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Systematic model forecast error in Rossby wave structure
S. L. Gray1, C. M. Dunning1, J. Methven1, G. Masato1, and J. M. Chagnon1

1Department of Meteorology, University of Reading, Reading, UK

Abstract Diabatic processes can alter Rossby wave structure; consequently, errors arising from
model processes propagate downstream. However, the chaotic spread of forecasts from initial condition
uncertainty renders it difficult to trace back from root-mean-square forecast errors to model errors. Here
diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby
waves in winter season forecasts from three operational centers. Tropopause sharpness adjacent to ridges
decreases with forecast lead time. It depends strongly on model resolution, even though models are
examined on a common grid. Rossby wave amplitude reduces with lead time up to about 5 days, consistent
with underrepresentation of diabatic modification and transport of air from the lower troposphere into
upper tropospheric ridges, and with too weak humidity gradients across the tropopause. However,
amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution
from errors in the representation of diabatic processes.

1. Introduction

The Observing System Research and Predictability Experiment (THORPEX) of the World Meteorological
Organization grew out of a recognition that, despite continued improvements in numerical weather pre-
diction forecasts (THORPEX specifically considered 1–14 day lead times), further improvements needed
to be made. However, the strong influence of initial condition uncertainty on ensemble forecast spread
and error diagnostics renders it difficult to isolate systematic contributions from model error and the phys-
ical processes responsible. Identification of such systematic errors is the first step to determining model
improvements to reduce them.

The approach taken here is to exploit the Lagrangian and global conservation properties of potential vor-
ticity (PV) to isolate systematic forecast errors associated with model formulation (as opposed to initial
condition uncertainty). PV is materially conserved in adiabatic, frictionless flow, and the tropopause is
identified with a strong PV gradient on isentropic surfaces. Taken together, these facts imply that an air
mass with anomalous PV, relative to its surroundings, arises primarily through adiabatic advection of the
tropopause PV gradient. Patterns of disturbances of PV contours away from zonal symmetry are described
as “large-amplitude Rossby waves,” even though they can be far from sinusoidal in structure.

Diabatic processes in extratropical cyclones can significantly modify tropopause-level ridges and troughs.
Chagnon et al. [2013] used a PV-tracer technique to show that diabatic processes create positive “diabatic
PV anomalies” above and negative diabatic PV below the tropopause. Although not directly modifying
the tropopause elevation in their case study, the resulting enhancement of the PV gradient across the
tropopause (tropopause sharpening) would contribute to greater Rossby wave amplitude at the tropopause
and a stronger tropopause-level jet. Both effects would modify the downstream Rossby wave development
via advection and propagation. Other work [e.g., Plant et al., 2003; Stoelinga, 1996] has proposed that the
diabatically reduced upper tropospheric PV directly modifies the tropopause structure by erosion of the
tropopause trough and associated enhancement of the upper level ridge or retardation of the trough due
to advection of the PV gradient by the divergent flow.

Different processes contribute to the diabatic PV anomalies. The positive diabatic PV above the tropopause
arises from longwave cooling just below the sharp humidity gradient at the tropopause; this cooling also
gives rise to negative diabatic PV below the tropopause. However, Chagnon et al. [2013] showed that air
leaving regions of latent heating associated with resolved ascent, parameterized convection, or boundary
layer processes also contribute to the negative diabatic PV. Most of this ascending air is associated with the
warm conveyor belt of cyclones [Browning and Roberts, 1994]: a strong flow of warm wet-bulb potential
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temperature air advancing poleward ahead of the cold front. The outflow from warm conveyor belts
can reach the upper troposphere across a range of potential temperature, 𝜃, values. For example,
Martínez-Alvarado et al. [2014] used parcel trajectories to illustrate the splitting of a warm conveyor belt into
a higher-level (higher 𝜃) anticyclonically turning flow and a lower level (lower 𝜃) cyclonically turning flow.
The outflow level is sensitive to the representation of diabatic processes in the model with consequences for
the magnitude of the PV anomaly, Rossby wave propagation, and wave-breaking behavior.

Errors in the representation of diabatic processes in extratropical cyclones, perhaps resulting from the neces-
sity to parameterize convection and other diabatic processes in global (and most regional) weather forecast
models, could thus lead to errors in forecasts. Brennan et al. [2008] advocate PV-based interpretation in
operational forecasting to identify diabatically driven parts of the model solutions that might thus be asso-
ciated with increased uncertainty. A failure to forecast Rossby wave breaking can result in so-called “forecast
busts.” For example, Rodwell et al. [2013] hypothesize that misrepresentation of diabatic processes within
mesoscale convective systems across North America leads to the most extreme forecast busts over Europe.

Previous research [Dirren et al., 2003; Davies and Didone, 2013] using European Centre for Medium-Range
Weather Forecasts (ECMWF) operational forecasts from the winter of 2001–2002 strikingly demonstrates the
development of errors in forecast Rossby wave structure over several days lead time by comparing forecast
and analysis PV fields. Davies and Didone [2013] consider five mechanisms for generating and/or enhancing
Rossby waves; two of these mechanisms, stratospheric PV anomaly, and tropospheric PV error, relate to the
diabatic generation of PV described above. However, these authors could not partition the forecast errors by
process because they focused on root-mean-square (RMS) errors in PV that are dominated by phase errors.

In this paper we identify and characterize systematic errors in Rossby wave structure by using diagnostics
that are not impacted by phase error and are therefore less dominated by initial condition uncertainty. The
TIGGE (THORPEX Interactive Grand Global Ensemble) archive [Park et al., 2008] is utilized to examine 15 day
forecasts from three operational weather forecast centers. An example of the structure of forecast errors
is shown in Figure 1 for a lead time of 96 h. Figure 1c shows the difference between the PV in the forecast
valid at the analysis time (Figure 1a) and the analysis (Figure 1b). Two characteristic types of error occur: (i)
a phase error, e.g., the forecast trough over the North Atlantic is to the west of the analyzed position, and
(ii) an amplitude error, e.g., the ridge over the west U.S. coast is much less developed in the forecast than in
the analysis yielding a positive forecast minus analysis difference in PV. A third type of error can also occur
that is not illustrated in Figure 1: an error in the isentropic gradient of PV across the tropopause. Here we
focus on quantifying errors in total ridge amplitude and tropopause sharpness error around the poleward
flank of ridges and link them with forecast model properties such as horizontal resolution and associated
numerical dissipation.

The motivation for focusing on ridges rather than troughs is (i) a signal of systematic error due to diabatic
processes is likely to be seen more clearly in ridges than in troughs as the outflow from warm conveyor belts
intersects (and potentially modifies) the tropopause on the flanks of the ridges [Martínez-Alvarado et al.,
2014] and (ii) ridges tend to be much larger scale and less convoluted than troughs, and therefore, ampli-
tude error may be larger than zonal displacement error enabling extraction of model error from the forecast
data. We define ridge amplitude by ridge area, rather than the maximum poleward displacement of a PV
contour, as we assert this is a more robust measure of wave activity and the potential impact of diabatic
processes on Rossby waves for this study since it is not dependent on the contour shape. Also, for large
amplitude disturbances a wave activity conservation law can be obtained for wave activity that is related to
the mass and circulation enclosed between a disturbed PV contour and its equivalent latitude [e.g., Methven,
2013]. In the TIGGE data we do not have a diagnostic of density in isentropic coordinates and therefore can
only use ridge area, which is equivalent to mass if density does not vary across ridges.

2. Methodology

Daily (12 UTC) Northern Hemisphere (20–90◦N) fields of PV on the 320 K isentrope are used from the con-
trol members of medium-range ensemble forecasts of three operational centers: ECMWF, the Met Office,
and National Centers for Environmental Prediction (NCEP). These were extracted from the TIGGE archive
for up to seven winter seasons (December, January, and February from 2006/2007 (2008/2009 for NCEP) to
2012/2013). The resolutions of the forecast models are given in Table 1. For further details on the forecast
models and data, the reader is referred to http://tigge.ecmwf.int.
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Figure 1. Forecast and analysis tropopause structure in ECMWF data for 24 December 2006: (a) 96 h forecast, (b) analysis, and (c) 96 h forecast minus analysis of
PV on 320 K isentrope (color shading); (d) categorization of regions defined using the equivalent latitude of the tropopause PV contour. The analyzed tropopause
position is shown by the bold contour on all maps, and the equivalent latitude is shown by the circular contour in Figure 1d.

The evolution of forecast error with forecast lead time in this PV field is analyzed by partitioning it into five
regions defined using the structure of the PV contour identified with the tropopause, PVtrop; in the results
presented here, this was taken to be 2.24 PVU (potential vorticity unit) because it is the average location
of the strongest PV gradient along 320 K in the background state. The five categories are the stratospheric
polar vortex, the subtropics, troughs, ridges, and cutoff lows. Each grid point is objectively assigned to one
of these five categories, as illustrated in Figure 1d.

The first four categories are identified in two steps. The PV at each point is compared with PVtrop. The loca-
tion of each point is then compared with the equivalent latitude, 𝜙e, associated with PVtrop on the 320 K
surface. The categories are stratospheric polar vortex (PV>PVtrop, 𝜙 > 𝜙e), trough (PV>PVtrop, 𝜙 < 𝜙e),
subtropics (PV<PVtrop, 𝜙 < 𝜙e), and ridge (PV< PVtrop, 𝜙 > 𝜙e). Equivalent latitude was originally defined
in studies of the stratosphere using the area enclosed by a PV contour [Butchart and Remsberg, 1986]. The
equivalent latitude is the perimeter of a circle centered on the pole with the same area as the wavy PV con-
tour. The method used here to obtain equivalent latitudes involves a simultaneous rearrangement of all
PV contours from the meteorological analysis so that they all are zonally symmetric and enclose the same
mass and circulation as in the full (wavy) state. The resulting background state defined by the equivalent
latitudes of these PV contours is called the modified Lagrangian mean. Methven [2009] and Nakamura and
Solomon [2011] show the slow evolution of this state obtained from ERA-Interim, which is a consequence
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Table 1. Resolutions of the ECMWF, Met Office, and NCEP Models Used for the Operational Forecast
Ensembles Stored in the TIGGE Archivea

Year ECMWF Met Office NCEP

2006/2007 N200L62/N128L62b (days 1–10/10–15) N144L38 N64L28c

2007/2008
2008/2009
2009/2010 N320L62/N160L62d N96L28e

2010/2011 N216L70f

2011/2012 N128L42/N96L42g (days 1–8/8–15)
2012/2013

aL = number of vertical levels. For the ECMWF and NCEP pseudospectral models, T = highest wave
number retained in the spherical harmonics (see footnotes) and a linear Gaussian grid is used for trans-
formation into grid point space. N = number of grid points from equator to pole in these models. In all
models, 4N is the number of grid points around the equator. Note that all model data were output on the
same 1◦ × 1◦ grid for diagnostics.

bT399L62/T255L62.
cT126L28.
dT639L62/T319L62, from 26 January 2010.
eT190L28, from 23 February 2010.
f from 9 March 2010.
gT254L42/T190L42, from 14 February 2012.

of approximate conservation of mass and circulation. Methven [2013] has shown that this is a natural state
with which to reference large-amplitude Rossby wave activity. The equivalent latitude for the PVtrop con-
tour was calculated from ERA-Interim analyses for the fifteenth day of each month from one season and
linearly interpolated to daily values yielding a slow southward progression over the winter (from 42.90◦N to
39.36◦N); the same equivalent latitude values are used when comparing forecasts from all centers and for all
winter seasons.

After this four-way categorization, cutoff lows are identified as regions of stratospheric PV for which the
region enclosed by the delimiting PV contour does not include the pole. Some points that were initially
identified as polar vortex or troughs are then recategorized as cutoff lows. Figure 1d shows these categories
for the example case. Climatologically, the 320 K isentrope extends from the lower troposphere (∼700 hPa)
in the subtropics to well into the stratosphere (∼250 hPa) near the pole in the Northern Hemisphere winter.
Occasionally, this isentrope can intersect the ground, especially over the Himalayas. Where this occurs, the
points have been removed from the analysis.

3. Errors at the Hemispheric Scale

The Northern Hemispheric average of PV forecast error approaches saturation after about 9 days for all
three centers (Figure 2). The shape of the error curves as a function of lead time is very similar for the three
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Figure 2. Average root-mean-square forecast minus analysis difference
in PV as a function of forecast lead time for ECMWF (solid blue line), the
Met Office (dot-dashed green line), and NCEP (red dashed line): unscaled
(upper lines, PVU) and scaled by the mean analysis PV for the given center
(lower lines, dimensionless). Error bars are standard errors estimated from
the variability.

centers with slight differences in
amplitude, and the error curves col-
lapse nearly to a single curve when
scaled by mean analysis PV of the
given center (this mean analysis PV is
shown in Figure 3, where the analysis
corresponds to lead time of 0 days).
This could be taken as implying that
all centers have similar model error.
However, it will be shown that this
is not the case and the similarity in
RMS errors must primarily be asso-
ciated with uncertainty in the initial
conditions for all the forecasts and
chaotic behavior.

GRAY ET AL. ©2014. The Authors. 2982



Geophysical Research Letters 10.1002/2014GL059282

0 5 10 15
3

3.2

3.4

3.6

3.8

4

Lead time (days)

M
ea

n 
P

V
 (

P
V

U
)

2010/11
2011/12

2012/13

2009/10

2008/09
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blue lines), the Met Office (dot-dashed green lines), and NCEP (red dashed
lines). Lines with error bars (standard errors) are averages over all winter
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For NCEP forecasts, the hemispheric
mean PV (multiseason average) is
lower than the other centers in the
analysis and decreases with forecast
lead time out to 5 days on average
(Figure 3). However, there is substan-
tial interannual variation and the PV
at long lead times is substantially
greater for the earlier two winter sea-
sons than for the latter three winter
seasons. This change in behavior may
be a consequence of an increase in
model resolution implemented at the
end of the 2009/2010 winter (Table 1)
and the associated changes in model
configuration. By contrast, in the Met
Office and ECMWF forecasts the mean

PV values are nearly constant (Figure 3) which is more consistent with the slow variation of the background
state and maintenance of the stratospheric PV reservoir by radiative cooling against erosion from stirring
and mixing of PV to lower latitudes. Interannual variability in the mean PV is also small in these forecasts.

4. Errors in Ridges and Troughs

The forecast PV has a positive bias, where the analysis shows ridges or subtropical air, and a negative bias
in the locations of analyzed troughs, cutoff lows, and the stratospheric polar vortex (Figure 4); these biases
increase with lead time. This could arise from phase errors alone; e.g., a displaced ridge in a forecast would
lead to greater PV values in the location of the analyzed ridge. Saturation occurs when there is little skill in
the forecast location of troughs and ridges. Note that PV has many fine-scale features contributing to this
forecast error. There is still skill in probability forecasts of the large-scale patterns out to 15 days, as illus-
trated for the low-level Atlantic jet by Frame et al. [2011]. Despite having weaker amplitude (as indicated by
the saturation error), the forecast errors in the cutoff lows are larger than those in the troughs (for a given
lead time) prior to saturation. This is consistent with cutoff lows generally being smaller-scale features than
their parent troughs and so being more difficult to represent accurately at analysis time. The biases are much
smaller in the subtropics and polar vortex than in the ridges and troughs, consistent with the much larger
areas of these regions and only a small proportion of points in these regions being close to strong isentropic
PV gradients.

A reduction of Rossby wave amplitude (i.e., undulations of the tropopause) with forecast lead time can be
diagnosed from the reduction in total area of the ridges in the forecast compared with that in the analysis
(Figures 5a–5c). The total area of ridges is calculated for each forecast lead time averaged over all verification
dates for each winter season. A reduction in ridge area increasingly occurs for lead times up to about 5 days
in the multiwinter season mean in ECMWF and Met Office forecasts; this behavior also occurs in varying
degrees in each of the individual winter seasons. Beyond about 5 days the evolution of the total ridge area is
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Figure 4. Average ECMWF forecast minus analysis difference in PV
as a function of forecast lead time (days) for the five region cate-
gories illustrated in Figure 1d. The feature categories are defined from
the analyses.

different in the different winter sea-
sons (decreasing further in some
years and increasing in others). The
evolution of total ridge area in the
NCEP forecasts is not consistent
between the different winter seasons
(Figure 5c); similar to the hemispher-
ically averaged PV (Figure 3), the
earlier two winter seasons show dif-
ferent behavior to the latter three. A
reduction of Rossby wave amplitude
with forecast lead time can also be
diagnosed from the general reduction
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Figure 5. (a–c) Average ridge area and (d–f ) the isentropic PV gradient flanking ridges as a function of forecast lead time
for ECMWF, Met Office, and NCEP. Black markers with error bars (standard errors) are averages over all winter seasons
with horizontal lines extending across all lead times from the analysis values. Colored lines are averages for the individ-
ual seasons where red is 2006/2007, cyan is 2007/2008, black is 2008/2009, blue is 2009/2010, magenta is 2010/2011,
green is 2011/2012, and orange is 2012/2013. Note (as an example) that a fraction of the Northern Hemisphere of 0.05 is
equivalent to an area of 1.275 × 107 km2.

in the area of cutoff lows (not shown) since cutoff lows form from wave amplification and breaking. For
cutoff lows the NCEP analyses are the outlier with a notably smaller average fraction of the Northern Hemi-
sphere comprised of cutoff lows in these analyses compared to those from ECMWF and the Met Office
(3.5 × 10−3 compared to 5.6 × 10−3 and 5.2 × 10−3, respectively).

A reduction in the isentropic PV gradient across the tropopause (tropopause sharpness) around the
poleward flank of ridges occurs with forecast lead time (Figures 5d–5f ). Analogous to Figures 5a–5c, the
isentropic PV gradient is calculated for each forecast lead time averaged over all verification dates for each
winter season. The isentropic PV gradient is calculated by combining centered differences in the zonal and
meridional directions (to calculate the magnitude of PV gradient) at all grid points north of the PVtrop equiv-
alent latitude, and then the average tropopause gradient is calculated from the values at the grid points
intersecting the tropopause at each longitude. The tropopause intersection point, for a given longitude, is
taken as the first latitude point, traveling southward from the north pole, where the PV falls below PVtrop for
three consecutive grid points (to avoid identifying small cutoff highs of low PV in the stratospheric vortex),
where this point exists. This simple approach neglects the possibility of folded ridges or cutoff highs with
meridional extent exceeding 3◦ and ignores ridges that do not extend poleward of the equivalent latitude
by more than 3◦. The multiwinter season average of tropopause PV gradient slackens by 15–30% over the
first 5–10 days of the forecasts from the three operational centers. This characteristic is seen in each individ-
ual season (as well as in forecasts from all three centers) and is more robust than the reduction in ridge area

GRAY ET AL. ©2014. The Authors. 2984
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seen in Figures 5a–5c. In contrast to the RMS error results, this general downward trend with lead time for all
models and years does indeed emphasize a systematic model error aspect.

A discontinuity occurs in the ECMWF forecast ridge area and tropopause sharpness at a forecast lead time
of 10 days (clearly apparent in the multiseason average but also apparent in most of the individual sea-
sonal averages for the ridge area and all individual seasonal averages for the tropopause sharpness). This is
hypothesized to be associated with the reduction of the ECMWF forecast’s horizontal resolution at 10 days
forecast lead time (Table 1). A discontinuity, potentially associated with resolution reduction, is also seen
for the NCEP model at 8 days lead time in the 2012/2013 winter season. All three operational centers have
enhanced the resolution of their models during the period of data availability (Table 1). The last three win-
ter seasons show the sharpest analyzed tropopauses, and the least slackening in tropopause sharpness with
lead time, in forecasts from all three operational centers. However, there is no systematic effect on the total
ridge area of these enhancements.

Tropopause sharpness has also been calculated across the equatorward flank of troughs for PVtrop =
2.24 PVU. This demonstrates a similar reduction with forecast lead time to that shown in Figures 5d–5f for
ridges, including the discontinuity at 10 days lead time for the ECMWF forecasts. The tropopause sharp-
ness is systematically stronger flanking ridges than troughs. The trough area decreases with short lead times
in forecasts in some winter seasons from all centers for this tropopause PV value, but the decrease is not
systematic; however, increasing PVtrop to 3.35 PVU (which increases the areas of troughs) does yield system-
atic decreases with lead time in both trough area (except for one winter season) and tropopause sharpness
flanking troughs for lead times of about 5 days in forecasts from all three centers. Analysis of ridge area
and tropopause sharpness flanking ridges performed for this higher PVtrop value is similar to that shown in
Figure 5 for PVtrop = 2.24 PVU. Please see supporting information for figures.

Data from all centers are interpolated to the same (1◦ × 1◦) grid for output and calculation of the isentropic
gradient. Therefore, the change in the gradient reflects the decrease in resolution of the underlying dynam-
ical simulation, not the diagnostic method. The weaker PV gradients in NCEP forecasts reflect their lower
resolution (see Table 1). Similarly, the Met Office forecasts have weaker gradients than ECMWF. The ECMWF
and NCEP models are pseudospectral, while the Met Office model uses a finite difference scheme and typ-
ically has stronger numerical dissipation (for the same resolution) than the other two models. All three
models use semi-implicit semi-Lagrangian time-stepping schemes which introduce a degree of numerical
dissipation via interpolation to departure points.

5. Conclusions and Broader Implications

The drive to improve medium-range weather forecasts via the World Meteorological Organization THOR-
PEX program has led to a focus on the identification of systematic forecast errors [e.g., Jung et al., 2005].
Here we have used potential vorticity to diagnose systematic errors that develop with forecast lead time
in winter forecasts from ECMWF, the Met Office, and NCEP extracted from the TIGGE archive. Northern
Hemisphere upper level PV forecast errors (forecast minus analysis differences) in these operational global
models approach saturation after about 9 days. RMS errors are a blunt tool to investigate model error
due to the dominance of phase errors from initial condition uncertainty. The Lagrangian and global con-
servation properties of potential vorticity (PV) are used here to draw out systematic errors related to
model formulation.

The total area covered by ridges in the ECMWF and Met Office forecasts decreases consistently with fore-
cast lead time (up to about 5 days) implying a reduction in Rossby wave amplitude. The results for NCEP
vary greatly between years. The total PV on the 320 K isentrope also varies between years in the NCEP fore-
casts and analyses, while it is much less variable in both the ECMWF and Met Office forecasts. The decrease
of average PV with lead time in NCEP forecasts in the later years indicates that the model cannot maintain
the stratospheric PV reservoir through radiative cooling against erosion from stirring and mixing of PV to
lower latitudes. The PV gradient across the tropopause in ridges decreases sharply with lead time in fore-
casts from all three centers (and in each winter season) on a similar time scale to the reduction in ridge area
in the ECMWF and Met Office forecasts. A second sharp drop in PV gradient is also seen when model resolu-
tion is degraded at longer lead times. This implies that the forecast models cannot maintain the sharpness
of the isentropic PV gradient at the tropopause as a result of horizontal resolution and numerical dissipation.

GRAY ET AL. ©2014. The Authors. 2985
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This has major ramifications for forecast quality. In balanced models, the quasi-geostrophic shallow water
equation being the simplest example, the Rossby wave dispersion relation is different when the PV gradient
is concentrated into a sharp step [Esler, 2004], as opposed to the more familiar theory for uniform planetary
vorticity gradient, 𝛽 [e.g., Vallis, 2006]. In the longwave limit, kLR ≪ 1, the dispersion relation is the same
as that for uniform 𝛽 when the magnitude of the PV step, Δq = 2𝛽LR (here LR is the Rossby deformation
radius and k is the zonal wave number). As k increases (wavelength decreases), the westward propagation
of Rossby waves counter to the eastward flow weakens more rapidly in the 𝛽-plane case (∼k−2) than on a
PV step (∼k−1), and therefore, the phase speed is greater on smooth PV gradient than a step, especially for
shortwaves. Therefore, we hypothesize that the weaker gradients in the forecasts will result in overdisper-
sion of Rossby waves. This could preclude stationary behavior and result in a greater rate of downstream
development. Weaker tropopause PV gradients would also lead to reduced baroclinic growth rates (as illus-
trated by the Eady model [e.g., Vallis, 2006]). Dawson et al. [2012] have presented evidence that higher
resolution than that used in these ensemble forecasts is required to capture the observed patterns of vari-
ability in the North Atlantic sector and their low frequency behavior. This could plausibly be related to the
sharpness of PV gradients or representation of diabatic processes.

The decay of total ridge amplitude with lead time is consistent with an underestimation of the diabatic
enhancement of PV anomalies. Chagnon et al. [2013] have shown how these arise through a combina-
tion of diabatic transport of lower tropospheric air through warm conveyor belts into locations near the
tropopause in ridges, plus the effects of longwave cooling. Forster and Wirth [2000] have argued that the
sharp drop in water vapor at the tropopause dominates the cooling signal. Since the PV gradient at the
tropopause is too weak, it is likely that the humidity gradient is also too weak (since both are nearly con-
served tracers) and therefore that the spike in radiative cooling just below the tropopause would also be
underestimated. Leroy and Rodwell [2013] have recently shown that upper tropospheric specific humid-
ity in analyses is uncertain by as much as 20%, associated with uncertainty in parameterized mixing in the
model and the bias correction required in the assimilation of satellite observations. In their example they
repeated the data assimilation cycling using a model where vertical diffusion was reduced in regions of
higher static stability, again highlighting the importance of mixing at tropopause level. Therefore, several
physical processes could be contributing to this forecast error, in addition to possible decay in Rossby wave
amplitude associated with numerical dissipation. However, causality is not proven here. Further work needs
to be done to attribute the systematic errors in Rossby wave structure shown here to model limitations in
the representation of diabatic processes.
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