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Abstract

This work presents a method of information fusion involving data captured byboth a standard charge-
coupled device (CCD) camera and a time-of-flight (ToF) camera to be usedin the detection of the
proximity between a manipulator robot and a human. Both cameras are assumedto be located above
the work area of an industrial robot. The fusion of colour images and time-of-flight information makes
it possible to know the 3D localization of objects with respect to a world coordinate system. At the
same time, this allows to know their colour information. Considering that ToF information given by
the range camera contains innacuracies including distance error, border error, and pixel saturation,
some corrections over the ToF information are proposed and developed toimprove the results. The
proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points,
expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images.
In addition to this, using the 3D information, the motion detection in a robot industrial environment
is achieved, and the fusion of information is applied to the foreground objects previously detected.
This combination of information results in a matrix that links colour and 3D information, giving
the possibility of characterising the object by its colour in addition to its 3D localisation. Further
development of these methods will make it possible to identify objects and their position in the real
world and to use this information to prevent possible collisions between the robot and such objects.
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1 Introduction

Since the 1960s, industrial robots have been used in the manufacturing industry and they have substituted
humans in various repetitive, dangerous, hostile tasks. A consequenceassociated with the incorporation
of robots in industry is the emergence of new risks of accidents for workers. The normatives which
incorporate, among many other aspects, these robot-related risks, include the international standard
ISO 10218, the American ANSI/RIA R15.06, the European EN 775, and national normatives such as
the Spanish UNE-EN 755. To prevent accidents, the selection of a security system must be based on
the analysis of these risks. Traditionally, these security systems separate the robot workspace from
the human one. One example of this requirement was reflected in the Spanish normative UNE-EN
755:1996 [1]. It is established that sensor systems have to be incorporated to prevent the entrance of
humans in a hazardous area in case the operating state of the robotic systemimplies dangers to the
human. According to traditional normatives, maintenance, repair, or programming personnel can only
be inside the robot workspace if the industrial robot is not in automatic mode.

However, in recent years, due in part to the flexible design of products, the optimization of production
methods, and the introduction of new technologies, the tasks performed by industrial robots are no longer
restricted to the transfer of objects, or other repetitive tasks. Instead, there is an increasing number of
tasks in which humans and robots combine their skills in collaborative work.

To enable collaboration between human and robot, safety measures that establish a rigid separation
between human and robot workspaces have to be removed. Instead, theintroduction of other types of
security systems is required so that collisions can be avoided by detecting obstacles as well as their
dynamic characteristics, and harm to the human can be mitigated in case of an unexpected impact. For
this reason, research in this field is directed towards changing the way a human interacts with a robot so
that the trend is that both human and robot can share the same workspace at the same time. This change
in the working relationship is reflected in the updates carried out from the year 2006 in the international
normatives ISO10218 [2] and guidelines for the implementation of these regulations, such as [3]. In
these guidelines, new concepts are presented, such as collaborative robots, collaborative operations, and
spaces of collaborative work.

Taking into account that security is a fundamental aspect in the design of robotic manufacturing
systems, the development of systems and security strategies that allow safe collaborative work between
human and robot is essential. The aim of this paper is to contribute at the initial stage of the design of a
system for collision prevention between a human and a robot manipulator sharing a workspace at the
same time. A method for processing of information acquired from two different types of vision sensors
located above an industrial robot environment is proposed. The method,which is mainly focused on
information captured from a time-of-flight camera, allows the fusion of both colour and 3D
information, as an initial step towards the development of an active security system for application in
an industrial robotics environment. This information fusion generates a colour and 3D information
matrix which allows simultaneously estimating colour characteristics from an object and its
three-dimensional position in a world coordinate frame. At a later step, the use of this combination of
information will allow to associate a security volume around each characterised object, in order to
prevent possible collisions between industrial robot and human.



2 Related work on shared human robot workspaces

A brief summary of different types of security applied to industrial robotic environments is provided in
order to give the context to the work presented in this paper. With the aim of giving context to the work
presented in this paper, Figure 1 presents a possible classification of these types of security, as well as
goals to achieve for each type of security, systems and devices used, and actions to apply on the robotic
system.

Figure 1 Security systems industrial robot environments. This scheme aims to summarize a
classification of the types of security applied to industrial robotic environments, as well as goals to
achieve for each type of security, systems and devices used, and the action to apply on the robotic
system.

Security systems in industrial robotic environments can be classified as passive and active. Passive
security systems are hazard warning elements which do not alter the robot behaviour. These systems
are audible or visible signals such as alarms or lights or systems that preventthe inadvertent access to a
restricted area. Active security systems in industrial robotic environments can be defined as the methods
used to prevent the intrusion of humans to the robot workspace when it is inautomatic mode. The
difference with the passive methods is that active methods can modify the robot behaviour. Historically,
devices such as movement, proximity, force, acceleration, or light sensors are used to detect human
access to the robot workspace and to stop the execution of the robot task. However, as it has been
discussed previously, research in this field is moving towards allowing humans and robots to share
workspaces.

2.1 Collision avoidance

A further way to enhance safety in shared human/robot work/workspaces is to implement collision
avoidance systems. Robots have been provided with sensors capturing local information. Ultrasonic
sensors [4], capacitive sensors [5,6], and laser scanner systems [7] have been tried to avoid collisions.
However, the information provided by these sensors does not cover thewhole scene, and so these
systems can only provide a limited contribution to enhance safety in human-robot collaboration
tasks [8]. Moreover, geometric representations of human and robotic manipulators have been used to
obtain a spatial representation in human-robot collaboration tasks. Numerical algorithms are then used
to compute the minimum distance between human and robot and to search for collision-free
paths [9-12]. Methods have been proposed involving the combination of different types of devices to
help avoid collisions. This idea has been applied into a cell production line forcomponent exchange
between human and robot in [13], where the safety module uses commands from light curtain sensors,
joint angle sensors, and a control panel to prevent the collision with the human when exchanging an
object. The discussion concentrates below in artificial vision systems, range systems, and their
combination.

2.1.1 Artificial vision systems

Artificial vision systems have also been used to prevent human-robot collisions. This information can
be used on its own or in the combination with information from of others types of devices. In order
to achieve safe human-robot collaboration, [14] describes a safety system made up of two modules.
One module is based on a camera and computer vision techniques to obtain the human location. The
other module, which is based on accelerometers and joint position information,is used to prevent an
unexpected robot motion due to a failure of robot hardware or software. Research work such [15]
investigates safety strategies for human-robot coexistence and cooperation. The use of a combination



of visual information from two cameras and information from a force/torque sensor is proposed. In
order to perform collision tests, other work has used visual information acquired by cameras [16,17]
to generate a 3D environment. Also, visual information is used to separate humans and other dynamic
unknown objects from the background [18] or to alter the behaviour of the robot [19]. In [20-22], visual
information has been used to develop safety strategies based on fuzzy logic, probabilistic methods, or
the calculation of warning index, respectively.

2.1.2 Range systems

The depth map of a scene can be obtained by using depth sensors such aslaser range finders and stereo
camera systems. The results of using a laser time-of-flight (ToF) sensor are presented in [23] and [24]
with the latter using several depth sensors in combination with presence sensors. Recently, a new type
of camera has become available. These cameras, denominated as range-imaging cameras, 3D ToF
cameras, or PMD cameras, capture information providing a 3D point cloud,among other information.
They are starting to be used in active security systems for robotic industrialenvironments, among other
applications. An example is a single framework for human-robot cooperation whose purpose is to
achieve a scene reconstruction of a robotic environment by markerless kinematic estimation. For
example, [8,25] use the information delivered by a 3D ToF camera mounted to the top of a robotic cell.
This information is employed with the purpose of extracting robust features from the scene, which are
the inputs to a module that estimates risks and controls the robot. In [26], the fusion of 3D information
obtained from several range imaging cameras and the application of the visual hull technique are used
to estimate the presence of obstacles within the area of interest. The configurations of a robot model
and its future trajectory along with information on the detected obstacles are used to check for possible
collisions.

2.1.3 Combination of vision and range systems

This technique is based on the combination of 3D information from range cameras and 2D information
from standard charge-coupled device (CCD) cameras. Although this technique is being used in other
applications, such as hand following [27,28] or mixed reality applications [29-31], not much work has
been reported using this technique in the area of active security in robotic environments. In [32], an
analysis of human safety in cooperation with a robot arm is performed. Thisanalysis is based on
information acquired by a 3D ToF camera and a 2D/3D Multicam. This 2D/3D Multicamconsists of a
monocular hybrid vision system which fuses range data from a PMD ToF sensor, with 2D images from a
conventional CMOS grey scale sensor. The proposed method establishes that while the 3D ToF camera
monitors the whole area, any motion in the shared zones is analysed using the 2D/3D information from
the Multicam. In [33], a general approach is introduced for surveillanceof robotic environments using
depth images from standard colour cameras or depth cameras. The fusionof data from CCD colour
cameras or from ToF cameras is performed to obtain the object hull and its distance with respect to the
known geometry of an industrial robot. They also present a comparison between distance information
from colour and ToF cameras and a comparison between a ToF camera andToF information fusion. One
of the conclusions of this work is that the fusion of information from several ToF cameras provides better
resolution and less noise than the information obtained from a single camera. Finally, [34] describes a
hybrid system based on a ToF camera and a stereo camera pair which is proposed to be applied in human-
robot collaboration task. Stereo information is used in unreliable ToF data points to generate a depth
map which is fused with the depth map from the ToF camera. Colour feature is not taken into account.
On the other hand, nearly a decade after that ToF cameras emerged into theindustrial trade [35], a new
type of 3D sensors (RGB-D sensors), which are fitted with a RGB camera and a 3D depth sensor, were
launched for non-commercial use [36]. The RGB-D sensor has several advantages over ToF cameras
such as higher resolution, lower price, and the availability of depth and colour information. Hence, its
study and application have been objective of research work such as [37] that presents a review of Kinect-



based computer vision algorithms and applications. Several topics are presented like preprocessing
tasks including a review of Kinect recalibration techniques, object tracking and recognition, and human
activity analysis. These authors propose in [38] an adaptive learning methodology to extract spatio-
temporal features, simultaneously fusing the RGB and depth information. In addition to this, a review
of several solutions to carry out information fusion of RGB-D data is presented. Also, a website for
downloading a dataset made of RGB and depth information for hand gesturerecognition is introduced.
Related to active security system in industrial robotic environments, the use of the Kinect sensor is being
incorporated as it is shown in [39] where a real-time collision avoidance approach based on this sensor
is presented.

3 Method for the fusion of colour and 3D information

The presented method for fusion of acquired information from a ToF camera and a colour camera has
a different standpoint from the ones proposed in the consulted papers. According to papers that are not
related to active security in robotic industrial environments such as [27], the spatial transformation is
performed establishing the ToF camera coordinate system as the reference coordinate system. Therefore,
if an object position in a world coordinate system wanted to be known, another calibration should be
done to establish the rotation matrix and translation vector that connected both coordinate systems.
Nevertheless, in the present paper, this aspect has been considered. Therefore, it was needed to define
a common coordinate system for an industrial robot, a colour camera, and aToF camera, in order to
know at the same time 3D object location at the robot arm workspace and its colour feature. According
to papers focusing on mixed reality applications as paper [29], the used setup includes a CCD firewire
camera, a ToF camera, and a fisheye camera. After performing the calibration and establishing relative
transformations between the different cameras, a background model, whose use eliminates the need for
chroma keying and also supports planning and alignment of virtual content,was generated allowing to
segment the actor from the scene. Paper [31] presents a survey of ToF basic measurement principles
of ToF cameras including, among other issues, camera calibration, range image preprocessing, and
sensor fusion. Several studies which study different combinations of high-resolution cameras and lower-
resolution ToF cameras are mentioned.

In relation to the paper focused on active security, the most closely relatedto our work is [32]. Though a
common world coordinate system for cameras and robot is also used, the method seem to present certain
differences because a spatial transform function is identified in order tomap the image coordinates of
the 2D sensor to the corresponding coordinates of the PMD sensor. Moreover, saturated pixels errors
do not seem to have been considered. Here, the presented work shows a different standpoint since the
obtained parameters from the cameras calibration are used to transform 3Dpoint cloud given in the ToF
camera coordinate system to the world coordinate system, and finally, the obtained internal and external
parameters are used to achieve the reprojection of corrected 3D points (distance error, saturated pixels,
and jump edge effect) into colour images.

With the aim of allowing any researcher to implement the proposed method of fusion of information
exactly like it that has been carried out at the present work, this paper gives a mathematical detailed
description of the steps involved in the proposed method.

In what follows, it is assumed that a 3D ToF camera and a colour camera arefixed and placed over
the workspace of a robot arm and that the fields of view of both cameras are overlapped. Also, it is
assumed that external temperature conditions are constant, and that the integration time parameter of the
3D ToF camera is automatically updated at each data acquisition. Image and 3D data from the scene
is captured and processed as described in the next sub-sections. Assume that the ToF camera has a
resolutionnx × ny and that the CCD camera has a resolutionn̂x × n̂y.



In what follows, vectors and matrices are denoted by Roman bold characters (e.g.x). Thejth element of
a vectorx is denoted asxj , element(i, k) of a matrixA is denoted asAi,k, a super-index in parenthesis
(j) denotes a node within a range of distances, a sub-index within square brackets such as [i] denotes an
element of a set.

3.1 Reduction TOF range camera errors

The reduction of range camera errors is a fundamental step to achieve anacceptable fusion of colour
and 3D information. The existence of these errors cause the fused information to have issues that range
from minor, such as border inaccuracy, to serious such as the loss of information in saturated pixels
coordinates.

3.1.1 Distance error reduction

As it is well documented that ToF cameras suffer from a non-linear distance error, several experiments
have been developed in order to model and correct the distance error (or circular error) [35,40-43]. With
the purpose of decreasing the influence of this error in distance measurements, a procedure is described
below to correct the ToF distance values based on a study of the the behaviour of the camera. This study
requires a ToF camera to be positioned parallel to the floor, and a flat panel of light colour and low
reflectance, to be mounted on a robot arm. The panel position is also parallel to the floor. The robot arm
allows to displace the panel along a distance range and ToF data at different distances can be captured.

The distance error analysis from the acquired data can be performed in two ways: a global analysis of
all the pixels without taking pixel position into account and an analysis which takes into account the
position of each pixel. The first analysis is easier to perform as it only requires a relatively small panel;
it is assumed that there is no error due to pixel localization and only a reduced region of the 3D ToF
data is analysed. The second analysis can be carried out to check the suitability of the assumption of
negligible error due to pixel localization of the first analysis. The second analysis requires a larger panel,
as the distance image captured by the camera has to be based only on the panel for different distances.
Both methods are described in the steps below.

1. Image capture. Since distance measurements are influenced by the camera internal temperature,
a minimum time period is necessary to obtain stable measurements [43]. After the camera warms
up, ToF information is captured at each of theP different nodes in which the distance rangeD
was divided. Each captured data is defined by an amplitude matrixA of dimensionsnx × ny,
and 3D information made up of three coordinates matricesX,Y, andZ, each one of dimensions

nx × ny. In order to generate a model of distance error, a setZT
(j) =

{

Z
(j)
T [1],Z

(j)
T [2], . . . ,Z

(j)
T [N ]

}

of distance information in thez axis is formed by capturingN images at each nodej, with
j = 1, . . . , P . Similarly, sets of distance information for training are defined for thex andy axes,
which are denoted asXT

(j) andYT
(j), respectively. In order to validate the model so obtained,

a setZV
(j) =

{

Z
(j)
V [1],Z

(j)
V [2], . . .Z

(j)
V [M ]

}

of distance information is also formed by capturingM

additional images at each nodej, with j = 1, . . . , P . Similarly, sets of distance information for
validation are defined for thex andy axes, which are denoted asXV

(j) andYV
(j), respectively.

In this article, the sets of informationZT andZV are also calledToF distance images and are

defined asZT =
{

ZT
(1), . . . ,ZT

(P )
}

, andZV =
{

ZV
(1), . . . ,ZV

(P )
}

.

2. Angle correction. Correction angles are applied to the ToF information sets for each axisx, y,
andz, with the aim of compensating for any 2D angular deviation between the the(x, y) plane of
the range camera and the plane defined by the floor. This 2D angular deviation is denoted by the



anglesθx andθy. This correction allows obtaining parameter values as if both camera and panel
were perfectly parallel.

Given an x axis distance imageXT of dimensionsnx × ny, define its sub-matrix̂x of
dimensionsn1 × n2, wheren1 < int(nx/2) andn2 < int(ny/2), as a matrix formed such that
its top left element̂x1,1 corresponds to elementXT ic,jc . Index ic is chosen asint(nx/2), and
index jc is chosen asint(ny/2). Similarly, sub-matriceŝy and ẑ are defined for axesy andz,
respectively. Definēx, ȳ, and z̄ as the column-wise vectorised forms of sub-matricesx̂, ŷ, ẑ,
each with dimensionn × 1, wheren = n1n2, with n as the number of pixels from the selected
area. This central region is taken from each ToF distance image to estimate and correct the 2D
angle inclination between the panel and the ToF camera. Hence, for each image region, 3D
points are modified using the rotation matricesRx andRy:

Rx =





1 0 0
0 cos θx − sin θx
0 sin θx cos θx





Ry =





cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy





(1)

such that
G = Ry[x̄ ȳ z̄]T (2)

whereG has dimensions3 × n. The transformed image region for thez coordinate is obtained
from the rows ofG:

z̄′k = G3,k, k = 1, . . . n (3)

and in this way, a vector̄z′ of dimensionsn× 1 is defined.

A second rotation transformation is applied around they axis such that

H = Rx[x̄ ȳ z̄′]T (4)

The transformed image region for they coordinate is obtained from the rows ofH:

z̄′′k = H3,k, k = 1, . . . n (5)

wherez̄′′ is of dimensionn× 1. Since the above rotation causes a displacement of the 3D points
along they axis, theȳ vector is used to represent ToF information after angle correction. Then,
in this way, the 3D ToF vectors after angle correction arex̄, ȳ, z̄′′, each one of dimensionsn× 1.

3. If the pixel position is not considered, then:

(a) Discrepancy curve calculation stage. In order to test the angle correction effect over the
distance error, the same procedure is applied using data before and after angle correction.
However, the method is described using data after angle correction. The selected area is
used to calculate several parameters including the mean distance value, discrepancy
distance value, and mean squared error (MSE). Define a set of distances after angle

correctionZ̄ ′′(j) =
{

z̄
′′(j)
[1] , z̄

′′(j)
[2] , . . . , z̄

′′(j)
[N ]

}

at each nodej, with j = 1 . . . P . The mean

distance ToF over the selected area in all ToF distance images,Z̄j , at each nodej, is
calculated by means of:

Z̄j =
1

nN

N
∑

i=1

n
∑

k=1

z̄
′′(j)
[i]k (6)



where the resultinḡZ is a vector with dimensionsP × 1.

DefiningLj as a distance value obtained by a laser distance meter at each nodej (henceforth
this value is treated as ground truth), and a vectorL = [L1, . . . , LP ]

T , with dimensions
P × 1. Then, the discrepancy distance vector,δd, is calculated as the difference between the
mean distance from the ToF camera after angle correction,Z̄, and the ground truth vectorL:

δd = Z̄− L (7)

In order to obtain correction values to be applied in new ToF distances images, a cubic
spline is used for fitting this discrepancy information for each distance. Thecubic spline
is modelled as a functions that passes through all the points(Z̄,δd) and at each interval
[Z̄j , Z̄j+1] and is expressed as a polynomial.

s(Z̄) = a0 + a1(Z̄ − Z̄j) + a2(Z̄ − Z̄j)
2 + a3(Z̄ − Z̄j)

3 (8)

wherej = 1, . . . , P − 1. For each sub-interval, the coefficientsa0, a1, a2, a3 are calculated
so that the curve passes through the points(Z̄j , δdj ) and(Z̄j+1, δdj+1) [44]. The resulting
spline, henceforth called thediscrepancy curve, allows to estimate the discrepancy
correction value, given a ToF distance.

(b) Discrepancy correction. In order to reduce the errors in the distance estimates obtained from
the ToF information, the set of ToF distance images for validationZV is used to validate
the discrepancy curve. To this end, a vector of validation ToF distance images after angle
correction̄z′′v (dimensionn× 1) is defined and evaluated on the discrepancy curve to obtain
the vector of correction valuesC (dimensionn× 1). Then, the corrected distance value for
a distance image after its angle correction is calculated as follows:

z̊ = z̄′′v −C (9)

Define Z̊(j) =
{

z̊
(j)
[1] , z̊

(j)
[2] , ..., z̊

(j)
[M ]

}

as a set of distances after discrepancy correction for

each nodej, with j = 1 . . . P , the mean value after discrepancy correction for theM ToF
distance images obtained at eachj node is calculated as follows:

Z̊j =
1

nM

M
∑

i=1

n
∑

k=1

z̊
(j)
[i]k (10)

with j = 1 . . . P and where the resulting̊Z is a vector with dimensionsP × 1.

In order to observe the effect that these corrections have over the 3DToF points, the MSE
can be calculated before and after the discrepancy correction. Defining for each nodej a
vector with the corresponding laser distance meter valuesL′(j) = [L(j), . . . , L(j)]T with
dimensionn× 1 (treated here as ground truth), then the mean squared error at each pixel k
and for nodej can be calculated as

MSE
(j)
k =

√

√

√

√

1

N ′

N ′

∑

i=1

‖ Z
(j)
i − L′(j) ‖2 (11)

where‖ . ‖ is the euclidean norm,N ′ is the number of ToF distance images used,Z is a
vector of ToF distance values that can be substituted by the angle corrected vector̄z′′ of each
distance image, or by the discrepancy corrected vectorz̊ of each distance image, each one
with dimensionn × 1, and withj = 1, . . . , P . The set of MSE(j)k values fork = 1, . . . , n
gives an indication of the planar distribution of the distance error for a given nodej. Then,



for a given nodej, it is possible to average the mean square errors to obtain an indication of
the error depending on the node position

MSE
(j)

=
1

n

n
∑

k=1

MSE
(j)
k (12)

4. If the position of each pixel is taken into account, then:

(a) Discrepancy curves calculation stage. Using theN angle corrected ToF distance images
represented bȳz′′, a discrepancy curve is calculated for each pixel at each distance node.
At this stage, usingN images at each nodej, the mean value of each pixelk, wherek =
1, . . . , n, is calculated as follows:

V̄k,j =
1

N

N
∑

i=1

z̄
′′(j)
[i]k (13)

where the resultinḡV, whose elements are the valuesV̄k,j , is a matrix with dimensions
n× P .
Define a new matrixL′′ of dimensionn × P which is obtained by replicatingn times the
laser distances vectorLT as follows:

L′′ =







L
(1)
[1] . . . L

(P )
[1]

. . . . . . . . .

L
(1)
[n] . . . L

(P )
[n]






(14)

Then, the discrepancy distance vectorδv for all the j nodes is calculated for each pixel
k = 1, . . . , n as the difference between the mean distance from the ToF camera after angle
correction,V̄, and the ground truth distance vectorL′′ obtained using a laser distance meter:

δv = V̄ − L′′ (15)

with δv of dimensionn× P .
In order to obtainn correction values to be applied to any new ToF distances images, a cubic
spline is calculated to fit this discrepancy information along the distance rangefor each pixel.
The cubic spline is modelled at each pixelk using Equation 8 and the data points(V̄, δv).

(b) Correction using a discrepancy curve at each pixel. In order to reduce the errors in the ToF
distances images, the set of ToF distances imagesZV is used to validate each discrepancy
curve at each pixel. To this end, each pixelk of the validation vector after angle corrections
z̄′′v (dimensionn× 1) is evaluated on its discrepancy curve to obtain the vector of correction
valuesCv (dimensionn × 1). Then, the corrected distance vectorv̊ (dimensionn × 1) is
obtained using the expression

v̊ = z̄′′v −Cv (16)

Define V̊(j) =
{

v̊
(j)
[1] , v̊

(j)
[2] , ..., v̊

(j)
[M ]

}

as the set of distances after discrepancy correction,

where the mean value at each pixelk for eachj node is calculated as follows:

V̊k,j =
1

M

M
∑

i=1

v̊
(j)
[i]k (17)

with k = 1, . . . , n, j = 1, . . . , P , and where the resulting̊V is a matrix with elements̊Vk,j

and dimensionsn× P of mean ToF distances values at each pixel for each node.
The mean squared error is obtained by means of Equation 11, whereZ is replaced by the
corrected values̊v.



A comparison of the MSE values for discrepancy corrected and non-corrected measurements gives a
measure of improvement in accuracy due to the discrepancy correction. If no such improvement is
detected, then it is recommended to revise the experimental conditions as this mayindicate the existence
of problems with the experiment.

3.1.2 Correcting the values of saturated pixels

Information from range cameras can be affected by pixel saturation, which is caused by an excessive
reflectance of light over objects. Though its effect can be reduced byan automatic updated of the
integration time parameter of the ToF camera [31], in some circumstances like the presence of metal or
reflecting paints, this tool is not enough.

The saturation of range camera information affects the amplitude and distancevalues returned by the
range camera. These values are very different from the remaining pixel values of the scene. The
proposed strategy to detect saturated pixels is based on this fact, and an analysis of amplitude signal is
made. The method has two stages.

1. Looking for saturated pixels. According to [45], pixel saturation occurs when the amplitude values
are greater than a given threshold valueζ, which depends on the camera being employed. Hence,
the amplitude image is searched for values greater or equal than this value in order to generate a
saturation binary maskM with ones at the positions of the saturated pixels and zeros elsewhere.
To be able to perform the correction on pixels located at the edges of the image, the amplitude
and 3D information matrices are augmented by replicating rows and columns located at the edges
of the matrix. Definep as the number of rows and columns ofA to be replicated. Define thep
upper rows ofA asBi,j = Ai,j , such thatB is of dimensionp × ny, wherei = 1, . . . , p and
j = 1, . . . , ny, and thep lower rows asB′

i,j = Anx−i+1,j , such thatB′ is of dimensionp × ny,

wherei = 1, . . . , p, andj = 1, . . . , ny. Define the intermediate matrix̂A as follows:

Â =





B

A

B′



 (18)

whereÂ is matrix of dimension2p+nx×ny. Then, define the leftp columns ofA asB′′
i,j = Ai,j ,

such thatB′′ is of dimension2p+nx×p, wherei = 1, . . . , 2p+nx andj = 1, . . . , p and thep right
columns asB′′′

i,j = Ai,ny−j+1 such thatB′′′ is of dimension2p+nx×p, wherei = 1, . . . , 2p+nx

andj = 1, . . . , p. Then, the augmented amplitude matrixÃ of dimensions2p+ nx × 2p+ ny is
given by:

Ã =
[

B′′, Â,B′′′
]

(19)

To represent saturated pixels iñA, the binary mask̃M matrix of dimensions2p+ nx × 2p+ ny,
is defined by

M̃i,j =











1 if Ãi,j ≥ ζ

0 otherwhise

(20)

wherei = 1, . . . , nx + 2p, j = 1, . . . , ny + 2p.

The setQ of index pairs indicating the positions of saturated pixels is defined as follows

Q =
{

(r, c) ∈ I × J | M̃r,c = 1
}

(21)

whereI = [1, . . . , nx + 2p], J = [1, . . . , ny + 2p].



2. Correction of saturated pixels. In order to replace an incorrect value with the average of its
neighbours, the saturation binary mask is used to find the coordinates of saturated values in the
amplitude and 3D matrices and to calculate the mean value of surrounding pixels.Saturated values
are not taken into account in this calculation. Define a window-maskM̊i,j = M̃r−p+i−1,c−p+j−1,
with i = 1, . . . 2p + 1 andj = 1, . . . , 2p + 1, of dimensions2p + 1 × 2p + 1, whose center is
each saturated pixel with position(r, c) ∈ Q. In order to calculate a new pixel value to replace
a saturated pixel value, define a window of amplitude valuesÅi,j = Ãr−p+i−1,c−p+j−1, with
i = 1, . . . 2p+1 andj = 1, . . . , 2p+1, of dimensions2p+1×2p+1, whose center corresponds
to each saturated pixel with position(p + 1, p + 1). The new valueÃr,c for each saturated pixel
(r, c) ∈ Q is calculated as

Ãr,c =
1

(2p+ 1)(2p+ 1)− 1

(

2p+1
∑

k=1

2p+1
∑

=1

Åk,l − Åp+1,p+1

)

(22)

With the aim of selecting and replacing values in the amplitude/3D information matrices, Figure 2
shows an example of the movement of a search window obtained from the binary saturation mask.

Define(X,Y) as the initial ToF data,̊z as the distance TOF data after discrepancy correction,
and using the index setQ of amplitude saturated values, a similar procedure to correct the
corresponding values of these matrices is applied, obtaining matrices(X̃, Ỹ, Z̃), as these values
are affected by the amplitude saturation. Once saturated pixels are corrected, all matrices are
resized to their initial dimensions by removing the rows and columns previously added, which
results in matricesX′,Y′,Z′, andA′.

Figure 2 Mask for saturated pixel reduction. Example of using mask for saturation pixel reduction.

3.1.3 Jump edge reduction

Another error that may affect the 3D data from a range camera is known as jump edge. This error
produces spurious pixels which are 3D inaccurate measures of the realscene. In order to reduce this
effect, the use of a median filter followed by a jump edge filter based on a localneighbourhood is
proposed in [46]. Other solutions which implement non-local means filter or edge-directed re-sampling
techniques are enumerated in paper [31]. In the present work, the useof 2D techniques applied to 3D
points is proposed to prevent border inaccuracy in fused information. Traditionally, the technique of
morphological gradient is used in grey scale images to emphasize transitions of grey levels [47,48]. In
this work, only distance values from 3D data are used, generating a distance image. With the objective
of finding pixels suffering from this effect, the morphological gradient iscalculated, using the following
expression [48]:

g = (f ⊕ S)− (f ⊗ S) (23)

whereg is of dimensionnx × ny, f is a ToF distance matrix of same dimension asg, S is a 3 × 3
generalised dilation or erosion mask, and⊕ and⊗ are dilation and erosion operations, respectively.

A threshold value to discriminate non-desirable pixels from the remaining onesis then searched. With
this aim, the distance imageg is transformed into a new distance imageG with values ranging from 0
to 255, by means of the following transformation:

G = 255 (g/max (g)) (24)

After that, the histogram ofG is calculated and then smoothed by means of a Butterworth filter. Finally,
a threshold valueη is defined by searching along the smoothed histogram for the first minimum to the



right of the first maximum. A new distance matrixf ′ is generated by forcing to zero spurious pixels
which are found and keeping the same distance values for the remaining pixels:

f ′
i,j =











0 if Gi,j ≥ η

fi,j otherwise

(25)

When performing the fusion of ToF and colour information, jump edge reduction is carried out after
scaling up the ToF information, as discussed below.

3.2 Colour and 3D information fusion

Information fusion from a standard CCD camera and a ToF camera allows thesimultaneous use of 3D
and colour information. This can be achieved by means of the reprojection of 3D ToF points into a
colour image. In an active security system, moving objects, such as robots and humans, have to be
detected to prevent possible collisions between them. To obtain information about these objects and
develop the algorithms that make it possible to avoid collisions, the foregrounddetection is carried out
in such way that the fused information is obtained only through those pixels classified previously as
foreground pixels. The foreground object detection in a scene is carried out using 2D techniques over
3D ToF points, and subsequently, colour and 3D information from foreground objects is fused.

3.2.1 3D information analysis for detecting foreground objects

Background subtraction methods for detecting moving objects have been proposed, analysed, and
employed to locate object motion in a 2D image sequence [49-51]. In this work,for the purpose of
motion detection in 3D point cloud, and considering that ToF camera is static, and illumination changes
do not affect the acquired 3D points, the background subtraction technique has been considered
suitable to be adapted and applied to three-dimensional information. Therefore, after performing
distance and saturated pixel correction, a background subtraction method based on the reference image
model is adapted to be used in a 3D point cloud. The goal is to discriminate the static part of the 3D
scene from the moving objects, so an offline background reference image BT is calculated as the
average image during a time periodT = 1, . . . , t. Define a set oft ToF distance images after
discrepancy and pixel saturation correction captured in a time periodT , such that
Z ′ = {Z′

1,Z
′
2, . . . ,Z

′
t}, then, the background reference image is calculated as

BT =
1

tn

t
∑

i=1

n
∑

k=1

Z′
[i],k (26)

wheren is the number of pixels in each ToF distance image. With the aim of detecting pixels that show
motion, the difference imageZ′

d between the reference and a current imageZ′
c is calculated as :

Z′
d = |BT − Z′

c| (27)

where| · | indicates an element-wise absolute value operation.

Foreground detection is performed in those pixels whose distance value,Z′
d, exceeds a threshold value,

Th, which results in a binary imageZ′
b. In order to automatically determineTh, the distance matrixZ′

d

is processed as if it was 2D information by means of Equation 24, whereg is replaced byZ′
b, resulting

in a grey scale imageG′. Then, the calculation of the smoothed histogram ofG′ and the search for
threshold value are carried out in a similar way as presented in the ‘Jump edge reduction’ section. The



binarisation process to detect pixels that show motion is given by

Z′
b =











1 if G′ ≥ Th

0 otherwise

(28)

In the resulting binary image, isolated pixels are removed using morphologicaloperations (dilation, hole
filling, and erosion). This enhanced binary image is used as a mask over the3D points ofZ′ to set the
maximum value to the coordinate of 3D points whose coordinates in the binary image are considered
as background (0 value) and to leave as realZ values those 3D points whose coordinates in the binary
image are considered as foreground (1 value), then a new ToF distancematrixZ′′ is obtained. Figure 3
illustrates this method for the background and foreground 3D value assignment and selection.

Figure 3 Selection of foreground Z values. Method for the background and foreground 3D
assignment and selection using a binary image obtained by using the image reference method.

3.2.2 Reprojection of 3D ToF information into a colour image

With the aim of giving additional colour information to the 3D foreground pointspreviously detected,
the reprojection of these points into a colour image was carried out. Using colour and amplitude
images, both cameras are calibrated with respect to the world coordinate frame. Since both cameras
can be represented by the pinhole camera model [42,52], a tool such as the Camera Calibration
Toolbox for Matlab[53] can be used to extract internal and external parameters for both cameras.
External parameters are used to transform 3D ToF information given in thecamera coordinate system
into the world coordinate system. On the other hand, internal an external parameters are used to
reproject 3D information into colour images. Hence, based on calibration camera theory [48,54,55] and
after the range camera error reduction, the reprojection process is applied over the corrected and
transformed 3D points following the transformations described below.

The transformation of ToF information after discrepancy and saturation corrections and foreground
detection from world frame coordinatesPw = [X ′, Y ′, Z ′′]T to camera frame coordinates
Pc = [Xc, Yc, Zc]

T is given by
Pc = RPw +T (29)

where extrinsic parameters are expressed by the3 × 3 rotation matrixR and by the1 × 3 translation
vectorT.

Frequently, standard CCD colour cameras have a higher resolution than range cameras, so the
reprojection of 3D points does not have a one-to-one equivalence. Hence, the ToF information is scaled
up by bilinear interpolation. In addition to this, as only information of foreground 3D points will be
extracted, the automatic thresholding process is applied to the 3D pointsPc in order to remove those
points classified as background, which results in a new 3D point cloudP′

c = [X ′
c, Y

′
c , Z

′
c]
T .

Image coordinates are affected by tangential and radial distortions; therefore, the models of this
systematic distortions are added to the pinhole model following the method proposed in [55]. The
transformation between a three-dimensional coordinate frame and the image coordinate frame without
distortion(xu, yu) is given by

xu = fX ′
c/Z

′
c

yu = fY ′
c/Z

′
c

(30)

where the intrinsic parameterf is the focal length in millimetres.



The relation between image coordinates with(xd, yd) and without distortion(xu, yu), considering the
radialD(r), and tangentialD(t) distortions are defined by pinhole model as

xu +D(r)
x +D(t)

x = xd

yu +D(r)
y +D(t)

y = yd
(31)

The transformation between distorted image coordinates to pixel coordinatesis given by





u
v
1



 =





ku s u0
0 kv v0
0 0 1









xd
yd
1



 (32)

where the intrinsic parametersku and kv are the number of pixels per millimetre (horizontally and
vertically, respectively),s is the skew factor whose value is usually zero in most cameras, and(u0, v0)
are the coordinates of the centre of projection.

After obtaining the pixel coordinates(u, v) of the 3D foreground points, these values are adjusted into
pixel values by rounding them to the nearest integer to the values obtained.Furthermore, as the captured
area by both cameras (ToF and colour camera) is not exactly the same, pixels in non-common areas are
eliminated. A diagram which illustrates the proposed method is shown in Figure 4.

Figure 4 Proposed method for fusion 3D ToF and colour information. Stages proposed to achieve
the 3D ToF and colour information fusion.

4 Experiments

4.1 Experimental setting

In this article, a method for the fusion of colour and 3D information that is suitable for active security
systems in industrial robotic environments is presented. To verify the proposed methods, a colour
camera, AXIS 205, and a range camera, SR4000, have been located over the workspace of the robot
arm FANUC ARC MATE 100iBe. The AXIS 205 Network Camera used has a resolution of 640×480
pixels and a pixel size of 5.08×3.81 mm. The SR4000 range camera has a resolution of 176×140
pixels and a pixel size of 40×40µm. This camera has a modulation frequency of 29/20/31 Mhz and a
detection range from 0.1 to 5 m.

4.2 Camera calibration

This initial stage is intended to obtain extrinsic and intrinsic parameters from the standard CCD camera
and ToF camera by means of a calibration process using a common reference frame.

4.3 Reduction of distance error

To correct for any misalignment between the range camera and the experimental panel employed, the
angular deviations inx andy coordinates have been estimated and their effects have been corrected.
Figure 5 shows the effect of the angle and displacement corrections in a 3D point cloud. Discrepancy
curves which do not take into account pixel position have been calculatedbefore and after angular
correction. These curves are shown in Figure 6. It can be seen that the distance error is a function of the
measured distance, and discrepancies values show a small improvement after the angle correction, as it
was expected.



Figure 5 3D point cloud before and after angle correction. Initial 3D point cloud before and after
angle correction. 3D point cloud are presented in(x, z) coordinates and in(y, z) coordinates.

Figure 6 Discrepancy curve. Original discrepancy values are shown in blue, discrepancy values after
angle correction are presented in magenta, and discrepancy values of set ToF distance imagesZT after
discrepancy correction are shown in green. Dots are data obtained from the experiment; lines are splines
fitted at these points.

To take into account the effect of pixel position in the distance error, a discrepancy curve has been
generated for each pixel. These curves are tested by using the setZV as input, resulting in a correction
value to be applied at each pixel. Figure 6 shows in green colour the discrepancy values after the
correction with a cubic spline for each pixel.

The results indicate that the improvement achieved using a discrepancy curve at each pixel is almost
imperceptible, which can be explained by the selected area being too small andcentred in the middle
of the image, so the influence of the pixel position is very low. To check the influence of pixel position
on the distance error, a larger area has been selected from a reducedset of images taken fromZV .
Figure 7a shows the MSE before these corrections, while the MSE after discrepancy correction using
the same discrepancy curve at each pixel is shown in Figure 7b. It can be seen that there is a reduction in
the MSE over the selected area. However, the distance error is not just afunction of the distance value
but also it depends on the location of the pixel, as can be observed. The results obtained using a different
discrepancy curve at each pixel (Figure 7c) suggest that this kind ofcorrection leads to better results.
Hence, a discrepancy correction which takes into account pixel positionand distance value is suggested
for future work.

Figure 7 Mean square error. (a) View of initial MSE from each pixel before angle and discrepancy
correction error.(b) View of MSE from each pixel after angle and discrepancy error correction. (c)
View of MSE from each pixel after angle and discrepancy error correction taking into account position
and distance of each pixel.

Since as a result of using the larger area, there is incomplete information along the whole of the distance
range, a discrepancy curve which does not take into account pixel position is used in the experiment.
Then, the discrepancy curve calculated after angle correction is tested by using a ToF distance image
from a real scene where data from a human and a robot arm are captured and used as input, resulting
in a correction value to be applied at each pixel. Figure 8a shows in red colour the discrepancy values
selected to use in discrepancy correction together with the generated cubicspline showed in cyan colour.
In order to verify the effect of applying the distance correction, the initial3D point cloud and the results
after applying the distance correction are shown the in Figure 8b.

Figure 8 Discrepancy curve applied over 3D information. (a) Selected values from the discrepancy
curve are shown.(b) 3D point cloud before and after discrepancy correction are presented in blue and
red, respectively.

4.4 Value correction of saturated pixels

A real scene in which a human and a robot arm appear is used to illustrate theproposed methods of
error corrections and the fusion of 3D and colour information. The valuecorrection of saturated pixels
in ToF information captured from this real scene has been carried out. This example of the effect of



saturation is illustrated in Figure 9a which shows an amplitude image in which several saturated pixels
are located on an area of the robot arm. These high values do not allow thecorrect visualization of the
scene. Figure 9b shows the effect of saturated information over 3D datawhere saturation produces pixels
with zero coordinate values. According to [45], pixel saturation occurswhen the amplitude values are
greater than 20,000, so this value has been used as threshold in Equation 20. After applying the proposed
method to saturated pixels using this threshold value, Figure 10a shows the improvement achieved with
this correction, allowing the view of the total scene. Figure 10b shows 3D points in which pixels with
zero coordinate values have been corrected.

Figure 9 Pixel saturation in ToF image. (a) An amplitude ToF image from a scene in an industrial
robot environment is presented which contains saturated pixels shown in red. These saturated pixels are
caused by metallic reflections on the robot arm.(b) The 3D ToF points scene is shown which contains
saturated pixels whose 3D values are (0, 0, 0) and are indicated by red circles.

Figure 10 Pixel saturation in 3D ToF points. (a) The same amplitude ToF image is presented after
pixel saturation reduction.(b) 3D ToF points after pixel saturation reduction.

4.5 3D analysis for detecting foreground objects and coordinate frame transformation

To illustrate the detection of foreground objects using 3D ToF information, thebackground subtraction
method based on the reference image model has been used. Figure 11a shows 3D information with a
generated reference matrix withZ values. Figure 11b shows three-dimensional information resulting
from subtracting the reference distance matrix from the real scene distance matrix, in which positive
values indicate possible motion points. In order to take into account only foreground 3D points, an
automatic thresholding process and the proposed method for the background and foreground 3D values
assignment and selection have been applied using Equation 28. After that, the modified 3D points are
shown in red in Figure 12, whereas the initial 3D points are shown in cyan colour. It can observed that
in the modified 3D points, all background points have equalZ values. However, as the points of interest
are the foreground points, the background points are not taken into account; therefore, the final scene
3D representation is not affected by those equalZ values. After coordinate frame transformation using
Equation 30, and another automatic thresholding process to remove points classified as background,
the result achieved in this example is shown in Figure 13, where the foreground object detected is
represented in the world coordinate system.

Figure 11 Foreground detection of 3D points expressed in ToF camera frame. (a) Background
reference matrixB′

T
to be used in foreground detection of 3D ToF points.(b) Value absolute of the

difference imageZ′
d between the reference,BT , and a current imageZ′

c.

Figure 12 Foreground and background Z values from ToF points in ToF camera frame.
Background distance modification of distance values. View of axisx,z.

Figure 13 Foreground and background 3D points detection in world reference frame. (a) View of
axisx,y,z. (b) View of axisx, z.

4.6 Resolution increase

As the standard CCD camera employed provides a colour image which has higher resolution (480×640)
than the 3D ToF information (176 × 144) provided by the range camera, the reprojection of 3D points



does not have a one-to-one equivalence. Then, ToF matrices dimensions have been scaled up using a
bilinear interpolation and reprojected to the colour image using Equations 30 to 32.

4.7 Jump edge reduction

With the aim to compare some usual edge filters and the morphological filter usedin the detecting
edge jump effect, ToF information from the scene, after interpolation of 3D points, has been processed.
Figure 14a shows the results achieved using a Sobel filter in distance values from 3D information, and
Figure 14b shows the results obtained using the morphological filter in distance values, obtained by
using Equation 23 and establishing a dilation and erosion maskS as follows

S =





0 1 0
1 1 1
0 1 0



 (33)

It can be observed that the edges found by applying the Sobel filter arenot continuous and also are
narrower than the edges found by morphological filter, so using this, mostof the spurious pixels can be
detected and removed from the 3D ToF points.

Figure 14 Strategy for jump edge error reduction. (a) View of Sobel filter used on thez information.
The edges found are not suitable as they are not continuous and have only a thickness of one pixel.(b)
View of morphological gradient used onz information. The edges found are continuous and have
thickness of several pixels, which allows jump edge reduction.

In order to smooth the histogram of the gray scale distance image, a fist-order lowpass Butterworth
filter with normalized cutoff frequency value of 0.5 is used. As an example ofthe application of the
proposed method for the jump edge reduction, Figure 15a shows the spurious pixels produced in the
object contours by the jump edge effect and Figure 15b shows the 3D pointsafter the reduction of
spurious pixels by the proposed method. Although not all spurious pixels have been eliminated, the
results show a significant improvement in the reduction of this effect as mostof them have been detected
and eliminated.

Figure 15 View of of jump edge error in 3D ToF points. (a) View of 3D ToF points from the scene
presented in Figure 9 in which jump edge effect appears.(b) View of the same 3D scene in which jump
edge has been reduced using the morphological gradient operation.

4.8 Rreprojection of 3D foreground points into colour images

In order to obtain a matrix that contains 3D and 2D information, using the calibration parameters of
the cameras, the reprojection of 3D foreground points into a colour image has been carried out. Then,
the reprojected points are adjusted into pixel values and those that are in thenon-common area of both
cameras are removed. A selection mask is generated by using the resulting pixels, and this mask is used
to select the coincident coordinates of the colour pixels. This method makes itpossible to achieve a
colour segmentation based on 3D information and to have 2D and 3D informationin a single matrix.
Figure 16 shows foreground segmentation in the colour image based on foreground detection of 3D
points in the world coordinate system.

Figure 16 Foreground segmentation in colour images based on foreground detection of 3D points.



5 Discussion

The aim of this work is to achieve the fusion of colour and 3D ToF information inorder to apply it in
active security tasks for industrial robotic environments, so given the coordinates of a 3D point, this
fusion allows knowing colour information and 3D position in a common world coordinate system to
both cameras and the robot arm, at the same time.

After obtaining intrinsic and extrinsic parameters by a calibration process, the proposed method of
distance error reduction improves the distance measurement values, and the achieved effect in the scene
can be observed after the application of the information fusion method. The correction curves obtained
are consistent with curves reported by other authors such as [41] andalso consistent with the use of
cubic splines in order to approach and correct the distance error [42]. This consistence occurs despite
some differences in experimental setup, such as a reduced range of measurement, different ToF camera
models, target material, and camera configuration parameters.

As a second stage, saturation error correction must be performed given that in industrial environments,
certain materials such as metal or reflecting paints are often present and can produce saturated pixels in
the range camera information. The results obtained show that this method works well as it allows the
correct visualization of the amplitude image, and more importantly, it corrects values of saturated pixels
of 3D points. If these points have incorrect values, the reprojection stage would fail in these positions,
as the 3D values would be reprojected as 0, and so its 2D information would belost.

In order to detect foreground objects, the reference image technique applied to 3D data, after error
corrections, has been used and presented as a simple and fast method which yields acceptable results.
The 3D points of foreground objects are correctly identified and only a few false positives are detected
which can be removed easily using 2D image morphological operations. Traditionally, this technique
is used in colour and grey scale images, but illumination variations result in false foreground detection.
The advantage of using ToF information is that it has a more stable behaviourin these illumination
conditions. In addition, this technique has a short computational time, which is an important factor
in order to be develop a suitable strategy for active security of robotic industrial environments. Then,
using extrinsic parameters, the transformation of foreground 3D points from the camera to the world
reference frame is carried out and scaled up by bilinear interpolation. The proposed method of jump
edge reduction, applied to the resulting distance points, minimises false positives and false negatives
around an object edge which arise in the pixel reprojection process as aconsequence of the presence of
spurious pixels that do not have correct 3D values. The achieved results can be considered acceptable
since most spurious pixels are removed without changing the object shape, and therefore, a softer 3D
point reprojection over objects edges in colour images is achieved.

Finally, the reprojection of the resulting 3D points to the colour image is performed. Nevertheless, as
can be seen in Figure 16, this reprojection is not perfect, since in spite of having applied distance error
reduction, the position of the pixels in the image has not been taken into account, and a single correction
value is applied which is a function of the measurement distance but not of thepixel position in the
image.

6 Conclusions

This paper aims to contribute to the research area of active security systemsin industrial robotic
environments using ToF cameras.

Despite the fact that active security in robotic industrial environments is a wellstudied topic, few
previously published methods have dealt with this subject using the combinationToF cameras and



colour cameras. The paper describes the development of methods for thefusion of colour and 3D ToF
information as an initial step in the design of a system for collision prevention between human and
manipulator robot sharing a workspace at the same time. Furthermore, this work provides a detailed
mathematical description of the steps involved in the proposed method, so that any researcher can
implement it.

The presented method has a different standpoint from the methods previously proposed in the
literature, since a common coordinate system is defined for a robot arm, colour camera and ToF
camera. The obtained calibration parameters are used to transform the 3D points from the ToF camera
coordinate system into the defined common coordinate system, which are reprojected in 2D colour
images. This procedure has the advantage that it gives a single matrix made of colour and
three-dimensional information; therefore, 3D coordinates of objects inside the robot arm’s workspace
are known at the same time as their colour information. In addition to this, the proposed method for
jump edge error detection, which is based on morphological gradient, allowsthe detection and
reduction of jump edge error at points which are affected by this error. Also, in order to obtain a
suitable fusion of information, a method for detection and reduction of saturated pixels, which is based
on neighbour pixels information, has been proposed.

As future work, in order to improve the accuracy of fused information, a modification of the applied
distance correction method is suggested. A preliminary study carried out witha small range of distances
shows the influence of the pixel position in the distance measurements. Hence, a suggestion for future
work is to modify the error correction so that it takes into account the positionof the 3D point (measured
distance and pixel location).

A possible application to prevent collisions between an industrial robot anda human would be to use
colour information to characterise the detected foreground objects and to associate a security volume
around each object.
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