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Abstract This paper describes a novel method for quantitatively and routinely identifying auroral
breakup following substorm onset using the Time History of Events and Macroscale Interactions during
Substorms all-sky imagers. Substorm onset is characterized by a brightening of the aurora that is followed
by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in
the auroral intensity i(t) and the time derivative of auroral intensity i(t). Utilizing both i(t) and i’(t), we have
developed an algorithm for identifying the time interval and spatial location of auroral breakup during the
substorm expansion phase based solely on quantifiable characteristics of the optical auroral emissions. We
compare the time interval determined by the algorithm to independently identified auroral onset times
from three previously published studies. In each case the time interval determined by the algorithm is
within error of the onset independently identified by the prior studies. We further show the utility of the
algorithm by comparing the breakup intervals determined using the automated algorithm to an
independent list of substorm onset times. We demonstrate that 50% of the breakup intervals characterized
by the algorithm are within the uncertainty of the times identified in the list. The quantitative description
and routine identification of an interval of auroral brightening during the substorm expansion phase
provides a foundation for unbiased statistical analysis of the aurora and to probe the physics of the auroral
substorm and identify the processes leading to auroral substorm onset.

1. Introduction

Magnetospheric substorms are characterized by an explosive release of energy accumulated in the nightside
magnetosphere as a result of coupling between the interplanetary magnetic field and the Earth’s magneto-
sphere. Magnetic reconnection on the dayside extracts energy from the solar wind, which is stored in the
Earth’s nightside magnetosphere in the form of stretched magnetic fields. The accumulation of energy in
the nightside magnetosphere is referred to as the substorm growth phase [McPherron, 1970]. As more and
more energy is stored in the nightside magnetosphere, the magnetic field in the tail becomes increasingly
compressed until a critical point is reached and the energy stored in the tail is explosively released during
the substorm expansion phase [Aubry and McPherron, 1971]. Despite the clear overall path of energy
transfer in the substorm process, the details of the physical processes and their time sequence during
magnetospheric and ionospheric substorm onset remain highly controversial [e.g., Angelopoulos et al.,
2008, 2009; Lui, 2009].

During the substorm expansion phase, the cross-tail current is disrupted, the nightside magnetosphere de-
polarizes, magnetic reconnection in the tail is initiated or further enhanced, and the aurora expands, initially
in a localized region and subsequently azimuthally and poleward. In the ionosphere, the sequence of events
during the substorm expansion phase onset is very well defined: the most equatorward arc brightens (or a
new arc forms equatorward of the growth phase arc) and begins to expand poleward and then ultimately
explosively expands across the nightside [Akasofu, 1977].

The expansion phase controversy relates to whether current disruption via a localized plasma instability
[Lui, 1996] in the near-Earth magnetosphere (~10 RE) precedes magnetic reconnection further down tail
(~25 RE) and is responsible for initiating the substorm expansion phase or vice versa [Baker et al., 1996].
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Recent work utilizing the Time History of Events and Macroscale Interactions during Substorms (THEMIS)
mission [Angelopoulos, 2008] has shown strong evidence for both reconnection [Angelopoulos et al., 2008] and
the potential action of a near-Earth instability [Rae et al., 2009a] in triggering substorm expansion phase onset.
Another substorm paradigm suggested by Nishimura et al. [2010b] suggests that flow bursts from the distant
tail, which may be associated with localized reconnection, can trigger a near-Earth instability and subsequently
lead to substorm onset. The quantitative analysis of the sequence of events and morphology of the magne-
tospheric and ionospheric signatures of a substorm is essential in order to fully resolve this controversy. This is
inherently difficult using in situ spacecraft measurements of electromagnetic fields and plasma since one must
infer the state of highly dynamic global nightside processes from a few single-point measurements. Ground-
based observations of the ionosphere, with careful analysis, can provide a unique view of a much larger two-
dimensional region linked to the entire nightside magnetosphere. In particular, the THEMIS all-sky imagers
(ASIs) [Mende et al., 2008] provide the ability to diagnose the auroral morphology through the substorm growth
and expansion phases and the ability to indirectly infer information about the processes which lead to the
initiation of the substorm expansion phase [see, for example, Rae et al., 2010]. In this paper we present a novel
technique with which to automatically identify a time interval and spatial location using optical all-sky imager
(ASI) data that consistently identify the significant brightening and expansion of the aurora during the substorm
expansion phase known as auroral breakup [Akasofu, 1964] using optical all-sky imager (ASI) data. We present
an auroral breakup timing technique based on a quantitative algorithm applied to ASI data and not through
visual identifications ostensibly “by eye” by an individual researcher.

Previous work to automatically and routinely identify substorm onset has largely concentrated on ground-
based magnetometer observations of the impulsive Pi1 and Pi2 ultralow frequency (ULF) magnetic waves
observed at substorm onset [Jacobs et al., 1964] that are highly correlated with auroral intensity [Rae et al.,
2012] and may be used as a proxy for auroral substorm onset [Sakurai and Saito, 1976]. Sutcliffe [1997] trained
a neural network to determine substorm onsets by identifying Pi2 pulsations at low-latitude ground-based
magnetometer stations. Similarly, Nose et al. [1998] used a Meyer wavelet to automatically identify Pi2
pulsations at low-latitude ground-based magnetometer stations. While both Sutcliffe [1997] and Nose et al.
[1998] were able to routinely identify Pi2 pulsations, the delay between auroral zone ULF waves and
low-latitude ULF waves can be on the order of minutes, introducing additional timing uncertainties when
observing ULF waves away from the onset location. Significantly, neither method is capable of identifying the
ionospheric location of substorm onset.

Milling et al. [2008; see alsoMurphy et al., 2009] used a similar technique to that developed byNose et al. [1998] to
identify both the time and location of substorm onset using ground-based magnetometer observations of ULF
waves in the auroral zone. These authors demonstrated that both the time and location of substorm onset could
be determined by applying discrete wavelet transforms to the data from a network of magnetometers. While
robust, the method described by Milling et al. [2008] required user input of a preidentified approximate time of
the onset, thus making it difficult to use in large-scale statistical studies. Though ground-based magnetometer
observations provide vital information for understanding substorm dynamics, routine identification of optical
onsets would be an extremely valuable additional capability. In this paper we present a new technique using
ground-based optical observations of the aurora from the THEMIS ASIs.

The auroral morphology through the substorm growth and expansion phases is one of the most well-defined
observations of the substorm sequence. However, there is no consensus in the literature as to what constitutes the
very first moment of a brightening or subsequent breakup. This is complicated by the fact that typically these
phenomena are identified by eye, such that the chosen time of brightening and breakup can be dependent on the
signal-to-noise in themeasurement, the sensitivity of the instrument, and any automated normalization of the data.

We propose that a database of auroral breakup times generated via a reproducible automated algorithm will
provide a more reliable basis for statistics with which to test hypotheses regarding the physical mechanisms
responsible for triggering substorm expansion phase onset. This database will be analyzed in future work; in
this paper, we describe the algorithm itself.

2. Automated Determination of Auroral Breakup

The first auroral indication of the onset of the substorm expansion phase is a sudden and localized bright-
ening of the aurora [Akasofu, 1977]. This brightening can occur in a preexisting auroral arc [e.g., Rae et al.,
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2009b] or on a diffuse or newly formed auroral arc [e.g., Rae et al., 2009a]. The initial brightening is
followed by auroral breakup and the poleward and azimuthal expansion of the aurora. Despite this rather
simple definition of substorm onset, there is often no consensus as to what constitutes the initial time of
auroral onset (compare for instance Mende et al. [2009], Lui et al. [2008], and Nishimura et al. [2010c]). In
addition, instrumental and environmental noise detected by auroral cameras (for instance clouds and
moon glow) can significantly influence any quantitative determination of auroral onset. In this section we
describe an algorithm which identifies a period of rapid auroral brightening and expansion. This time
naturally occurs immediately following auroral onset and describes the auroral breakup during the
substorm expansion phase defined by Akasofu [1964] as “the most violent form of (auroral) display.”
Hence, we term this interval as the auroral breakup time or interval throughout the remainder of the
manuscript. Our quantitative definition of the auroral breakup interval provides an unbiased method
with which to routinely identify physically similar periods of auroral brightening that can be used in
statistical studies.

In auroral cameras, the localized, rapid brightening of the expansion phase aurora is characterized by a rapid
exponential growth in the intensity [e.g., Voronkov et al., 2003; Rae et al., 2012] and a rapid increase in time
derivative of the intensity. In a dynamic power spectrum, these changes manifest as a sudden increase in
power across a broad band of frequencies. In our new technique, the dynamic power spectrum of both the
auroral intensity and the time derivative of the auroral intensity are used to define an auroral brightness
parameter, denoted the brightening factor (BF), to automatically define a spatial window and time interval of
auroral brightening for individual substorms.

For any time interval, the BF is calculated from the time-dependent smoothed average intensity i(t) within a
defined region (subwindow) of the field of view (FOV) of an individual THEMIS ASI and its time derivative
i’(t), where

i tð Þ ¼ smooth
∑x∑yC x; y; tð Þ

ΔxΔy
; spt

� �
; (1)

C is the ASI count rate for each individual pixel in the ASI FOV at a given time t, and spt is the number of points
used for the smoothing. The area of the subwindow is Δx times Δy, such that i(t) represents a normalized
intensity within the subwindow. The power spectra of both i(t) and i’(t) are then calculated over a finite time
interval Δt and stepped in time by δt to generate dynamic power spectra I(f,t) and I’(f,t). The dynamic power
spectra are then summed over a configurable frequency range f providing the total power J(t) and J’(t) as a
function of time.

J tð Þ ¼ ∑
b

f¼a
I f ; tð Þ: (2)

J’ tð Þ ¼ ∑
b

f¼a
I’ f ; tð Þ: (3)

In equations (2) and (3), a and b are constants specifying the frequency range over which the summed
power J(t) and J’(t) are calculated. This frequency range can be tailored and optimized for specific appli-
cations such as the study of high-frequency changes in the aurora (i.e., flickering aurora) or low-frequency
variations (e.g., long-period variations along the growth phase arc). The brightness factor BF is then defined
as the product of J and J’

BF tð Þ ¼ J tð Þn � J’ tð Þm � s: (4)

As the sign of i(t) and i’(t) is lost in the fast Fourier transform (FFT), s accounts for the slope (and hence sign)
of both i(t) and i’(t). If either the slope of i(t) or i’(t) is negative, then s=�1, for all other values s= 1. This
ensures that over the FFT interval Δt, a positive brightening factor corresponds to a brightening, rather than
a dimming. In equation (4) the constants n and m are weighting factors such that the influence of the
auroral intensity and temporal rate of change of intensity can be set individually. For the purpose of this
manuscript we set n andm to unity, though we discuss the variation of BFwith n andm below. We utilize the
dynamic FFT and J(t) and J’(t) rather than i(t) and i’(t) to define BF because the FFT allows us to select frequency
ranges of interest. If we were to use i(t) and i’(t), rather than J and J’ to define BF, then the contribution of
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high-frequency variations, which may not
lead to a continued brightening of the aurora,
could provide an inaccurate identification of
the auroral breakup interval. The utility of
the FFT is illustrated in the next section.

Finally, the interval that contains auroral
breakup is defined as the interval that pro-
vides the maximum value of BF(t). These
intervals are tagged to the time of the
center of each FFT interval but should be
understood to be an interval with a time
uncertainty (Δt/2) + δt.

To demonstrate this concept, we use the
THEMIS ASI data sets, which have a 3 s ca-
dence and spatial resolution of 256� 256
pixels. Initially, the interval containing
auroral breakup is constrained using BF
calculated over the entire 256� 256 FOV.
However, a refined interval and location
can be determined by calculating BF in
progressively smaller subwindows of the
imager FOV. Figure 1 illustrates an iterative
scheme whereby the use of sequentially
smaller subwindows allows a refinement in
both the time and location of the auroral
breakup interval. Once the initial estimate
of auroral breakup time is obtained from
the full 256� 256 FOV, the analysis window
is shrunk by a factor of 2 to produce a
128� 128 subwindow in the bottom left
quarter of the total 256� 256 image, and a
new BF(t) is calculated for this subwindow.
A new breakup time interval is identified if
the maximum value of BF(t) over the
subwindow is greater than that over the full
256� 256 window, and the time of the
subwindow maximum of BF(t) is earlier
than that identified previously from the
larger window.

In order to identify more specifically the
auroral breakup location, the subwindow is
stepped across the field of view of the ASI
to seek the location that gives the largest
and earliest auroral brightening. The

128� 128 subwindow is stepped across the x and y directions, first in x and then in y, by half the subwindow
width, and at each iteration a new BF(t) and related breakup interval are calculated. The breakup window
(BW) is then determined to be the subwindow with the largest maximum value of BF(t), remembering that
the maximum of the new BF(t) must be greater than that defined in the previous 256� 256 window and
occur during the same time interval or earlier.

Once an optimal breakup interval and location are identified for the 128� 128 size subwindow, the BW is
recentered in preparation for the next level of iteration. The location of the approximate centroid of auroral
intensity at the end of the breakup interval is determined by computing the pixel in x with the largest y

Start

Stop

BF(t) = BrighteningFactor
BestTime = IndexOf [ max ( BF(t) ) ]

BestWindow = [256.256]

WindowSize = [256,256]
WindowCenter = [128,128]

WindowSize = WindowSize / 2
WindowCenter = Centroid ( BestWindow )

BestTime = NewTime
BestWindow = Subwindow

NewTime < BestTime?
AND

BF(Newtime) > BF(BestTime)?
AND

BF(NewTime) > 0?

All
SubWindows

Checked?

Minimum
Window
Size?

Yes

Yes

Yes

No

No

No

BF(t) = BrighteningFactor
NewTime = IndexOf [ max ( BF(t) ) ]

For Each SubWindow

Figure 1. A description of the iterative process to refine the auroral onset time
and location as defined by the brightening factor BF.
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integrated intensity, and the pixel
in y corresponding to the inte-
grated x intensity, within the BW.
To seek an increasingly refined
location for auroral breakup, the
analysis subwindow is repeatedly
shrunk by a factor of 2 in both
axes, and the process is repeated

within each new BW. The process of shrinking the analysis subwindow and stepping through to refine both
the breakup interval and location is repeated until a minimum window size is reached. The final auroral
breakup interval is hence determined from the subwindow with the largest maximum value of BF(t) during
the earliest breakup interval. Together, equations (1)–(4) and Figure 1 characterize the steps the algorithm
uses for automatic identification of auroral breakup interval and location.

Auroral breakup occurs on minute timescales [Akasofu, 1964] so prior to the analysis we smooth the auroral
data over five points (15 s). The dynamic FFT time interval is set to Δt=1min (20 data points) with a step size
δt equal to 25% of the FFT window (15 s). Additionally, both m and n are set to 1, and the total power in
equations (2) and (3) is determined by summing over all but the zero frequency bin. The minimum
subwindow which is to be analyzed is set to 32� 32 pixels, ensuring sufficient expansion of the aurora within
the field of view. In general, any of these parameters can be changed as appropriate for specific target
studies. For instance, the dynamic FFT time interval and step size can be altered for specific instrumentation
with different cadences and temporal resolutions. The values ofm and n, and a and b, can also be adjusted to
identify specific auroral features. For example, if one was interested in the brightening of a preexisting arc the
value of n could be made larger thanm (so long as J(t) remains larger than one). On the other hand, if auroral
dynamics including auroral beads [Rae et al., 2009a] or pulsating aurora [Nishimura et al., 2010a] were to be
studied, then the value of m could be increased to weight J’(t) more heavily than J(t) (again ensuring J’(t)
remains larger than one) and the range of a and b could be truncated to include only the frequencies asso-
ciated with auroral beads and pulsating aurora. In this paper though, we focus on the auroral algorithm as
applied to the rapid brightening that occurs just after the substorm expansion phase onset.

It is important to note that the initial auroral brightening at substorm onset is a poorly defined event, and no
specific criteria or thresholds are used consistently in the literature to describe the phenomenon, e.g., there is
no agreed measure of absolute brightness increase, relative brightness compared to dark sky, relative
brightness compared to average sky, relative brightness compared to nearby sky, the physical size of the
brightening area, or the length of time over which the auroral should brighten. Even assuming these criteria
are applied consistently, the “initial” brightening is dependent on background noise, both instrumental and
environmental, introducing systematic errors into any definition of the initial brightening. For example, a dim
but continuously brightening auroral feature can have a later initial brightening if observed in a bright sky
than if observed in a dark sky since the bright sky will mask the early and small amplitude brightening.

The algorithm described in this paper is not immune to the effects listed above. However, it is more robust
than traditional methods because it consistently identifies physically similar periods of auroral brightening
following substorm onset which can be meaningfully compared between events. It is clear from the pre-
ceding discussion that the earliest detection of the rapid increase in auroral brightness does not necessarily
correspond to the earliest time of an increase in particle precipitation and may depend on instrument or
environmental noise. In order to demonstrate the robustness of the algorithm we have considered a test
auroral signal with various noise levels. The test signal is constructed from a two-dimensional Gaussian which
grows exponentially in time until it reaches a peak amplitude. A background of random noise with an am-
plitude of 5, 10, 15, and 20% of the peak amplitude of the Gaussian is then added to create the test signal.
Movie S1 in the supporting information is an animation of the four test signals; the white box identifies both
the breakup time and location. In each of the four test cases the brightness function identifies the same in-
terval of auroral brightening within the uncertainty inherent in the algorithm, demonstrating the robustness
of the algorithm in the presence of increasing noise levels. Note that the purpose of the test signal is to
demonstrate the robustness of the algorithm in the presence of different noise levels. The time intervals are
summarized in Table 1.

Table 1. Auroral Breakup Intervals Times for Four Signals With Varying
Noise Levels

Source Auroral Breakup Intervals (Seconds Past t0 ± 7.5 s)

Test signal 15% noise 675–735
Test signal 210% noise 675–735
Test signal 315% noise 675–735
Test signal 420% noise 660–690
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In the next section we demonstrate the utility of the algorithm described above by comparing the breakup
interval as determined by the BF and iterative stepping scheme with auroral onset times previously published
in the literature.

3. Demonstration of Algorithm

For the purpose of a comparison between our results and previously published timings we consider three
publications, Angelopoulos et al. [2008],Murphy et al. [2012], and Nishimura et al. [2010b], all of whom use the
THEMIS ASIs to characterize auroral onset. Note that both Angelopoulos et al. [2008] and Murphy et al. [2012]
each consider a single substorm whereas Nishimura et al. [2010b] provide a list of 240 auroral brightenings;
for the latter case we will first select a single auroral brightening from the list for case study comparison.
Finally, we present a statistical comparison of all the onset times presented in the Nishimura et al. [2010b] list
and the center of the breakup intervals determined automatically by the algorithm presented in
this manuscript.

3.1. Case Studies

Angelopoulos et al. [2008] calculate an auroral onset time by identifying the inflection point in the integrated
auroral intensity f from the northern half of the Gillam ASIs FOV (i.e., essentially themaximum of i’(t) as used in
this study). The auroral onset of the substorm on 26 February 2008 is determined to be at 04:57:39 UT.

For a comparison between our technique and that used by others, the initial time series of BF(t) is first
calculated from the entire FOV of a single ASI using a 10min interval centered on the onset time provided
independently in the literature. Once an initial breakup time t0 (the center of breakup interval) is determined
from the whole 256� 256 FOV, BF(t) is then calculated in each of the subwindows in the iterative stepping
scheme from an interval defined by t0 10min to t0. The shifting of the time series by 10min allows the al-
gorithm to search for earlier auroral brightening in successively smaller subwindows assuming that auroral
brightenings at smaller scales will precede the initial large-scale auroral brightening identified in the
256� 256 FOV.

Figure 2 shows an overview of the execution of the algorithm and the determination of BF(t) in the initial
iteration taking into account the entire 256� 256 FOV of the Gillam ASI. An initial estimate of the breakup
interval is determined from the FFT window containing the maximum in BF(t), Figure 2g, at 04:54:45 UT and
will be reported as 04:54:15–04:55:15 UT ± 7.5 s.

Figures 2a and 2b show the integrated intensity i(t) and the time derivative of intensity i’(t), respectively, for
the initial iteration and calculated across the entire 256� 256 ASI window. The shaded region in Figures 2a

2008-02-26
256x256 FOV

a

b

c e

d

f

g

Figure 2. The initial iteration of the determination of the brightness factor BF and auroral breakup interval for the 26 February 2008 substorm observed by the Gillam ASI. (a) (t) and (b) i
0
(t).

The shaded region identifies the initial breakup interval. The dynamic power of (c) i(t) and (d) i
0
(t). The white box indicates the frequency range used to define J(t) and J

0
(t) as well as the time

interval of auroral breakup. (e) J(t), (f ) J
0
(t), and (g) BF. The shaded box in Figures 2e–2g indicates the initial breakup interval.
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and 2b indicates the initial identification of the breakup interval. Note the sudden increase in both i(t) and i’(t)
directly after the independently defined onset time from Angelopoulos et al. [2008]. The rapid increases in
brightness associatedwith breakup show a clear increase in power across the entire frequency band in Figures 2c
and 2d. Note both i(t) and i’(t) show evidence of rapid fluctuations not associated with the auroral breakup. These
rapid fluctuations further demonstrate the utility of using the dynamic FFT to define BF rather than simply the
time series. The FFTaccounts for variations across all frequencies and allows the general trend of i(t) and i’(t) to be
identified, i.e., an increase in i(t) and i’(t) over a period of time. If wewere to consider only the time series of i(t) and
i’(t) to define BF, then rapid fluctuations in both i(t) and i’(t) may lead to a discrete peak in BF(t) but not a continued
and expansive brightening, leading to the possible misidentification of auroral breakup. The white boxes in
Figures 2c and 2d mark the breakup interval and the frequency range used to define J(t) and J’(t). Finally,
Figures 2e–2g show the total power J(t) and J’(t) and the brightening factor BF(t), respectively.

Once the initial breakup interval for examination is defined, the iterative stepping scheme considers a series
of smaller subwindows to refine the breakup interval and location as described in section 2. The 10min
preceding the breakup interval is now used to evaluate each subsequent subwindow, i.e., 04:45–04:55 UT.
Movie S2 in the supporting information illustrates the full implementation of the auroral algorithm, and
Figure 3 illustrates the final breakup interval and location determined from the algorithm.

Figure 3a is a keogram taken from the center of the FOV of the Gillam ASI. The dashed vertical line marks the
onset time determined by Angelopoulos et al. [2008] at 04:51:39 UT, and the solid lines mark the final breakup
interval determined by the automated algorithm described here at 04:51:30–04:52:30 UT ± 7.5 s. Figure 3b
shows the auroral brightness of the Gillam ASI where the intensity at each pixel has been averaged over the
1min Δt window. The white box denotes the location of auroral breakup determined by the algorithm, and
the vertical line is the FOV of the keogram. Note in particular the localized brightening in the breakup region.
Figures 3c–3g are five snapshots from the Gillam ASI, 30 s apart, starting 1min prior to the beginning of the
breakup interval as determined by the algorithm. Note that before the breakup interval, in Figures 3c and 3d, there

a b

c e

d f

g

Average Pixel Intensity
04:51:30-04:52:30

Figure 3. A summary of the auroral onset and breakup interval from the Gillam ASI on 26 February 2008. (a) A keogram showing the onset time
determined by Angelopoulos et al. [2008] using a dashed line at 04:51:39 UT and the refined breakup interval determined by the auroral algo-
rithm using solid lines at 04:51:30–04:52:30 UT. (b) The average ASI intensity throughout the breakup interval, 05:51:30–05:52:30 UT. (c–g) Three
second images at 30 s time steps surrounding the onset time. The white box in Figures 3b–3g marks the auroral breakup location.
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is little auroral activity and through the breakup interval, in Figures 3e–3g, there is an obvious brightening and
expansion of the auroral emission within the region identified by the algorithm. Movie S3 in the supporting in-
formation shows the auroral dynamics through the substorm expansion phase during this event; the white box
denotes the location of auroral breakup and turns red at the beginning of the algorithmically determined breakup
interval at 04:51:30 UT. In summary, the auroral algorithm clearly identifies the breakup interval at the start of the
substorm expansion phase in the Gillam ASI and that the onset time identified by Angelopoulos et al. [2008] was
within this interval (including its uncertainty), despite the presence of clouds and moon glow within this period.

Figure 4 (in the same format as Figure 2) shows the calculation of BF(t) in the full 256� 256 FOV in the Fort
Simpson ASI for the substorm characterized byMurphy et al. [2012]. Similar to the previous event, Figures 4a and 4b
show a rapid increase in i(t) and i’(t), respectively, during the auroral breakup interval 07:19:03–07:20:03 UT±7.5 s
(vertical line). These rapid increases are identified in the dynamic FFT by a sharp increase in power across the entire
frequency spectrum, Figures 4c and 4d. Figures 4e–4g characterize the total integrated power J(t), the change in
total integrated power J’(t), and the brightness factor BF(t), respectively. The full implementation of the algorithm
and the iterative stepping scheme is illustrated inMovie S4 in the supporting information. The final auroral breakup
interval is determined to be (07:17:51–07:18:51) UT±7.5 s. The onset time at 07:18:30 UT, determined by eye in
Murphy et al. [2012], lies within this breakup interval.

The agreement between the breakup interval defined by the auroral algorithm and the onset time defined by
Murphy et al. [2012] is clearly illustrated in Figure 5 andMovie S5 in the supporting information. Figure 5 shows a
summary of the substorm and the breakup interval defined by the algorithm for the 16 February 2010 substorm
in the same format as Figure 3. Movie S5 in the supporting information shows the auroral dynamics from the
Fort Simpson ASI during the substorm expansion phase on 16 February 2010 in the same format as Movie S3.

Finally, we examine a substorm on 11 February 2008, which is part of a list of substorms and auroral inten-
sifications identified by Nishimura et al. [2010b]. Nishimura et al. [2010b] identify the auroral onset at 04:27 UT.
Note that although the THEMIS ASIs have a 3 s resolution, all auroral onset times in Nishimura et al. [2010b] are
defined to 1min time resolution; thus, for the purpose of comparison we assume an error of ± 1min in all
onsets provided by Nishimura et al. [2010b].

Figure 6 (in the same format as Figure 2) shows the initial determination of auroral breakup for the 11 February
2008 substorm from the Sanikiluaq ASI using the full 256� 256 FOV. The initial breakup interval is defined by
the increases in both i(t) and i’(t) leading to a peak in BF(t) at (04:27:48–04:28:48) UT (vertical line). Movie S6
provides amovie of the execution of the auroral algorithm for 11 February 2008. After the initial identification of
the breakup interval, Movie S6 shows that when the auroral FOV is reduced, no peak in the brightening factor is
observed. In this case the successive iterations of the algorithm refine the spatial location of auroral brightening
but provide no refinement in time. The refined breakup interval and location are shown in Figure 7. After the
iterative stepping process, the refined breakup interval is (04:27:37–04:28:36) UT±7.5 which overlaps with the

a

b

c e

d

f

g

2010-02-16
256x256 FOV

Figure 4. The initial iteration of the brightness factor for the substorm on 16 February 2012 from the Fort Simpson ASI, in the same format as Figure 2.
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range of uncertainty in the Nishimura et al. [2010b] onset of 04:27 UT±1min. The dark bar in Figure 7a shows
the 1min uncertainty associated with the Nishimura et al. [2010b] onset times.

A summary of the breakup interval as determined by the auroral algorithm and Nishimura et al. [2010b] as well
as the auroral dynamics are shown in Figure 7 (in the same format as Figure 3) and Movie S7 in the supporting
information. The grey box in Figure 7a shows the uncertainty in the onset time from Nishimura et al. [2010b].

3.2. Statistical Comparison

In this section we compare 240 substorms and auroral onset times in Nishimura et al. [2010b] with the breakup
intervals defined by the algorithm described in this paper. In addition, we perform a small parameter search

a b

c e

d f

g

Average Pixel Intensity
07:17:51-07:18:51

Figure 5. (a–f ) A summary of the onset and breakup interval from the Fort Simpson ASI on 16 February 2012 in the same format as Figure 3.
The dashed line in Figure 5a marks auroral onset defined byMurphy et al. [2012] at 07:18:30 UT, and the solid lines mark the breakup interval
defined by the auroral algorithm, 07:17:51–07:18:51 UT.

2008-02-11
256x256 FOV
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g

Figure 6. The initial iteration of the brightness factor for the substorm on 11 February 2008 from the Sanikiluaq ASI, in the same format as Figure 2.
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over the values ofm, n, a, b, and the window start time. For example, we experiment with investigating the
time intervals between t0 8min and t0 + 2, rather than between t0 10min and t0, for the iterative part of the
search so that there is a 2min overlap between the initial interval and the 10 min window used to make
subsequent iterations. This allows for any potential misidentification of the initial breakup interval.

To directly compare the time interval identified by the algorithm with those identified by Nishimura
et al. [2010b] we use the middle of the breakup window defined by Δt to define a breakup time rather
than a breakup interval and assume an added uncertainty of ±30 s. This makes the total uncertainty
from the algorithm ±7.5 s (from the 15 s step size) plus ±30 s (from the FFT window size) for a total of
± 37.5 s. As noted in previous sections, the uncertainty in the onset time defined by Nishimura et al.
[2010b] is assumed to be ±60 s. With these uncertainties, the timings can be up to ±97.5 s apart and still
correspond to the same event. We also note that there are auroral brightenings within the Nishimura
et al. [2010b] list which occur as little as 3min apart. This is shorter than the window length used by the
algorithm (10 min); thus, we have considered the Nishimura et al. [2010b] database two ways: including
(i) all onsets in the list and (ii) only isolated onsets defined as those which are separated by at least
30min from any other onset.

Figure 8 shows the distribution of the difference between the center of our breakup intervals as determined
by our auroral algorithm (TA) and the onset times provided in the Nishimura et al. [2010b] list (TN) for all events
(Figure 8a) and isolated events (Figure 8b). A negative difference indicates the Nishimura et al. [2010b] onset
follows that defined by the auroral algorithm. Evident in Figure 8 is that TA-TN is clustered just above zero.
When considering all substorms, Figure 8a, 49% of the event timings agree within the uncertainty. When
considering only isolated substorms, Figure 8b, 48% of events agree within the uncertainty. The median of
the distribution lies at 90 s, within the combined uncertainty, clearly demonstrating the utility of the algo-
rithm in identifying auroral brightenings during the substorm expansion phase. We do note that discrep-
ancies exist and discuss this in section 5.

Figure 9 shows the distribution of TA-TN for five different sets of algorithm parameters during all events
(Figure 9 (left)) and isolated events (Figure 9 (right)). The first row is the distribution of events where a

a b

c e

d f

g

Average Pixel Intensity
04:27:36-04:28:36

Figure 7. (a–f) A summary of the onset and breakup interval from the Sanikiluaq ASI on 11 February 2008 in the same format as Figure 3.
The dashed line in Figure 7a marks auroral onset defined by Nishimura et al. [2010c] at 04:27 UT with the 1min uncertainty (shaded region),
and the solid lines mark the breakup interval defined by the auroral algorithm, 04:27:48–04:28:48 UT.
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10min interval defined by t0 8min to
t0 + 2 is used in the subwindow searches
(t0 is the center of the initial auroral
breakup interval defined over the full
256� 256 pixel ASI window). The second
row is the distribution of events for n=2
and m=1. The third row shows the
distribution of the differences for n=1
andm=2. The fourth row looks at specific
frequency range in determining J(t) and
J’(t). Typically, substorm expansion phase
onset is associated with ultralow fre-
quency (ULF) waves in the Pi1 (1–40 s)
and Pi2 (40–150 s) wavebands [Jacobs
et al., 1964]. Recent work has shown that
the initial wave perturbations observed
by ground-based magnetometers and
auroral imagers have periods of 24–96 s
[Murphy et al., 2009; Rae et al., 2009a]. As
such, to concentrate on wave activity, we
have looked at the difference in auroral
breakup times when considering the fre-
quency range 16.67–50mHz (20–60 s).
This is the frequency range available in a
1min FFT window, with a 16.67mHz res-
olution, which spans the 24–96 s period
band of ULF waves observed at substorm
onset. The final row of Figure 9 uses the
16.6–50mHz frequency range and a value
of m=2. The parameters used for each
distribution are shown in the top left of
each panel along with the percentage of
events that agree with Nishimura et al.’s
timings within the 97.5 s uncertainty.

In general, each histogram shows good
agreement; 46–50% of events fall within
the uncertainty between the center of the
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Figure 8. A comparison of timings for all substorms from Nishimura et al. [2010b]. In both panels the x axis is the time difference between
the center of the auroral breakup interval identified using our algorithm and the onset time defined in Nishimura et al. [2010b], TA-TN in
seconds. (a) All substorms characterized by Nishimura et al. [2010b]. (b) Isolated substorms from the Nishimura et al. [2010b] substorm list.
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interval determined by the algorithm and the onset time determined by Nishimura et al. [2010b]. In each case
the histograms peak at 30–90 s. The algorithm necessarily defines a time interval after auroral onset and so we
expect the difference to peak at positive values rather than negative values. The smallest percentage of events
within uncertainty is when the t0 8 to t0 +2min interval is used for subwindow searches, Figure 9 (first row), about
3% (or seven events) less than if we were to use an interval from t0 10min to t0 (Figure 8a). The best agreement is
achieved when either n orm is set to 2, Figure 9 (second and third rows), where 50% of the events fall within the
uncertainty. In all cases, the peak of the distribution lies within in the uncertainty demonstrating the robustness of
the algorithm and the utility for identifying auroral breakup in future studies.

4. Scientific Applications

In this manuscript we have introduced a novel and automated technique for the accurate determination of
the time and location of the auroral breakup that immediately follows substorm onset. Historically, auroral
onset has typically been defined through a visual inspection of the auroral dynamics during the late growth
phase and early expansion phase. This can introduce a number of unavoidable human biases based on the
visual inspection of a complex and dynamic data set. It also makes it difficult to undertake quantitative large-
scale statistical studies of auroral onset as it is impractical to have a single human observer evaluate every
possible event in precisely the same way. More importantly, the necessarily qualitative assessment made by
different observers makes quantitative comparison between the results from different studies difficult or
impossible. The routine identification of auroral brightenings plus the definition of a quantitative parameter,
the brightening factor BF, provides a reliable, and most importantly, reproducible foundation on which to do
statistical studies of the aurora. Specifically, the algorithm described here will enable statistical characteri-
zation of the time delay between ionospheric signatures of the expansion phase, and magnetospheric sig-
natures of substorm expansion phase, such as the near-Earth depolarization of the magnetic field. Such a
quantitative comparison should make it possible to determine the most probable sequence of events during
the substorm expansion phase. The auroral breakup location as determined by the algorithm presented here
(i.e., the white boxes in Figures 3, 5, and 7) can also be compared to the location of the open-closed field line
boundary defined by the electron aurora [Blanchard et al., 1995] and to the location of the transition between
tail and dipolar magnetic field configurations defined by the proton aurora [Samson et al., 1992] in order to try
to determine the location of the magnetospheric counterpart of auroral onset. In addition, the algorithm can
be run on any 2-D auroral measurements, including spectrally resolved auroral imagers, in situ auroral im-
agers such as Polar UV Imager [Torr et al., 1995], and Image FUV [Mende et al., 2000; Frey et al., 2003] to
characterize the initial auroral expansion from global images. Utilizing multispectral cameras, the algorithm
can be used to determine whether there are any differences in the expansion of the aurora at different
wavelengths and further probe the energies of electrons in the initial auroral expansion. Suitable adjustments
to the algorithm may be used to determine whether all substorms have a dimming of the aurora in a region
conjugate to, but just prior to, auroral onset [Pellinen and Heikkila, 1978; Murphy et al., 2012].

Finally, it will be interesting to investigate whether BF is a useful proxy for, say, the size of a substorm and the
amount of energy that is deposited in the ionosphere during the expansion phase. This will be investigated in
future work.

5. Discussion and Conclusions

Auroral substorm onset time and location are characterized by a sudden brightening of the aurora followed
by poleward motion and auroral breakup and development of the westward traveling surge [Akasofu, 1977].
Quantitatively, this means that the aurora increases in brightness and the rate of change of brightness also
increases. Utilizing the product of the auroral intensity and rate of change of intensity BF, we have developed
an algorithm which first defines an auroral breakup interval based upon the integrated brightness of the
entire FOV of an auroral imager and then iteratively refines this breakup time interval using successively
smaller subwindows of the FOV. The algorithm has been compared with the results from three independent
studies [Angelopoulos et al., 2008; Nishimura et al., 2010c;Murphy et al., 2012] which identify auroral substorm
onset time using the same auroral data. In all three cases, the algorithm identifies a breakup interval within
the defined timing uncertainty. Table 2 summarizes the auroral onset times from the three studies and the
auroral breakup intervals determined from the algorithm set out in this paper.
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The algorithm was compared to an in-
dependent list of 240 substorm onsets
and auroral intensifications from
Nishimura et al. [2010b]. We have dem-
onstrated that in up to 50% of events,
the algorithm identifies an auroral
breakup interval within the uncertainty of
previously published substorm onset
time results. We do, however, note that
large discrepancies exist for some events
between the onset time defined by

Nishimura et al. [2010b] and the breakup interval defined by the auroral algorithm presented here. The timing
discrepancies for such events are, in general, explained by the result of light pollution within the ASI FOV, causing
an erroneous identification of a substorm. Light pollution can include automobiles at the edge of the FOV, moon
glow, and smoke stacks within the FOV of the ASI (see, for example, the data from the Kuujjuaq ASI). The future
statistical studies that will be undertaken using the automated auroral algorithm presented here will utilize those
THEMIS ASI sites which have significantly less light pollution.

The use of the FFT in the automated algorithm necessarily defines an interval window length Δt, rather than a
discrete time. For comparison to the timings reported in Nishimura et al. [2010b], we use the center of the
breakup interval (the period of rapid brightening), and thus, we expect to identify times later than those in
Nishimura [2010b], who appear to have identified the “beginning” of the brightening associated with
substorm onset. The time differences illustrated in Figures 8 and 9 are therefore expected to be skewed to-
ward positive values. It is interesting to note that in each of the comparisons in section 3.2, the histograms
peak within the accepted uncertainty, indicating that the auroral brightening that occurs soon after substorm
expansion phase onset is indeed very rapid and occurs close to the time identified by eye as the first evidence
of substorm auroral brightening. The algorithm provides a robust and unbiased mechanism for routinely and
quantitatively identifying the timing and location of auroral breakup and offers a benchmark for future re-
search and statistical analyses. Refinement of the algorithm can occur over time and the implementation can
change for specific studies, such as the choice of the a, b,m, and n parameters in equations (2), (3), and (4). A
small parameter sweep, presented in Figure 9, suggests that a choice of m or n=2 provides a good basis for
the identification of the peak in auroral intensity and brightening during the substorm expansion phase. This
is not unexpected as these parameters will, in general, steepen the curves of J(t) and J’(t) making the peak in
either time series more pronounced. It is important to note that as presented herein, the algorithm requires
an initial identification of a substorm in order to specify a well-defined interval and location for the initial
substorm brightening. Future work will identify periods of poleward moving aurora which have a total
brightness exceeding a predefined threshold in order to identify periods of substorm activity from “unseen”
data. The polewardmotion is characteristic of substorm onset, and the selection of a quantitative threshold in
total brightness provides a repeatable and consistent basis with which to characterize auroral breakup. This
extension of the algorithmwill provide a quantitative foundation to statistically characterize the initial auroral
brightening for future studies. Overall, the algorithm presented here offers a powerful and configurable
quantitative technique for the automated characterization of the time and location of auroral features, in-
cluding the rapid brightening near the beginning of the auroral substorm expansion phase.
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