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Abstract	42 

Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols 43 

on climate. The Aerosol-cci project, part of the European Space Agency’s Climate Change 44 

Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. 45 

Seven algorithms, developed for the retrieval of aerosol properties using data from AATSR (3), 46 

MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The 47 

primary result from each of these algorithms is the aerosol optical depth (AOD) at several 48 

wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of 49 

the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from 50 

satellite observations are not considered in this paper.  The AOD and AE were evaluated against 51 

independent collocated observations from the ground-based AERONET sun photometer network 52 

and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation 53 

were developed for daily products as produced by the retrieval with a spatial resolution of 54 

10x10km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 55 

and L3 products compared with AERONET, as well as scoring based on spatial and temporal 56 

correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of 57 

data, one month for each season in 2008. The amount of data was restricted to only four months 58 

because of the large effort made to improve the algorithms, and to evaluate the improvement and 59 

current status, before larger data sets will be processed. Evaluation criteria are discussed.  Results 60 

presented show the current status of the European aerosol algorithms in comparison to both 61 

AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the 62 

scores are similar, including those for the references, but the coverage of AATSR needs to be 63 

enhanced and further improvements are possible for most algorithms. None of the algorithms, 64 

including the references, outperforms all others everywhere. AATSR data can be used for the 65 
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retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have 66 

been evaluated over ocean only and both algorithms provide good results.  67 

Keywords: Aerosol retrieval algorithms, Aerosol optical depth, AATRS, MERIS, PARASOL 68 

  	69 
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1.	Introduction	70 

Satellite-based radiometers and spectrometers have been used for the observation of aerosol 71 

properties from space since more than three decades (e.g., de Leeuw and Kokhanovsky, 2009; Lee 72 

et al., 2009). The data have increasingly been used for purposes such as air quality assessment (Hoff 73 

and Christopher, 2009; van Donkelaar et al., 2010), emission estimates (Huneeus et al., 2012), 74 

forest fires applications (Kaufman et al., 1998; Labonne et al., 2007, Sofiev et al., 2009), 75 

atmospheric correction of oceanic (Müller et al., 2013) and terrestrial (Zelazowski  et  al.,  2011) 76 

observations, etc.. In this paper we focus on the use of satellite instruments to provide aerosol 77 

observations for climate and climate change studies. In particular seven aerosol retrieval algorithms 78 

using data from different instruments, or a combination of instruments, are evaluated for their 79 

suitability to produce climate-relevant aerosol parameters. This study was undertaken in the context 80 

of the European Space Agency (ESA) Climate Change Initiative (CCI) (Hollmann et al., 2012) 81 

project Aerosol-cci (Holzer-Popp et al., 2013). Aerosol-cci focuses on European instruments and 82 

the results are evaluated against non-European instruments such as the Moderate Resolution 83 

Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), and 84 

model predictions.  85 

After a brief introduction to aerosols, their effects on climate, the use of satellite-based instruments 86 

to obtain information on aerosols, algorithms developed for this purpose and a short overview of the 87 

Aerosol-cci project, the participating aerosol retrieval algorithms will be summarized followed by a 88 

summary of recent improvements which are described in detail in Holzer-Popp et al. (2013). The 89 

main focus of this paper is on methods used for the validation and evaluation of the aerosol retrieval 90 

algorithms in a round-robin (RR) exercise, the protocol used in this RR exercise to select the most 91 

suitable algorithm, or combination of algorithms, and the results from this exercise.  92 

Atmospheric aerosol is formally defined as a suspension of particles and/or droplets in air. In the 93 

following we neglect the surrounding medium and refer mainly to the particles which are 94 
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characterized by a certain radius (specified at a certain relative humidity, RH: dry (RH < 30-40% 95 

(WMO-GAW, 2003), at RH=80%, or their in situ value at ambient RH. Satellites observe aerosol 96 

properties in situ, usually integrating over the whole atmospheric column in which both RH and 97 

aerosol concentrations may vary strongly. Ground-based measurements are prescribed to be made at 98 

dry conditions (WMO-GAW, 2003). Aerosol particles may have sizes ranging from a few nm to 99 

several tens of µm, can be composed of a wide range of chemical species (organic matter, inorganic 100 

salts) which are either internally mixed (different species occur in one particle) or externally mixed 101 

(each particle is composed of one single species) and mixed forms of these. Each size range may 102 

have its own physical and chemical properties and based on these different ‘modes’ are considered, 103 

such as cluster (a few nm), nucleation (ca. 5 nm), Aitken (some tenths of nm), accumulation (a few 104 

hundreds of nm) and coarse (larger than 500 nm) particle modes, where the numbers in parenthesis 105 

indicate dry mode radius (see eq. 1). The particle size distribution describes the variation of the 106 

particle concentrations with size. The concentrations may be as large as 104 to 105 cm-3 for 107 

accumulation mode particles in polluted conditions or as small as 10-5 cm-3 for the largest particles 108 

(radius some tens of µm). Total concentrations, i.e. integrated over the whole size distribution, may 109 

vary from a few 10s cm-3 in very clean conditions to up to 105 cm-3 in polluted conditions. Particles 110 

can be directly produced by, e.g. mechanical (wind-blown dust, sea spray aerosol), biological 111 

(pollen) or combustion (traffic, industry, fires) processes, or they can be produced from precursor 112 

gases by gas-to-particle conversion processes and nucleation. Atmospheric aerosol particles have a 113 

life time varying from hours to days, depending on their size, during which they undergo physical 114 

and chemical changes which in turn changes their chemical composition and their optical and 115 

physical properties. Of importance for climate and climate change are particles with dry radii 116 

between ca. 30 nm to several µm because these particles are most effective for scattering of 117 

radiation in the UV/VIS part of the solar spectrum, and because these particles can be activated to 118 
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become cloud condensation nuclei (CCN) and thus affect cloud macro- and micro-physical 119 

properties which in turn affects cloud reflectance and precipitation. 120 

Aerosol size distributions are commonly approximated by multi-modal log-normal size 121 

distributions (Seinfeld and Pandis, 1998), i.e.:  122 
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where each log-normal mode is defined by three parameters: aerosol number concentration Ni, 124 

number mode radius  gir  and (geometric) standard deviation iσ . Only aerosol particles with sizes 125 

larger than about 0.05 µm in radius (in situ) are optically active and therefore in satellite retrievals 126 

only these larger sizes need to be represented. As there is a cross-section minimum at radii of about 127 

0.5 µm and the aerosol composition above and below that size is usually quite different, in aerosol 128 

retrieval the size distribution is usually described as bi-modal rather than mono-modal. The smaller 129 

size mode (aerosol radii < 0.5 µm) of the assumed bi-modal distributions is referred to as fine mode 130 

and the large size mode (aerosol radii > 0.5 µm) is referred to as coarse mode. 131 

Aerosols have a large impact on climate through their direct effects (scattering and absorption of 132 

solar radiation) and indirect effects (through their effect on cloud microphysical properties) on the 133 

radiation balance in the earth system. Studies on the effect of aerosols on climate were traditionally 134 

made by using chemical transport models (CTM) or global climate models (GCM), or their regional 135 

versions. In the last decade satellite observations have increasingly been used to provide 136 

observation-based estimates of the effects of aerosols on climate (Yu et al., 2006; Thomas et al., 137 

2012). Satellite observations offer the advantage of large spatial coverage with the same instrument 138 

and technique as implemented in an instrument-specific retrieval algorithm, at the cost of accuracy 139 

and temporal coverage offered by most ground-based observations. However, ground-based 140 

observations are representative for only a relatively small area around the observation site, mainly 141 

concentrated in certain areas, i.e. Europe, North America and some parts of other continents, while 142 
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the oceans are sparsely covered. Satellite observations offer in principle global coverage, depending 143 

on swath width, in about one day to a week.  144 

The effect of aerosol particles on solar radiation are determined by the particle size distribution and 145 

their size-segregated chemical composition, which together determine the angular scattering 146 

(expressed as the phase function), absorption and single scattering albedo (ssa, the ratio of 147 

scattering and the sum of total scattering and absorption), and the vertical variation of these 148 

parameters. Scattering and absorption together determine the extinction of solar light by aerosol 149 

particles and the extinction coefficient is the sum of the scattering and absorption coefficients. 150 

Changes in global, regional and local effects of aerosol particles can thus be determined by changes 151 

in these properties or a combination of them. The basic aerosol parameter retrieved from satellite-152 

based observations is the aerosol optical depth (AOD, or τ), i.e. the column-integrated extinction 153 

coefficient specified for a certain wavelength, λ. AOD time series could thus be used to determine 154 

trends indicating changes on regional to global scales. However, this requires that AOD can be 155 

determined with sufficient accuracy to provide statistically significant trends. Such requirements 156 

have been formulated by GCOS (ref) and were further formulated as part of the aerosol-cci project 157 

described see in Section 2. In addition to AOD, other parameters are sometimes made available 158 

from satellite observations with a varying degree of reliability and accuracy. These parameters 159 

include the Ångström exponent (AE) describing the wavelength dependence of the AOD, the fine 160 

mode fraction (FMF) describing the contribution of particles with dry radii smaller than 0.5 µm to 161 

the total AOD, coarse mode fraction (CMF) describing the contribution of larger particles to the 162 

total AOD, aerosol type (i.e. parameters describing the aerosol size distribution and optical 163 

properties), absorbing aerosol index (AAI), ssa, absorbing aerosol optical depth (AAOD), aerosol 164 

layer height. The determination of these other parameters usually requires an AOD exceeding a 165 

certain value to obtain a reasonable value (e.g., Holzer-Popp et al. 2002a; 2002b; Kahn et al., 2010) 166 
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Instruments used for aerosol retrieval include spectrometers and radiometers with one or more 167 

wavebands in the UV/VIS and NIR parts of the electromagnetic spectrum, i.e. those wavelengths 168 

most sensitive to the scattering of solar light by aerosol particles, with one or more viewing 169 

directions and in some cases with information on polarization of the scattered light. Wavelengths in 170 

the thermal infrared (TIR) are mainly used for cloud detection, i.e. together with shorter 171 

wavelengths they provide information on the occurrence of clouds which hinders the retrieval of 172 

aerosol properties; thus cloud-contaminated pixels are discarded from aerosol retrieval. Wavebands 173 

in the NIR and TIR also provide information on larger aerosol particles such as volcanic ash and 174 

desert dust. A challenge is to discriminate between desert dust and clouds, i.e. desert dust, although 175 

considered aerosol, is often inadvertently classified as cloud and thus discarded in the aerosol 176 

retrieval process. In addition, satellite-based lidars are used to provide information on aerosol 177 

properties. An overview of instruments and algorithms used for the retrieval of aerosol properties 178 

from space is provided in Kokhanovsky and de Leeuw (2009) and de Leeuw et al. (2011).  179 

The first instruments which have been used for the retrieval of aerosol properties were launched 180 

over three decades ago and thus have the potential to be used for the provision of long time series of 181 

aerosol properties and for the analysis of aerosol trends. However, there are issues related to the use 182 

of different instruments, which may not be exactly the same, and their calibration. Furthermore, 183 

most instruments used for aerosol retrieval were not designed for that purpose and the information 184 

they provide is sub-optimal. Exceptions are MODIS, MISR and POLDER (POLarization and 185 

Directionality of the Earth's Reflectances). Nevertheless, instruments like the MEdium Resolution 186 

Imaging Spectrometer (MERIS), ATSR-2 (Along Track Scanning Radiometer) and AATSR 187 

(Advanced ATSR), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), OMI (Ozone Monitoring 188 

Instrument) and AVHRR (Advanced Very High Resolution Radiometer), as well as instruments 189 

such as SEVIRI (Spinning Enhanced Visibile and Infrared Imager) flying on geostationary satellites 190 

are currently used for aerosol retrieval. However, the results are often less accurate in comparison 191 
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with dedicated aerosol retrieval instruments. This may be somewhat surprising in cases where the 192 

instrument characteristics are not limiting factors. For instance, the ATSR-2 / AATSR instruments 193 

should potentially provide good results because of the dual view capability which allows for more 194 

effective decoupling of the surface and atmospheric contributions to the top of atmosphere (TOA) 195 

radiance than is possible with a single view, and because of the availability of wavebands from the 196 

visible (VIS) to the thermal infrared (TIR) facilitating effective cloud screening.  197 

All instruments, also those dedicated for the retrieval of aerosol and cloud properties, do provide 198 

insufficient information to accurately determine all relevant aerosol properties, i.e. particle size 199 

distribution, size-dependent particle shape and chemical composition, mixing state, from which the 200 

optical properties could be determined. This is in part due to the lack of vertical resolution of 201 

spectrometers and radiometers. These instruments observe the effect of aerosol particles integrated 202 

over the whole atmospheric column while usually not only their concentrations may change with 203 

height but also their chemical composition. In addition, as indicated above, particle sizes change 204 

with varying relative humidity. Furthermore, the atmosphere may be stratified and in disconnected 205 

layers with different origin and different history the aerosol properties may be different. This 206 

situation is further complicated by the occurrence of absorbing particles, the effect of which on the 207 

AOD depends on the altitude at which they occur.  208 

As a result, the retrieval problem is underdetermined, i.e. there are more unknowns than 209 

independent pieces of information to solve the radiative transfer equations and assumptions need to 210 

be made. These include assumptions on the aerosol properties, using simplified descriptions of size 211 

distributions and optical parameters and aerosol layer height. Furthermore the treatment of the 212 

surface is very important, in particular over reflecting surfaces where the surface contribution to the 213 

upwelling TOA radiance may be as strong as, or even much stronger than, the atmospheric 214 

contribution. Over ocean the retrieval is often relatively simple because the ocean surface is dark at 215 

wavelengths in the NIR and an ocean reflectance model is often used to account for effects such as 216 
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sun glint, waves, whitecaps or chlorophyll. Over land, forests are often relatively dark at shorter 217 

wavelengths in the UV/VIS and at wavelengths in the UV all surfaces are dark. The latter has been 218 

used in the MODIS deep blue algorithm (Hsu et al., 2004). However, when UV wavelengths are not 219 

available or over brighter surfaces, other assumptions need to be made. 220 

Aerosol retrieval algorithms utilizing the radiance measured at the top of the atmosphere at different 221 

wavelengths, viewing angles and polarization, have been developed to optimally use the available 222 

information, based on different physical principles, cf. Kokhanovsky and de Leeuw (2009) and de 223 

Leeuw et al. (2011) for detailed descriptions of algorithms used for the retrieval of aerosol 224 

properties over land. However, comparison of the AOD obtained from different algorithms may 225 

vary widely and some algorithms may perform better than others. These differences are regionally 226 

dependent and there is no single algorithm that outperforms all others everywhere (cf. Kahn et al., 227 

2009; van Donkelaar et al., 2010). The MODIS dark target algorithm (Levy et al., 2007) is most 228 

often used. It has been validated (Levy et al., 2010), provides two observations daily, each of them 229 

with near-global coverage, and the data are easy to access. Nevertheless, there are gaps, e.g. no data 230 

are available over bright surfaces such as deserts.  231 

The basis for the assessment of aerosol retrieval algorithms is usually the comparison of the 232 

retrieval results, in particular AOD and AE, with independent data provided by AERONET, a 233 

federated network of ground-based sun photometers (Holben et al., 1998). Ground-based sun 234 

photometers provide accurate measurements of AOD (uncertainty ~0.01-0.02, Eck et al., 1999) 235 

because they directly observe the attenuation of solar radiation without interference from land 236 

surface reflections. The comparison of, e.g. MODIS and MISR AOD with AERONET data shows 237 

that the results from each instrument are within specification but yet there are differences between 238 

them (Kahn et al., 2009). The performance of most of the European sensors prior to the start of the 239 

Aerosol-cci project was much less good than that of, e.g., MODIS or MISR as indicated from a 240 

comparison of the AOD retrieved using the baseline algorithms with that obtained from either 241 
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MODIS or MISR and with the AERONET AOD (Holzer-Popp et al., 2013). It is noted here that 242 

AERONET data is well screened for cloud so that it does not provide a good test of how well an 243 

algorithm behaves in the case where  cloud has not been removed by cloud flagging. 244 

The Aerosol-cci project was designed to provide essential climate variables (ECVs) for aerosols 245 

from satellite data (Holzer-Popp et al., 2013). To achieve this, the quality of current satellite aerosol 246 

products needed to be assessed and, when the quality was found to be insufficient, improved. 247 

Participating algorithms, focusing on European instruments, are listed in Section 3, where also brief 248 

descriptions are provided of the most important characteristics of each algorithm. Other instruments 249 

(MODIS, MISR) and algorithms were used for comparison, and this comparison provided a 250 

measure for the performance of the Aerosol-cci algorithms and their subsequent improvement. The 251 

initial focus of the Aerosol-cci project was on understanding differences between different 252 

algorithms as a basis for their improvement. The baseline algorithms were those that existed at the 253 

start of the project and improvements were measured with respect to these, using several different 254 

methods described in Section 5. Tests were made for data from a single month (September 2008) as 255 

described in Holzer-Popp et al. (2013). The best version, as decided by each earth observation (EO) 256 

team for their own algorithm based on these tests, was used in a round robin (RR) test which 257 

encompassed four months in 2008 (March, June, September and December) representing the 258 

different seasons. This paper describes the RR tests and results. Based on the RR exercise, the best 259 

possible algorithm, or combinations of algorithms, will be selected to produce the global AOD for 260 

the whole year 2008 for further evaluation as regards the use of the products in climate studies. For 261 

more information on the aerosol-cci project, see: http://www.esa-aerosol-cci.org/. 262 

2.	The	Aerosol‐CCI	project	263 

The Aerosol-cci project is a consortium including 14 partners coordinated by DLR with FMI 264 

providing the science co-leader. The consortium consists of three teams. The EO team is 265 

responsible for algorithm development and improvement, the validation team is responsible for the 266 
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validation and evaluation of the retrieval products, and the system engineer team is responsible for 267 

the actual processing of the data series and system design. The validation team is independent from 268 

the EO team (different partners) which ensures an independent and unbiased evaluation of the EO 269 

products. Furthermore, the validation team includes representatives of the global climate modelling 270 

community through AEROCOM and their feedback ensures that products will indeed be useful for 271 

climate studies. This aspect has proven to be of crucial value for the improvement of the retrieval 272 

algorithms. The system engineering team brings the experience of data centres and experience with 273 

data format and data access. The Aerosol-cci project started in July 2010 and has duration of 3 years 274 

with a potential extension to 6 years.  275 

3.	Aerosol	retrieval	algorithms	276 

The aerosol retrieval algorithms included in the Aerosol-cci project, Table 1, use data from AATSR 277 

and MERIS, both flying on ESA’s Environmental satellite ENVISAT (2002-2012), and POLDER, 278 

flying on PARASOL which is part of NASA’s A-train constellation. Aerosol-cci includes 279 

algorithms which use one single instrument and the SYNAER algorithm which synergistically uses 280 

AATSR and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY 281 

(SCIAMACHY). These algorithms provide information on column-integrated aerosol properties 282 

such as AOD and additional information which differs for each algorithm. An overview is presented 283 

in Table 1. In addition, the Ozone Monitoring Instrument (OMI) provides information on the 284 

aerosol absorbing index (AAI) and the Global Ozone Monitoring by Occultation of Stars (GOMOS) 285 

provides information on stratospheric aerosol profiles.  286 

Each of these algorithms is extensively described in their respective ATBD (algorithm theoretical 287 

baseline document) provided on the Aerosol-cci website (http://www.esa-aerosol-cci.org/) and 288 

references provided in these. Brief summaries of the essential characteristics of each algorithm are 289 

provided below. 290 
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AATSR	ADV	and	ASV	291 

The ATSR-2/AATSR dual view aerosol retrieval algorithm, ADV, is based on Veefkind et al. 292 

(1998). The main feature of the ATSR instruments is the dual view which in ADV is used to 293 

effectively eliminate the contribution of the surface reflection to the TOA reflectance, using the k-294 

ratio approach, and retain only the atmospheric path radiance. The k-ratio approach uses the ratio of 295 

the reflectances measured in the forward and nadir views, based on Flowerdew and Haigh (1995). 296 

The k-ratio is evaluated for the 1.61 µm channels and is assumed to be wavelength-independent. 297 

Over bright surfaces this approximation may not apply and the method is therefore limited to TOA 298 

reflectances at 1.6 µm wavelength of smaller than 0.45 at nadir. Furthermore, the contribution of 299 

aerosols to the AOD at 1.61 µm is in first approximation assumed to be negligible, but is given a 300 

value during the next iteration steps. This assumption does not hold in the presence of coarse mode 301 

aerosol such as desert dust. Aerosol retrieval over ocean is based on the single view algorithm, 302 

ASV, developed by Veefkind and de Leeuw (1998). The ocean surface is assumed dark at 303 

wavelengths in the NIR and an ocean reflectance model is used to correct for effects due to 304 

chlorophyll and whitecaps. Pixels for which the AATSR L1b GBT data indicates sun glint are 305 

excluded form retrieval. ADV and ASV use the cloud mask described by Robles-Gonzalez (2003) 306 

(see also Curier et al., 2009), with a post-processing method based on comparison of neighbouring 307 

pixels in a 3x3 pixels (L2) area. The post-processing effectively eliminates spatial inhomogeneity’s 308 

such as those due to previously undetected clouds and cloud edges. The path radiance is used to 309 

retrieve the aerosol properties using a LUT approach with a combination of aerosol components 310 

described in Section 4. The mixing ratio of these aerosol components, and thus the size distribution 311 

and optical properties, is varied to match the reflectances at each of the 3 (ADV) or 4 (ASV) 312 

wavelengths in the VIS and NIR. ADV and ASV products are AOD at 3 (ADV) or 4 (ASV) 313 

wavelengths, AE (needs AOD (550 nm) > 0.2 to obtain reasonable results) and mixing ratio, with 314 

ssa and surface albedo as research products. Default resolution is 10x10 km2, but also 1x1 km2 is 315 
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used in certain studies. The latest version of ADV/ASV including many improvements made at 316 

FMI/UHEL and uncertainty characterization is described in Kolmonen et al. (2013).  317 

AATSR	ORAC	318 

The Oxford-RAL Retrieval of Aerosol and Cloud (ORAC V1) algorithm is an optimal estimation 319 

(OE) retrieval scheme designed to provide estimates of aerosol optical depth and effective radius, 320 

cloud top pressure, height and temperature, cloud particle effective radius, cloud optical depth and 321 

cloud type (generally liquid water or ice) from multispectral imagery (Thomas et al. 2009, Poulsen 322 

et al., 2011; Sayer et al., 2011). The method fits all the shortwave forward and nadir radiances 323 

simultaneous using a forward model based on the DISORT radiadive transfer code (Stamnes et al. 324 

1998).  It is worth noting that the simultaneous retrieval of all state parameters provided by the OE 325 

method ensures that a physically consistent and numerically optimal estimate of the state is 326 

produced. The quality of fit to the radiances allows the quality of the retrieval to be judged a 327 

posteriori.  In addition the error in the retrieved aerosol parameters is estimated by propagating both 328 

the measurement and forward model uncertainties into state space.  Note that the dataset described 329 

here was produced by the ORAC V1 algorithm an a priori surface BRDF is set using MODIS 330 

MCD43B BRDF products (Jin et al., 2003) over land and an ocean surface reflectance model over 331 

the ocean (Sayer et al., 2010).  More recent processing with an updated surface model is currently 332 

under evaluation but initial indications show a substantial improvement when compared to V1. 333 

SU	ATSR	algorithm	334 

The SU-ATSR algorithm has been developed at Swansea University for estimation of atmospheric 335 

aerosol and surface reflectance for the ATSR-2 and AATSR sensors. Over land, the algorithm 336 

employs a parameterised model of the surface angular anisotropy, and uses the dual-view capability 337 

of the instrument to allow estimation without a priori assumptions on surface spectral reflectance. 338 

Over ocean, the algorithm uses a simple model to exploit the low ocean leaving radiance at red and 339 

infra-red channels at both nadir and along-track view angles. The surface models are used to invert 340 



16 
 

the 6SV model (Kotchenova, et al., 2006; 2007) to perform retrieval at 10km resolution. The 341 

algorithm has been implemented on the ESA Grid Processing on Demand (GPOD) system to allow 342 

global processing and free download of AOD and surface reflectance. The method is documented in 343 

North et al. (1999), North (2002), Grey et al. (2006a; b) and Bevan et al. (2009, 2012). 344 

SYNAER	345 

The synergistic aerosol retrieval method SYNAER delivers aerosol optical depth (AOD) and an 346 

estimation of the type of aerosols in the lower troposphere over both land and ocean by exploiting a 347 

combination of a radiometer and a spectrometer. The type of aerosol is estimated as percentage 348 

contribution of 4 representative aerosol components (sea salt, mineral dust, weakly absorbing 349 

accumulation mode and strongly absorbing accumulation mode aerosol). The high spatial resolution 350 

including thermal spectral bands of the radiometer permits accurate cloud detection. The SYNAER 351 

aerosol retrieval algorithm comprises of two major parts. In step 1 a dark field method exploits 352 

single wavelength radiometer reflectances (at 670 nm over land, at 870 nm over ocean) to determine 353 

36 values of the aerosol optical depth and surface reflectance over automatically selected and 354 

characterized dark pixels for a set of 36 different pre-defined boundary layer aerosol mixtures. In 355 

step 2 the parameters retrieved in the first step are used to simulate spectra for the same set of 36 356 

different aerosol mixtures with the same radiative transfer code after spatial integration to the larger 357 

pixels of the spectrometer. A least square fit of these calculated spectra at 10 wavelengths to the 358 

measured spectrum delivers the correct AOD value (the one AOD retrieved in step 1 for the aerosol 359 

type selected in step 2) and - if a uniqueness test is passed - the most plausible spectrum and its 360 

underlying aerosol mixture. (Holzer-Popp et al. 2002a; 2008). Using a combination of 2 instruments 361 

with different scan patterns SYNAER can only provide global cloudfree coverage every 12 days 362 

and with large pixels of 60x30 km2. However the combination of the 2 instruments has the potential 363 

to provide aerosol type information (qualitatively shown in Holzer-Popp et al., 2008). Although 364 

these method-inherent limitations mean a significant drawback in comparison to AATSR AOD 365 
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products, SYNAER has been included into the Aerosol_cci project in order to qualify and improve 366 

its quantitative AOD results and thus eventually strengthen the aerosol type information. 367 

MERIS	ESA	Standard	368 

The MERIS standard aerosol retrieval over land algorithm was designed to work over Dense Dark 369 

Vegetation (DDV) targets (Santer et al., 1999, Ramon and Santer, 2001). A set of DDV 370 

Bidirectional Reflectance Function (BRF) models was assembled for 11 different biomes on Earth. 371 

DDV detection is based on a threshold on the Atmospherically Resistant Vegetation Index (ARVI) 372 

computed from Rayleigh corrected reflectances at 443, 665 and 865 nm. As DDV spatial cover is 373 

low, the aerosol inversion was extended to brighter surfaces called Land Aerosol Remote Sensing 374 

(LARS) targets (Santer et al., 2007). LARS spectral albedo can be predicted as it is linearly related 375 

to ARVI. Slopes and offsets of these linear regressions are stored in Look Up Tables for 1°x1° 376 

boxes and on a monthly basis. The aerosol retrieval consists in the inversion of the AOD at 443 and 377 

665 nm that allow to reproduce the measured TOA reflectances at 443 and 665 nm using pre-378 

calculated aerosol scattering functions for aerosol models described by a Junge Power-Law (JPL) 379 

size distribution and a constant refractive index of 1.45-0.0i. The outputs of the algorithm are the 380 

AOD at 443 nm and the aerosol Ångström exponent derived between 443 and 665 nm. 381 

Cloud contamination is the biggest issue of the product that is delivered at the same spatial 382 

resolution as the level 1B data (i.e. 1.2 km). The product, with a good spatial coverage now, has 383 

been validated only for the AOD at 443 nm. The Ångström exponent is not validated since the 384 

retrieved AOT at 665 nm is noisy. It is mandatory to move toward spatial resolution of 10x10 km2 385 

for the aerosol product in order to reduce cloud contamination and enhance the Signal to Noise 386 

Ratio (SNR) for the Ångström exponent retrieval. Finally there is a need for improving the LARS 387 

BRDF model. 388 

MERIS	ALAMO	389 

The MERIS ALAMO (Aerosol Load and Altitude from MERIS over Ocean) algorithm has been 390 
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primarily developed for aerosol altitude retrievals using MERIS data. Necessary inputs for altitude 391 

retrievals, such as aerosol optical properties, are derived in a first step with an initial assumption on 392 

the layer altitude. The cloud masking and AOD retrieval schemes are a close adaptation of the 393 

MODIS algorithm (Tanré et al, 1997; Remer et al., 2005), using only the following MERIS bands: 394 

510, 560, 665, 753.75 and 865 nm. Due to spectral characteristics of MERIS, ALAMO is limited to 395 

a maximum wavelength of 865 nm and only two pieces of information on aerosol properties can 396 

therefore be retrieved instead of three parameters with MODIS. MERIS aerosols products are 397 

retrieved with a spatial resolution of 10x10 pixels (12x12 km2). This resolution allows (i) an 398 

adequate signal-to-noise ratio (SNR) for a better characterisation of the aerosols type and (ii) 399 

rejection of pixels considered as non-valid through statistics criteria, in order to ensure the quality 400 

of the aerosol product. The aerosol products of ALAMO include the optical thickness and the 401 

mixing ratio of fine and coarse modes. Aerosol models used for ALAMO are the same as the ones 402 

used for the most current version of MODIS products.  403 

In a second step the altitude of the aerosol layer is estimated using the MERIS O2 A absorption 404 

channel and following the algorithm described in Dubuisson et al. (2009). A pixel reclassification is 405 

done after the altitude retrieval to remove high thin clouds based on a threshold on altitude and 406 

spatial variance of altitude. 407 

MERIS	BAER	408 

The Bremen Aerosol Retrieval, BAER, has been developed to derive spectral AOD from 409 

multispectral satellite imagery such as from MERIS over ocean and land. It separates the spectral 410 

aerosol reflectance from the surface and Rayleigh path reflectances for the short-wave ( ≤  0.67 µm)  411 

TOA reflectance over land. Over ocean the whole spectral range of MERIS is utilized for the AOD 412 

retrieval.  413 

The surface reflectance is estimated by a linear mixing of vegetation and non-vegetation spectra 414 

which are tuned by the Normalized Differential Vegetation Index (NDVI). Bidirectional 415 
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Reflectance Distribution Function (BRDF) effects are taken into account using the Raman-Pinty-416 

Verstraete model (Maignan et al., 2004). Finally BAER derives the target quantity, the AOD, using 417 

LUTs, created with rigorous radiative transfer model calculations, ensuring spectral smoothness for 418 

the retrieval over all channels (von Hoyningen-Huene et al., 2003; 2011). 419 

After specific adaptations it could be shown, that the approach is also successfully applicable to 420 

retrievals over bright surfaces such as deserts (Dinter et al., 2009) 421 

PARASOL	422 

The PARASOL algorithm is based on look up tables (LUT) of the directional, spectral, and 423 

polarized radiances calculated for different aerosol models with different optical thicknesses, size 424 

distribution and refractive index. The choice of the models used to build the LUT is a key issue. The 425 

aerosol size distribution is assumed to be the sum of two contributions, one coming from small 426 

spherical (fine mode) aerosols and the other from large (coarse mode) aerosols [Herman et al, 427 

2005]. Large particles can be either spherical, non-spherical or a mixture of both. The size 428 

distributions of spherical particles (small or large) are described by a log-normal function defined 429 

by two parameters, namely, a mean radius and a standard deviation σ. For large non-spherical 430 

aerosols, an experimental model is implemented in the LUT (Volten et al, 2001). The LUT are built 431 

with a radiative transfer code based on successive orders of scattering (Lenoble at al., 2007). The 432 

Stokes parameters are calculated at the top of the atmosphere and computations include multiple 433 

scattering in the atmosphere by molecules and aerosols and take into account the surface-434 

atmosphere interaction. 435 

Over ocean, the inversion scheme mainly uses the normalized radiances in the 865 nm channel, 436 

where the ocean color reflectance is zero, and in the 670 nm channel with a constant water 437 

reflectance of 0.001. The polarized Stokes parameters at 865 and 670 nm are also used for deriving 438 

the best aerosol model. Computations are performed with a rough ocean surface (Cox and Munk, 439 

1954) and a wind speed of 5m/s. The foam contribution is calculated according to Koepke’s model 440 
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(Koepke , 1984) and a constant value of 0.22 for the foam reflectance. 441 

The PARASOL aerosol algorithm over land (Deuzé at al., 2001) is based on a best fit between 442 

polarized measurements at 650 and 865nm and LUT’s simulated for aerosols within the 443 

accumulation mode only. The surface contribution is estimated from a relationship using empirical 444 

coefficients adjusted for the different classes of land surfaces according to the main IGBP biotypes 445 

and the NDVI (Nadal and Bréon, 1999).  446 

4.	Algorithm	improvement	447 

Aerosol retrieval is an underdetermined problem since the number of degrees-of-freedom, i.e. 448 

parameters describing the aerosol properties which determine the observed TOA radiances, is 449 

smaller than the number of observations. Hence assumptions need to be made. The most important 450 

assumptions made in aerosol retrieval concern: 451 

• Cloud screening 452 

• Surface treatment 453 

• Aerosol optical properties and size distribution 454 

Aerosol retrieval can only be made for cloud-free sky because the high reflectance of clouds at 455 

wavelengths in the UV-NIR interferes with the aerosol reflectance and hence prohibits accurate 456 

retrieval of aerosol properties. Therefore, an accurate cloud mask has to be applied to screen all 457 

pixels for the occurrence of clouds and exclude them from retrieval. Currently all algorithms 458 

participating in Aerosol-cci use their own cloud detection procedures as described in section 3 and 459 

the literature referenced there. The use of a common cloud flag for similar products is under study 460 

(Holzer-Popp et al., 2013). To further eliminate cloud-contaminated data, a post-processing step has 461 

been developed to effectively detect cloud edges as described in Section 3 for the AATSR ADV and 462 

ASV algorithms. This post-processing step results in a smoothly varying AOD across extended 463 

areas without sudden transitions. This post-processing step has been implemented in other 464 

algorithms (ORAC, SU) as well.  465 
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The treatment of the surface and accounting for contributions of surface reflectance to the radiance 466 

measured at TOA depends on the instrument properties, and how they are used. An overview of 467 

surface treatment and application to different algorithms such as the AATSR algorithms used in 468 

Aerosol-cci has been presented in Kokhanovsky and de Leeuw (2009), for MERIS BAER in de 469 

Leeuw et al. (2011), and for the other MERIS algorithms in the respective ATBDs. Therefore 470 

surface treatment will not be discussed here. 471 

Apart from improved cloud screening, most progress has been made in harmonizing aerosol models 472 

and their use in the various retrieval algorithms. For the Aerosol-cci project, a simple set of four 473 

aerosol components has been developed consisting of two fine mode components, one of which has 474 

a complex refractive index representative for weakly absorbing aerosol particles and the other one 475 

represents strongly absorbing aerosol particles. The other two components describe coarse mode 476 

aerosol components, one with the characteristics of desert dust and the other one describing sea salt 477 

aerosol. Each component is thus described by a lognormal size distribution, defined by mode radius, 478 

effective radius, geometric standard deviation and variance, and by the complex refractive index 479 

(Table 2).  480 

The two fine mode-types are extremes in terms of absorption and reality (in terms of absorption) is 481 

always a combination of these two types. The choice of the fine mode radius is based on an analysis 482 

of AERONET sun-photometer data which shows that the most frequent fine mode size (in terms of 483 

the effective radius) is near 0.14 µm. The coarse mode is dominated by two quite different aerosol 484 

types: spherical largely non-absorbing sea-salt and non-spherical absorbing dust. Based on an 485 

AERONET probability distribution for the coarse mode, the effective radius was set to 1.94 µm for 486 

these two coarse mode aerosol types. See Holzer-Popp et al. (2013) for more detail. 487 

The optical properties of aerosol particles are usually calculated by application of a Mie code (Mie, 488 

1908), which applies to spherical particles. However, for dust Mie codes cannot be applied because 489 

of the non-spherical shape of dust particles. In Aerosol-cci a T-matrix method was used assuming 490 
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randomly oriented spheroids with aspect ratios between 1.44 and 3.0 (Dubovik et al. 2002, Sinyuk 491 

et al. 2003). Although spheroids may be unable to represent the entire shape complexity for dust, 492 

this spheroid method is certainly preferable over methods for spheres. The choice of the refractive 493 

index for dust is based on Volten et al. (2001). Observational data (Dubovik et al. 2002, Sinyuk et 494 

al., 2003) demonstrate that the dust absorbing strength is wavelength dependent, and decreases from 495 

the UV (imaginary refractive index, RFi, near 0.005) to the near-IR (RFi near 0.001). To avoid 496 

time-consuming computations during the retrieval, radiative transfer is computed in atmospheres 497 

with different aerosol components, for discrete AOD values and a range of discrete configurations 498 

(e.g., solar zenith angle, viewing angle), and the results are stored in a look-up table (LUT). During 499 

the retrieval the optical properties for the relevant configuration are obtained by simple 500 

extrapolation of the LUT values. 501 

For successful retrieval of the aerosol type by using a mixture of the four basic aerosol components 502 

presented in Table 2, additional information may be required on relationships between fine and 503 

coarse mode, between less and more absorbing fine mode and between dust and sea-salt 504 

components in the coarse mode. This information is supplied in terms of monthly 1ox1o 505 

climatological data derived from two sources, modelling and observations.  506 

MODELING: Output of 14 different global models with complex aerosol component that 507 

participated in AeroCom exercises are combined into ‘AeroCom’ median maps (Kinne et. al., 508 

2006). Based on these median maps, ratios between different aerosol components are defined. Dust 509 

and sea salt generally define the coarse mode and sulfate, organic matter and black carbon the fine 510 

mode.  511 

CLIMATOLOGY: To improve this AeroCom model median, AERONET (Holben et al., 1998) 512 

quality data are added in a merging process for AOD, Ångström exponent (describing the AOD 513 

spectral dependence) and single scattering albedo (describing the absorption potential). With 514 

observational ties data of this ‘climatology’ are recommended over data from ‘modelling’. 515 
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This climatology is used as a priori for the occurrence of aerosol types /mixtures, per region and per 516 

month. In general the coarse mode component selected would be sea salt, except in the presence of 517 

desert dust which occurs in certain areas. The choice of the fine mode component would also be 518 

based on the climatology and the two fine mode components, with equal microphysical properties, 519 

could be mixed to obtain the desired absorption properties (as provided by the ssa in the 520 

climatology). Using the occurrence of aerosol types, the retrieval algorithm computes the radiances 521 

at the top of the atmosphere which are compared with the satellite measurements. Based on this 522 

comparison the aerosol mixtures are adjusted and the procedure is iterated until convergence is 523 

reached and the most likely aerosol model providing the measured radiance is selected. With this 524 

model the AOD is computed. It is emphasized that the climatological AOD is not used in the 525 

retrieval process, and the aerosol mixtures are only used as a priori, except in sensitivity studies. 526 

The actual AOD and aerosol mixtures are retrieved based on the measured radiances at 3 (over 527 

land) or 4 (over water) wavelengths.  528 

Algorithm improvement was measured by application of the validation and evaluation exercises 529 

described in Section 5. These exercises were made for only one month, September 2008, a 530 

necessary restriction because of the time it takes to run the retrieval with different aerosol mixtures. 531 

Success was identified by comparison with the baseline algorithm and successive improvement 532 

after implementation of different aerosol models, the use of the AEROCOM median with different 533 

degrees of comprehensiveness (i.e. varying from completely free retrieval without any use of the 534 

climatology, to a full prescription of the aerosol mixing, and combinations thereof) and different 535 

cloud masks. In addition to these experiments, algorithms were also improved as regards coding and 536 

debugging and the retrieval products were improved by application of post-processing. Results from 537 

this study for 1 month are presented in Holzer-Popp et al. (2013).  538 
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5.	Validation	and	evaluation	539 

For validation of the retrieval algorithms used in Aerosol-cci, to evaluate their improvement, to 540 

select the most suitable algorithm for ECV production, and to assess the achievements as regards 541 

meeting user requirements, independent and objective methods are needed leading to quantitative 542 

scores. These scores are obtained by comparison with independent data sets, in this case these are 543 

provided by the ground-based sun photometer network AERONET (Holben et al., 1998) as 544 

described in the introduction. All satellite results, both those participating in the Aerosol-cci RR and 545 

the reference satellite data sets, are evaluated versus AERONET.  546 

Three principal methods are used based on statistics for Level 2 (L2) and Level 3 (L3) products. In 547 

Aerosol-cci L2 products are the daily products as produced by the retrieval with a spatial resolution 548 

of 10x10km2 and L3 are daily or monthly aggregates (also referred to as mean or averaged data) 549 

provided on a spatial scale of 1ox1o. The L2 and L3 products are available globally. L2 products 550 

contain for each pixel quality flags, or a level of confidence, set by the data provider as well as 551 

uncertainty estimates. L3 products contain for each pixel the statistics obtained during the 552 

aggregation process, such as standard deviation. In addition to these statistics-based methods, other 553 

metrics were used for evaluation such as bias, spatial coverage, number of data points globally and 554 

representation of features such as biomass burning aerosol plumes, the occurrence of desert dust, or 555 

anthropogenic pollution. 556 

Other validation exercises include studies on uncertainty estimation and studies on the comparison 557 

with measurements of aerosol properties at ambient relative humidity (RH) (such as column 558 

integrated measurements with associated variations of ambient properties with height) with in situ 559 

measurements such as those made in the ground-based networks with controlled RH (cf. Zieger et 560 

al., 2011). These exercises were not part of the current RR and will not be reported here. 561 

For the intercomparison of Aerosol-cci data sets, and for the comparison of Aerosol-cci data sets to 562 

other data sets in the ICARE archive (e.g., MODIS, model results, etc.), a multi-sensor visualization 563 
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and analysis tool has been developed. All key parameters of each sensor product can be selected 564 

independently for visualization. For each product, a link to the product documentation is 565 

provided. For a given parameter, a unique colour scale is used for direct visual inter-566 

comparison. The geographic selection, date selection, and product selection, can be modified 567 

independently, while the other two selection criteria remain unchanged. All data sets are displayed 568 

in Plate-Carree projection to make inter-comparison and geographic selection straightforward. 569 

Aerosol-cci daily and monthly L3 products don't require any reprojection. Aerosol-cci L2 products 570 

are originally produced in sinusoidal grid, so they are re-gridded on-the-fly upon selection in the 571 

graphical interface. Additional interactive capabilities are available, such as display of data values, 572 

or X/Y plot comparison. The multi-sensor visualization and analysis tool is available from 573 

http://www.icare.univ-lille1.fr/browse/?project=cci. 574 

An extract tool has been developed to interactively extract Aerosol-cci product values in the vicinity 575 

of validation sites. Several validation networks are supported, including AERONET. Single or 576 

multiple parameters from Aerosol-cci aerosol products can be selected for extraction. A time period 577 

and a search radius can be specified. For each selected validation site, and each overpass of the 578 

satellite, all data values found within the specified range are displayed, if any, along with the 579 

corresponding acquisition time and pixel location. Those extract values can be directly compared to 580 

validation data off-line. The Aerosol-cci extract tool is available from http://www.icare.univ-581 

lille1.fr/extract/cci. 582 

5.1	L2	statistics	583 

AOD and Ångström exponent of L2 data sets were compared with AERONET data using scatter 584 

plots and least squares fits to the data. The comparisons were made for collocated satellite and 585 

AERONET observations, i.e. satellite pixels were selected within a spatial threshold of +/-35 km 586 

and a time frame of +/-30 minutes from AERONET measurements. Where available (ORAC, ADV 587 

and SYNAER), quality flags or confidence indicators in the products were taken into account to 588 
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select best pixels. Furthermore a distinction was made between retrievals over land and water. 589 

Round Robin MERIS datasets do not have a water/land flag, therefore the pixels over land and 590 

ocean for MERIS Standard and MERIS BAER were selected using the ORAC water/land flag.  591 

5.2	L3	scoring	592 

For L3 scoring, an evaluation routine has been developed to determine for a test data set a 593 

performance error, for cases when trusted reference data are available. Here the test data are daily 594 

L3 satellite data, the reference data are AERONET observations within half an hour of the 595 

particular satellite overpass. To simplify comparisons, all sun photometer data were gridded on the 596 

spatial 1 o x1o resolution of the satellite data. Although in theory satellites should locally offer more 597 

than 100 samples for the four months, the available number of valid data points is smaller due to the 598 

presence of clouds. The number of samples is further reduced due to a limited swath (e.g. AATSR 599 

and MISR), stringent quality control measures (e.g. SU) or due to limited temporal coverage (e.g. 600 

SYNAER). In addition, also AERONET data were not available each day.  601 

The selected performance error for L3 evaluation is based on a combination score, which separately 602 

investigates temporal variation, spatial variation and bias. Errors E are defined to range from 0 for 603 

‘perfect’ to 1 for ‘poor’. Conversely, associated scores S (S=1-E) range from 0 for ‘poor’ to 1 for 604 

‘perfect’. This definition for the scores allows via sub-score multiplication the determination of an 605 

overall score ST and of an overall error ET.  606 

 607 

ET = 1 - |ST|     with   ST = sign (EB)* (1-|EB|)* (1-EV)* (1-ES) , (2) 608 

   609 

where EB is the error for bias, EV is the error for spatial variability and ES is the error from temporal 610 

or seasonal variability. Note, that the sign of the bias defines the sign of the total score ST. Each of 611 

the three sub-scores is based on statistics. Hereby, valid sub-scores require a minimum number of 612 

samples. Given sufficient data-pairs for test-data D and reference-data R, the bias score EB 613 
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compares sums of associated (value-) ranks of an array that contains all elements from both D and 614 

R. If the rank sum associated with elements of D (DSUM) is similar to the rank sum associated with 615 

elements of R (RSUM), no bias is determined. However, if the two rank-sums differ, then a bias is 616 

identified, in strength and sign. 617 

 618 

EB =  w* [(DSUM-RSUM) / (DSUM+RSUM)],    w=[IQ-RD+IQ-RR]/[IQ-AD+IQ_AR]  (3) 619 

 620 

Based on the average interquartile range (IQ-R) to interquartile average (IQ-A) ratio of both data-621 

sets, a variability factor w is defined. The factor w is applied as weight to the bias error, to avoid an 622 

error overemphasis, in the case that all individual values are close to their average. The same factor 623 

w is also applied to both the spatial variability error EV and the temporal variability error ES. The 624 

spatial variability error is based on data-pairs spread spatially at one instance, whereas the temporal 625 

variability score is based on time-series data-pairs at one specific location. When sufficient data-626 

pairs are available, rank correlation tests are performed and the resulting rank correlation coefficient 627 

RC defines the error.  628 

 629 

EV = w* (1-RC)/2    (4) 630 

ES = w* (1-RC/)/2. (5) 631 

 632 

With this definition 100% correlation yields no error, whereas 100% anti-correlation yields the 633 

maximum error of 1. Note, that randomness for temporal and spatial variability yields still scores of 634 

0.5 (not zero). 635 

Errors of any test data, D, with respect to the reference data set, R, are determined in two parallel 636 

steps, at the smallest temporal resolution and at smallest temporal scale. In step 1, temporal error 637 

and bias error are determined at each location, by applying available time-series data pairs at the 638 
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smallest temporal resolution. In step 2, spatial error and bias error are determined by exploring data 639 

pairs in their spatial context for each time step. The final bias error is averaged from both 640 

processing steps. 641 

Since properties usually vary with longitude / latitude and surface conditions, the evaluation is 642 

regionally stratified. Later these regional scores can be easily combined via average weighting into 643 

a single global score. Thus, this method offers an assessment via a single global (or regional) score, 644 

while still maintaining regional diagnostics on bias the ability to match temporal and spatial 645 

variability.    646 

5.3	Level3	validation	using	AEROCOM	methods	647 

The L3 validation of daily gridded products using AEROCOM tools is applied to the nearest 648 

satellite pixel value on a 1o x 1o grid corresponding to daily mean AERONET values excluding 649 

mountain sites. The evaluation with the AEROCOM tools provides bias, histograms, scatter plots, 650 

time series graphs, zonal mean comparisons, and score tables. This analysis includes all pixels 651 

regardless of quality flags or confidence indicators. A specific focus was put into common data 652 

point filters between the AATSR algorithms. The ORAC land / sea mask was used for all retrievals 653 

to differentiate between land, coast and sea cases.  654 

6.	Round	Robin	exercise	655 

The Round Robin exercise was set up for an independent and objective evaluation of the global 656 

retrieval results (AOD, AE) provided by each of the algorithms indicated in Section 3. The versions 657 

of the algorithms used to provide these products were selected by each of the retrieval groups based 658 

on the exercises described in Holzer-Popp et al. (2013) and summarized in Section 4. The results 659 

were evaluated using the tools described in Section 5. Based on these results, the independent 660 

validation team (Section 2) provided an advice as regards the statistical quality. Other 661 

considerations were data coverage and spatial patterns. In addition, the same tools (Section 5) were 662 

applied to data from MODIS Aqua, MODIS Terra and MISR, for intercomparison and as a measure 663 
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of how well the Aerosol-cci algorithms are performing in comparison to other satellite data sets 664 

which are often used in climate studies.  665 

For an objective evaluation of the RR results, a protocol was developed using the following rules:  666 

- evaluation was performed by independent Aerosol-cci partners, i.e. partners not directly 667 

involved in providing retrieval data: the validation team (Section 2); 668 

- A set of criteria for selecting the best algorithm was developed beforehand: 669 

o using the statistics (L2), ranking based on scoring (L3), and L3 validation using 670 

AEROCOM tools, as described in Section 5 671 

o evaluation of performance on global and regional scales 672 

o evaluation of seasonal performance 673 

o evaluation of spatial coverage, reproduction of regional and global patterns and the 674 

occurrence of features such as desert dust and biomass burning plumes, 675 

anthropogenic pollution, etc. 676 

Additional considerations for algorithm selection were:  677 

- long-term application potential (follow-up or predecessor sensors) 678 

- availability / quality of uncertainty information on pixel level 679 

- ability to provide essential complementary data to available satellite data products 680 

- technical criteria such as the operationality of algorithms (e.g., throughput, dependence to 681 

systematic external datasets, implementation efforts). 682 

The rankings provided by the validation team, i.e. based on statistical results, are presented in Table 683 

3 and discussed below. 684 

6.1 Level2 validation 685 

For the L2 evaluation of AOD and AE provided by the participating algorithms statistical measures 686 

evaluated were Pearson correlation coefficients, linear fit parameters, standard deviations (from 687 

linear fits and from AOD difference histograms), average differences, and number of AERONET 688 
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sites and satellite pixels used. Examples of scatterplots between the satellite-retrieved AOD and AE 689 

vs. AERONET data are shown in Figures 1 and 2, together with the fit parameters. These figures 690 

illustrate that there are differences amongst the several AATSR algorithms, both over ocean and 691 

over land, and between the AATSR and PARASOL results over ocean. In all cases over ocean 692 

satellite AOD is reasonably well correlated with AERONET, although outlyers are observed for 693 

ORAC, which may be due to insufficient cloud screening. Over land SU AOD is well correlated 694 

with AERONET and the slope is close to 1, but for ADV and ORAC the correlation is less good 695 

than over ocean. 696 

Figure 1 about here 697 

Figure 2 about here 698 

Correlations of AE are much smaller than for AOD, especially over land where in most cases there 699 

is no correlation. Over ocean the correlations are much better and the PARASOL AE seems to 700 

follow AERONET values reasonably well. It is not clear why the SU results are not at all correlated 701 

with AERONET over ocean and AE’s are mostly very close to zero. 702 

 Criteria used for ranking of the L2 validation results are based on correlation coefficient, standard 703 

deviation and number of satellite pixels using the following criteria:  704 

- The closer the linear Pearson correlation coefficient is to 1, the better the algorithm (both for 705 

AOD(550 nm) and AE).  706 

- The smaller the standard deviation of the difference between retrieved and AERONET 707 

AOD, the better the algorithm (both for AOD(550 nm) and AE).  708 

- Algorithm should provide enough number of the retrieved pixels. 709 

The application of the criteria leads to the following rankings for the algorithms using AATSR or 710 

MERIS data (see also Table 3): 711 

AATSR over ocean: ADV, ORAC, SU, SYNAER 712 

AATSR over land: SU, ADV, ORAC, SYNAER 713 
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MERIS over ocean: ALAMO, ESA standard 714 

It is noted that BAER was not included because no products were available at the time the RR was 715 

conducted. This ranking is based on the statistics provided in Table 4. These statistics show that 716 

from all participating algorithms, over ocean PARASOL shows the best combination of high 717 

correlation, small standard deviation and large pixel number, but also AATSR ADV and MERIS-718 

ALAMO have good correlations. Over land AATSR SU shows good correlations, whereas MERIS 719 

has clearly weaker correlations and larger standard deviations, with only slightly larger pixel 720 

numbers. 721 

6.2	L3	scoring	722 

The evaluation of L3 data as described in section 5.2 was separately conducted for 25 (TransCom; 723 

Gurney, et al. 2002) sub-regions shown in Figure 3. Within each of these 25 regions, at least 10 724 

data-pairs were required for both the spatial and the temporal test in order to get a valid score. This 725 

required sufficient satellite data samples and also sufficient 1ox1o grid boxes in each region with 726 

AERONET coverage. 727 

Figure 3 about here 728 

These data-pair requirements permitted only scores for the Northern Hemispheric land regions with 729 

sufficient AERONET coverage. Unfortunately, also for these regions collocated satellite and 730 

AERONET data were often so sparse that a valid score was not possible. Table 5 shows the 731 

resulting satellite AOD retrievals scores. 732 

Table 5 about here 733 

Table 5 indicates that the data volume of the Aerosol-cci AOD retrievals for the test period (four 734 

months in 2008) which matched to AERONET data is so sparse that no scores can be offered. Even 735 

those Aerosol-cci AOD products which allow scoring have much poorer coverage than MODIS and 736 

even MISR (which has an even smaller swath of about 360km compared to about 500km for 737 
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AATSR). This is also illustrated by the number of samples that contribute to the scores for North 738 

America, where also sub-scores for bias, temporal variability and spatial variability are listed. 739 

Among the different Aerosol-cci AOD retrievals the ATSR products show the highest skill but total 740 

and sub-scores vary. However, the comparison of the scores is limited. Global scores are based on 741 

different numbers of regions. And also more appropriate comparisons for North America, where 742 

almost all products supply a score, the underlying numbers of data-pairs differ.  743 

For North America, ADV is ranked before SU and ORAC. The ADV score (.54) matches the MISR 744 

score and both the ADV, MISR and SU (.48) scores are better than the MODIS scores (.42/.41) 745 

which are particularly poor over America. Looking at the sub-scores, the relatively low ORAC 746 

score (.39) has a bias score that is as good as in MISR or MODIS and clearly better than for SU. 747 

The sub-scores also indicate that ADV and SU display spatial distributions for North America 748 

which are superior among the examined data sets, even better than MISR or MODIS. 749 

Calculated regional errors, as well as contributing sub-errors due to spatial variability among 750 

MODIS, MISR and ADV are compared in Figure 4. The same error comparisons among the three 751 

ATSR products are presented in Figure 5. 752 

Figure 4 about here 753 

Figure 5 about here 754 

Figure 4 indicates that ADV errors for North America and Europe (where a sufficient amount of 755 

AATSR data are available) are as low as for MISR (v22) and better than for MODIS (Collection 756 

5.1). However, as mentioned above, the data volume of MISR and ADV is much smaller than that 757 

offered by MODIS, mainly due to their narrower swaths. It is further noted that the ADV data 758 

volume is similar to that of the MISR data, despite the larger AATSR swath. In that sense it should 759 

be noted that the value of satellite products is not only determined by its accuracy alone but also by 760 

(frequent, global) coverage. 761 
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The comparison of the three AATSR algorithms shows that the data coverage is poor for the SU 762 

product. Clearly efforts are needed for better coverage to make these data sets more attractive to 763 

users. For regions with available scores it could be concluded that the ADV product scores best and 764 

that the ORAC product scores poorest, despite having a relatively low bias error. Still, this is just 765 

based on an analysis for two regions dominated by urban-industrial aerosol and there are much 766 

more facets to aerosol (e.g. dominance by dust or biomass burning). 767 

Clearly these initial comparisons leave many open questions. Most disturbing is that there are so 768 

many regions where no scores could be calculated for this limited data set. This can be addressed 769 

once data are provided for one entire year or more. Also reference data over oceans are needed and 770 

will be added in future assessments (e.g. using data from the marine aerosol network (Smirnov et 771 

al., 2012) or using trusted and matured satellite AOD products).   772 

6.3 Level3 validation using AEROCOM tools 773 

The AeroCom tools allow for the selection of regions (World, Europe, China, India, E. Asia, N 774 

Africa, N. America, S. America, World w/o mountains) and annual (only a four month average for 775 

2008 in this RR), seasonal (represented by 4 different months), and monthly L3 (4 months in 2008) 776 

averages. A common 1ox1o mask was established where valid data were available from all retrieval 777 

algorithms (AATSR and MERIS). In all regions this info is further refined using an ocean, coastal 778 

and land mask, based on whether a grid point was identified as purely ocean or land across 779 

retrievals (using the ORAC L2 land/sea mask). Remaining grid points are defined as coastal. 780 

Altogether 8 x 4 regional selections are possible. For comparison, similar statistics are available for 781 

the annual averages of MODIS-Terra, MODIS-Aqua and MISR AOD data, with selection by 782 

region. For each selection a list is produced showing the statistics, cf. Figure 6 as an example. 783 

Examples of the results are presented in Figures 7 – 12.  784 

Fiigure 6 about here 785 
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Figure 7 shows the global annual mean AOD maps for the algorithms participating in the Aerosol-786 

cci RR, as well as reference AOD maps from MODIS v5.1 (Terra and Aqua), MISR and the 787 

AEROCOM median. As compared with the baseline algorithms (Holzer-Popp et al., 2013), the 788 

current results are much closer to each other and also closer to the references. Yet, also quite large 789 

differences are observed, both as regards the global coverage, the number of valid pixels (provided 790 

with the statistics given with Figure 9), the spatial distributions and the features in each of the maps. 791 

Clearly, ADV provides the smallest global coverage, which is also reflected in the number of valid 792 

pixels which is smaller than for ORAC and MERIS Standard, but larger than for SU. The small 793 

number of ADV pixels is due to the facts that (a) ADV limits the retrieval to solar zenith angles of 794 

65o and (b) no retrieval is made over bright surfaces. The even smaller number of pixels provided 795 

by SU, in spite of the larger global coverage, is due to a stricter quality control. Further, there are 796 

clear differences in the global mean AOD (provided for each algorithm in the legend at the top at 797 

the right), which vary from 0.154 for ADV to 0.215 for SYNAER, as compared to MODIS mean 798 

AOD values of 0.189 (Terra) and 0.179 (Aqua) and MISR (0.176).  799 

Over land there are clear differences in the AOD distributions, such as at high northern latitudes 800 

where the AOD provided by ORAC and MERIS Standard are clearly higher, SYNAER is a bit 801 

higher, and ADV provides distributions similar to those from the reference satellites. SU, on the 802 

other hand, provides AODs which are substantially lower. It is noted that the AEROCOM median 803 

shows somewhat lower AODs at northern latitudes, with a clear gradient over Siberia, than the 804 

reference satellites. Over western Europe, most AOD maps show enhanced values, higher than 805 

further north, except ORAC and MERIS Standard, while the reference satellites show no 806 

enhancement over western Europe with respect to northern latitudes, in contrast to the AEROCOM 807 

median. Over N. America the patterns are quite different between different satellites (both Aerosol-808 

cci and references). The AOD is lower in the west for ADV, ORAC and SU, but there are clear 809 

differences between these algorithms as regards the patters, and the values for ORAC are higher all 810 
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over the continent. The lower AOD in the western USA is in agreement with AEROCOM median. 811 

In contrast, the AOD in the west is higher than in the eastern USA for SYNAER and MERIS 812 

Standard, and this is also observed, although less clear, for MODIS, while MISR shows no clear 813 

differences across the USA. It is noted that differences between MODIS and MISR AOD 814 

observations have been reported; e.g. van Donkelaar et al. (2010) noted that over the SW USA a 815 

large AOD enhancement was observed in the MODIS retrievals but not from MISR. Also over S. 816 

America there are large differences with a very high AOD over the northern part from ORAC and 817 

an overall high AOD from SYNAER and MERIS Standard. SU shows the largest spatial variations 818 

and ADV and the reference satellites are quite close in their AOD values with little or no gradients 819 

(on the scale on which AOD is displayed). Similar comments can be made over Africa, where all 820 

retrievals clearly show the biomass burning plumes, but with different intensity. Also there are clear 821 

indications of the Sahara desert dust plumes but the analysis of differences between algorithms is 822 

difficult because several algorithms do not provide data over bright surfaces, such as the Sahara. 823 

Over ocean there are also considerable differences. ORAC provides a clear pattern with very low 824 

AODs over most of the southern oceans and a transition across the tropics to the northern 825 

hemisphere. The low AOD values over ocean are in line with values reported by Smirnov et al. 826 

(2012) based on hand-held sun photometer observations on ships of opportunity as reported in the 827 

Marine Aerosol Network (MAN). Unfortunately the MAN observations for 2008 were too sparse to 828 

be used in the Aerosol-cci RR validation. Low AOD values, but much less prominent, over the 829 

southern oceans are also observed in the SYNAER and MERIS ALAMO AOD maps, and in the 830 

southern Pacific in the AEROCOM median. Also MODIS Aqua, MERIS Standard and ADV 831 

indicate low AOD in the southern Pacific. AEROCOM further shows a clear band with enhanced 832 

AOD in the southern hemisphere between roughly 40o and 60o, which is reproduced to some extent 833 

by ORAC, somewhat less clear by ALAMO and weakly by the reference satellites.  834 
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The overall picture emerging from these maps is that the ADV AOD distribution is closest to that of 835 

the reference satellites, both over land and ocean, but ADV does not provide any data at the higher 836 

latitudes resulting in a the global coverage which is much less (ca. 30%) than for some other 837 

Aerosol-cci algorithms. The global mean AOD produced by most algorithms is different but locally 838 

the differences are much larger, and these local differences are to some extent cancelled in the 839 

global mean. Therefore it is useful to also look at regional differences to learn the strengths and 840 

weaknesses of each algorithm and thus improve the algorithms. Features over land, such as forest 841 

fire, desert dust and anthropogenic pollution plumes usually are smoothly extended over ocean but 842 

in many cases land-sea transitions are visible. This is clearly a point for future research.  843 

Figure 7 about here 844 

Monthly AOD maps, for one month in each season selected for this RR exercise, are presented for 845 

ADV and PARASOL in Figure 8. The features are similar as those discussed in Figure 7, but there 846 

are clear differences between seasons in relation to the production and removal of different aerosol 847 

types. This is most clearly illustrated with the biomass and desert dust plumes generated over Africa 848 

and transported over the Atlantic Ocean. There are also clear differences in the AOD distributions 849 

over the continents such as over Asia (China, India, deserts) and adjacent downwind oceans. 850 

Differences are also visible over N. America (features discussed in connection with Figure 7) and 851 

over S. America which is likely connected with biomass burning in Amazonia.  In addition there are 852 

differences between coverage caused by the seasonal variation of the solar zenith angle.  853 

Fiigure 8 about here 854 

Examples of the AEROCOM statistical analysis of the Aerosol-cci results for the 4 months in 2008 855 

are presented in Figures 9, 10 and 11. Figures 9 and 11 include MODIS Terra evaluation results as a  856 

reference. MODIS Terra was selected here because the overpass time is close to that of ENVISAT 857 

with AATSR and MERIS.  Figure 9 shows scatterplots of the retrieved AOD vs. AERONET values. 858 

The statistics are provided in the legend in the upper left corner of each plot. The algorithm name is 859 
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given along the vertical axis of each plot. The scatterplots illustrate the differences between the 860 

various algorithms and how much they deviate from the reference value. These differences are 861 

quantified, in a statistical sense, by the correlation coefficient, the bias and the rms. Figure 9 shows 862 

scatterplots including data for all 4 months considered in Aerosol-cci for the whole globe, i.e. 863 

including land, ocean and coastal regions, whereas the bar charts in Figure 10 differentiate between 864 

land and coastal for each month separately; there are not enough L3 collocations over ocean to 865 

provide meaningful statistics. The data shown in Figure 10 have been used to provide a ranking 866 

between the four AATSR algorithms, Table 6. The numbers in Table 6 are the number of months, 867 

out of a total of 4, when a certain algorithm performed best, 2nd best etc. based on two statistical 868 

parameters: correlation and RMS. The results show that over land ADV provides the best results, 869 

before SU, and in coastal areas SU ranks before ADV. ORAC is sometimes close. 870 

These numbers can therefore be used to provide a ranking, however, the statistics also provide a 871 

quantitative number, in a statistical sense, showing how large (or small) the differences between the 872 

algorithms are, which has been used to provide the ranking presented below.  873 

Fiigure 9 about here 874 

Fiigure 10 about here 875 

Table 6 about here 876 

Figure 11 shows the statistics in a different way, as histograms of the frequency of occurrence of the 877 

AOD values retrieved form the satellite observations, compared with collocated AERONET 878 

observations. Ideally, the two curves should exactly coincide. However, even MODIS, with 1468 879 

collocations (note that these data are available for the whole year 2008, i.e. no selection was made 880 

to cover only the 4 months used for the RR algorithms, or to select on collocations with Aerosol-cci 881 

satellite data) does not provide an exact coincidence and the lower AODs are on average somewhat 882 

overestimated whereas the higher AODs (around 0.2) are somewhat underestimated by MODIS. For 883 

the Aerosol-cci algorithms, covering only 4 months and thus having much less collocations, the 884 
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histograms show larger variations between bins. Yet, ALAMO and PARASOL, with over-ocean 885 

retrieval only, follow the AERONET pattern quite well, with a tendency for PARASOL to 886 

underestimate the lowest AODs. It is noted here that only AERONET data (i.e. land based) were 887 

used in this analysis, i.e. sun photometers situated at or near the coasts, which may result in some 888 

bias. From the other algorithms, the ADV-retrieved AOD histogram follows that of AERONET 889 

quite well; this can also be said from SYNAER although the histograms are very flat. In the other 890 

algorithms deviations are visible with either overestimation of the lower AOD values (SU) or 891 

underestimation (ORAC) whereas MERIS Standard appears to have the largest deviations for both 892 

small and large AOD. 893 

Fiigure 11 about here 894 

Another way to use the statistics is to evaluate where algorithms perform well and where 895 

improvements are needed. An example is presented in Figure 12 where the difference between the 896 

satellite and AERONET AOD observations, given by (Satellite -AERONET)/AERONET*100, is 897 

colour-coded on the map for individual AERONET stations across the world. Blue indicates that the 898 

satellite is underestimating; red indicates that the satellite is overestimating. Light colours indicate 899 

that the differences are very small and as the colour is darker the under of over-estimation is larger. 900 

For these plots, the globe has been gridded into boxes of 10ox10o. For each grid box, the stations 901 

located there are taken into account, and their data is then averaged depending on the time period to 902 

be plotted. When smaller regions are considered instead of the whole globe, the grid is reduced to a 903 

1ox1o grid. The plot does not show how many stations are within the grid box. The locations of the 904 

grid boxes (especially at the plot for the whole globe) are not entirely correct, because while the 905 

outline of the continents and countries are correct according to the map projection, the grid boxes 906 

are not. This would require a reverse map projection which would destroy the analysis grid because 907 

of associated interpolations. The error becomes greater as the boxes are further away from the 908 

equator and the zero meridian. 909 
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The maps show that none of the algorithms, including the MODIS reference, is perfect everywhere. 910 

Improvements are needed, but areas for which the improvements are needed, and in which direction 911 

(under- or over-estimation), are different for each algorithm. Taking the AATSR algorithms as an 912 

example, ADV and SU appear to perform reasonably well over Europe, even though they tend to 913 

underestimate, whereas ORAC and SYNAER have large overestimation. The same pattern emerges 914 

over the USA, except that SYNAER appears to work quite well over the eastern USA. Almost all 915 

algorithms show a large overestimation at high latitudes, except ALAMO in the northern 916 

hemisphere. Because AERONET stations are located over land, or in coastal areas, this evaluation 917 

cannot be made over ocean. 918 

Figure 12 about here 919 

Figure 13 shows the zonal mean AOD for the Aerosol-cci algorithms and MODIS Terra, with 920 

AERONET for comparison. Together with Figure 11, this figure illustrates the performance of each 921 

algorithm. As in Figure 11, ideally the satellite-retrieved AOD would follow the AERONET 922 

observations, as for MODIS Terra in Figure 13. Also the over-ocean only AODs provided by 923 

ALAMO and PARASOL show a quite good behaviour. However, for the other algorithms, which 924 

include both land and ocean in the plots in Figure 13, the trends are reproduced well with high AOD 925 

north of the equator and lower AODs toward the poles, but quantitatively there are differences. 926 

MERIS Standard is in the (sub-) tropics very close to AERONET, but at mid-latitudes the AODs 927 

are much higher than those from AERONET. Similar observations can be made for SYNAER, but 928 

the SYNAER AOD shows an increasing trend from south to north as opposed to all other 929 

observations. From the other AATSR algorithms, ADV deviates quantitatively most from 930 

AERONET, whereas ORAC follows AERONET quite well but peaks right at the equator and has 931 

much higher values both at -60o and in the far north. SU seems to give the best performance in this 932 

comparison except for the very high values in the far north.  933 

The overall ranking resulting from the evaluation with the AEROCOM tools is given in Table 3.  934 
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Figure 13 about here 935 

7.	Discussion	936 

The combined effort of European aerosol retrieval teams, supported by MODIS and MISR retrieval 937 

specialists participating in workshops and discussion meetings, has resulted in an enormous 938 

improvement of the retrieval algorithms and the products resulting from them. These efforts have 939 

been described in Holzer-Popp et al. (2013) and were briefly summarized in Section 4 of this paper 940 

which is focused on further improvement and algorithm inter-comparison with the goal to use the 941 

algorithms for climate studies. This application requires a very high accuracy as formulated by 942 

climate users, and the inclusion of uncertainties per pixel. To evaluate algorithm performance, as 943 

judged by the evaluation of their products, in this case mainly the AOD and to a lesser extend the 944 

wavelength dependence of the AOD expressed by the AE, methods have been developed as 945 

described in section 5. The results from the application of these algorithms are presented in Section 946 

6. The evaluation of these results shows, in a quantitative way, based on results from statistical 947 

methods and additional evaluation using subjective but informed methods based on existing 948 

knowledge of how aerosol varies on regional and global scales, the good performance of the 949 

PARASOL (v0.23a) and the MERIS ALAMO (v1.0) algorithms over ocean, and the improvement 950 

of the AATSR ADV, SU and ORAC algorithms for use over both land and ocean. The other 951 

algorithms, SYNAER and MERIS Standard, need further improvement before they can be used to 952 

provide parameters useful for climate studies. MERIS BAER needs further improvement with 953 

respect to cloud screening and the consideration of absorbing aerosols. This situation led to the 954 

conclusion that, in view of their good performance, the PARASOL and the MERIS ALAMO 955 

algorithms can be used for the retrieval of AOD over ocean and thus provide 10 years (MERIS) and 956 

7 years and more (PARASOL) global data series.  957 

For AATSR, all three algorithms using only AATSR data (ADV, ORAC, SU) show good 958 

performance, although there are regional and seasonal differences. However, there is not one 959 
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algorithm which performs best everywhere, as shown by the rankings provided in Section 6 from 960 

each of the three different methods. Overall, ADV appears to provide the best scores, and compares 961 

most favourably with the reference satellite data sets, but it does not provide any retrieval over 962 

highly reflecting surfaces. SU does provide retrievals over highly reflecting surfaces but the number 963 

of data points is very small, mainly due to the application of stricter quality control than ORAC and 964 

ADV. However, this stricter quality control does not lead to the highest scores everywhere. ORAC 965 

is potentially the most consistent algorithm in a mathematical sense, however both statistically and 966 

as regards the reproduction of features it performs less well than ADV and SU. Yet, the low AOD 967 

over ocean seems to be in line with results published by Smirnov et al. (2012). Nevertheless, ORAC 968 

does not rank highest over ocean, which may be due to the lack of independent validation data over 969 

open ocean which could confirm the low AOD observed by ORAC. Based on the current RR 970 

results, ADV ranks first, followed by SU with ORAC as third. Yet, the differences are so small, that 971 

the ranking may change when further improvements are implemented. Furthermore, the ranking 972 

may be influenced by uncertainties introduced by L3 sampling methods as discussed in Sayer et al. 973 

(2010). 974 

Much of the difference between algorithms and their scoring may be due to cloud masking. The 975 

different cloud masks used by each of the algorithms slightly complicates the like for like 976 

comparison especially as common filtering may not completely account for possible differences in 977 

cloud masks or thresholds used at the 10x10 km2 retrieval level. As pointed out in the introduction, 978 

the comparison with AERONET data, which are well screened for cloud occurrence, does not 979 

provide a good test for how well clouds have been detected in satellite data and the results may be 980 

influenced by the occurrence of residual clouds.  981 

Several recommendations resulted from the RR exercise. One of them was that, although the ADV 982 

algorithm overall ranking was best, the coverage was a problem and needed to be improved. Such 983 

improvement could be found from increasing the maximum solar zenith angle used in the retrieval 984 
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from 60 to 75 degrees which would give a similar coverage as other algorithms and from the 985 

implementation of a module to model the reflectance of bright surfaces such as applied by SU. The 986 

latter has been implemented in ORAC V2, together with the ADV post-processing step and initial 987 

results are better than those described here. SU in turn has increased the number of pixels retrieved 988 

by using a less strict quality control together with the ADV post-processing. The implementation of 989 

these changes requires thorough testing and evaluation of the results to avoid loss of accuracy and 990 

production of erroneous results. Hence such improvements will be reported in subsequent papers. 991 

Thus a similar round robin exercise should be repeated with improved algorithms and the current 992 

conclusions should be regarded as a snapshot evaluation of continuous algorithm development. 993 

8.	Conclusions	994 

A validation protocol and necessary tools to implement the protocol have been developed and were 995 

applied to 7 algorithms for aerosol retrieval using AATSR (4, one synergistic with SCIAMACHY), 996 

MERIS (2) and PARASOL data. For reference, these tools were also applied to MODIS and MISR 997 

data. The application of these tools, to L2 and to L3 data using different statistical methods and 998 

scoring based on a combination of methods, revealed the strengths and weaknesses of each 999 

algorithm as well as a scoring of both the Aerosol-cci and the reference algorithms. A crucial issue 1000 

is the dependence of validation scores on data filtering – this led to the development of a common 1001 

point filter to assure the comparison of equivalent datasets. 1002 

The results show that PARASOL has the highest accuracy over ocean and covers features well. The 1003 

AATSR algorithm ranking depends critical on filtering. Overall (features, validation) ADV and SU 1004 

seem better than ORAC which provides some unrealistic high features. SU and ADV scores are 1005 

similar over land with SU providing data over bright surfaces and ADV having a better coverage of 1006 

features. Over ocean ADV seems best (except coasts). A combination ADV generally + SU over 1007 

bright surfaces + coasts could provide best products. MERIS ALAMO performs well over ocean; 1008 

MERIS standard has large overestimations of AOD over land. SYNAER overestimates the AOD, 1009 
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has lower coverage and accuracy but a rather good coverage of features (except in central Asia and 1010 

high latitudes). 1011 

The scoring method shows that the AATSR algorithm results are close to or somewhat better than 1012 

those from MODIS (and close or similar to MISR), but the number of points retrieved is much 1013 

smaller than MODIS due to swath width and the availability of only one instrument as opposed to 1014 

two MODIS instruments. Obviously, this gap cannot be closed. However, the dual view provided 1015 

by AATSR makes this instrument potentially better suited for aerosol retrieval over land. Also, it 1016 

provides one of the longer time series with the combination of ATSR-2 and AATSR (1995-April 1017 

2012), with an extension by SLSTR (Sea and Land Surface Temperature Radiometer) planned to be 1018 

launched in April 2014 as part of Sentinel-3. Sentinel-3 also has OLCI (Ocean Land Colour 1019 

Instrument), which will extend the 10 years of MERIS observations. 1020 

Taking into account the results from the RR exercise, the improved algorithms will be used to 1021 

provide a 1-year data set (2008) of Aerosol ECV products which, after validation using similar tools 1022 

as described in this paper, will be offered to the climate modelling community for their validation 1023 

and feedback as regards the use for climate studies. Taking these into account, the full 17 years of 1024 

ATSR-2 / AATSR is planned to be processed.  1025 

A round robin exercise for aerosol ECVs cannot be conducted using a fully automatic scoring since 1026 

trade-offs between coverage and accuracy or between added value and accuracy need to be made. 1027 

This requires scientific expertise and a team dialogue to come up with conclusions which meet the 1028 

standards of peer review by the scientific community. A strong user involvement in the whole 1029 

validation and selection process is crucial to understand and take into account the user needs. 1030 

The cooperation of the EO community with the global modelling community has proven to be very 1031 

important, in particular as regards the production of a data set in such a way that they are indeed 1032 

useful for climate studies. The cooperation between the EO groups, which was the first time on a 1033 
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European level, has led to large improvement of almost all retrieval products. The initial gap with 1034 

non-European products (in particular MODIS) has become much smaller.  1035 
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Tables	1299 

Table 1: Instruments and algorithms participating in the Aerosol-cci project. Providers, products 1300 

and references for each algorithm are indicated. A brief description for each algorithm and 1301 

references to full descriptions are provided in section 3. 1302 

Instrument Algorithm Provider Products 

land 

ocean 

A
O

D
(n) 

Type 

FM
F 

absorption 

dust 

uncertainty 

quality flag 

altitude 

surface reflectance 

cloud fraction 

AATSR ADV FMI/ UHEL + + 3/

4 

3 + (+) - + + - + - 

 ORAC Univ Oxford/ RAL + + 2 1 + - - + + - + + 

 SU Univ Swansea + + 4 1 - - - + - - - - 

AATSR + 

SCHIAMACHY 

SYNAER DLR + + 4 3 + + + + + - + + 

MERIS ESA 

standard 

HYGEOS + + 3 1 - - - - - - - + 

 BAER Univ Bremen + + 1 0 + - - - + - - + 

 ALAMO HYGEOS - + 2 1 + - - - - + - - 

POLDER PARASOL LOA - + 3 2 + - + - + - - - 

 1303 

AOD(n), n= nr of wavelengths 1304 

Type: number of independent aerosol components which potentially can be retrieved 1305 

 1306 

 1307 
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Table 2. Log-normal parameters for two coarse and two fine mode aerosol components and their 1308 

associated mid-visible refractive indices (mode number radius and standard deviation [or variance] 1309 

define the effective radius, which is the 3rd moment to 2nd moment radius ratio) 1310 

aerosol 

component 

refract 

index    

real p. 

(55µm) 

refract 

index 

imag p.  

(.55µm) 

reff 

(µm)  

geom. st 

dev (σi)  

variance

(ln  σi) 

mode#.  

radius  

( µm) 

comments aerosol layer 

height 

CM1: Dust 1.56  0.0018 1.94 1.822 0.6 0.788 non-spherical 2-4km 

CM2: sea salt 1.4 0 1.94 1.822 0.6 0.788 AOD threshold 

constraint# 

0-1 km 

FM1:  

weak-abs 

1.4  0.003 0.140   1.7 0.53 0.07 (ss-albedo at 0.55 

µm: 0.98) 

0-2 km 

FM2: 

strong-abs 

1.5  0.040 0.140  1.7 0.53 0.07 (ss-albedo 

 at 0.55 µm: 

0.802) 

0-2 km 

 1311 



57 
 

Table 3. Rankings of the Aerosol-cci algorithms: summary of the results from the three independent 1312 

validation and evaluation methods.  1313 

 

Validation criteria 

algorithm 

A
D

V
 

O
R

A
C

 

SU
 

SY
N

A
ER

 

ESA
 Standard 

A
LA

M
O

 

PA
R

A
SO

L 

Algorithm version 

v1.3 / Set 3D
 

v1.1b 

v3.0 

v3.2 

v8.0 

v1.0 

v0.23a 

L2 validation results  Land 2 1 3 0 1 - - 

Ocean 3 2 1 0 1 2 3 

AEROCOM tools Land 3 1 2 0 1 - - 

Ocean 3 2 1 1 1 2 3 

Coastal 2 1 3 0 1 2 3 

L3 scoring  3 1 2 - - - - 

Coverage of features (monthly 

AEROCOM maps) 

Land 3 0 2 1 1 - - 

Ocean 3 0 1 2 1 2 3 

 1314 

 1315 
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Table 4. L2 validation statistics. 1316 

   AATSR    MERIS  PARASOL

   ADV ORAC SU SYNAER ESA 
Standard

ALAMO  

Land AOD cc 0.83 0.44 0.90 0.59 0.55   

  st dev 0.08 0.27 0.08 0.18 0.14   

  bias 0.01 0.12 -0.02 0.17 0.17   

 AE  cc 0.19 0.40 0.57 -0.02 0.06   

  st dev 0.74 0.37 0.47 0.39 0.48   

  bias 1.49 0.26 0.23 1.61 0.54   

  nr of 
pixels 

738 1015 536 200 663   

Ocean AOD cc 0.93 0.77 0.78 0.36 0.67 0.82 0.92 

  st dev 0.08 0.22 0.09 0.20 0.11 0.11 0.08 

  bias 0.02 0.04 0.09 0.16 0.11 0.15 0.05 

 AE cc 0.67* 0.52 0.02 0.25 0.32 0.39 0.70 

  st dev 0.37 0.50 0.37 0.30 0.51 0.54 0.34 

  bias 0.37 0.39 0.17 1.54 0.58 1.09 0.44 

  nr of 
pixels 

221 285 99 61 262 103 384 

AE(555-865) 1317 

*For ADV, AE(555-1610) yields similar statistics (cc=0.66, st dev= 0.37, bias=0.05), but the 1318 

average AE is lower.  1319 

 1320 
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Table 5. Comparison of scores (1-error) for different AOD satellite retrievals for year 2008 data of 1321 

the months March, July, September and December. The larger the absolute value of the score, the 1322 

better the performance, with the overall sign indicating the bias vs. AERONET. The left side 1323 

presents scores for the globe, land and oceans. The right side presents total and sub-scores for North 1324 

America. The global scores are difficult to compare as the number of contributing regions differs, 1325 

thus there is a focus for North America, where most data provide a score. Note that the total number 1326 

of areas for which a score would be possible is 25 (Figure 3). Also note that even for North America 1327 

the number of data pairs varies strongly and is for some Aerosol_cci data so small that no score can 1328 

be provided (regions contributing given in columns “areas” for global and “data pairs” for North 1329 

America). For North America the scores are broken down to the sub scores for bias, temporal 1330 

correlation and spatial correlation. No scores are given for SYNAER, ALAMO and ESA Standard 1331 

because the number of samples was too small.  1332 

  10+ samples global scores  North American scores 

  ocean 

& land 

ocean Land nr. of 

areas 

 total Bias Tem

poral 

Spa

tial 

nr of 

pairs 

reference MISR v22 .62 .66 .59 3  .54 .87 .84 .74 25 

MODIS aqua .55 .60 .50 8  .42 .86 .79 .62 93 

MODIS terra .61 .63 .58 10  .41 .86 .79 .61 101 

SEAWIFS .56 .58 .55 6  .47 .83 .80 .71 50 

OMI .46 .48 .40 9       

AATSR ADV v13 -.57 -.60 -.55 2  .54 .84 .79 .82 28 

SU v30 -.46 -.48 -.45 1  .48 .77 .75 .83 15 

ORAC v11 .39 .40 -.39 2  .39 .86 .64 .70 37 

 Parasol v23 -.14 -.13 -.19 3  .25 .80 .56 .55 21 

 1333 

  	1334 
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Table 6. Ranking by level3 AEROCOM analysis for land and coastal areas. For ocean the number 1335 

of collocations is too small to provide meaningful scores. 1336 

 best 2ndbest third fourth 
Based on correlation 

coast     
SU 3 0 0 1 

ADV 2 0 1 1 
ORAC 1 2 1 0 

SYNAER 0 0 2 2 
 

land     
ADV 3 1 0 0 
SU 1 2 1 0 

ORAC 0 1 3 0 
SYNAER 0 0 0 4 

     
Based on rmse 

coast     
SU 3 0 1 0 

ADV 0 3 1 0 
ORAC 0 1 2 1 

SYNAER 1 0 0 3 
 

land     
ADV 3 1 0 0 
SU 2 1 1 0 

ORAC 1 1 2 0 
SYNAER 0 0 0 4 

 1337 

  	1338 
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Figures	1339 

 

 

 

Figure 1. Examples of scatterplots between the satellite‐retrieved AOD and AE vs. AERONET data. 1340 

AOD over ocean (top row) and land (bottom row) were separated using the ORAC land/sea flag for 1341 

all retrievals. The algorithm is indicated along the vertical axis. Statistics from a least squares fit of 1342 

the type y=ax+b are indicated in the legends at the bottom (see also Table 4): K is the correlation 1343 

coefficient, a is the slope, b is the bias and St.D. is the standard deviation. 1344 

 1345 
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 1346 

Figure 2. Examples of scatterplots for Ångström exponents vs. AERONET data, for further 1347 

explanation see Figure 1. 1348 

  1349 



63 
 

 1350 

 1351 

Figure 3.  Regional stratification of the globe following TransCom (Gurney, et al. 2002).   1352 

 1353 
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