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The centre of cities, characterised by spatial and temporal com-
plexity, are challenging environments for micrometeorological
research. This paper considers the impact of sensor location and
heterogeneity of the urban surface on flux observations in the
dense city centre of London, UK. Data gathered at two sites in close
vicinity, but with different measurement heights, were analysed to
investigate the influence of source area characteristics on long-
term radiation and turbulent heat fluxes. Combining consideration
of diffuse radiation and effects of specular reflections, the non-
Lambertian urban surface is found to impact the measurements
of surface albedo. Comparisons of observations from the two sites
reveal that turbulent heat fluxes are similar under some flow con-
ditions. However, they mostly observe processes at different scales
due to their differing measurement heights, highlighting the criti-
cal impact of siting sensors in urban areas. A detailed source area
analysis is presented to investigate the surface controls influencing
the energy exchanges at the different scales.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Surface characteristics, such as the arrangement of roughness elements, the locations of heat and
moisture sources, or the texture of materials, all play a role in the formation of climate conditions in
6BB, UK.
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the lowest part of the atmosphere. Urban areas often have a particularly complex mix of surface mate-
rials, with buildings and roads (made of e.g. concrete or asphalt), right next to vegetation (e.g. street
trees, gardens or parks) or water bodies (e.g. rivers or lakes). This combination of surface materials and
their spatial arrangement are instrumental in generating distinct urban climates. The manipulation of
these so called ‘blue/green/grey’ surfaces is core to many sustainable urban planning strategies aimed
at mitigating negative urban climatic effects. The diversity of surface characteristics creates challenges
for boundary layer and urban meteorology research and applications. This spatial variability has impli-
cations for all studies of the urban climate, independent of measurement technique or modelling ap-
proach. Scale and representativeness become central issues to consider when results obtained with
different techniques are combined (Schmid, 1997).

To date, the spatial variability of urban eddy covariance energy flux measurements have been
addressed in three ways. First, intra-urban variations have been evaluated through simultaneous
observations at multiple sites within a city (e.g. Basel, Christen and Vogt, 2004; Łódź, Offerle et al.,
2006; Melbourne, Coutts et al., 2007; Essen, Weber and Kordowski, 2010; Helsinki, Nordbo et al.,
2012), in some cases with a rural reference site. Second, variations of turbulent sensible heat fluxes
within one land use unit have been observed for short periods (e.g. multiple sites in a suburban area
of Vancouver at the local-scale, Schmid et al., 1991; in a densely built up residential area of Tokyo
within the roughness sublayer, Kanda et al., 2006). Third, vertical flux variations have been investi-
gated (e.g. Rotach, 1995; Grimmond et al., 2004), allowing consideration of where the blending height
or top of the roughness sublayer may be located.

Given the patchiness of the urban surface and its complex roughness characteristics it is often chal-
lenging to undertake EC observations in urban areas that are representative of a local-scale land use
(e.g. Schmid et al., 1991; Vesala et al., 2008a; Feigenwinter et al., 2012). However, the need to better
understand energy exchange processes in these environments is leading to an increase in the number
of EC sites being operated – even in dense city centres such as in this study. The objective of this study
is to investigate how flux observations can be used to study energy exchanges in a dense urban city
centre. Here two nearby sites with different measurement heights in London (UK) are analysed with
respect to the impact of site location and heterogeneity of the urban surface on flux observations. Eval-
uation is made as to whether simple source area modelling can aid interpretation of the results and
the aspects most crucial to improve understanding. Details of the measurements (e.g. data collection,
processing methods) and their temporal variability are presented in a companion paper (Kotthaus and
Grimmond, 2013). First the methodology for footprint calculations is presented (Section 2). Second,
the surface influence on short-wave radiative fluxes is analysed (Section 3). Third, the spatial varia-
tions of the observed turbulent fluxes are interpreted with respect to their source areas and a compar-
ison between two nearby sites is presented (Section 4). Implications of these findings for turbulent
flux source area modelling in urban areas and the critical aspect of siting are discussed (Section 5).
Conclusions of this study (Section 6) outline both the challenges of energy flux observations in dense
urban settings and the new interpretations obtained.
2. Methods

Net all-wave radiation Q⁄ and the turbulent fluxes of sensible heat QH and latent heat QE are impor-
tant components of the surface energy exchange in urban areas (Oke, 1987). For this study, all three
were obtained by in-situ observations. The companion paper Kotthaus and Grimmond (2013) provides
details on these and other surface energy balance components.
2.1. Measurement site

The study area is located in the ‘Central Activities Zone’ (CAZ) of London, UK (see Kotthaus and
Grimmond, 2013 for further details). At the Strand Campus of King’s College London (KCL, 51�300 N,
0�70 W), two measurement towers, referred to as KSS and KSK, were located approximately 60 m apart
(Fig. 1).



Fig. 1. Digital elevation model of ground and buildings (Lindberg and Grimmond, 2010) for a 500 m radius around KCL Strand
(centred on KSS site) in metres above sea level at 4 m spatial resolution. Radial coordinates according to BNG (British National
Grid) north. Site locations and relevant places are labelled.
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Urban sites can be characterised using a number of techniques including image based classification
(e.g. LCZ, Local Climate Zone, Stewart and Oke, 2012) or simple models (e.g. UZE, Urban Zone for
Energy partitioning, Loridan and Grimmond, 2012) which provide expectations of the urban heat is-
land intensity and energy flux partitioning. Around KCL, the LCZ is ‘compact midrise’ and the UZE is
‘high density’. More detailed descriptions of surface cover, derived from source area modelling are pre-
sented in Section 4.2. Sensors were mounted on the top of extendable towers (KSK: single tube mast,
Clark Masts CSQ T97/HP; KSS: triangular tower, Aluma T45-H), with the towers installed on the top of
buildings. At KSS (KSK) the measurement height above ground level (agl) was 49 m (39 m); a ratio of
2.2 (1.9) compared to mean building height zh. The River Thames, in close vicinity of the sites (Fig. 1),
experiences tidal differences of up to 6 m.

KCL Strand is located at a junction (Aldwych) of one of the main east–west roads through central
London, The Strand. Taxis, private cars and buses (including several night bus routes) use this road
with high frequency. In addition, vans and lorries deliver goods to businesses, shops, restaurants
and hotels in the area. Especially during rush hour, substantial traffic emissions can be expected. To
the southwest is a pedestrian courtyard within Somerset House (Fig. 1) and another busy road (Water-
loo Bridge).

2.2. Data collection and processing

The turbulent fluxes of sensible and latent heat were observed using the eddy covariance (EC) meth-
od. Net all-wave radiation was measured directly and auxiliary meteorological observations and cloud
cover were also observed at KCL Strand. In this paper, data collected between October 2008 and March
2012 are used. While turbulent heat fluxes were calculated based on 30 min intervals, all other data are
available with a resolution of 15 min. At KSK, two Kipp & Zonen radiometers have been operational
(Kotthaus and Grimmond, 2013, their Table 1): a CNR1 (2008–2009) and CNR4 (2010–2012).
Based on daily total incoming short-wave radiation, the estimates by the older sensor (CNR1) are



Table 1
Site and source area characteristics at KSK and KSS calculated as averages over all available observations based on the individual
turbulent source area estimates. Heights specified in m above ground level (agl).

KSK KSS

Height [m agl] Mean building height zh 21.0 22.0
Roughness length z0 1.7 1.9
Displacement height zd 13.8 14.2
Sensor height zm 38.8 48.9
Height of building hosting tower 30.2 35.6

Height [m] Tower height above roof 8.6 13.3
Turbulent source area [km2] Including 50% of footprint 0.1 0.2

Including 90% of footprint 3.0 5.3
Distance Xmax from site to footprint maximum [m] Unstable atm. conditions 67 95

Neutral atm. conditions 101 147
Land cover fraction in source area [%] Roads 43 43

Buildings 40 38
Water 13 14
Vegetation 4 5

284 S. Kotthaus, C.S.B. Grimmond / Urban Climate 10 (2014) 281–307
higher by �6%. This falls in the range of expected accuracy of ±10% specified by the manufacturer for
daily totals. Cloud cover percentage was estimated based on ceilometer backscatter information,
aggregated to the same temporal resolution. All recording and data analysis was done in UTC (Universal
Time Coordinated). This is local time in the winter and an hour earlier during the summer (daylight
savings period). Further information on data collection, availability, and processing is provided by
Kotthaus and Grimmond (2013).
2.3. Source area calculations

Micrometeorological measurements characterise surface-atmosphere exchange as a function of the
radiative properties, moisture availability, or anthropogenic activities etc. of the surface. With a com-
plex surface the linkage between the measurement and instrumental source area becomes more chal-
lenging. Of particular interest in this study is the influence of surface controls in a dense urban setting.
Approaches to source area modelling are described as context for the measurement methods used.
2.3.1. Turbulent flux footprint
The turbulent fluxes of latent and sensible heat change in time and space as a function of sensor

position (height; e.g. Schmid and Lloyd, 1999), atmospheric conditions (expressed by e.g. wind speed,
wind direction, atmospheric stability; e.g. Kljun et al., 2002) and surface characteristics (expressed by
e.g. terrain, surface roughness, material composition; e.g. Vesala et al., 2008b).

Observed urban turbulent energy exchanges are commonly stratified by wind direction into sectors
related to land cover (e.g. Järvi et al., 2009 compare roads, buildings and vegetation). This practice
takes into account two very important aspects of the linkage between the surface and observed tur-
bulent exchange: wind direction and broad variations in surface characteristics. However, it does not
provide any insight in the effect of wind speed (e.g. related to mesoscale wind regimes, Lemonsu et al.,
2004) or atmospheric stability. The latter is a major control on the extent of the source area (Kljun
et al., 2002).

Footprint models of varying complexity have been developed to locate the probable surface area
affecting turbulent flux measurements (see review in Vesala et al., 2010). After pioneering work on
analytical footprint calculations (e.g. Gash, 1986; Schuepp et al., 1990; Horst and Weil, 1992), a 3D
analytical model (scalar Flux Source Area Model, FSAM) was developed to aid interpreting eddy
covariance measurements (Schmid 1994, 1997). This has been widely used in a variety of urban stud-
ies, e.g. supporting energy balance analysis in Marseille (Grimmond et al., 2004; Lemonsu et al., 2004),
carbon dioxide flux observations in Essen (Kordowski and Kuttler, 2010), and a series of turbulent flux
measurements in Łódź (Offerle et al., 2006; Pawlak et al., 2011; Fortuniak et al., 2012).
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Future computing capacity will make the applicability of Lagrangian stochastic dispersion models
that can represent complex flow conditions more feasible. However, such sophisticated models have
not yet been used in full for urban studies. A simple parameterisation (Kljun et al., 2004) of the back-
ward trajectory Lagrangian stochastic footprint model of Kljun et al. (2002) has been applied to urban
situations (e.g. Mårtensson et al., 2006; Hiller et al., 2011; Park et al., 2011). Hsieh et al.’s (2000) ana-
lytical footprint model, a parameterisation from a Lagrangian stochastic approach, aided interpreta-
tion of carbon dioxide fluxes in Florence (Gioli et al., 2012). The forward Lagrangian stochastic
model of Göckede et al. (2006), based on an analytical method (FSAM), identified the probable source
areas for small aperture scintillometers in a dense city centre (Pauscher, 2010).

More sophisticated methods, such as Large Eddy Simulation (LES) or ensemble-averaged closure
models (Rannik et al., 2012), tend to be computationally expensive and address restricted stability
conditions. Hence, they remain minimally used in city studies. Vesala et al. (2008b) apply the model
SCADIS (Sogachev and Lloyd, 2004; Sogachev, 2009) to a Helsinki site but only under neutral condi-
tions for two wind directions, where they find an asymmetry of the source area in the approaching
flow.

The relatively simple implementation of analytical footprint models provides clear advantages in
computing time and ease of use, so they are often applied to gain a first order estimate of probable
location and size of flux source areas (Rannik et al., 2012). Some uncertainty might arise from simpli-
fications (van de Boer et al., 2011) as these models are not capable of formulating the whole complex-
ity of the surface flow. Developed for flat surfaces they are not able to capture the impact of vertical
variations of sources and sinks (Vesala et al., 2008a; Salmond et al., 2012). Nonetheless, the informa-
tion gained from more elaborate models does not (yet) legitimate their complexity and time intensive
implementation for large datasets. Thus, analytical models are usually chosen for the interpretation of
long-term datasets. Recent examples of their application include the Kormann and Meixner (2001)
model to interpret carbon dioxide fluxes (e.g. Vancouver, Christen et al., 2011; Baltimore, Crawford
et al., 2011; Beijing, Liu et al., 2012), to improve understanding of turbulent energy transport (e.g. Hel-
sinki, Nordbo et al., 2012; Basel, Salmond et al., 2012) and to match in-situ and remote sensing obser-
vations (e.g. Cairo, Frey and Parlow, 2012).

The footprint calculated for individual time periods can be composited by time and space to pro-
vide, with an appropriate geographical information database, the sensor field of view or footprint cli-
matology. Such an approach has been shown to be beneficial to the interpretation of urban fluxes (e.g.
Christen et al., 2011).

In this study, footprint functions for both study sites for each 30 min period were estimated with
the Kormann and Meixner (2001) analytical footprint model. However, instead of calculating friction
velocity (u⁄) according to Eq. (31) in Kormann and Meixner (2001), the measured value of u⁄ at the
respective site (KSK or KSS) was supplied to the footprint model as input, along with wind speed, wind
direction, cross wind standard deviation rv and Obukhov length L. Roughness length for momentum z0

and displacement height zd were estimated using Macdonald et al.’s (1998) method based on the mean
building height above ground zh, plan area fraction kp and frontal area index kf. All three morphometric
parameters were calculated from a digital elevation model (DEM) of ground and buildings at a spatial
resolution of 4 m (Lindberg and Grimmond, 2010).

Vegetation covers a small portion of the area around the study sites, thus its effect on surface
roughness is assumed to be negligible. The topography of the area slopes from the lowest elevations
at the river to highest in the north (Fig. 1). To incorporate these variations, mean ground height zg as
well as zh, kp and kf were estimated as a function of wind direction. First, a database of morphometric
parameters was created based on a 500 m radius and 1� intervals. These were then averaged based on
mean sectors (defined by mean wind direction and cross wind variability rv) to derive ‘first-guess’
estimates of roughness parameters z0 and zd for each time period. These were then used in the initial
footprint calculation. New morphometric parameters were calculated for each identified source area,
leading to new roughness parameters that provided the basis for more precise source area calcula-
tions. Finally, morphometric parameters and land cover fractions were obtained from this area for
each observation period. In order to facilitate the analysis, these results have then been aggregated
into 10� wind sectors. The measurement height zm was adjusted during this iterative process to
account for variations in ground height. This is crucial because the effective height z’ = zm�zd was used
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within the atmospheric stability parameter f = z’/L to classify unstable (f < �0.1), near-neutral
(�0.1 6 f < 0.1), and stable (0.1 6 f) conditions.

2.3.2. Radiometer footprint
Key to surface atmosphere exchanges are radiative fluxes. For Lambertian surfaces, the source area

is mainly a function of measurement height. However, the complex three-dimensional structure of the
urban surface causes shadow patterns and the combination of various materials with different radia-
tive properties brings about spatial variability caused by the sun-surface geometry (Soux et al., 2004).
High reflectance materials such as glass and metal are increasingly used in modern architecture, espe-
cially for commercial buildings, leading to distinct reflections of short-wave radiation. ‘Reflection
glare’ can cause discomfort, and even danger, to the urban population (e.g. people working in offices,
pedestrians or drivers, Iwata et al., 1991). Strong reflections of solar radiation from vertical facets, or
even horizontal surfaces, increase short-wave (including UV) but also thermal energy gain to the ob-
ject receiving the reflected beam (Shih and Huang, 2001).

Measurement of surface albedo is impacted not only by surface materials and their spatial arrange-
ment but also by the atmospheric transmissivity and solar geometry. As atmospheric transmissivity
determines the relation between diffuse and direct solar irradiance (Lucht et al., 2000) the total surface
albedo includes the reflection of diffuse (white-sky albedo) and direct (black-sky albedo) radiation.
While the black-sky albedo can be expressed as a function of the solar elevation angle, the interaction
of diffuse radiation with the surface should be independent of solar geometry (Lucht et al., 2000).

The footprints of EC and radiation measurements usually do not agree (Schmid, 1997) as different
processes control the respective energy transfer. Concentric circles describe isopleths of the source
area of a radiometer (over a Lambertian surface) which do not vary temporarily. Their radii depend
on the measurement height above the surface (Schmid, 1997). For non-Lambertian surfaces, this
source area model can provide a first approximation of the footprint for the case of diffuse irradiance
when variations in directional reflectance of the surface have less impact. Under direct irradiance,
however, heterogeneities in surface reflectance can represent great variations in the surface response,
thereby inducing a complex pattern of source area weights that can no longer be represented by con-
centric circles. Here the footprint function should incorporate the bidirectional reflectance distribution
function (BRDF) of the surface as well as the sun geometry, which varies both spatially and temporally.
In an urban setting, the BRDF needs to combine variations due to surface materials but also the three-
dimensional form of buildings, vegetation, roads, and canyons. This is unique for every measurement
site and sensor height, and very difficult to portray.

In this study, in order to visualise the impact of the urban surface on reflected short-wave radiation,
locations of maximum specular reflection were calculated as a function of solar azimuth angle and dis-
tance of maximum reflection of solar irradiance
Rs ¼ zR= tan H
with sun elevation angle H and height of the pyranometer above the surface zR. This formulation of
the radius of maximum specular reflection Rs stems from rules of specular reflectance and basic geom-
etry. Given the majority of the pyranometers’ field of view (FOV) consisted of roof surfaces, the height
above the surface zR was assigned as an average value defined as the tower height above the roof re-
duced by 1 m to account for roof height variations and objects (such as elevated windows) close to the
towers. Even though this measure assumes a flat surface and does not account for the complex, small-
scale height variations around the measurement towers or close by canyons, it still provides useful
location estimates for peak reflections in the radiometer’s source area.
3. Spatial variability of reflected short-wave radiation

3.1. Observations

All four components of the net all-wave radiation were observed at KCL Strand. Their temporal var-
iability and role in the surface energy balance in the dense urban study area are discussed in detail by
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Kotthaus and Grimmond (2013). They also analyse how long-wave radiation is affected by a combina-
tion of atmospheric effects (cloud cover) and the urban surface, drawing on cloud cover fractions de-
rived from ceilometer backscatter observations. Diffuse incoming short-wave radiation, measured
with a sunshine pyranometer (SNP1, Delta-T Devices) over the period of Jan 2011–Mar 2012, has a
clear relation to cloud cover fractions (not shown).

The urban impact on the observed radiation exchange is most apparent in the reflected short-wave
radiation K" and hence the surface albedo. This is due to the immense heterogeneity of surface mate-
rials and geometry around the sites, which the following analyses illustrates.

The spatial distribution of reflected short-wave radiation observed at KSK (Oct 2008–Nov 2009;
Fig. 2b) shows a clear response to objects in the source area of the down-facing pyranometer
(Fig. 2a). Two flat roof windows south of the mast at KSK and a tilted roof window towards the south-
west cause peak values of K". These appear as ‘outliers’ in the time series (Kotthaus and Grimmond,
2013, their Fig. 4). Averaged over a 15 m radius (80% FOV; solar elevation angle 629.8�) for times with
clear sky conditions, the roof windows at KSK have a 25% increase in albedo compared to the sur-
rounding roof area which is composed of various kinds of concrete as well as slate roofing shingles.
In addition to the marked roof window areas, the spatial distribution of reflected short-wave radiation
reveals the influence of generally darker surfaces towards the east of the mast. This can be explained
by the three-dimensional structure of the roof itself which casts greater shadow areas when the sun is
in the east. At KSS the composition of the source area is more complex so that no isolated objects can
be mapped. No windows are located on this roof.

The spatial variations of reflected short-wave radiation, and hence surface albedo, are evident un-
der clear sky conditions as detected from ceilometer measurements. In order to study the effect of dif-
fuse radiation in conjunction with the sun-surface geometry, median albedo patterns were calculated
as a function of solar elevation angle and cloud cover at KSS and KSK (Fig. 3a and c). Those for clear
(cloud cover = 0%) and cloudy (overcast, cloud cover = 100%) conditions were stratified by azimuth
(easterly E, westerly W) and shown as a function of solar elevation angle (Fig. 3b and d). To facilitate
comparison between figures (Fig. 2b, Fig. 3), the distance of maximum reflection of specular solar irra-
diance Rs (Section 2.3.2) is included in the upper x-axis in Fig. 3.
Fig. 2. (a) Aerial photo (NERC ARSF 2008) showing the 80% source area (15.2 m radius) of the down-facing radiometer at KSK;
(b) median reflected short-wave radiation observed at KSK in 2009, by solar azimuth angle and distance of maximum, specular
reflection Rs. Height above roof surface zR = 7.6 m = tower height offset by 1 m (to account for roof height variations).



Fig. 3. Median surface albedo as function of solar elevation angle at (a, b) KSS and (c, d) KSK: (a, c) split by cloud cover [%]; (b, d)
clear sky (cloud cover < 10%) and overcast conditions separated into E (sun in the East) and W (sun in the West). The bulk
surface albedo �a is calculated as the mean of all values with a solar elevation angle of at least 20�. The additional axis (top)
indicates the distance of maximum specular reflection of direct solar irradiance Rs from the respective tower location (see
Section 2.2).
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Cloud cover clearly affects the surface albedo estimates and determines its dependence on solar
elevation angle (Fig. 3a and c), given the generally higher surface reflectance at low solar elevation an-
gles results from increased specular reflectance. Accordingly, the surface albedo gradually decreases
with rising solar elevation angle under clear sky conditions (0% cloud cover). The rugosity of the urban
surface contributes to the lower albedo values at higher solar elevation angles as more short-wave
radiation enters the street canyons (Christen and Vogt, 2004) where it is trapped. The slope of surface
albedo versus solar elevation angle flattens with increasing cloud cover, especially for elevation angles
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>20�. Surface albedo does not vary with solar elevation angle under overcast conditions (100% cloud
cover).

At KSS (Fig. 3a), the gradient from clear to cloudy values is mostly evident for solar elevation angles
below 40�, while those with higher elevation angles and hence lower distance to maximum reflection
Rs become more similar. In contrast, at KSK (Fig. 3c), the overall albedo exhibits high variability for all
but overcast conditions (i.e. cloud cover <100%). This could be explained partly by the smaller amount
of data at this site (Kotthaus and Grimmond, 2013, their Table 1). However, since the fluctuation with
distance to maximum reflection is stronger for times with more direct irradiance, it seems likely to be
caused by high reflectance surfaces in the source area (Fig. 2). The window at Rs � 5 m southwest of
KSK results in strong peaks of surface albedo. In addition to the high albedo surfaces, the presence of
shadows increases the spatial variability of surface albedo under the influence of direct solar incoming
radiation. Above 70% cloud cover, diffuse radiation gains importance and nearly removes the depen-
dency on solar angles.

Despite the significant variability of albedo at the two sites and the uncertainties associated with
measurements of this quantity, a bulk surface albedo can be estimated to summarise overall radiative
characteristics. Here, it was calculated as the median of all observations with solar elevation angles of
at least 20� (horizontal bar in Fig. 3a and c). As the larger source area for KSS included street canyons
(to the north as well as to the southeast), the overall bulk surface albedo is lower (a � 0.11). Even
though these observations did not cover the full range of facets in the area, this bulk albedo can be
assumed to be more representative for the study area than the higher value of 0.14 measured at
KSK where roof surfaces dominate. This again underlines the importance of sampling a representative
composite of active urban facets to determine the radiation balance at the local-scale (Roberts, 2010).
At both sites the bulk surface albedo is best represented by observations under overcast conditions. On
average for solar elevation angle >20�, this white-sky albedo (diffuse radiation only) is a little lower
(by 0.01) than the overall bulk albedo. The comparatively low albedo values observed in the current
study (compared to e.g. Oke, 1987) are in accordance with the discussion of Christen and Vogt (2004)
who found similar surface characteristics (albedo around 0.1 at their sites in the city centre of Basel)
and concluded that European cities might reflect less short-wave radiation than those studied in North
America.

Albedo observed under clear sky conditions changes with solar azimuth angle (simplified here into
E and W) in response to the three dimensional geometry of the surface. At KSS (Fig. 3b) the surface
appears brighter (for solar elevation angle >20�) when illumination comes from the west (Wclear in
Fig. 3b) because flat roof surfaces made up most of the surface under the radiometer in a radius of
about 20–30 m to the southwest of the tower (Kotthaus and Grimmond, 2013, their Fig. 1b). The can-
yon in the southeast, however, causes significant trapping of incoming solar radiation which lowers
the observed surface albedo (Eclear in Fig. 3b). A small impact is even evident under overcast sky con-
ditions (Eovercast < Wovercast for solar elevation angle >20�), indicating that the canyon absorbs diffuse
radiation as well. While the clear-sky albedo in the roof-dominated area (Wclear) steadily increases
with decreasing solar elevation angle, the canyon-dominated area appears darkest at solar elevation
angles around 50�. This sun-surface geometry corresponds to a distance to maximum reflection of
about 12 m, which roughly marks the edge of the KSS roof towards the southeast and hence the place
where minimal radiation escapes towards the sensor from the canyon. For smaller distances the influ-
ence of the KSS roof on the observed reflected short-wave radiation increases, and also more radiation
reflected from the canyon reaches the sensor for larger distances.

At KSS, incoming short-wave radiation tends to be slightly lower in the morning hours (not shown)
which could be a consequence of a not perfectly level sensor. Obviously this affects the observed al-
bedo in addition to the surface structure in the source area. However, since a negative K; bias is asso-
ciated with an overestimation of albedo, this (possibly measurement related) artefact acts to
alleviative the observed E–W difference. Without this systematically higher incoming short-wave
radiation for westerly solar positions the roof area would appear even brighter in comparison to
the canyon. At the KSK site, no such asymmetry of incoming short-wave radiation with solar azimuth
angle is detected. Again, clear-sky surface albedo is generally lower when the sun is in the east (Eclear

Fig. 3d) where elevated roof structures cause apparent shadowing (Fig. 2a). The two roof windows de-
tected (Fig. 2b) show up as distinct peaks in the median albedo curves of easterly (Rs � 12 m) and wes-
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terly (Rs � 5 m) solar positions, respectively. Again, under overcast conditions, the high fraction of dif-
fuse radiation integrates the diverse effects of the heterogeneous surface so that albedo at KSK shows
hardly any variability (Eovercast and Wovercast in Fig. 3d) dependant on sun-surface geometry (for eleva-
tion angles >20�).

These observations demonstrate several important aspects characterising the urban surface and its
anisotropic nature (also highlighted by Soux et al., 2004):

� High reflectance materials, which are increasingly found in modern urban architecture, signifi-
cantly impact the surface albedo.
� Provided sufficient irradiance, these materials cause strong specular reflections or reflection glare.
� The surface deviates distinctly from Lambertian characteristics.
� Due to the heterogeneous composition of anthropogenic materials with various radiative proper-

ties, observations of the interaction between Sun, surface and atmosphere are highly dependent
on the observational field of view or footprint (or source area).

3.2. Implications for source area models and siting

The anisotropic nature of the urban surface has implications for the description of radiometer
source areas. The dependence of surface albedo on the relation between diffuse and direct illumina-
tion is linked to the spatial distributions of facets with different orientations in the source area. If
the surface in the field of view of the radiometer covers walls and surfaces of a variety of orientations,
and if these are similarly distributed by solar elevation and azimuth angles, the average albedo under
clear sky conditions should be similar to the one observed during overcast periods (e.g. as seen at the
central urban sites in Basel, Christen and Vogt, 2004) because both estimates represent an integration
over a representative distribution of sun-surface-sensor geometry settings.

The source area (field of view) of a down-facing pyranometer over uniform, Lambertian surfaces is
well described by concentric source area isopleths (Schmid, 1994). Here, the simple example of a
highly reflective, forward scattering surface is considered to put the impact of the roof windows at
the KSK site into a wider context.

Highly reflective, forward scattering surfaces in the pyranometer field of view can have enhanced
impact on the observation of reflected short-wave radiation resulting in an overestimation of the
local-scale flux if uniform source area weighting is applied. The latter is related to the distance of
specular reflection Rs, and is dependent on the site latitude, the sensor height above the surface (in
the current example the roof) and time (within year and day). To demonstrate this, Rs is shown for
70� N to 0� latitudes on the 21st of each month from June to December covering the range of possible
solar positions (Fig. 4, reverse months for southern hemisphere and invert). For the northern hemi-
sphere, the surface towards the south of the site influences the main part of the source area for spec-
ular reflections. The area from which specular reflection can reach the sensor for solar elevation angles
P20� (bold lines in Fig. 4) is closest to the tower at noon in June for latitudes down to 20� N. However,
north of about 30� N the area right below the site does not contribute to any specular reflections.
North of 50� N, specular reflections are only relevant for the period from March to September and a
wider area can contribute during particularly long summer days.

The source area for specular reflections can be combined with the general field of view approach to
ascertain which areas influence observations of reflected short-wave radiation. Using a site at 50� N
(close to the KCL site latitude), the source area estimates are calculated with a sensor height of 5–
30 m above the roof in 1 m intervals (Fig. 5). The FOV isopleths (dotted lines) do not vary with time,
while the minimum distance of specular reflection (solid lines) depends on the day of year (same
example days as in Fig. 4). The maximum distance reached (variable with time of day) is defined by
the 20� solar elevation angle (grey shading marks the area of solar elevation angles P20� where spec-
ular reflection can occur).

Comparison of the direct and diffuse footprint indicators illustrates that different surface areas can
be important for the reflection of the two components of incoming solar radiation. Based on the fixed
source area formulation (Schmid, 1994), it is possible to estimate the source area weighting of a flat
1 m2 roof window at various distances from the site (squares in Fig. 5). The contribution is highest



Fig. 4. Schematic illustration of location of maximum specular reflection at 0–70� N as a function of Rs (radial coordinate) and
solar azimuth (angular coordinate) on the 21st of each month (Jul–Dec); for solar elevation P 10� (solid lines), and P 20� (bold
lines). For the southern hemisphere the dates are reversed and patterns inverted.
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for low measurement heights and decreases with increasing sensor height and distance from the site.
However, highly reflective/non-Lambertian surfaces are most likely to influence observations of
reflected short-wave radiation (Fig. 2; Fig. 3) at some distance from the site. For example, a radiometer
at 15 m above roof level can receive specular reflections from a flat roof window 30 m south of the site
from about March till September. Depending on site location and measurement time (Fig. 4; Fig. 5), a
window at a certain distance from the measurement site and at a certain bearing could have a much
higher impact on the final measurement than one located right below the sensor. Due to the spatial
and temporal variability of specular reflection locations, the source area for clear sky albedo observa-
tions is more complex to parameterise than for times with diffuse radiation. A full source area model
needs to describe variations in illumination conditions as well as the BRDF of the surface.

In the context of surface energy balance observations, the aspect of siting of a radiometer and the
associated source area obviously also needs to be considered with respect to the source area of the
turbulent fluxes measured (Schmid, 1997). It is a common issue for those observational datasets, that



Fig. 5. Schematic of source area variations for a down-facing pyranometer depending on sensor height above roof and distance
from site. Points give source area contribution of flat 1 m2 roof window [%] according to concentric footprint isopleths (Schmid
et al., 1991), indicated by dotted lines. Solid lines mark location of minimum radius of specular reflection Rs on the 21st of each
month (Jun–Dec), calculated for a site at 50� N. See Section 3.2.
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radiation sensors are often installed on top of the same towers as the EC sensors so that their FOV
might only cover parts of the source area of the EC fluxes. At times, the footprint of radiative and tur-
bulent fluxes might not overlap at all. Other than for studies of rural areas, where the observed surface
is often sufficiently homogeneous to assume the radiative source area to represent the local-scale, out-
going radiative fluxes over the urban canopy may be affected by processes that may not be captured in
the instantaneous source area of the turbulent fluxes, given the range of surface heterogeneities dis-
cussed. Hence, in addition to an improved understanding of the radiometer source area, new ap-
proaches in terms of siting might be advisable in order to ensure that a representative composition
of facets is captured (Roberts, 2010). Ideally radiometers would be mounted higher than turbulence
sensors (Offerle et al., 2003; Roberts, 2010). Often this may be unrealistic because of planning restric-
tions. Hence, an increased number of radiometers installed in various directions (e.g. predominant
wind directions) could potentially provide a better spatial coverage. Obviously, with advances in sur-
face remote sensing (Yang, 2011), both in terms of spatial resolution and temporal coverage, observa-
tions from other non-tower based platforms might help to quantify radiative fluxes in the future, but
these need to be viable across all cloud conditions.
4. Spatial variability of turbulent heat fluxes

4.1. Wind and surface morphology

Around the KCL Strand campus the morphology is complex (Fig. 1), street canyons dominate to the
west and north, whereas to the south the River Thames has significantly lower surface roughness. This
diversity impacts the roughness parameters: plan area fraction kp, frontal area index kf, mean building
height zh, roughness length for momentum z0 and zero plane displacement height zd (Fig. 6a and b).

On average (Table 1), the KSS measurement height (zm � 2.2 � zh) should be above the blending
height, whereas the KSK observations may be within the roughness sublayer (zm � 1.9 � zh). Still,
based on morphometric parameters alone, it is difficult to locate the blending height. Hence it is
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not certain if/when observations at KSK rather represent the roughness sublayer. In Basel (Rotach
et al., 2005) during the BUBBLE campaign, multiple levels of EC instruments on two urban and one
suburban flux tower provided information about vertical variations in turbulent exchange from within
the canyon up to a local-scale fetch (Christen, 2005). Based on the vertical divergence of the sensible
heat flux density at a central urban BUBBLE site, Christen and Vogt (2004) conclude that the main
influence on measurements at the top (2.2 times the mean building height zh) originates from the vol-
ume around roof height (>0.8 � zh and <1.4 � zh). Their findings also suggest that the blending height
in the dense urban setting is reached at about 1.5 � zh, above which vertical flux divergence vanishes.

At the two study sites, the mean building height is higher (lower) towards the northwest (south-
east) with median values in the west and east (Fig. 1, Fig. 6a and b). The directional plan area fractions
are clearly impacted by the river with kp < 0.45 in a sector 85–245� (85–235�) at KSS (KSK). The var-
iability in displacement height zd is primarily controlled by mean building height, and then kp (Mac-
donald et al., 1998). Thus it is reduced in the south to southeast, with a zd/zh minimum of 0.42 (0.36) at
180� for KSS (KSK). As all these components are required for the roughness length calculation (Sec-
tion 2.3.1), z0 varies between 1 m at KSS (0.8 m at KSK) and 2.8 m. Surface roughness is particularly
high in the southwest and northwest, while the relatively high displacement height (compared to
Fig. 6. Directional characteristics at (a, c) KSS and (b, d) KSK, separated into 10� intervals: (a, b) Average surface characteristics
based on individual source areas maps: Building height zh, roughness length z0, displacement height zd and measurement height
zm, plan area fraction kp and frontal area fraction kf. (c, d) Frequency distribution of wind speed by wind direction.
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zh) in the west and east lowers the surface drag. Roughness estimates for KSK and KSS are generally in
agreement by direction, but the lower measurement height at KSK causes a small/different footprint
(Section 4.2). This may explain why the clear increase in surface roughness to the north is evident for
KSS (Fig. 6a) but less pronounced for KSK (Fig. 6b). In addition to the diversity of surface roughness
elements in the study area, the underlying topography (Fig. 1) adds complexity to the source area cal-
culations. As it is not flat, the measurement height zm was calculated as a function of wind direction
(Section 2.3.1).

The wind-rose, based on all available EC observations (Section 2.2), shows which wind sectors are
most frequently observed by the flux sites. The prevailing wind direction (45% of all observations) at
KSS is from the southwest (175–265�; Fig. 6c); the secondary sector (18%) is the opposite from the
northeast (355–45�). As the measurements at KSK (Fig. 6d) cover a longer period (Kotthaus and
Grimmond, 2013, their Table 1), the absolute frequency values are higher than for KSS. Although
the two dominant wind sectors can be identified for KSK, they are slightly shifted towards the west
(southerly) and east (northerly), respectively. Given the KSK sensor height was lower (Table 1) surface
roughness elements in the immediate surroundings can impact the observed turbulent flow and thus
the dispersive fluxes (Raupach and Shaw, 1982) might have an influence. The northeast–southwest
oriented building north of KSK (i.e. the one hosting the KSS site, Fig. 1) likely caused sheltering effects
and thus explains the difference in wind direction distribution compared to KSS. The wind speed dis-
tribution (shading in Fig. 6c and d) corroborates this observation. Higher wind speeds occurred at the
higher KSS sensor (61% of all observations with P3 m s�1) and a stronger decelerating effect of the
surface roughness is seen at KSK (62% with 63 m s�1). At both sites, stronger winds occurred from
around 240� where more than 60% (50% at KSK) of the data show wind velocities >3 m s�1.

Further, frequencies are slightly higher between 105� and 115� (Fig. 6c) with about 4% of all obser-
vations. These directions coincide with the alignment of River Thames to the east of the site (Kotthaus
and Grimmond, 2013, their Fig. 1), indicating that channelling might impact the flow from this direc-
tion. These easterly wind directions, however, are often coincidently observed at London airports (e.g.
Heathrow, City, and Luton, Met Office, 2012a; not shown), which probably rules out them being in-
duced by local-scale, site specific flow distortion by the urban canopy in the site’s source areas.

4.2. Modelled source areas of turbulent fluxes

The local-scale source areas, estimated for each observation period using Kormann and Meixner’s
(2001) model (Section 2.3.1), have uncertainties caused by the complex environment that need to be
kept in mind during interpretation. The spatial variability of roughness elements by direction for each
EC site (Fig. 6a and b) was used to calculate the appropriate morphometric parameters and roughness
characteristics (Section 2.3.1) for each individual time period’s source area. Atmospheric stability
plays a major role in the determination of source area locations (Kormann and Meixner, 2001), the
footprint area increases with increasing stability as does the distance from the site to the maximum
footprint contribution. At KSS (KSK), atmospheric conditions are predominantly unstable (neutral),
with about a third (60%) of all observation periods classified as neutral. At both sites, stable stratifica-
tion is rarely observed (Kotthaus and Grimmond, 2013). The overall source area characteristics of both
sites are listed in Table 1.

Here, the KSS site results are analysed for neutral and unstable atmospheric conditions. Through
aggregation of the individual source area weights (Fig. 7a and b) a footprint climatology has been de-
rived. Wind direction distributions differ slightly for the two stability regimes, as is reflected in the
overall shapes of the source areas (compare Fig. 7a and b, see, for example, such as the low probability
of south-easterly flow under neutral stratification). A larger (smaller) surface area influences the flux
observations under neutral (unstable) conditions with the area contributing 50% to the footprint (shad-
ing in Fig. 7a and b) extending on average to about 410 m (250 m) to the southwest and 330 m (180 m)
to the northeast. To determine the average surface composition influencing exchanges, the individual
source areas were used to weight the land cover fractions in 10� sectors using the individual 30 min
mean wind direction (Fig. 7c and d). Consistently, vegetation (e.g. grass and shrubs) and trees (here
counted separately) are a small portion of the source area (Table 1) with maximum coverage (total
of 11%) towards the east. Here, a small park (Temple Gardens, Fig. 1) and street trees are located within
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the 80% footprint isopleth (Fig. 7a and b). Generally, impervious surfaces dominate with buildings and
roads forming more than 80% of the source area (Table 1). Roads have a slightly larger plan area than
buildings, except to the northeast where this is reversed. For the west to northeast (245–55�), where
impervious surfaces make up more than 90%, surface cover fractions within the source area show little
difference with atmospheric stability. Given the vicinity of the River Thames (Fig. 1), open water con-
tributes to the source areas in a broad sector between 75� and 245�, with substantial fractions (>40% for
unstable conditions) from 105� to 205�. To the northwest, the maximum source area contribution (not
shown) aligns with a major road (The Strand, Fig. 1) where anthropogenic heat emissions from traffic
are expected to be substantial (Iamarino et al., 2012). The overall source area climatology indicates a
strong influence from the Aldwych junction (Section 2.1) at the 50% level (Fig. 7a), again with shorter
extent for unstable conditions.
Fig. 7. Spatial and directional characteristics at KSS for (a, c) neutral and (b, d) unstable atmospheric stability: (a, b)
Accumulated source area weights. Area contributing up to 50% of the source area is shaded. Underlying map of land cover types,
4 m resolution (based on OS MasterMap and vegetation data from Lindberg and Grimmond 2011). Maps are centred on the
tower. (c, d) Accumulated surface cover fraction per 10� intervals, normalised by total amount of observations within each
interval.



296 S. Kotthaus, C.S.B. Grimmond / Urban Climate 10 (2014) 281–307
For northerly wind directions, some influence from traffic emissions can be expected. However, for
the prevailing wind direction from the southwest (Section 4.1), source area characteristics are very di-
verse. The climatological 50% isopleths include a large pedestrian courtyard (Somerset House, Fig. 1),
busy roads (Waterloo Bridge), and many tall buildings alongside open water (River Thames). This diver-
sity complicates the interpretation of turbulent surface exchange based on the modelled source area.

In general, the modelled fetch at KSK (not shown) does not reach as far and has a slightly different
alignment (as expected from the wind rose comparison in Fig. 6). This shift of the wind roses in con-
junction with the slight spatial displacement of the two sites of about 60 m (Kotthaus and Grimmond,
2013) can result in situations where the eddies observed at the two sites might have been influenced
by quite different sinks and sources. Especially for unstable conditions, when source areas are small,
observations at the KSK site might have been affected more by nearby roofs and canyons rather than a
footprint at the local-scale. Still, even in the roughness sublayer, fluxes are related to surface controls.
For example, Kanda et al. (2006) investigated the spatial variability of turbulent fluxes in the rough-
ness sublayer during a winter period where sensible heat flux observations from sites influenced by
different source areas were successfully explained by variations in vegetation surface cover. On aver-
age, the 50% isopleths for KSK do not include the river towards the south (potential moisture source)
and only a small fraction of the busy Aldwych junction (potential heat source). The modelled source
areas for KSK are probably inappropriate for the times that the measurements are within the rough-
ness sublayer as the fundamental assumptions of the footprint model are not fulfilled. Thus, the foot-
print analysis (Section 4.3) is concerned with the KSS site only.

4.3. Analysis of footprint surface-atmosphere exchanges

Based on source area characteristics, the relation between surface forcing and observed energy ex-
change is examined. The turbulent latent and sensible heat fluxes clearly have variations at seasonal
and diurnal scales (Kotthaus and Grimmond, 2013, their Fig. 6), which, combined with systematic
temporal variations in wind direction (for example, northerly winds were more frequent during win-
ter months, not shown), could potentially confuse the investigation of surface controls. In order to
minimise this effect, turbulent fluxes were normalised by the incoming radiative fluxes
(Q; = K; + L;). Median energy flux ratios QH/Q; and QE/Q; are analysed by wind direction (aggregated
into 10� intervals) and surface cover percentage (Fig. 8). Furthermore, precipitation clearly affects
the Bowen ratio (Kotthaus and Grimmond, 2013, their Fig. 9) and is most often associated with frontal
systems of mid-latitude cyclones approaching London from the southwest (Met Office, 2012b). Hence,
fluxes are shown for all conditions (all, Fig. 8) and restricted to measurements with no rainfall within
the preceding 12 h (dry) in order to alleviate a potential directional bias caused by precipitation.

Sensible heat flux (Fig. 8a) is strongest from 205� to 85�, where median QH usually makes up at least
22% of Q;, compared to southerly and southeasterly directions, where most median estimates are be-
low 20% Q;. In the first instance, this contrast reflects variations in surface cover characteristics given
the energy flux ratio is higher in areas where impervious surfaces dominate (>80%). However, a series
of variations can be identified which illustrate that surface controls on the fluxes are more complex
and not driven by the surface cover types alone. For instance, areas with almost complete impervious
cover (>90%) are not associated with higher fluxes than those with small amounts of vegetation (80–
90% impervious). Rather, the flux ratios are highest for the latter in an area north of the site between
335� and 45�. Furthermore, even very low median values of QH (<10% Q;) occur for periods with dom-
inant impervious fractions in the flux source area, namely between 105� and 145� and 165� and 205�.
Sensible heat flux ratios within these two wind direction regions do not indicate a clear response to
surface cover fractions of roads and buildings (ranging from 40% to 100%), rather they are constantly
low. These directional patterns, both to the N and to the SE/S, suggest that other effects, besides the
impervious surface cover fractions, need to be considered when interpreting the fluxes observed.

The impact of surface roughness variations in the complex CBD setting can be expected to account
for some of the directional patterns seen in the energy flux ratios (Fig. 8). The surface drag is reduced
for wind directions aligned with the River Thames (not shown), i.e. in the south (185–205�) and the
southeast (115–140�). Wood et al. (2013) found enhanced flow relative to the flux tower sites along
the river at this location. Horizontal gradients of temperature and moisture (such as seen in Marseille,



Fig. 8. Median heat flux (a, b) QH and (c, d) QE at KSS normalised by incoming radiation Q; by wind direction and surface cover;
(a, c) all conditions; (b, d) restricted to periods with no rain within the preceding 12 h. Minimum number of measurements
available to calculate the median for each interval (a, b) 15; (c, d) 20 (white – insufficient data). Grey shading indicates land
cover/wind direction combinations that cannot occur.
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Pigeon et al., 2007) could play a role. These regions coincide with those of reduced sensible heat flux
(Fig. 8a and b) which suggests that variations in turbulent statistics and momentum transport could
explain some of the variability of the turbulent latent and sensible heat fluxes observed. However, gi-
ven the complex nature of the area surrounding the site, a comprehensive analysis is required to
understand the nature of turbulence influencing these measurements. This is beyond the scope of
the current study and will be presented elsewhere. These turbulence characteristics may, however,
indicate that the reduced sensible heat fluxes (and momentum fluxes, not shown), especially from
SE directions, are also associated with larger scale advection which single EC towers are not able to
capture. In cases of horizontal advection, the fluxes observed are driven by spatial differences in lo-
cal-scale surface controls which are not well addressed in the commonly applied EC source area mod-
els (Section 2.3). The fact that normalised sensible heat fluxes do not seem to respond to the amount of
impervious surface cover estimated by the footprint model, could suggest that the observed fluxes in-
deed do not represent the calculated local-scale source area from directions 105� to 140�.

Modelling approaches incorporating the three dimensional nature of the surface (possibly with
back trajectories) would be required to understand the ‘history’ of the observed atmospheric condi-
tions. Advection has long been recognised to impact EC observations under complex conditions (e.g.
Aubinet et al., 2003). Still, there are no simple tools to address the issue of advection (e.g. Feigenwinter
et al., 2008; Aubinet et al., 2010). Typically extensive observations are required to be combined with
numerical modelling (e.g. Pigeon et al., 2007). Ideally, EC sites should be installed where advection ef-
fects are minimal. This requirement, however, is difficult to meet when studying the patchy urban
landscape, with areas of varying building density interspersed with areas of very different materials
(e.g. parks, rivers and lakes). Advection effects caused by these characteristic urban components need
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to be addressed during the observation and modelling of urban climate conditions. As cities are retro-
fitted and built to be more ‘‘livable’’ this patchiness will likely increase further. Thus there is a need to
develop appropriate tools to ensure that measurements are appropriately understood and that model
performance is evaluated adequately before being utilised for decision making.

In addition, there are meso-scale effects that influence the meteorological conditions observed in
central London when the flow is coming from the east. As seen in the KSS wind rose (Fig. 6c), about
4% of the observations are from around 110�, which aligns with the River Thames. Tidal effects might
affect the overall roughness of the urban area of Greater London as a whole. Moreover, this wind direc-
tion is associated with sea breezes (Bohnenstengel et al., 2011; Chemel and Sokhi, 2012). Further
investigation is required in order to understand the relation of local-scale surface controls and synop-
tic scale conditions as forcing for the observed turbulent surface fluxes.

Overall, the impact of precipitation and associated wet surfaces is not particularly strong on the
sensible heat flux (Fig. 8b). On some occasions rainfall results in a reduced QH, mostly for the region
190–250�, but this sector already had smaller heat fluxes. As expected, the moisture input has a much
stronger influence on the latent heat flux (Fig. 8c and d). For southerly and westerly flow, which rep-
resent typical conditions for frontally induced precipitation in the UK, the occurrence of QE > 3.5% Q; is
obviously higher when the urban fabric is wet. Still, even when those times are excluded from the
analysis (Fig. 8d), the latent heat flux shows a clear signal of higher fluxes from a broad south-westerly
range of wind directions (150–280�). This could be an artefact of the way ‘dry’ surface conditions are
defined here. Possibly, the effect of increased evaporation fluxes due to moisture supply by wet sur-
faces after rainfall occurs for more than 12 h, even though its impact on the Bowen ratio clearly de-
creases after this period of time (Kotthaus and Grimmond, 2013). This is not surprising, given the
turbulent flux of latent heat observed in this CBD is considerably smaller than that of sensible heat,
so the impact on QE needs to be substantial to show up in the ratio of energy partitioning. No effect
of rainfall is detected under northerly wind conditions where median normalised evaporation is con-
sistently low (<2.5% Q;).

As for the sensible heat flux, the relation of latent heat flux ratios to surface cover fractions in the
source area is complex (Fig. 8d). Median latent heat fluxes range between 2% and 3.8% of Q; over the
whole range of vegetation and water surface cover (0–50%). Very low fluxes (<2% Q;) occur for
some areas where those surface fractions make up less than 30%. The river, which according to
the footprint analysis (Fig. 7c) contributes significantly to the source area between 105� and 205�,
does not have a distinct signature in the latent heat fluxes. It could be argued that the open water
surface supplies moisture for evaporation in a region between 175� and 215� where the latent heat
flux ratio appears to indicate an increase of fluxes with water (+ vegetation) surface cover. However,
given that the wind directions of increased rainfall and considerable open water surface cover
overlap, it is not possible to separate the impact of the two surface moisture sources completely
(based on the data available).

In addition to the surface cover types, the three dimensional structure of the surface can give in-
sight into mechanisms governing surface controls on the evaporation flux observed. The river intro-
duces rather abrupt changes in surface roughness (Fig. 1) to the urban canopy which presumably
initiate internal boundary layers (IBL) at the river banks. Thermal effects driven by the temperature
differences between the water body and the urban fabric may play a role at times. Given the vicinity
of the site to the open water surface (<200 m) and the relative height (59.1 m above sea level, tides
±3 m), the IBL characterised by the river might be too shallow to reach the sensors. Extensive measure-
ments and/or a high-resolution model would be required to capture the nature of this potential IBL.
According to a simple parameterisation (Elliott, 1958; assuming a roughness length of 0.1 m for the
river surface which includes boats etc.), an IBL initiated at the rough-to-smooth transition at the south
bank of the river would probably develop to a height of 35–50 m when reaching the north bank (river
width �300 m). Therefore the IBL height would remain below the KSS measurement level under
southerly flow directions. Thus the surface characteristics south of the river would impact the sensor
which may explain the lack of large increase in latent heat flux from these directions. Source area
models currently available for the interpretation of EC fluxes, such as the analytical model used here
(Section 2.3.1), are not able to capture such complex structures.
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Vegetated areas add complexity to the interpretation of potential moisture sources for the mainte-
nance of latent heat fluxes. These may also contribute to prolonged moisture supply after rainfall.
Overall, urban vegetation has a comparatively small presence and no large variations with wind direc-
tion (Fig. 7c). There are a few more street trees immediately north of the site and slightly more trees
and vegetated areas beside the riverbanks (e.g. Temple gardens), but their close proximity to the open
water makes it very difficult to separate their effect on the observed surface energy exchange. Further,
the small magnitude of the turbulent latent heat fluxes observed in this dense urban environment may
mean that the differences between fluxes from certain wind directions are within the observational
uncertainty of eddy covariance. Still, despite the small magnitudes of the latent heat flux ratios with
incoming radiative energy, the analysis (Fig. 8c and d) suggests that rainfall is the most important
moisture source for evaporation in the CBD studied.

The variations of both turbulent fluxes presented suggest that surface cover type alone does not
characterise sufficiently the surface controls on surface energy exchanges, rather the impact of surface
roughness seems to be significant at various scales. Further aspects to be considered are the spatial
patterns of the storage heat flux and the locations of anthropogenic heat and moisture sources in
the CBD which are not necessarily captured in the map of land cover types used for the current foot-
print analysis (Fig. 7a). For example, the latter does not account for the potential effect of anthropo-
genic moisture sources in areas of impervious land cover (Kotthaus and Grimmond, 2012) and does
not distinguish between busy roads and pedestrian areas (e.g. the Somerset House courtyard). For this
reason, auxiliary data from an anthropogenic heat flux model (Iamarino et al., 2012) have been incor-
porated into the energy balance analysis for the current study area (Kotthaus and Grimmond, 2013) as
an attempt to account for anthropogenic activities around the site. Kotthaus and Grimmond (2013)
use source area estimates from this study to spatially align the modelled flux with the EC observations.

4.4. Inter-site comparison

Instruments at KSK were lower than at KSS (Table 1), hence the roughness parameters (Section 4.1)
and source area characteristics differ. As the KSK measurements were within the roughness sublayer
at times, the immediate surroundings (buildings and canyons at KCL Strand) would have strongly
influenced the turbulent surface exchanges observed. Evidence of the impact of the surface roughness
elements on the flow at KSK has been found in the wind direction frequency distribution, as it is
shifted relative to that observed at KSS (Section 4.1, Fig. 6). Thus to compare simultaneous observa-
tions at the two sites, the analysis here is based on the KSS wind direction (dirKSS) and the deviation
observed at KSK (dirKSS–dirKSK; Fig. 9). As the simultaneous measurements of latent heat flux observa-
tions are limited (Kotthaus and Grimmond, 2013, their Table 1), and the flux is generally of small mag-
nitude, QE is not plotted. The shaded area (dirKSS � 39–97�) marks the region where micro-scale
anthropogenic emissions have been detected at KSS (Kotthaus and Grimmond, 2012) or flow distor-
tion induced by the instrumental setup (sensor mountings) might have occurred. No obvious distor-
tion effects are evident in this region of wind direction. However, given the frequency of observations
from this sector is low and further diminished due to quality control restrictions (Kotthaus and Grim-
mond, 2012), it is not discussed in the comparison of KSK and KSS observations. No numerical require-
ments have been applied to the observations in each wind direction bin, in order to display the full
range of observations (Fig. 9a). However, this should be considered in the analysis of the median ratios
of the atmospheric variables (e.g. wind speed, Fig. 9a). From the observed wind roses (Fig. 6c and d), it
is evident that KSK wind is slightly distorted to the right (resulting in higher wind direction values
compared to KSS) for winds from the southwest and northeast and to the left (lower wind direction
values) from the west/northwest and east/southeast (Fig. 9). Despite precise instrument-alignment
and assessment against an independent reference (wind direction observations at London Heathrow
Airport, Met Office, 2012a) some of the deviation may be related to measurement inaccuracies. How-
ever, as both negative and positive deviations are detected a simple bias due to misalignment does not
explain the differences.

Wind speed, friction velocity and surface drag coefficient (C1=2
D = u⁄/U) give useful insight into the

influence of roughness elements on the observations at KSK when put into relation to those at KSS
(Fig. 9b–d). These variables are discussed first, in order to provide the context for interpreting the



Fig. 9. Median ratio of observations at KSK and KSS of (b) wind speed U, (c) friction velocity u⁄, (d) drag coefficient C1=2
D , and (e)

sensible heat flux QH by KSS wind direction and the deviation of wind direction at KSK from that at KSS; (a) the number of
measurement periods analysed is shown for wind speed ratio (b). dirKSK–dirKSS is restricted to an absolute deviation of 50�. (grey
shading; 39–97�) Sector affected by micro-scale anthropogenic sources (IMAS; Kotthaus and Grimmond, 2012) at KSS and
potentially flow distortion effects from the mountings.
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sensible heat flux patterns (Fig. 9e). As the wind roses (Section 4.1) showed, overall winds are stronger
at the higher measurement level at KSS (Fig. 9b). Friction velocity is often of similar magnitude at the
measurement locations (Fig. 9c); however, there are regions where u⁄ values observed at one clearly
exceed those at the other. The surface drag coefficient is generally higher at KSK (Fig. 9d) with only
two exceptions, i.e. wind directions 100–115� and partly around 225� (dirKSS).

The most consistent and ‘homogeneous’ fetch for the two EC sites at KCL is located in the north to
north-westerly directions (Fig. 7c and d). Here, height variations have presumably less impact than to
the south (Fig. 1). For a broad range of wind directions (dirKSS � 280–40�) wind speeds are, as ex-
pected, considerably higher at KSS (Fig. 9b), thus the lower surface drag coefficient (Fig. 9d) at this
higher measurement level. From these directions, the flow observed at the two sites appears to be sys-
tematically related. Wind speeds at KSK are, on average under neutral conditions, 0.6 (330–10�) to 0.7
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(285–320�) times lower. This suggests a slightly stronger increase of wind speed with height/wind
shear than would be described by a neutral logarithmic wind profile. From this, mean wind speed
at KSK should be about 0.8 times that at KSS (for dirKSS � 330–10� as well as dirKSS � 285–320�) for
neutral stratification periods using the first order roughness parameters (Section 4.1). Hence, it could
be argued that observations from these wind directions represent conditions similar to the
well-blended surface layer. This agrees with the dense urban canopy in this fetch which makes skim-
ming flow more probable so that mixed turbulence could be observed, even though from these direc-
tions both measurement levels are probably below the rule of thumb estimate (2 � the mean building
height) of the blending height (Section 4.1). These findings support the expectation that in densely
built areas the blending height will be lower (e.g. Mulhearn and Finnigan, 1978; Raupach et al.,
1980), as seen in the observations of Christen and Vogt (2004). It further underlines the need to
evaluate morphometeric parameterisations under these conditions.

A small sector of wind directions (around dirKSS � 110�), apparent in both wind roses (Fig. 6c and d)
and discussed in the footprint analysis of KSS observations (Section 4.3), indicates channelling by the
nearby river. Here, the KSK wind speed has a local maximum so that observations are very similar to
those at KSS (often UKSK/UKSS > 0.9). Wind directions of dirKSS � 100–115� represent the only region
where both friction velocity and surface drag coefficient are clearly higher at KSS compared to KSK,
with ratios of about 0.8 and 0.9, respectively. The DEM around the sites (Fig. 1) shows the ground
and building height variations at KCL Strand. The orientation of the building hosting the KSK mast,
suggests that bluff body effects could influence the flow observed at this lower measurement height
towards the southeast. Further, flow is potentially separated to bypass the bluff body, which would
introduce wake flow into the turbulence observed at KSK. This bluff body might cause acceleration
of the flow around it, explaining the relatively higher wind speeds, reduced friction velocities and
surface drag discussed for directions of dirKSS � 100–115� (Fig. 9b–d).

As noted (Section 4.3), the surface drag and u⁄ observed at the higher KSS tower (not shown) are
reduced for wind directions aligned with the River Thames (dirKSS � 115–140� and 185–205�). Friction
is higher for the region in between (dirKSS � 155–175�), where the fetch of open water is considerably
smaller and the sharp increase in surface roughness at the north bank of the River Thames might cause
some bluff body-type impacts on the flow from these directions. The u⁄ variation at KSS is evident in
the observed ratios (Fig. 9b and c). The intra-site comparison (Fig. 9) has the bluff body effects of the
KSK building (possibly affecting the flow for dirKSS � 100–195�) and the river-roughness variations
seen at KSS (dirKSS � 110–210�) superimposed. For example, to the west of KSK, increased wind speeds
and decreased surface drag may be expected, similar to those at dirKSS � 100–115�, but they are
obscured by the KSS signature (Fig. 9b–d).

Wind speeds at the two heights are similar between dirKSS � 210–280� (Fig. 9b): the median ratio
of observations at the two locations is close to unity and some KSK wind speeds are even slightly high-
er than those at KSS (maximum UKSK/UKSS = 1.01; cf. compared to the mean of 0.9 for neutral
conditions calculated using the log-law based on average initial morphometric parameters for all
directions). These south-westerly directions are probably where the KSK tower encounters the least
roof-induced roughness in the immediate surroundings and the flow observed at KSS is influenced
mainly by roads and buildings (rather than the open water). The surface drag is mostly higher (factor
of �1.2) at the KSK site (Fig. 9d). However, the stronger winds at KSK (Fig. 9b) for some wind direction
combinations impact the surface drag coefficient (Fig. 9d). In the south-westerly region, wind speed
(Fig. 9b) and friction velocity (Fig. 9c) variations are correlated with the wind direction deviations
(dirKSK – dirKSS,Fig. 9), but the ratio of friction velocity in this region is very complex. Again, a more
in-depth analysis of turbulence characteristics might lead to a better understanding of processes
governing the flow from these directions observed at the two heights.

Within dirKSS � 280–40� there are low wind speed ratios to the north (dirKSS � 325–10�; Fig. 9b)
potentially caused by bluff body effects. The KSK tower is only 1.5 m taller than the building hosting
the KSS tower (Fig. 1), so flow distorted around this building from both its westerly and easterly sides,
affects the deviations at dirKSS � 280–320� and dirKSS � 10–40�, respectively. Winds observed at KSK
are slightly accelerated compared to the northerly region (dirKSS � 325–10�) as is evident in the wind
speed ratio (Fig. 9b). Given the southwest–northeast orientation of the building (Fig. 1), the edge effect
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is sharper at the easterly end, where the redirection of the KSK wind direction appears more pro-
nounced than at the westerly edge (dirKSS–dirKSK, Fig. 9).

For most wind directions, higher turbulent sensible heat fluxes are recorded at KSS (on average
QH KSK/QH KSS � 0.6). However, a clear response to the flow characteristics discussed is evident
(Fig. 9e). As noted (Section 4.3), channelling along the river and possible horizontal advection may
influence the observations when wind is from the south (dirKSS � 185–205�) and the southeast
(dirKSS � 115–140�). However, as this direction has been rarely observed at KSK and associated with
low sensible heat fluxes at KSS (cf. Fig. 8), this results in values close to 1 (Fig. 9e). From the southeast
(dirKSS � 90–145�), sensible heat fluxes are smaller at KSS than at KSK. Any bluff body effect impacting
the flow at KSK would play a role (dirKSS � 100–115�), but higher wind speeds usually do not favour
buoyancy. We speculate the higher QH at KSK may be induced by the nearby building facets. The
sensible heat fluxes are more similar for the southerly directions (dirKSS � 185–205�) so that the heat
flux remains higher than that observed at the lower measurement level, with ratios around
QH KSK/QH KSS � 0.7 (Fig. 9e). Sensible heat flux at KSK is about half that of KSS for westerly flow
conditions, where surface drag and wind speed at the two heights were found to be very similar
(dirKSS � 210–280�). For northerly directions (dirKSS � 330–10�), where wind speed (Fig. 9b) and fric-
tion velocity (Fig. 9c) indicate a systematic vertical wind profile, the sensible heat fluxes are nearly
identical (also when comparing individual values, not shown). Here, the median ratio is close to unity.

Obviously, variations in anthropogenic heat sources and net storage heat flux relate to the urban
canopy structure, and will impact the turbulent sensible heat fluxes observed. The canopy structure
influences both the blending height, and the ability to transport heat, momentum, moisture and other
constituents above the roughness sub layer. The latter is illustrated by the example of horizontal
advection, induced by the channelling along the river. Such surface variations have been found to
affect the flow in the surface layer elsewhere. For example, an inter-site comparison by Schmid
et al. (1991) revealed that rather small surface variations can significantly impact the turbulent fluxes
measured, even when the measurement height is likely above the roughness sublayer and the heter-
ogeneity of the urban surface is classified as well-mixed at the local-scale. In their study, local-scale
differences were of nearly comparable order of magnitude to urban–rural differences found
elsewhere. Accordingly, the differences found between KSK and KSS could provide an estimate of
the expected variations within the local-scale.
5. Implications for turbulent source area models and siting of EC systems

The results presented illustrate the challenges micrometeorological research faces in the complex,
dense urban environments. Observations at the higher measurement level (KSS) were influenced by
regional to local-scale advection, and local-scale roughness elements and bluff body effects of the ur-
ban surface. The micro-scale features were more evident in the measurements at the lower level (KSK)
indicating it was within the roughness sublayer. The internal boundary layers that develop over the
nearby river surface have likely not developed to sufficient height to reach the flux towers, so the la-
tent heat fluxes remained small. The low vegetation cover, the complex arrangement of anthropogenic
(heat and moisture) emissions and probably most importantly the immense variability of the three
dimensional structure of the urban canopy (affecting radiation fluxes, heat storage flux, surface rough-
ness and flow conditions) all make it difficult to interpret the observed quantities simply.

As is well known for surface energy balance measurements, in order to measure turbulent fluxes
representative at the local-scale, a homogeneous fetch is considered a crucial requirement. Further,
it is recommended to choose a sensor height well above the blending height. Measurements should
be located far away from any object with bluff body characteristics, far away from chimneys and other
micro-scale sources of anthropogenic emissions, and be sufficiently distant from large-scale surface
changes that might induce horizontal advection. Obviously, every effort should be made by those
using eddy covariance for local-scale turbulent exchanges to follow those guidelines. However, in cit-
ies, and especially their dense centres, it is often challenging to find these ‘ideal’, suitable locations,
simply due to the heterogeneous nature of the urban canopy and/or due to logistical constraints
(e.g. access etc.).
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Still, the patchiness of surface form and materials are the reality of cities and hence of specific
interest. In order to adequately capture such aspects, measurement strategies need to be designed
carefully and properly adapted to the urban setting. Where ideal measurement locations cannot be
chosen, it may be advisable to operate a series of sites in proximity. As the current study shows, a sec-
ond tower, even with a lower sensor height within the roughness sublayer, has the potential to add
useful information for the interpretation of fluxes measured. And, as indicated with respect to radia-
tive source areas (Section 2.3.2), multiple measurements would improve the spatial representative-
ness. In addition to profile measurements (EC observations at different height/horizontal distances)
other measurement approaches (such as surface or atmospheric remote sensing) obviously can add
useful information for the interpretation of the fluxes measured.

Data need to be analysed in combination with adequate footprint models that can treat the com-
plex urban areas appropriately. The site described in this study illustrates some of the more sophisti-
cated requirements that need to be incorporated into future footprint models. Where surface
heterogeneities are low, it is probably acceptable to rely on simple wind direction sector analysis.
However, over patchy surfaces, such as those including larger parks or river surfaces, the application
of simple models provides only very first order results as likely internal boundary layers and advective
fluxes are not accounted for. Such features will need to be addressed by footprint models aiming to be
applicable to the real urban surface. However, such models need to be computationally efficient and
address the range of atmospheric stability, most notably urban areas’ unstable conditions.
6. Conclusions

Urban climate observations are often constrained by logistics (e.g. safety, planning, economic, oper-
ations, maintenance, access etc.). This results in few sensors being installed and typically only in re-
stricted locations. Modelling of surface atmosphere exchanges are also challenged by urban
environments, especially in complex central business districts (CBD). Nevertheless, it is critical to
understand the atmospheric processes within these areas, given this is where many people live and
work. The analysis of fluxes observed at two nearby sites in central London allows some conclusions
to be drawn about urban surface energy exchanges. Moreover, it demonstrates methodological chal-
lenges of research in CBD that have clear implications for future studies.

Radiation measurements are impacted by the anisotropic nature of the urban surface and the high
reflectance materials increasingly being used in buildings. With sufficient irradiance, the surface albe-
do is influenced by strong specular reflections or reflection glare. The surface deviates distinctly from
Lambertian characteristics. This highlights the need to consider the source area of radiometers in
terms of both diffuse and direct irradiance. Accounting for reflections of direct irradiance, which de-
pend on the solar position relative to the site (i.e. latitude, time), sensor height, and the BRDF of the
observed surface (described by a combination of conditions at various scales from material properties
to three-dimensional canopy structure) allows apparently anomalous reflected short-wave radiation
to be explained.

Spatial patterns of surface albedo suggest that the lower bulk surface albedo observed at the site
with the greater measurement height (a = 0.11 at KSS) better represents the local-scale area, whereas
instruments located at a lower elevation show a bias towards roof surfaces (a = 0.14 at KSK). Under
overcast conditions at both sites, the bulk surface albedo is close to these median albedo values (high-
er by 0.01). Using cloud cover information, it is shown that the impact of specular reflections on sur-
face albedo measurements is highly accentuated under clear sky conditions and decreases with
increasing cloud cover. In London, above 70% cloud cover diffuse radiation mostly dominates over
the direct flux.

An analytical footprint model was used to relate the observed turbulent fluxes of sensible and la-
tent heat to surface controls from different land cover types. Land cover fractions derived from this
modelled turbulent flux source area indicated that high turbulent sensible heat fluxes occur where
impervious surface fractions are particularly high. However, the modelled source area characteristics
did not fully explain the spatial variations of the turbulent fluxes. Sensible heat flux was lower from
directions potentially affected by a nearby open water surface, the River Thames. However, this did
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not seem to be related to the moisture supplied and its potential impact on the partitioning of avail-
able energy, as there is no clear increase in turbulent latent heat fluxes. Rather, the river has a decrease
in surface roughness, so the decrease in sensible heat fluxes was explained by channelling of the flow
and potential horizontal advection. The impact of the river on the observed fluxes might have been
further limited if the internal boundary layers that form over the water surface do not develop to
the height of the flux towers. Such effects are not captured by the analytical footprint model. Probably,
detailed LES modelling could provide some insights.

It has not been possible to quantify precisely the role of vegetation as a moisture source for the la-
tent heat fluxes, given its generally small surface coverage. While no clear signal was found in the la-
tent heat flux corresponding to the nearby water surface (presumably due to the formation of internal
boundary layers) or the sparse vegetation, rainfall appeared to be a key driving-factor for evaporation
in this dense urban environment. When the urban fabric was wet, mostly associated with south-wes-
terly flow (i.e. frontal systems connected to mid-latitude cyclones), the generally small latent heat flux
magnitude did increase. However, the response to rainfall could not be isolated from the influence of
the vegetated areas and their soil moisture content.

While only limited conclusions could be drawn from the source area analysis, because of the spatial
distribution of the land cover types (e.g. no area with particularly high vegetation in the flux footprint)
and the applicability of the model under such complex conditions (e.g. three dimensional building
form, advection along the river), the analysis of flow patterns proved more suitable. Comparison of
the two measurement heights suggested the spatial variations of the sensible heat flux observed were
related to changes in surface roughness. Measurements at the higher level clearly picked up the larger
scale channelling induced by the riverbed, while bluff body effects explained variations at the lower
level. Where the source areas were most homogeneous (areas with greatest built density), flow con-
ditions were vertically consistent. The wind velocity profile was similar to the log-law and sensible
heat flux appeared to be invariant with height, even if initial morphometric parameters suggested
the measurements may be below the blending height. These findings indicate that the investigation
of turbulence statistics may be more informative in the interpretation of turbulent fluxes than detailed
calculations of surface cover fractions without detailed 3D information incorporated. Also, it high-
lights that parameterisations of morphometric characteristics need to be further evaluated for such
complex settings.

This work demonstrates, even in this complex setting, observations provide useful information
about processes governing surface-atmosphere exchange that must be understood in the context of
global urbanisation and climate change adaptation strategies. Detailed analysis and careful interpre-
tation do allow us to describe and move towards quantifying atmospheric conditions in the CBD. This
study identified limitations to some current observational approaches, including critical aspects of
instrument siting in complex urban settings and where more detailed, better adapted footprint mod-
els are required. All fluxes of the surface energy balance are highly scale dependant, which needs to be
considered when interpreting measured (as well as modelled) energy fluxes in relation to each other.
Both for radiometer and EC flux measurements, it is suggested that simultaneous operation of two
nearby sites can greatly benefit the analysis. Multiple radiation sensors could be combined to be more
representative of the turbulent flux footprint. The results provide an example of how observations
within the roughness sublayer can be interpreted, also with respect to the impact of bluff bodies.
Clearly more measurements are needed from such settings, but this work underlines the requirement
for careful directional analysis and interpretation of such datasets.

Measurement and modelling approaches may be pushed to their limits in dense urban settings, but
if urban climate research is to contribute to the challenges of real cities those limits have to be ad-
dressed. To manage cities sustainably and smartly, currently and into the future under changing cli-
mates, measurements and models must also consider central urban areas where interactions of
humans with the environment are particularly concentrated. Surface heterogeneities that have proven
to challenge both measurements and modelling techniques in this study are at the scale where urban
planning strategies are implemented (e.g. usage of high reflectance materials, orientation of buildings,
etc.). Measurements will allow improved understanding of the processes, enhanced modelling skill
and better forecasting with data assimilation to help make cities more resilient.
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