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Abstract 10 

Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a 11 

suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path 12 

lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built 13 

residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from 14 

the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale 15 

heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are 16 

revealed by the long duration of this dataset and variability in monthly QH is related to the 17 

meteorological conditions. At shorter time scales the response of QH to solar radiation often gives 18 

rise to close agreement between the measurements, but during times of rapidly changing cloud 19 

cover spatial differences in the net radiation (Q*) coincide with greater differences between heat 20 

fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In 21 

summer the observed energy partitioning is related to the vegetation fraction through use of a 22 

footprint model. The results demonstrate the value of scintillometry for integrating surface 23 

heterogeneity and offer improved understanding of the influence of anthropogenic materials on 24 

surface-atmosphere interactions. 25 

Keywords 26 

Energy balance; Large aperture scintillometer; Seasonality; Sensible heat flux; Urban 27 

1. Introduction 28 

Understanding the interactions between the land surface and the atmosphere is central to 29 

developing our predictive power in terms of weather forecasting, air quality events, thermal 30 

comfort, flood risk and tools for urban design. The surface energy balance has been closely linked to 31 

land use and land cover, from studies both within and between cities. This has been achieved largely 32 
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through eddy covariance (EC) measurements at multiple sites in a city (e.g. in Los Angeles 33 

(Grimmond et al. 1996), Basel (Christen and Vogt 2004), Łódź (Offerle et al. 2006), Melbourne 34 

(Coutts et al. 2007), Montreal (Bergeron and Strachan 2010), Dublin (Keogh et al. 2012), Essen 35 

(Weber and Kordowski 2010), Oberhausen (Goldbach and Kuttler 2013) and Helsinki (Nordbo et al. 36 

2013)); and through comparison of measurements from different cities (e.g. Grimmond and Oke 37 

(1995; 2002)). Also, studies at individual sites have combined footprint models and land cover maps 38 

to capture differences in the surface cover sampled as the source area of the EC measurement 39 

changes with atmospheric conditions (Vesala et al. 2008; Järvi et al. 2012; Goldbach and Kuttler 40 

2013). The derived relations between surface cover and fluxes offer valuable indications of the 41 

underlying processes and form a basis for modelling turbulent fluxes (Grimmond and Oke 2002; Järvi 42 

et al. 2011; Loridan and Grimmond 2012). 43 

Scintillometry provides a means to estimate fluxes at a much larger scale than eddy covariance, 44 

typically of the order of several km2 (Hoedjes et al. 2007; Guyot et al. 2009; Kleissl et al. 2009a). 45 

Path-averaging along the electromagnetic beam of the scintillometer means that measurements are 46 

inherently spatially integrated, offering a particular advantage over heterogeneous surfaces (Beyrich 47 

et al. 2002; Meijninger et al. 2002b; Evans 2009; Samain et al. 2011a). Despite the complexity of the 48 

urban surface, patches of impervious land cover (roads, car parks, paved areas) adjacent to green 49 

spaces (parks, gardens) are not very different to the juxtaposition of fields containing differently 50 

ripening and senescing crops in mixed agricultural landscapes. In such studies, measuring sufficiently 51 

high above the surface ensures the influences of surface heterogeneity are well-blended at the 52 

height of the measurement and reliable fluxes can be obtained (Meijninger et al. 2002b; Ezzahar et 53 

al. 2007). In addition to the increased spatial representativeness of such large-area measurements, 54 

their increased scale facilitates comparison with satellite remote sensing products or land-surface 55 

models. A key conclusion of the work by Chehbouni et al. (2000a) was that model development 56 

should focus on establishing relations to replicate observations made at the large-scale. Studies 57 

comparing model output with scintillometry data include the work of Cheinet et al. (2011), Samain 58 

et al. (2011b), Steeneveld et al. (2011) and Maronga et al. (2013).  59 

The use of scintillometers in urban environments can be divided into two groups: (a) studies 60 

involving small aperture instruments, usually deployed within or near the top of the roughness sub-61 

layer on path lengths of the order of 100 m, e.g. in Tokyo (Kanda et al. 2002), Basel (Roth et al. 2006) 62 

and London (Pauscher 2010); and (b) studies over much longer path lengths (500 m - 10 km) using 63 

large aperture scintillometers. This study uses large aperture scintillometry. The much larger 64 

sampling volume enables robust retrieval of turbulence statistics and the measurement sensitivity is 65 



3 
 

greatest near the centre of the path, away from the instruments and their mounting structures, such 66 

that the influence of locally-produced turbulence around these structures has minimal impact on the 67 

measurements. Furthermore, direct access to the measurement area is not required – an 68 

electromagnetic beam is simply transmitted high above the surface – unlike point measurements 69 

requiring in situ mounting. This remote sensing capability makes the scintillometry technique 70 

particularly valuable in the urban environment.  71 

There are an increasing number of studies using large aperture scintillometry in urban areas. 72 

Lagouarde et al. (2006) present results from a three week trial in summer 2001 in which two large 73 

aperture scintillometers were used over Marseille. Other studies include work in London (Gouvea 74 

and Grimmond 2010), Nantes (Mestayer et al. 2011), Łódź (Zieliński et al. 2012) and Helsinki (Wood 75 

and Järvi 2012). 76 

To date, the use of large aperture scintillometry in urban areas has been to derive the sensible 77 

heat flux. In order to directly estimate the latent heat flux, a second scintillometer of longer 78 

wavelength is required (Hill et al. 1988; Andreas 1989), however these are not yet commercially 79 

available. Hence there are only a handful of two-wavelength studies documented (Kohsiek and 80 

Herben 1983; Green et al. 2001; Meijninger et al. 2002a; Meijninger et al. 2006; Evans 2009). A 81 

millimetre-wave scintillometer was installed alongside one of the infrared scintillometers used in this 82 

study. These first two-wavelength results from the urban environment are presented in two 83 

companion papers (Ward et al. in preparation a,b). 84 

The goal of the work presented here is to investigate the influence of the surface on sensible 85 

heat fluxes across different spatial and temporal scales in the suburban environment. Eddy 86 

covariance measurements are analysed together with results from large aperture scintillometers 87 

installed on 2.8 km and 5.5 km paths in Swindon, UK. The two year study period enables analysis of 88 

seasonal and inter-annual patterns (Sect. 3.1) as well as the short-term response of heat fluxes to 89 

solar radiation (Sect. 3.2). Consideration is given to the experimental uncertainties, including the 90 

representativeness of point measurements required as inputs for scintillometry algorithms (Sect. 91 

2.3) and the observational challenges associated with urban environments. The contributions of 92 

different land cover classes are related to the observations at each scale by applying a footprint 93 

model (Sect. 3.3). 94 
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2. Methodology  95 

2.1. Derivation of the sensible heat flux from single-wavelength scintillometry 96 

Scintillometers measure the intensity of an electromagnetic beam after propagation through the 97 

turbulent atmosphere. Changes in beam intensity are related to the strength of turbulence and can 98 

be converted to the structure parameter of the refractive index of air (Cn
2). First, these refractive 99 

index fluctuations must be related to temperature fluctuations, 100 

2

2
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T
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A

T
C ,         (1) 101 

where CT
2 is the temperature structure parameter and AT is the structure parameter coefficient 102 

which depends on temperature (T), pressure (p) and weakly on humidity (Hill et al. 1980; Andreas 103 

1988; Ward et al. 2013b). The Bowen ratio (β) correction given by Wesely (1976) (see Moene (2003) 104 

for full details and a discussion) is not implemented in Equation 1 because β is not known a priori. 105 

The effect of this is discussed in Sect. 2.3. 106 

The conversion from structure parameters to fluxes entails iteration of similarity functions, fMO(ζ), 107 

using Monin-Obukhov similarity theory (MOST) and the effective height of the scintillometer, zef, the 108 

wind speed, U (which is measured at height zU), displacement height, zd, and aerodynamic 109 

roughness length, z0. Commonly used forms of the similarity functions are 110 

3/2

21 )1()( TTMO ccf         (2) 111 

for unstable conditions and        112 

)1()( 3/2

31 TTMO ccf         (3) 113 

for stable conditions. The stability variable ζ is given by (zm-zd)/LOb, where LOb is the Obukhov length 114 

and zm the measurement height, or zef/LOb when zef has been calculated incorporating the 115 

displacement height (Hartogensis et al. 2003). Different values of the empirically derived constants 116 

cT1-3 are used in the literature (Andreas 1988; Hill et al. 1992), and alternative functional forms 117 

appear, e.g. Thiermann and Grassl (1992). The Wyngaard (1973) values were adjusted by Andreas 118 

(1988) to give cT1 = 4.9, cT2 = 6.1 and cT3 = 2.2 (hereafter An88). De Bruin et al. (1993) found cT1 = 4.9, 119 

cT2 = 9 and cT3 = 0 (hereafter DB93). These similarity functions relate the temperature structure 120 

parameter to the temperature scaling variable (T*), 121 



5 
 

 

2/1
3/22

*
)(

)(

MO

dmT

f

zzC
T .        (4) 122 

The friction velocity, u*, is estimated from measured wind speed assuming a logarithmic wind profile 123 

adjusted for stability and a value for the roughness length (e.g. Stull (1988)). The wind profile 124 

equation is solved iteratively with 125 
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where g is the acceleration due to gravity and κv is the von Kármán constant (0.4). Note that this 127 

equation for LOb neglects the buoyancy correction. Finally, the sensible heat flux is obtained using 128 

**TucQ pH ,         (6) 129 

where ρ is the density of air and cp the specific heat capacity at constant pressure. In the following, 130 

QH_BLS and QH_LAS are used to denote the sensible heat flux for the 5.5 km path and 2.8 km path, 131 

respectively (Sect. 2.2). The sensible heat flux from the EC station is denoted QH_EC. 132 

One drawback of scintillometry is that the sign of the heat flux is unknown and must be assigned 133 

based on other information. Following a comparison of possible algorithms, Samain et al. (2012) 134 

recommended using an algorithm based on the minima in the diurnal cycle of Cn
2 to indicate a 135 

transition of stability. We follow a similar methodology here, which has the key advantage that it is 136 

based on path-averaged information. 137 

2.2. Site description and experimental details 138 

This study took place in Swindon (population 175 000), situated 120 km west of London (top 139 

right, Fig. 1). Typical of the UK suburban landscape, Swindon consists mainly of residential areas with 140 

houses of varying ages extending outwards from the town centre, interspersed with greenspace, 141 

small parades of shops and institutional buildings. Larger industrial and commercial zones are mostly 142 

situated towards the edges of the development. The town centre comprises commercial areas, with 143 

some pedestrianized streets, offices, public buildings and transport hubs. Building density in the 144 

town centre is greater than in the surrounding suburbs and buildings are taller, larger and more 145 

variable in height. Outside of the urban core the buildings are more uniform, houses are mostly 1-3 146 

storeys, semi-detached or terraced and usually have at least a small garden. There are a few small 147 

blocks of flats (4-5 storeys) and larger warehouses in industrial areas. Trees are of a similar height to 148 

the buildings and found mostly in undeveloped green corridors between residential areas, along 149 
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roadsides and in gardens. The area is relatively well vegetated (cover fraction 53%), largely due to 150 

the prevalence of grassed areas: parks, playing fields, green corridors, gardens, verges and a large 151 

nature reserve near the centre of the study area (Fig. 1). 152 

 153 

 154 

Fig. 1 Land cover surrounding the two scintillometer paths (BLS and LAS), eddy covariance station (EC) and two 155 

meteorological stations (METsub and METroof). Example footprints for typical atmospheric conditions (wind direction = 225°, 156 

LOb = -200 m, u* = 0.5 m s-1 and σv = 0.9 m s-1) are indicated by the cumulative source area: the region within the solid 157 

(dashed) line contributes 80% (95%) to the measured flux. The location of Swindon within the British Isles is shown (top 158 

right). Details of the land cover classification are given in the text. Where land cover data were unavailable areas are left 159 

unclassified (white). 160 

 161 

Observations at multiple scales are achieved through a combination of the eddy covariance 162 

technique and two scintillometer paths. The largest measurement scale reaches between the town 163 

centre and the rural fringe at the northern edge of the settlement: an infrared scintillometer, the 164 
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BLS900 (Scintec, Rottenburg, Germany), was installed on a 5.5 km path orientated approximately 165 

north-south. A second infrared scintillometer, a LAS 150 (Kipp and Zonen, Delft, The Netherlands), 166 

was aligned on a shorter path of length 2.8 km. This path is located over relatively recently 167 

developed suburbs (in the last 20 years or so) 3-5 km north of the town centre. Both are large 168 

aperture scintillometers operating at a wavelength of 880 nm. Although LAS is an abbreviation for 169 

large aperture scintillometer, in this study BLS is used to denote the scintillometer on the long path 170 

and LAS the scintillometer on the short path. The EC system was installed approximately 3 km north 171 

of the town centre, close to the middle of the long path. 172 

Footprint models can be used to aid the interpretation of observed fluxes by relating them to the 173 

probable area of the surface that influenced the measurements. Although some of the assumptions 174 

may be challenged by complex environments, footprint models have been used successfully in urban 175 

areas (Schmid et al. 1991; Järvi et al. 2009; Hiller et al. 2011), providing measurements are made at 176 

sufficient height that the influences of individual obstacles or heterogeneities are averaged out. 177 

Meijninger et al. (2002b) extended footprint theory to scintillometers by combining source areas 178 

calculated for a single point measurement with the scintillometer path weighting function. This has 179 

since been adopted by other studies (Meijninger et al. 2006; Hoedjes et al. 2007; Samain et al. 180 

2011a; Evans et al. 2012; Liu et al. 2013). A range of footprint models exist; here we use the 181 

analytical model of Hsieh et al. (2000) and assume the lateral dispersion is Gaussian (Schmid 1994; 182 

Detto et al. 2006). 183 

Results of the footprint model for each of the three systems are shown in Fig. 1 for typical 184 

atmospheric conditions (wind direction = 225°, LOb = -200 m, u* = 0.5 m s-1 and standard deviation of 185 

lateral wind σv = 0.9 m s-1). Source areas vary depending on atmospheric conditions and wind 186 

direction, as well as measurement height and surface roughness. The difference in measurement 187 

scales is apparent. The sizes of the areas contributing 80% (95%) of the observed fluxes are 188 

approximately 0.06, 1.0 and 3.0 km2 (0.5, 3.0 and 7.5 km2) for the EC, LAS and BLS, respectively. The 189 

size of the footprints increases with stability. 190 

Beam heights, land cover and building and tree height were obtained using a spatial database 191 

incorporating surface cover information (OS MasterMap 2010 ©Crown Copyright), a digital terrain 192 

model and digital surface model from lidar (2007, ©Infoterra Ltd) and aerial photography (2009, 193 

©GeoPerspectives). For this study a spatial resolution of 5 m was used, further details are given in 194 

Ward et al. (2013a). Some of the residential area at the far north-west of the study area has very 195 

recently been completed, with some ongoing development of the rural outskirts during the study 196 

period. The overall effect here may be a small overestimation of the vegetated land cover fraction 197 
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for the LAS path, when winds are from the west or north-west and in stable conditions, as this recent 198 

development has not yet been incorporated in the spatial database. 199 

The roughness length for momentum was estimated based on the mean height of the roughness 200 

elements (zH) within the area influencing the measurements using the approximation z0 = 0.1zH 201 

(Garratt 1992). The resulting values (Table 1) are reasonable based on comparison with the 202 

literature (Grimmond and Oke 1999), however there is appreciable uncertainty associated with this 203 

(and other) methods (Sect. 3.1). The zero plane displacement height, zd, is estimated at 0.7zH and 204 

incorporated into the effective height calculation for the scintillometers, after Hartogensis et al. 205 

(2003) (their equation 15). 206 

Both infrared scintillometer transmitters were installed on a telecommunications mast at the 207 

northern edge of the suburbs at 27.9 m (BLS) and 26.6 m (LAS) above ground level. The LAS receiver 208 

was bolted to a 1.7 m high post at the same property as the EC mast, whilst the BLS receiver was 209 

mounted on a building in the town centre at 26.2 m. The combination of the topography (Fig. 2), 210 

mounting on existing structures and the path weighting provides sufficient beam height for the 211 

scintillometers to be above the blending height (which is estimated to be between 15 and 30 m 212 

(Pasquill 1974; Garratt 1978)). The blending height will be larger above landscapes with larger scale 213 

heterogeneity (e.g. Wood and Mason (1991)), or may not exist at all once the scale of heterogeneity 214 

exceeds the boundary layer height (Maronga and Raasch 2013). With these limitations in mind, the 215 

Swindon sites were selected such that the patches of different land cover within the footprints are, 216 

for the most part, reasonably small (100 - 300 m or less). 217 
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Instrumentation Dates Location zm [m] zef 

[m] 

Path 

length [m] 

Bearing 

[°] 

z0 

[m] 

zd 

[m] 

BLS 12 Jan 2011 –  

31 Dec 2012 

51°36'33.9" N   

1°47'38.6" W (Tx) 

51°33'38.1" N   

1°46'55.3" W (Rx) 

44.3 

 

45.0 5492 170 0.7 4.9 

LAS 22 Jun 2011 –  

31 Dec 2012 

51°36'33.9" N   

1°47'38.6" W (Tx) 

51°35'4.9" N   

1°47'53.0" W (Rx) 

32.4 35.9 2761 184 0.6 4.5 

EC 09 May 2011 –  

31 Dec 2012 

51°35'4.6" N 

1°47'53.2" W 

12.5 -  -  - 0.5 3.5 

METsub 09 May 2011 –  

31 Dec 2012 

51°35'4.6" N 

1°47'53.2" W 

10.6 (WXT) 

10.1 (NR01) 

- - - 0.5 3.5 

METroof* 01 Jan 2011 –  

31 Dec 2012 

51°34'0.3" N   

1°47'5.3" W 

2.0 (WXT) 

1.1 (NR01) 

- - - - - 

Table 1 Details of the instrumental setup. Tx denotes transmitter, Rx receiver. For the scintillometers the mean heights of 218 

the beams above the surface (zm) and the effective measurement heights (zef) are given. The date range refers to the data 219 

used here. *For METroof the heights above the roof surface are given; z0 and zd were not calculated for this site. 220 
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 221 

Fig. 2 Cross section of the topography (solid black line) and mean obstacle height (dotted line; buildings and trees within a 222 

radius of 100 m) along the (a) BLS and (b) LAS paths (coloured lines). 223 

 224 

A CR5000 datalogger (Campbell Scientific Ltd., Loughborough, UK) sampled the intensity of the 225 

received LAS beam at 500 Hz and measured the Cn
2 signal (calculated onboard the instrument and 226 

stored as a logarithm) every second which was then output at 1 min intervals and these were 227 

averaged to 10 min. For the BLS, the mean and standard deviation of the beam intensity of each disk 228 

(the BLS900 is a dual disk instrument with two transmitting apertures) were obtained from the 229 

supplied signal processing unit at 30 s intervals, then converted to log-amplitude variances and Cn
2 230 

and averaged up to 10 min. Data from a single disk are presented here. 231 

The EC system consists of a sonic anemometer (R3, Gill Instruments Ltd., Lymington, UK) and an 232 

open-path infrared gas analyser (LI-7500, LI-COR Biosciences, Lincoln, USA) at a height of 12.5 m. As 233 

this is 2-3 times the height of the surrounding buildings and trees, it is therefore sufficiently high to 234 

deliver fluxes representative of the local-scale. Data were processed using EddyPro (LI-COR) 235 
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following conventional procedures. Further details of the EC measurements can be found in Ward et 236 

al. (2013a). 237 

Meteorological instruments were installed on the same mast as the EC equipment (denoted 238 

METsub). A second set of meteorological data were collected at a rooftop site close to the town 239 

centre (METroof). Both stations included a four-component radiometer (NR01, Hukseflux, Delft, The 240 

Netherlands), automatic weather station (WXT510, Vaisala, Helsinki, Finland) and tipping bucket rain 241 

gauge (0.2 mm tip, Casella CEL, Bedford, UK). At METsub, the radiometer was installed at a height of 242 

10.1 m so that the downward-facing field of view comprises a mixture of surfaces: grass lawns and 243 

verges, road, pavement, hedges and small trees, bare soil, gravel, roofs of garages, small sheds and 244 

single-storey extensions and walls (brick and painted). At METroof, the radiometer was installed at 1.1 245 

m above the roof surface made of grey synthetic material and black rubber matting. Additionally at 246 

METroof, a heat flux plate (HFP01, Hukseflux) was installed between the roof surface and rubber 247 

sheet, providing an approximation of the change in storage through the roof. At both sites the 248 

meteorological data were logged at 1 min intervals (CR1000, Campbell Scientific Ltd.) and 249 

subsequently averaged to obtain 10 min resolution for calculation of the scintillometer fluxes or 30 250 

min for comparison with EC fluxes. The 10 min scintillometer fluxes were also averaged to 30 min for 251 

comparison with EC results. Details of the observational setup are summarized in Table 1.  252 

To provide nearly continuous auxiliary data required for scintillometry processing, results from 253 

the two meteorological stations were combined. When available, data from METsub are used as the 254 

siting of this station is more appropriate. Based on the regression of concurrent data (9 May 2011 - 255 

31 Dec 2012), temperature, relative humidity (RH), pressure and wind speed at METroof were 256 

adjusted to gap-fill the combined dataset, including the period prior to installation of METsub on 9th 257 

May 2011. This is considered further in Sect. 2.3. 258 

All data were subject to quality control routines. Data were removed at times of known 259 

instrument malfunction. Meteorological data were excluded when they (or their standard 260 

deviations) fell outside physically reasonable thresholds. Quality control of the scintillometry data 261 

included rejecting times when the received signal intensity dropped below half of the value in clear 262 

conditions, which usually indicated rain or fog. Data points neighbouring those that failed the 263 

intensity check were also removed. Out of the total data collected, 84% of BLS and 82% of LAS data 264 

(10 min) remained for analysis. 265 

Both scintillometers were corrected for the effects of saturation using the modulation transfer 266 

function of Clifford et al. (1974). Using the threshold value suggested by Kleissl et al. (2010), 16% of 267 
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the BLS data and 0.2% of the LAS data might be expected to suffer from saturation. Overall, the 268 

correction increased Cn
2 by 4% and 1% for the BLS and LAS respectively (naturally the corrections are 269 

larger with increased scintillation and rise to 8% and 2% for the midday periods).  270 

Recent studies have indicated sometimes severe discrepancies between certain scintillometers, 271 

in particular the LAS 150 model (Kleissl et al. 2008), whereas the BLS900 model tends to give more 272 

reproducible results (Kleissl et al. 2009b). Prior to deployment in Swindon, the LAS and BLS were run 273 

alongside each other at a fairly homogenous grass test site at Chilbolton Observatory, Hampshire, 274 

UK (17 April 2010 – 25 May 2010). Observed Cn
2 ranged between 10-16 m-2/3 and 10-12 m-2/3, which 275 

spans the range of values observed for the Swindon paths. Results suggested the response of the 276 

LAS is reasonable but compared to the BLS Cn
2 is overestimated by 9.8%. This adjustment has been 277 

applied to the LAS Cn
2 for the Swindon data. As a result of these comparisons (e.g. Kleissl et al. 278 

(2008; 2009b), Van Kesteren and Hartogensis (2011)), Kipp and Zonen have updated their original 279 

LAS 150 instrument to a LAS MkII model (Mustchin et al. 2013). 280 

2.3. Assessment of the input meteorological data 281 

First, the suitability of the combined meteorological input data used to process the scintillometry 282 

fluxes is considered. To calculate QH from single-wavelength scintillometry, air temperature, 283 

pressure and humidity are required to first obtain the structure parameter of temperature, CT
2. Both 284 

T and RH are similar between the METsub and unadjusted METroof sites. The regression slopes are 285 

within 3% and there is high correlation (r2 > 0.98). Sensitivity of QH to these input meteorological 286 

variables is small (Hartogensis et al. 2003) and indeed these very small differences have minimal 287 

impact on the fluxes. The average difference in QH is < 0.5% when calculated using T, RH and p from 288 

each site. Use of this combined dataset is therefore judged unproblematic and to be a sufficiently 289 

accurate representation of T, RH and p across the study area. 290 

An initial estimate of the Bowen ratio is recommended to account for the contribution of 291 

humidity and combined temperature-humidity fluctuations to optical Cn
2 (Wesely 1976). Usually the 292 

value of β is arrived at iteratively through incorporation of the available energy (e.g. Meijninger et al. 293 

(2002b)). However, estimating the available energy is challenging in urban areas as the net storage 294 

heat flux (ΔQS) plays a more significant role in the energy balance than for most rural areas (e.g. 295 

grassed or agricultural land), yet it is very difficult to measure directly (Offerle et al. 2005; Roberts et 296 

al. 2006). Other (rural) studies have used β measured at a nearby station (Hoedjes et al. 2002; 297 

Samain et al. 2011a) or have calculated QH using a series of values of β (Meijninger and De Bruin 298 

2000). When β is expected to be large (e.g. > 0.6 for Chehbouni et al. (2000b); > 1 for Moene (2003)) 299 
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the correction may be neglected. Given the uncertainty in estimating the available energy and the 300 

lack of representative EC data across the whole study area, the Bowen ratio correction has not been 301 

applied for the results presented here. The potential impact is an average overestimation in QH from 302 

the scintillometers of less than 5% for β > 1, and less than 10% for β = 0.5. For the BLS, the CT
2 values 303 

here were found to be within around 6% of the CT
2 values calculated incorporating data from the 304 

millimetre-wave scintillometer (Sect. 1), which do not require a Bowen ratio correction (see Ward et 305 

al. (in preparation b) for details). 306 

To process scintillometry data, the friction velocity is usually estimated from wind speed 307 

measured at a single point and adjusted to beam height using the logarithmic profile accounting for 308 

stability. As with the other meteorological inputs, wind speed from METroof was adjusted to produce 309 

the combined dataset with optimum availability of input data. Concurrent QH values calculated using 310 

the METsub wind speed or the adjusted METroof wind speed differ by less than 3%, r2 is high (0.98) and 311 

there is little scatter (root mean squared error, RMSE < 10 W m-2).  312 

The dual-disk design of the BLS900 enables estimation of the path-averaged crosswind, i.e. the 313 

component of the wind speed perpendicular to the scintillometer path. To check that the point 314 

measurements of wind speed were a realistic proxy for the wind field over the scintillometer source 315 

area, a comparison was made between the BLS crosswind speed and the equivalent crosswind speed 316 

calculated using wind speed and direction from METsub and scaled to the effective height of the BLS 317 

using stability from the EC station. Overall the crosswind estimates displayed similar trends across a 318 

range of wind speeds and directions. The high correlation obtained (r2 = 0.922) implies that these 319 

point measurements generally capture the variability of the wind field at the larger scale and gives 320 

confidence in their use in processing the scintillometry data. 321 

3. Analysis of sensible heat fluxes 322 

3.1. Assessment of seasonal cycles and annual variations 323 

Large-area sensible heat fluxes from the 5.5 km scintillometer path are presented for two years 324 

(2011-12), alongside 18 months of data from the shorter 2.8 km scintillometer path and almost 20 325 

months of eddy covariance data (Fig. 3). The annual cycle is evident, with mean daily (24 h) QH 326 

reaching a maximum in early summer (May-June in 2011, May in 2012) and minimum in December. 327 

In December, average QH is negative even during daytime (defined as times when incoming 328 

shortwave radiation K↓ > 5 W m-2, see Fig. 3b) as the typical diurnal course of QH becomes positive 329 

only for a few hours around midday (Fig. 4). This behaviour is observed consistently across the three 330 

datasets and in both years but contrasts with the majority of urban studies in more built-up areas, 331 
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where greater heat release from storage and anthropogenic activity can maintain a positive sensible 332 

heat flux all year round (Offerle et al. 2005; Kotthaus and Grimmond in press-a). For two sites in 333 

Oberhausen, Germany, Goldbach and Kuttler (2013) found QH to be positive for most of the daytime 334 

throughout the year at their urban site, whereas their suburban site exhibits similar behaviour to 335 

Swindon. Besides the smaller storage and anthropogenic heat flux in suburban areas, more of the 336 

available energy is partitioned into evaporation, owing to increased moisture availability from soil 337 

surfaces and greater total evapotranspiration from a larger vegetation fraction. 338 

Within the trends of the expected annual cycle, there are notable differences between the two 339 

years studied. Peak QH is larger in summer 2011 compared to 2012 and month-to-month variation is 340 

smaller in 2011. Broadly speaking, much of 2011 was under threat of drought, with dry soil moisture 341 

conditions and depleted ground water supplies. Despite frequent rain and very few clear sky days 342 

the annual rainfall total was 530 mm compared to the average 780 mm for southern England1. Dry 343 

conditions continued through early spring 2012, until early April. Very wet weather followed and 344 

remained throughout 2012 (total rainfall 1020 mm), with brief drier and warmer spells in late July 345 

and early September.  346 

June 2012 was particularly wet and cloudy (sunshine hours were only 70% of normal1; mean 347 

daytime K↓ was 174 W m-2 in 2012 compared to 212 W m-2 in 2011). Monthly mean daily QH was 348 

19%, 34% and 31% lower than in June 2011 for the BLS, LAS and EC, respectively. August 2012 also 349 

had a notably lower QH during daytime compared to 2011 (also shown in Fig. 4), despite similar 350 

radiative energy inputs in both years. A long dry spell and generally sunny weather in September 351 

2012 allowed surfaces to dry out and QH to increase, resulting in a larger average value than for the 352 

previous month. Large negative nocturnal QH_BLS in February 2011 means the daily (24 h) average is 353 

negative, whereas high Q* and high daytime QH_BLS in 2012 contribute to a positive 24h average in 354 

2012 (Fig. 3). 355 

 356 

                                                             
1 Met Office climate statistics (1971-2000), http://www.metoffice.gov.uk/climate, last accessed 29 March 2013 

http://www.metoffice.gov.uk/climate
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 357 

Fig. 3 Monthly mean sensible heat flux observations from scintillometry (BLS and LAS) and eddy covariance (EC) for all 358 

available data (a) over 24 h and (b) separated into day (K↓ > 5 W m-2) and night times. Partial months in relation to the 359 

installation dates (Table 1) are January 2011 (BLS), May 2011 (EC) and June 2011 (LAS, note only 4 days of data due to an 360 

instrument fault). Error bars indicate the impact on the scintillometer fluxes of altering the input roughness length by ± 0.2 361 

m (a) or using the similarity functions of De Bruin et al. (1993) (b). The net radiation is indicated by shading (b, right-hand 362 

axis). 363 

 364 

 365 
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 366 

Fig. 4 Temporal variation of monthly mean diurnal cycles of sensible heat fluxes from (a) eddy covariance, (b) the LAS and 367 

(c) the BLS.  368 

 369 

Overall there is remarkably good agreement across the three datasets, which capture seasonal 370 

similarities and inter-annual variability. The different source areas of each instrument, and that the 371 

BLS measures across a large proportion of northern Swindon, suggest that these trends are local-to-372 

city-scale responses to regional weather variability. Furthermore, this agreement implies that any 373 

bias in the monthly averages due to the effect of the wind direction distribution on the 374 

measurement footprints is outweighed by the changes in surface conditions, prevailing weather and 375 

the resulting surface-atmosphere interactions. Given the much smaller source area of the EC 376 

technique compared to scintillometry, it is reasonable to expect that heterogeneity of the surface 377 

has a larger influence on the EC observations than the scintillometry observations (Sect. 3.3). 378 

The LAS tends to give the largest QH, particularly during daytime, compared to both EC and the 379 

BLS. In summer 2012 the EC and BLS average values do not reach above 150 W m-2, in contrast to 380 

QH_LAS (Fig. 4). During winter months (November 2011-January 2012) and at night the BLS gives the 381 
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largest fluxes. Daily average QH_EC often lies between the two scintillometer averages but during 382 

winter (November-December 2011, December 2012) and at night the scintillometers tend to give 383 

larger magnitude QH. This can also be seen in Fig. 4: the absolute size of QH from the scintillometers 384 

is larger (e.g. around transition times in December), whether positive or negative, whereas EC values 385 

are much closer to zero. Larger scintillometer fluxes in neutral-to-stable conditions may reflect the 386 

performance of the similarity functions (Sect. 3.2).  387 

The widely implemented similarity functions of Andreas (1988) were used here. Using the De 388 

Bruin et al. (1993) similarity functions instead increases QH by about 13-14% (bars in Fig. 3b). This is 389 

similar to results in Marseille (Lagouarde et al. 2006) and within the 10-15% range given by Beyrich 390 

et al. (2012). The large uncertainty introduced by the choice of similarity function is a major 391 

limitation of the scintillometry technique across all environments; it is not confined to urban sites 392 

although there is the added question of whether functions developed over homogeneous terrain 393 

should be applied to more heterogeneous locations. Kanda et al. (2002) and Roth et al. (2006) both 394 

derived ‘urban forms’ of the similarity functions for their small aperture scintillometer studies, 395 

however their paths were closer to, or within, the roughness sub-layer. Other large aperture studies 396 

in urban environments have used the more common functions (Lagouarde et al. 2006; Zieliński et al. 397 

2012). 398 

Typically, the uncertainty in z0 is large as z0 can vary spatially, with time of day and stability 399 

(Grimmond et al. 1998; Hoedjes et al. 2007; Zilitinkevich et al. 2008), and with shape, density and 400 

arrangement of surface structure (Grimmond and Oke 1999). For the study area, the true value is 401 

expected to be within the range 0.4 to 1.0 m based on values in the literature. The impact on the 402 

scintillometer estimation of QH of changing the prescribed values of z0 by ±0.2 m is ±7% (error bars 403 

in Fig. 3a). Although the flux is fairly sensitive to the value of z0 used, the overall trends do not 404 

change significantly. No adjustment was made to account for seasonal variation in z0 (or zd), though 405 

these values may be 10-20% smaller in winter than in summer (Grimmond et al. 1998). Using a 406 

smaller value of z0 during leaf-off periods decreases the wintertime fluxes slightly (the error bars in 407 

Fig. 3a represent a change in z0 of about ±30%). 408 

Allowing a ±5% uncertainty in zef (±2.25 m) affects the fluxes by ±3%. This uncertainty in zef 409 

includes measurement accuracy and variation of the effective height with stability as well as 410 

accounting for spatial differences in obstacle height (hence zd) and topography. The large beam 411 

height and relatively small displacement height help to keep the sensitivity to zef (and zd) small.  412 
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3.2. Short-term variability 413 

Direct comparison of 30 min sensible heat fluxes obtained from scintillometry and EC (Fig. 5) 414 

indicates reasonably good agreement between the measurement techniques and across the scales 415 

with strong correlation (r2 ≈ 0.87). The slope of the regression between QH_LAS and QH_EC is close to 416 

1, with a small positive offset, whereas the BLS tends to give lower QH than EC particularly towards 417 

large values of QH. Whilst the linear fit between QH_LAS and QH_EC indicates a good match between 418 

these data, the BLS data distribution appears more curved at high QH_EC. The source area of the EC 419 

mast and BLS are quite different, which may partly explain why the highest EC fluxes are not 420 

matched by the BLS. Specifically, the area to the south and south-west of the EC mast has a 421 

particularly high proportion of built and impervious surfaces and little vegetation, whilst the BLS 422 

source area always includes open green spaces. Thus when the EC footprint is over the least 423 

vegetated sector (180-240°), the measured QH_EC tends to be larger compared to other wind sectors 424 

around the flux mast as well as to the scintillometer results. This effect would be amplified when 425 

surface water is scarce. During summertime, when the wind is from the south, both QH_LAS and 426 

QH_BLS are lower than QH_EC (Fig. 6). For more westerly winds (240-270°) the EC source area contains 427 

more vegetation and there is closer agreement between QH_EC and QH from the scintillometers. 428 

However, the remaining curvature in Fig. 6a, but not seen in Fig. 6b, most likely indicates 429 

saturation affecting the BLS (5.5 km path) but not the LAS on the shorter path. Despite having 430 

corrected the scintillometers for saturation (Sect. 2.2), a comparison of the distribution of CT
2 values 431 

from the BLS and LAS suggests that the highest BLS fluxes are still affected: whilst the LAS provides 432 

CT
2 values up to about 0.03 K2 m-2/3, the BLS distribution drops off sharply at around 0.009 K2 m-2/3. 433 

Recently, Wood et al. (2013) found an upper CT
2 threshold of 0.02 K2 m-2/3 for their shorter path 434 

length of 4.2 km. Other studies have also suggested that the effects of saturation may still be 435 

observed above commonly-used thresholds (Kohsiek et al. 2006). 436 

During night and transition times, the agreement between the datasets is poorer (r2 decreases to 437 

around 0.4 for K↓ ≤ 5 W m-2). This is to be expected for several reasons. Firstly, the limitations in 438 

instrument performance are reached when fluxes are small, for both EC and scintillometry. 439 

Secondly, the time of stability transition may vary with location, even along the scintillometer paths, 440 

so that the three values of QH obtained for a given time period may not have the same sign. Data 441 

points in the second and fourth quadrants indicate when scintillometer and EC derived QH have 442 

opposite signs. The stability may also change more than twice per day which would mean the 443 

scintillometer data are processed assuming the wrong stability regime. Thirdly, the corrections for 444 

the influence of humidity fluctuations on CT
2 and LOb are generally larger at these times (when β is 445 
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small). The Bowen ratio correction to CT
2 introduces the larger error of these two approximations; 446 

neglecting the buoyancy correction to the Obukhov length (e.g. Green et al. (2001)) is thought to 447 

lead to a slight underestimation in QH of ≈ 0.5 W m-2. Finally, near-neutral to stable atmospheric 448 

conditions do not always satisfy the assumptions required for the measurement theory (e.g. weak 449 

turbulence, non-stationarity, poorer performance of similarity functions). Removing the night time 450 

data causes the regression slopes in Fig. 5 to decrease slightly to 0.77 (BLS) and 0.94 (LAS), and the 451 

intercepts to increase to 13 W m-2 (BLS) and 9 W m-2 (LAS). For night time data only, the intercepts 452 

are similar in size but of opposite sign. These intercepts are thought to result from the 453 

overestimation of small fluxes by the similarity functions. Considering all data together (Fig. 5) the 454 

lack of small QH values from the scintillometers can be identified around zero. Using functions of a 455 

conventional form (such as Equations 2 and 3) appears to under represent QH values close to zero 456 

and overestimates QH in neutral conditions (fMO is too small so the T* obtained is too large). 457 

Investigation into the scaling of CT
2 with stability is presented in more detail elsewhere (Ward et al. 458 

in preparation a) and Lagouarde et al. (2006) also noted an overestimation (15 W m-2) of small night 459 

time QH values using An88 and DB93 (unstable forms). Although this effect is undesirable, the small 460 

size of the fluxes at these times means that absolute errors are small. 461 

 462 

 463 

Fig. 5 Comparison of 30 min sensible heat fluxes derived from the scintillometers (BLS, LAS) and eddy covariance (EC) for all 464 

available data. 465 
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 466 

Fig. 6 As for Fig. 5 but for summertime (May-Sep 2011-12) data only and for wind directions 180-270° (colours). 467 

 468 

The diurnal course of QH obtained from the three systems follow each other closely: example 469 

days from July 2012 are shown in Fig. 7. No rainfall was observed during these mostly clear-sky days 470 

although the influence of cloud cover can be seen on the morning of 22 July and afternoon of 25 471 

July. On 22 July the fluxes respond consistently to changes in the net radiation and the peaks and 472 

troughs are closely matched between EC, LAS and BLS observations. Data from METroof, 473 

approximately 3 km southwards (Fig. 1), closely matches the variation in Q* measured at the EC site. 474 

Time-lapse photography reveals fairly uniform, almost full cloud cover at sunrise which clears 475 

throughout the morning. On the afternoon of 25 July, however, the situation is quite different. 476 

Rapidly changing patchy cloud cover creates spatial variability in the radiation balance components. 477 

The responses of the two radiometers are less well correlated (compare Q* and Q*roof in Fig. 7a) and 478 

QH is seen to respond differently across the different measurement scales. Not surprisingly, QH_EC 479 

most closely matches Q* as both are measured at the same location and have more similarly sized 480 

and at least partially coincident source areas. In general, the scintillometers yield a more smoothly 481 

varying diurnal course than EC, often attributed to the greater spatial averaging by scintillometers 482 

(e.g. Lagouarde et al. (2006), Guyot et al. (2009)). The BLS appears to vary more smoothly than the 483 

LAS (e.g. 24 July) which is consistent with the size of their source areas. 484 

For clear days, the phase of QH is lagged relative to Q*. At the three scales QH peaks after Q* and 485 

remains positive later into the evening than Q*. One component of the urban net heat storage flux is 486 

approximated by a heat flux plate installed under the roof covering at METroof (ΔQS_roof in Fig. 7a). 487 

This flux increases earlier in the day and becomes negative long before Q*. In this way, release of 488 
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stored energy enables QH to remain positive even when Q* is negative (Oke and Cleugh 1987; 489 

Lemonsu et al. 2004). Normalising these fluxes by the net radiation clearly demonstrates the 490 

opposing hysteresis patterns of QH compared to ΔQS_roof (Fig. 7b). The proportion of Q* directed into 491 

sensible heat increases throughout the day whereas the proportion of energy used to heat the 492 

surface decreases. Strong hysteresis is evident on clear days but it tends to be less obvious on 493 

cloudier days. Similar patterns have been observed at other urban sites at the local-scale (Grimmond 494 

and Cleugh 1994; Grimmond and Oke 2002; Grimmond et al. 2004). Here we demonstrate that the 495 

phase lag between QH and Q* is observed right across the urban environment, from the local-scale 496 

up to the city-scale. The shift in peak QH around midday and into early afternoon can also be seen to 497 

some extent in the average monthly values (Fig. 4), particularly in spring and early summer 2011.             498 

Other than under conditions of rapidly changing Q*, and its associated high spatial variability, the 499 

diurnal patterns in QH derived from EC and the scintillometers match those of Q* measured at the 500 

EC site (Fig. 8). On 21, 22 and 27 July 2011 the sudden drop in Q* during the middle of the day is also 501 

seen in QH. The day-to-day variation in these two quantities is also very similar. For example Q* and 502 

QH steadily increase to reach over 600 W m-2 and 200-300 W m-2, respectively, on 25 July when peak 503 

QH_BLS is about 2/3 of QH_LAS. Both Q* and QH are lower during the following few days until 29 July 504 

when the net radiation remained very small throughout the day (< 100 W m-2) and conditions were 505 

mostly near-neutral. On this day the agreement in the shape of the diurnal cycle between the 506 

scintillometers and EC is poorer, although the fluxes show some agreement in responding to the dip 507 

in Q* in the afternoon. Under these near-neutral conditions it is likely that the stability transitions 508 

occur more often than twice daily as prescribed by the algorithm used to determine the sign of 509 

scintillometric QH. Indeed, QH_EC is seen to change sign several times during the afternoon and 510 

evening. 511 

 512 
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 513 

Fig. 7 Diurnal variation in sensible heat fluxes (QH) and net all-wave radiation (Q*) for four days in July 2012. Data from a 514 

heat flux plate installed on a rooftop, representing one component of the storage heat flux (ΔQS_roof) and a second 515 

radiometer located on the rooftop (Q*roof) are also shown. In (b) the fluxes have been normalized by the net all-wave 516 

radiation measured at the EC site (Q*). 517 

 518 
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 519 

Fig. 8 Sensible heat fluxes from EC and the scintillometers alongside net all-wave radiation from the EC site (Q*), rainfall 520 

and wind direction (also measured at the EC site) for two weeks in July-August 2011.  521 

 522 

The sign of the scintillometer sensible heat flux must be assigned during processing. Here, the 523 

stability was assumed to change from stable to unstable at the first minimum in Cn
2 on each day, and 524 

from unstable to stable at the second minimum, providing these transitions occurred within the 525 

likely time frames for sunrise and sunset. Additionally, the net radiation can be used to check 526 

whether the minima identified are likely to indicate stability transitions rather than sudden increases 527 

in cloud cover, for example. For each 24 h period the algorithm always results in some stable and 528 

some unstable data and the proportion of each depends on the observed behaviour of Cn
2 529 

(effectively on the time between the morning and evening minima). As is evident from the data, this 530 

method generally performs well in Swindon, where EC data suggests QH tends to be positive for 531 

some duration around midday and negative at night (Ward et al. 2013a). However, there are some 532 

days when the stability transition does not occur and either unstable conditions prevail throughout 533 

the night or stable conditions throughout the day. In these cases the sign of the fluxes from the 534 
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scintillometers may be incorrect but these occasions are observed infrequently and the size of the 535 

fluxes tends to be small so the likely impact is minimal.  536 

The day-to-day (night-to-night) changes in amplitude are usually captured (e.g. decreasing 537 

magnitude of nocturnal QH 24-27 July 2011 in Fig. 8b) and for some days the evolution of QH 538 

throughout the night is similar (e.g. decreasing 20-21, increasing 25-26 and 26-27 July 2011, Fig. 8b). 539 

This clear relation between the scintillometer and EC fluxes gives confidence that the measurement 540 

heights are suitable; in particular that the scintillometers are not measuring above the surface layer. 541 

In the winter months, occasionally there are periods of a few hours to days when the shallow surface 542 

layer means the scintillometer measurements cannot be related to surface fluxes via MOST (Braam 543 

et al. 2012). The EC data further supports these findings with very few cases of strongly stable 544 

stratification observed (ζEC < 0.1 for 89% of data). 545 

3.3. Influence of the surface 546 

Comparing the relative sizes of the fluxes can offer insight into key controls on suburban energy 547 

partitioning. Towards the end of the case study in Fig. 8 (30 July-01 August 2011), QH_EC peaks at 548 

larger values than either of the scintillometers, whilst QH_LAS is generally largest near the beginning 549 

of the period (21-25 July). The wind direction (Fig. 8c) provides a partial explanation due to the 550 

variation in source areas. For westerly to northerly winds, QH_LAS tends to be largest. All three fluxes 551 

become similar during northerly winds, when there is a greater vegetation fraction within the source 552 

area of each instrument. For the scintillometers the footprint will extend to include some of the rural 553 

farmland beyond the edge of the suburbs; at the EC site the increased vegetation is due to more 554 

gardens to the north of the mast (Ward et al. 2013a). 555 

The period shown in Fig. 9 (21 May – 31 July 2012) coincides with sudden vegetation growth in 556 

response to warm, sunny conditions at the end of May, completing the leaf-out period to reach 557 

maturity. Vegetation is then fully active throughout June and July. In this period a range of synoptic 558 

conditions (cloudy, mixed and clear days), frequent rainfall and a wide distribution of wind directions 559 

(although south-westerly was still dominant) occurred. 560 

Footprint calculations for each 30 min period reveal an overall ranking of the vegetation fraction 561 

for each instrument that is in accordance with broad expectations given their respective sitings (EC < 562 

LAS < BLS). The mean vegetation fractions (± standard deviations) are 44.1 (±5.0) %, 53.9 (±2.9) % 563 

and 56.9 (±4.5) % for EC, LAS and BLS, respectively, for the data shown in Fig. 9. The standard 564 

deviation is largest for the EC site, as might be expected (a) given the far smaller size of the source 565 

area and (b) the differences in surface cover with wind sector around the mast. The vegetation 566 



25 
 

fraction ranges between 32.6% and 56.8% according to the EC footprint estimation for this period. 567 

The LAS source area characteristics are much less variable (minimum 47.7%, maximum 60.2%). The 568 

retail park to the west of the path (Fig. 1) constitutes a small proportion of the total source area and 569 

for westerly wind directions there is only a small increase in the built and impervious fractions. 570 

Despite having the largest area, the BLS footprint shows appreciable variability (48.3% – 65.7%), 571 

mostly associated with southerly or northerly winds when the town centre and nearby industrial 572 

areas (Fig. 1) or rural surroundings are included in the footprint. For small changes in wind direction 573 

the BLS source area composition hardly changes, whereas the EC source area composition can vary 574 

considerably (particularly for the 180-270° sector). In addition to the directional aspect of the 575 

surface heterogeneity, the total area included in the scintillometer footprint is smaller when the 576 

wind direction is parallel, as opposed to perpendicular, to the scintillometer path (Meijninger et al. 577 

2002b). In this case, the spatial integration occurs over a smaller area so the footprint composition, 578 

and observed fluxes, may be expected to be more variable. 579 

 580 

 581 

Fig. 9 Ratio of observed sensible heat flux to net all-wave radiation versus the proportion of vegetation within the flux 582 

footprint of the EC station, LAS and BLS in Swindon. Points are 30 min values around midday (1100-1500 UTC) for the 583 

period 21 May – 31 July 2012. Data are excluded for times during and ≤ 2 h after rainfall and when K↓ ≤ 200 W m-2. Black 584 

symbols with error bars represent the mean ± standard deviation of the respective observed values binned in 5% intervals 585 

of the vegetated cover fraction (bins with > 10 data points are plotted). Those data collected more than 2 days since 586 

rainfall are outlined in red. Average summertime values from various sites in the literature are shown for comparison (see 587 

references for details). 588 
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 589 

The ratio of QH to Q* decreases as the proportion of vegetation within each instrument’s source 590 

area increases (Fig. 9). Normalising the turbulent fluxes by an indicator of the energy available 591 

largely removes the otherwise often dominant dependence on insolation. Additionally, to moderate 592 

the influence of the diurnal hysteresis pattern (Fig. 7), only data around midday (1100-1500 UTC) 593 

have been included in Fig. 9. The observed relation between vegetation cover and partitioning of 594 

energy into QH is in agreement with other published studies, including summertime data from 595 

Kansas City (Balogun et al. 2009), seven sites in Basel (Christen and Vogt 2004), two sites (high and 596 

medium density) in Melbourne (Coutts et al. 2007) and four sites in Łódź (Offerle et al. 2006). Use of 597 

the scintillometers in Swindon enables this comparison to be extended to larger scales. 598 

 Relations between land cover and energy partitioning have mostly been developed for summer 599 

months, when the majority of field campaigns have taken place and do not account for differences 600 

in surface or synoptic conditions. Whilst there is generally good agreement between summertime 601 

datasets across a range of sites, those studies extending to winter demonstrate very different 602 

behaviour of QH/Q*. In dense urban areas, the anthropogenic heat flux and much larger storage flux 603 

can sustain a positive sensible heat flux all year round (Goldbach and Kuttler 2013; Kotthaus and 604 

Grimmond in press-a). In these locations, building density may be a more appropriate variable to use 605 

than vegetation fraction and the effect of the anthropogenic heat flux can result in QH that is 606 

significantly greater than Q*. The few campaigns spanning multiple seasons indicate temporal 607 

evolution of daytime QH/Q*, e.g. between about 0.30 (winter) and 0.55 (summer) in Melbourne 608 

(Coutts et al. 2007), and between 0.29 (December) and 0.49 (July) in Tokyo (Moriwaki and Kanda 609 

2004). The data presented here reveal daytime QH/Q* peaks in spring between 0.4 and 0.5 and 610 

drops to about 0.2 in winter for Swindon. These seasonal changes incorporate multiple effects. The 611 

anthropogenic influences already mentioned, vegetative activity and the amount of incoming 612 

radiation are major factors, but do not account for inter-annual variability in meteorological 613 

conditions or rainfall. In February 2012 the limited moisture availability likely contributed to an 614 

atypically high QH/Q* of around 0.4. 615 

At shorter time scales, the meteorological conditions and local stability both have an influence. 616 

Reduced availability of moisture constrains the latent heat flux and allows the sensible heat to rise. 617 

Following rainfall, the surface dries out and the ratio QH/Q* tends to increase (outlined points in Fig. 618 

9 represent data collected following more than 2 days without rainfall). Inter-annual variations in 619 

rainfall can lead to differences in the size of the fluxes from year to year that cannot only be 620 

attributed to variations in Q* (Fig. 3). Although normalising by Q* removes much of the dependence 621 
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on the radiative energy, whether conditions are clear or cloudy can affect the response of the 622 

surface. Some studies have stratified results by cloud cover conditions (Grimmond and Oke 1995; 623 

Balogun et al. 2009) although the effect on QH/Q* is small. In Fig. 9, data are excluded for K↓ ≤ 200 624 

W m-2 and most of the remaining points greater than 0.6 occur under low insolation. For large K↓ 625 

values the scatter is further reduced; this likely to be a result of differing conditions within the 626 

instruments’ source areas under variable cloud cover. The sensible heat flux is dependent on the 627 

amount of energy stored and released, which itself depends on the season (Offerle et al. 2005), 628 

surface wetness (Kawai and Kanda 2010) and cloud cover (Grimmond and Oke 1995). The ability of 629 

the surface to store or dissipate heat depends primarily on the physical properties of the constituent 630 

materials, but may also be affected by changes in surface conditions, for example a wet surface may 631 

have a lower albedo than when dry (e.g. in Cairo (Frey et al. 2011)) and soil moisture affects its 632 

conductivity. Different materials respond differently to direct and diffuse radiation (Kotthaus and 633 

Grimmond in press-b). In combination with surface morphology and changing solar elevation with 634 

latitude and time of year, this determines the impact of shadowing. To account for shading patterns 635 

in energy flux parameterization schemes Loridan and Grimmond (2012) propose an ‘active’ built 636 

index. The latent heat flux also depends on these, and other, factors. To further develop 637 

understanding of such processes and interactions it will be necessary to focus more attention on the 638 

interdependencies between energy fluxes and how these are affected by surface conditions in urban 639 

areas. 640 

Finally, although the Bowen ratio correction has not been applied to the data here, the biggest 641 

impact of the correction would be at small β. For β = 0.5, scintillometric QH is overestimated by 9% 642 

which would result in mean QH/Q* being overestimated by 0.04. Implementing the β correction 643 

would act to further decrease QH/Q* with vegetation fraction. As β itself has been shown to depend 644 

on the vegetation fraction, smaller β at larger vegetation fraction again acts to amplify rather than 645 

reduce the trend. 646 

4. Conclusions 647 

This work demonstrates the applicability of large aperture scintillometry for making spatially 648 

integrated observations over urban areas. With selection of a suitable path, adequately sited 649 

auxiliary meteorological measurements and knowledge of the land surface, sensible heat flux 650 

estimates are obtained that are representative of several neighbourhoods or across the settlement. 651 

Whilst EC measurements are representative of the local-scale (0.5 km2), the scintillometer data in 652 

this study have much larger source areas: 3.0 and 7.5 km2 (95% contribution) for the LAS and BLS, 653 

respectively. 654 
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Remarkable temporal agreement is observed across the three different areal extents for both 655 

short-term variability (e.g. the response to radiation patterns over a few hours to days) and seasonal 656 

trends. Differences in magnitudes of the fluxes between sites are attributed primarily to the role of 657 

vegetation and reveal the influence of anthropogenic materials on surface-atmosphere interactions. 658 

Empirical relations between land cover and fluxes often underpin urban energy models and are 659 

valuable for gauging the likely partitioning of energy, and hence the environmental conditions 660 

(including thermal comfort and moisture availability), in cities where measurements have not been 661 

made.  662 

Comparison of the EC dataset with large-area fluxes at the city-scale provides some context to 663 

the results and confirms that the EC site selection was appropriate. The scintillometer fluxes tend to 664 

be smoother as a result of the greater spatial averaging. The large-scale flux measurements are also 665 

much less sensitive to source area variability, for example due to changing wind direction over 666 

heterogeneous surfaces. As they encompass a larger proportion of the study area, these large-area 667 

fluxes are more representative and suffer less from sampling bias, whereas EC measurements are 668 

easily influenced by spatially variable land cover or surface characteristics around the mast. The 669 

effect can be decreased by measuring at a greater height, but in general the land cover must be 670 

carefully examined for each wind sector before drawing conclusions on the representativeness of 671 

data from a single EC site. 672 

For many purposes we are interested in fluxes at large scales, whether the application is input 673 

data for, or evaluation of, land-surface models or numerical weather prediction, assessment of 674 

satellite remote sensing products or representative observational datasets to characterize a 675 

particular environment. Scintillometry offers a promising way forward, but there are still limitations. 676 

A major source of uncertainty arises from the MOST functions. This is an area that would benefit 677 

from further attention for all land cover types and has implications beyond improving the accuracy 678 

of fluxes from scintillometry. Single-wavelength scintillometry may be best suited to urban areas 679 

with little vegetation as the higher the Bowen ratio the smaller the error due to neglecting the β-680 

correction (Moene 2003). Given the potential for saturation, particularly if the sensible heat flux is 681 

large, it is recommended that an extra-large aperture scintillometer is considered for long paths (e.g. 682 

> 4 km, for paths of similar height and fluxes of similar magnitude). Future work will likely focus on 683 

the development of the scintillometry technique and the application for routine monitoring at large-684 

scales, e.g. Kleissl et al. (2009a). Such observational networks would offer valuable data for 685 

assimilation into models that assess e.g. air quality or heat stress, both highly relevant to human 686 

health and well-being. 687 
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