressively smaller. The BDS test 

statistic is defined as follows 
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and h(i,j,k) = [I(i,j) I(j,k)+ I(i,k) I(k,j)+ I(j,i) I(i,k)]/3 

Since the test has power against many forms of deviation from IID, the BDS test is 

usually carried out on the residuals of a linear and/or GARCH-type filter. This step is 
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known as pre-whitening or bleaching, and makes it possible to see if further dependence 

beyond that described by a linear or GARCH process is present in the data. From the 

results of extensive Monte Carlo trials, Brock et al. (1991) recommend the use of  equal 

to between one and three halves the standard deviation of the data in order to maximise 

the power of the test. The results given here are for  /  = 1 only, although an 

implementation with  /  = 0.5, 0.75, 1.25, and 1.5 gave results which, whilst 

qualitatively similar, were less robust to changes in the embedding dimension. The 

results derived from the residuals of a linear model are also not shown, since these are 

very similar to those of the original returns data
6
. The BDS test is a two sided test so that, 

in general, rejection of the null of IID occurs when the estimated value of the W-statistic 

is more extreme (in either tail) than the corresponding statistic from the Normal tables. 

Hence, as a rule of thumb, there exists some degree of dependence in the data if the 

absolute value of the estimated test statistic takes on a value greater than two, although 

the null distribution is changed when filtering through a GARCH model is undertaken
7
. 

On the whole, one would expect to reject in the upper tail of the distribution, since more 

clustering of points in m-dimensional space than would be expected under randomness 

appears more likely than less. 

 

5. Results 

A full set of results for all the tests examined is given in tables 2 to 6 of an appendix. The 

result of each test is considered below, and the main features are drawn together and 

analysed in section 6. On the whole, there is a noteworthy degree of agreement between 

the tests, which are generally very different in formulation. The autoregressive lag length 

specified in the estimation procedure makes very little difference to the conclusion 

                                                 
6
This is quite expected, since there is very little linear structure in the returns; these results are 

available on request. 
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reached. Tsay’s test rejects the linear null for the German Mark, Italian Lira, Japanese 

Yen and U.S. Dollar. The McLeod and Li test always leads to rejection of linearity at all 

significance levels, and it appears that the test is of little empirical value for the analysis 

of financial data, since, as detailed above, the test always rejects as a consequence of 

ARCH effects, and is unable to discern any further or alternative structure. The RESET 

test leads to rejection for the German Mark, Hong Kong Dollar, Italian Lira and Swiss 

Franc, at the 0.1% level. As expected, there was extremely strong evidence for the 

presence of ARCH effects in the residuals of the linear models for all the series. The p-

values for the test statistics are not reported since they are always zero. However, two 

further points are noteworthy for consideration with regard to the other nonlinearity tests. 

First, the magnitude of ARCH effects varies considerably between the series: it is highest 

for the Austrian Schilling, the Hong Kong Dollar, the Italian Lira, and the Swiss Franc, 

but especially for the latter. Second, as the lag length of the autoregressive filter in the 

mean term is increased, the value of the ARCH test statistic is reduced. This may be a 

result of either small lag lengths failing to fully remove linear components and hence 

biasing the test in favour of rejection of ARCH, or specification of an excessive lag 

length relative to that of the true data generating process, may remove some genuine 

nonlinear dependence from the data. 

 

The neural network test may be more powerful than the tests shown above, and this has 

indeed been found to be the case (Lee et al., op cit.). Rejection of the linear null 

hypothesis certainly occurs more frequently than for all tests except McLeod & Li and 

Engle’s ARCH. Only the Canadian Dollar, and to a lesser extent, the Hong Kong Dollar 

and Japanese Yen, show no evidence of nonlinearity, but once again, the test has some 

power against ARCH, and thus any interpretation of the results may be somewhat 

                                                                                                                                      
7
New critical values for tests on the residuals of a GARCH model are given in Hsieh (1991), table 

13, although they do not differ markedly from those corresponding to the standard normal 
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ambiguous, although rejection of the linear null cannot be entirely attributed to ARCH, 

since rejection only occurs for some ofthe series, and yet all are characterised by ARCH 

effects. 

 

Using the bispectrum test, the null hypothesis of Gaussianity is rejected in all cases for 

all the series (raw, linearly, and GARCH filtered data), although to a lesser extent for the 

Canadian Dollar than for the others. This result confirms the non-normality of the 

currencies suggested by the simple Bera Jarque (1981) test displayed in table 1
8
. The null 

hypothesis of linearity is very rarely rejected, even at the 10% level, indicating a lack of 

nonlinear dependence in any of the series, at least of the form that can be detected by the 

bispectrum test. This result is similar to that of Barnett et al. (1994) and is unsurprising 

given that the bispectrum test has low power against ARCH alternatives, and that the 

power of the test is adversely affected by strong kurtosis in the underlying series. 

 

When conducting the BDS test, one usually pre-filters the data through linear and 

ARCH-type filters to obtain new series. This has been viewed as both an advantage 

(since a stronger picture of the precise nature of the nonlinearity present in the data, if 

any, can be observed), and a disadvantage (because filtering through a possibly mis-

specified linear, or worse nonlinear, model may alter the null distribution of the test 

statistic The BDS test has been extensively applied in the literature, and on the whole, 

there appears to be less activity in these Pound-denominated series than in those 

denominated in U.S. Dollars or in stock market data (c.f., for example, Hsieh, 1989 and 

Abhyankar et al., 1995 respectively). Linear filtering with up to ten lags of the dependent 

variable and the removal of daily seasonality and anomalies associated with holidays 

                                                                                                                                      
distribution. 
8
Although, as Nachane and Ray (1993) note, a frequency domain approach to Gaussianity testing 

may be preferable to the time domain approach of Bera and Jarque, since the latter assumes that 
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makes very little difference to the estimated values of the test statistics, indicating that 

there exists further dependence in the data, which must be of a nonlinear form. 

Furthermore, contrary to the results of Hsieh (1989), but in agreement with those of 

Yadiv et al. (1993), there appears to be in some cases, particularly the Swiss Franc, 

considerable further nonlinearity once the effects of ARCH have been removed from the 

data, although the estimated values of the BDS statistics are, for all the other series, 

much reduced. 

 

6. Analysis, Conclusions, and Suggestions for Further Research 

On the whole, although the null hypothesis of linearity is rejected by almost all the tests 

used in this study, and across almost all of the series, these results should be put into 

perspective. It is possible, and perhaps useful, to categorise observed nonlinear 

dependence in financial time series into two groups: volatility clustering effects, and all 

other forms of nonlinearity. It has been shown that foreign exchange markets are 

characterised by what can be represented by ARCH or GARCH processes, and it appears 

that ARCH dominates many of the nonlinearity tests used here (Granger, 1993), to the 

extent that other forms of nonlinearity are masked and difficult to uncover. It is therefore 

important to consider which of the tests used have power against which particular 

nonlinear alternatives, and specifically, which do or do not have power against ARCH 

(such as the bispectrum test). A rejection of a linear null in the case where the test has 

little power against ARCH would clearly be an interesting result, since it would indicate 

that nonlinear dependence of a form in addition to, or instead of (but perhaps having the 

same properties as) ARCH is present in the data.  

  

                                                                                                                                      
each observation is drawn from an identical distribution, while the former makes no such 

assumption and allows each realisation to be drawn from a distinct distribution. 
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The usual method for assessing the power of specific tests is to undertake a Monte Carlo 

study, simulating data (with given stochastic properties) from a pre-specified nonlinear 

model under the alternative, and calculating the number of times the test correctly rejects 

the linear or I.I.D. null. This procedure has been followed by a number of authors, 

including Barnett et al. (1994)
9
, Hsieh (1991), Liu et al.(1992), Ashley, Patterson and 

Hinich (1986), Ashley and Patterson (1989), and Lee et al.(1993). The most important 

common conclusion is that no test is uniformly most powerful (UMP) against all 

nonlinear alternatives. Perhaps the results of Hinich’s bispectrum test and the BDS test 

are most telling. Since the bispectrum test results in virtually no rejections of linearity, it 

appears that there is little evidence that the data could accurately be described as a 

bilinear, single state nonlinear moving average or single state nonlinear autoregressive 

model alone. 

 

To conclude, it is evident from the numerous tests undertaken above, that nonlinear 

dependence is a salient feature of financial time series data. This is hardly surprising, 

given the huge volume of literature indicating the presence of ARCH effects in many 

financial markets. What becomes clear, however, from tests such as BDS, which allow 

ARCH-nonlinearity to be filtered from the data is that there still exists a degree small 

degree of nonlinearity of an unknown form, once volatility clustering is removed. In this 

study, it is true only of the Swiss Franc, although a number of other studies declare a 

similar result (Yadiv et al., 1993) in spite of the fact that the GARCH-(1,1) model 

appears to fit the data extremely well. It may be either that the GARCH models used in 

the various studies are mis-specified and hence do not capture all of the dependence in 

the squared residuals, or, more likely, it may be that further patterns are present in the 

data. It is possible that this additional structure may be described by a switching or more 

                                                 
9
Their work cannot be considered a full Monte Carlo simulation, since they use only one set of data 

for each model, which is generated cleanly with no added noise. 
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complex threshold model. Interestingly, the hypothesis suggested in the introduction to 

this chapter that one may anticipate more action in the less frequently traded currencies 

is not borne out by the data, with large volume currencies such as the U.S. Dollar, 

Japansese Yen, and German Mark exhibiting considerably more (possibly potentially 

forecastable) dependence than the Austrian Schilling, Canadian Dollar and Danish 

Krone. 

 

It appears that an impasse has been reached in the literature on nonlinearity testing. 

GARCH effects have been found to dominate all other forms of nonlinearity, but few 

rival or additional models have come to light. Three new approaches seem worthy of 

comment. First, the “windowing” approach and the new test of Hinich (1995)
10

 may 

prove useful, in that the short-term structure of financial series has often been somewhat 

neglected given the tendency in the literature towards ever longer sample periods with 

associated assumptions of parameter constancy in order to satisfy the data requirements 

of the more complex tests. These tests may be more powerful against some nonlinear 

alternatives, but this is at the expense of masking a myriad of structures which may be 

present for shorter period of time. Second, the test developed by Kaplan (1994), based on 

continuity in phase space, may be worthwhile as a portmanteau equivalent to the BDS 

test, since in principle at least, it allows the user to test for whiteness against any 

specified linear or nonlinear alternative. Third, as suggested by Peel and Speight (1994), 

it may be possible that GARCH models in combination with, for example, the self 

exciting threshold autoregressive (SETAR) model of Tong (1983, 1990), or the bilinear 

model of Granger and Anderson (1978), may more fully describe the data. 
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Appendix of Results 

 

Table 1: Summary Statistics for Returns Data 

Series Mean Variance Skewness Kurtosis Normality 

Test statistic
11

 

LB(10)
12

 

A -0.0188 0.2816 -0.5591 6.8080 10295.43 51.3 

C -0.0016 0.4203 -0.1188 2.9541 1899.69 28.6 

D -0.0080 0.2705 -0.2934 5.0801 5656.58 32.1 

F -0.0058 0.2465 -0.0346 7.7472 12982.55 37.0 

G -0.0181 0.2444 -0.6079 6.1814 8584.09 38.1 

H 0.0001 0.4918 -0.0599 5.3209 6126.73 26.5 

I 0.0103 0.3018 0.0549 10.3139 23011.01 13.8 

J -0.0280 0.4232 -0.4918 4.0117 3690.20 63.8 

S -0.0250 0.3532 -0.3014 5.2854 6120.96 19.9 

U -0.0079 0.4190 -0.0693 3.5162 2678.38 46.6 

 

                                                 
11

Bera and Jarque (1981). The test statistic is distributed as a 
2
 (2) = 5.99 at 5% under the null. 

12
Where LB(10) is the Ljung Box (10) statistic. The test statistic is distributed as a 

2
 (10) = 18.3 

at 5% under the null. 
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Table 2: Nonlinearity Tests on Residuals of Linear Models on Returns Data
13

 

 Test 

Series Lags Tsay ARCH(4) McLeod 

and Li 

RESET 

A 1 1.10 

(0.29) 

290.38 

(0.00) 

604.96 

(0.00) 

0.39 

(0.76) 

C 1 0.80 

(0.37) 

146.84 

(0.00) 

472.34 

(0.00) 

0.57 

(0.63) 

D 0 2.17 

(0.14) 

123.16 

(0.00) 

462.60 

(0.00) 

1.83 

(0.14) 

F 1 0.01 

(0.94) 

168.98 

(0.00) 

438.73 

(0.00) 

2.12 

(0.10) 

G 1 7.41 

(0.01) 

210.34 

(0.00) 

638.78 

(0.00) 

8.95 

(0.00) 

H 0 0.26 

(0.61) 

244.11 

(0.00) 

794.86 

(0.00) 

7.46 

(0.00) 

I 1 20.46 

(0.00) 

306.20 

(0.00) 

806.04 

(0.00) 

7.22 

(0.00) 

J 0 4.75 

(0.03) 

211.85 

(0.00) 

547.89 

(0.00) 

1.63 

(0.18) 

S 0 2.70 

(0.10) 

492.76 

(0.00) 

1181.39 

(0.00) 

16.93 

(0.00) 

U 1 5.26 

(0.02) 

195.96 

(0.00) 

913.6 

(0.00) 

1.83 

(0.14) 

 

                                                 
13

p-values are given in parentheses. 
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Table 3: Results of White’s Neural Network Test on Returns Data 

 P-values (not ordered)  

 

Series 

Number 

of 

Inputs
14

 

 

1 

 

2 

 

3 

 

4 

 

5 

Simple 

Bonferroni 

Hochberg 

Bonferroni 

A 6 0.0005 0.0008 0.0004 0.0011 0.0035 0.0020 0.0019 

C 6 0.3734 0.2480 0.7209 0.5541 0.6741 0.9240 0.7209 

D 5 0.0745 0.0404 0.0622 0.0333 0.0249 0.1243 0.0745 

F 6 0.0296 0.0204 0.0176 0.0232 0.0202 0.0881 0.0296 

G 6 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001 

H 5 0.0523 0.0235 0.0694 0.0849 0.1043 0.2615 0.2086 

I 6 0.0002 0.0005 0.0371 0.0020 0.0005 0.0008 0.0008 

J 5 0.0378 0.0477 0.0286 0.0382 0.0400 0.1428 0.0477 

S 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

U 6 0.0058 0.0700 0.5465 0.0118 0.0643 0.0291 0.0291 

 

Table 4: Results of Bispectrum Tests on Returns Data 

 framesize = 71 framesize = 60 

 Series Gaussianity 

H 

Linearity, 

0.80 Fractile 

 % Significant 

 bispectral 

estimates 

Gaussianity 

H 

Linearity, 

0.80 Fractile 

% Significant 

 bispectral 

estimates 

A 24.68 -1.386 9.88 27.62 -1.659 11.56 

C 11.02 -1.958 5.86 9.71 -3.786 7.11 

D 20.43 1.383 6.17 21.96 -0.733 8.89 

F 20.03 -1.639 8.33 22.10 -0.023 9.33 

G 25.37 -0.067 8.33 28.01 -0.525 9.78 

H 17.74 -0.138 7.41 21.03 2.626* 10.67 

I 51.79 -2.475 11.42 52.85 -3.181 12.00 

J 21.20 -3.204 7.72 16.30 -2.313 10.22 

S 33.89 -2.011 11.73 27.39 0.464 12.44 

U 17.60 -2.402 8.64 20.23 -1.468 8.44 
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The inputs to the neural network are the five dummy variables outlined in the text, together with 

the number of lags of the dependent variable chosen by SBIC. 
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Table 5: BDS Test Results for Returns Data 

 
Embedding Dimension 

Series 2 3 4 5 6 7 8 9 10 

A 20.108 17.611 14.984 12.810 11.249 10.231  9.375 8.519 7.794 

C  2.232  2.960  2.191  6.972  8.739  9.847 11.491 12.243 12.492 

D  2.194  2.223  2.061  2.064  2.124  2.186  2.236  2.262  2.274 

F  0.096  0.115  0.096  0.088  0.047  0.031  0.015  0.012  0.015 

G  0.913  1.321  1.343  1.381  1.382  1.586  1.762  1.871  1.971 

H  1.366  1.509  1.999  3.030  3.751  6.069  7.615  8.559  9.100 

I  1.328  1.466  1.452  1.458  1.385  1.371  1.356  1.330  1.306 

J  0.596  1.751  1.898  2.585  2.720  3.476  3.853  4.024  4.197 

S  4.991 13.019 14.385 14.670 14.402 13.950 13.490 13.044 12.619 

U  1.732  2.269  2.906  6.048  8.273  9.684 10.667 11.091 11.192 

 

Table 6: BDS Test Results for Standardised Residuals of a GARCH-(1,1) Model 

 
Embedding Dimension 

Series 2 3 4 5 6 7 8 9 10 

A   3.587  3.050  2.768  2.472  2.207  1.975  1.772  1.591  1.430 

C -2.836 -3.732 -0.323  0.598  0.667  0.393 -0.026 -0.499 -0.997 

D -0.196 -0.245  0.094  0.231  0.348  0.387  0.405  0.435  0.440 

F -0.048 -0.090  0.202  0.917  0.770  1.200  1.415  1.517  1.551 

G  0.314  0.397  0.745  1.236  1.426  1.578  1.672  1.719  1.728 

H -0.720  0.297  0.648  0.963  1.106  1.427  1.350  1.668  2.242 

I  0.051  0.275  0.407  1.169  1.548  0.910  0.731  1.161  1.793 

J -0.055 -0.167 -0.200 -0.177 -0.167 -0.164 -0.147 -0.152 -0.158 

S  2.137  6.446  7.036  7.787  7.719  7.367  7.900  8.432  8.958 

U -1.594 -2.161 1.566  2.473  3.596  3.935  3.916  3.721  3.429 
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