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Abstract6

This paper presents a neuroscience inspired information theoretic approach7

to motion segmentation. Robust motion segmentation represents a funda-8

mental first stage in many surveillance tasks. As an alternative to widely9

adopted individual segmentation approaches, which are challenged in differ-10

ent ways by imagery exhibiting a wide range of environmental variation and11

irrelevant motion, this paper presents a new biologically-inspired approach12

which computes the multivariate mutual information between multiple com-13

plementary motion segmentation outputs. Performance evaluation across a14

range of datasets and against competing segmentation methods demonstrates15

robust performance.16
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1. Introduction20

The ability to extract objects of interest from video sequences, using de-21

tected motion, remains an active area of research within the computer vision22
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community. The capacity to provide real-time segmentations - silhouettes23

and bounding boxes - of objects (especially pedestrian) assists in the track-24

ing and reasoning of the behaviour. Surveillance scenes often contain change25

that may be inaccurately detected as object motion such as changes in light-26

ing, periodic motion, moving shadows and reflections. In addition the quality27

of surveillance footage is often poor, and at a low resolution resulting in noisy28

motion and ghosts. An example of these challenges is shown in Figure 1The29

extraction of objects of interest is frequently tackled by removing all irrele-30

vant pixels in each frame. This is referred to as motion segmentation. To31

date no segmentation algorithm is robust under all these conditions.32

In this paper, we propose a new formulation of pixel-based foreground33

segmentation which is motivated by recent results in biological vision which34

exploit the mutual information between multiple segmentation channels. The35

paper is divided as follows. Firstly, Section 2 details the biological moti-36

vation and mapping to a combination of parametric background modelling37

approaches. This is followed in Section 3 by approaches to fusing the outputs38

of multiple segmentation algorithms and introduces the multivariate mutual39

information forumulation adopted in this work. In Section 4 the datasets,40

evaluation methodology and the results of experiments are presented before41

concluding in Section 5 with conclusions and recommendations for future42

research.43

2. Biologically-Inspired Segmentation44

The ability of primates to recognise objects of interest, regardless of illu-45

mination and background, drives much of the biologically inspired computa-46
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Figure 1: PETS 2009 dataset original frame annotated with automated visual surveillance

challenges.

tional vision systems. A new biologically inspired vision system is introduced47

in this section that models current vision research which has not previously48

been examined by the computational vision community.49

In Section 2.1 the model of primate vision conventionally accepted by the50

computer vision community is presented. Section 2.2 provides descriptions51

of state of the art biologically inspired computational vision systems that52

refer to this model. Section 2.3 progresses on to accounts of current pub-53

lished neuro-biological, physiological and psychological vision research and54

highlights descriptions of retinal functions, inputs to the ventral and dorsal55

streams, and ventral and dorsal stream behaviour that have not been consid-56

ered in modelling primate visual systems in the computer vision community.57

Based on this, a new model of understanding is presented and the behaviours58

3



Figure 2: Model of traditional computational vision process
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of these retinal functions are summarised.59

2.1. Conventional Model of Primate Vision60

It is widely acknowledged that the rods and cones (photoreceptors) of the61

primate retina detect light and cells of the inner retina providing the initial62

stages of the visual processing. The retinal ganglion cells convey this infor-63

mation, via pathways in the lateral geniculate nucleus, to the ventral and64

dorsal streams in visual cortex. Figure 2 represents a model of these tradi-65

tionally accepted components, frequently referred to in biologically inspired66

computational vision systems.67

Within the retina, shown in Figure 2 as the blue area, the photorecep-68

tor rod cells respond to achromatic brightness and the photoreceptor cone69

cells respond to short (blue), medium (green) and long (red) chromatic wave-70

lengths. These nerve impulses are passed on to the network of horizontal,71

amacrine and bipolar cells, which provide cumulative information to retinal72

ganglion cells, shown in Figure 2 as the midget and parasol ganglion cells.73

The midget ganglion cells have been associated with providing chromatic74

information and parasol ganglion cells with luminance and contrast.75

The lateral geniculate nucleus (LGN), illustrated as the green area in76

Figure 2, receives the assembled information from the ganglion cells, in the77

form of pathways. The parvocellular pathway is conventionally understood78

to receive information from the midget ganglion cells, and as such provides79

a means to direct colour information to the visual cortex. It is customary80

to describe the magnocellular pathway as a swiftly responsive structure, pre-81

senting the visual cortex with luminance and contrast information.82

Finally, the visual cortex (VC), emphasised as the purple area in Figure 2,83
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includes two different streams: the ventral stream, associated with form, and84

the dorsal stream associated with motion.85

2.2. Existing Bio-Inspired Computational Models86

(Mota et al., 2006) state that because bio-inspired vision models based87

on a vertebrates visual system are limited and require high computational88

cost, real-time applications are seldom addressed. As flies are capable of89

exploiting optical flow, which modelled by calculating the local image mo-90

tion with Reichardt motion detectors (and referred to as Elementary Motion91

Detectors), they use this as inspiration and employ EMD as the first ex-92

traction primitive to characterise motion in a scene. Sequences are initially93

pre-processed by extracting edges within each frame using a Sobel edge ex-94

traction procedure. The Reichardt motion detector is then used to extract95

sideways moving features. Noise is removed from the resulting saliency map96

with a neural structure that allows the emergence of rigid bodies (indepen-97

dent moving objects in the scene) using “velocity channels”. The technique98

is limited to greyscale images and suffers from being unable to identify to99

objects moving in parallel at the same speed. The system proposed by (Serre100

et al., 2007) follows on from their own theory of a feed forward path of object101

recognition that accounts for the first 100-200 milliseconds of processing in102

the ventral stream of primate visual cortex. It is based on Hubel and Wiesels103

findings in 1962 of a cats visual cortex (Hubel and Wiesel, 1985). Unlike the104

conventionally accepted chromatic input to the primate ventral stream, the105

approach takes a grey scale input and uses a set of scale and position-tolerant106

feature detectors, to simulate the properties of V1 and V4 (Figure 2 shows107

V1 and V4 within the ventral stream). A major limitation of the system108
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for real-time application is the processing speed which is limited by some of109

its modules that typically take tens of seconds, depending on the size of the110

input image. The authors have yet to address whether the recognition re-111

sults obtained can be extended to the analysis of video. (Huang et al., 2011)112

offer an improvement on the system proposed by (Serre et al., 2007) focusing113

on improving the biological Standard Model Feature (SMF) for scene clas-114

sification in a video surveillance environment. They develop a new energy115

computation component to improve SMF in occlusion and disorder cases as116

basic SMF models can only handle shift and invariance. An energy function117

is used in order that patches for saliency are not chosen randomly. An earlier118

analysis of energy density is used to conduct a local energy measurement after119

the initial basic feature extraction stage. Again the technique is limited to120

greyscale images. Using accounts of the primate visual cortex (Bayerl et al.,121

2007) have developed a neurodynamical computational vision model of mo-122

tion segregation in the dorsal stream, as described in (Mishkin et al., 1983).123

The model includes two modules, corresponding to the primate visual cortex124

(highlighted as the purple area in Figure 2): V1 represents a motion hypoth-125

esis on the same scale of resolution on which it was detected, and V5 uses a126

coarser spatial resolution, where the accuracy of both location and velocity127

is reduced by a factor of five in accordance with physiological findings of Al-128

bright and Destmone in 1987 (Albright et al., 1987). The authors conclude129

that it is a step towards producing a biologically inspired model which may130

be capable of real-time computation. (Thriault et al., 2013) use a principle131

referred to as Slow Features Analysis (SFA) which bears foundations in neu-132

roscience. SFA extract slowly varying features from a quickly varying input133
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signal. These features have been shown by (Thriault et al., 2013) to reveal134

sensible motion components correlated with specific semantic classes such as135

complex flame motion, waterfalls and fountains. As perceptions vary on a136

slower timescale compared to input signals from the environment, the SFA137

model learns to generate a slower, more invariant output signal. Temporal138

variations created by motion are minimised to in order to learn the stable139

representations of objects in motion. Motion features are defined by thread-140

ing together short temporal sequences of SFA outputs. The motion features141

can be interpreted as spatio-temporal atoms describing the stable motion142

components inside a small space time window. Again this model relies on143

grey scale video as an input. The authors state that employing it for motion144

segmentation is a direction for future work. In (Yuen et al., 2009) features145

of objects are extracted “in a way similar to that of the ventral stream pro-146

cessing”, referring to Diddays two visual stream model (Didday et al., 1975)147

published in 1975 and Mishkins slightly earlier publication than previously148

mentioned, with Ungerleider, in 1982 (Ungerleider et al., 1982). They use an149

RGB image input and proceed with a cortex-like centre surround operation150

in the spatiotemporal domain, by sub-sampling the image data into various151

spatial scales resulting in a set of images with horizontal and vertical scale re-152

ductions. Sets of features are extracted from the spatiotemporal stream and153

manipulated across various scales to detect those which locally stand out154

from their surround, similar to that of an edge detector. The authors state155

that due to the lack of a full understanding about the object recognition pro-156

cess in the visual cortex, the recognition mechanism that was implemented157

was a statistical classifier (SVM). In contrast Benoit et al. (Benoit et al.,158
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2010) recognise that consideration must be taken of the processing of the159

retinal signals that occur in primate vision, in order to assist further pro-160

cessing of that input, in a primate biologically inspired manner, in the visual161

cortex. They base their retinal architecture on Meads silicon model (Mead et162

al., 1988) albeit improved in terms of spatial and temporal properties. Their163

system contains two processing modules, one based on the retina for motion164

information extraction and the second representing a model of the V1 cortex165

area providing motion event detection. Their focus on the retinal processing166

includes passing information to their parvocellular channel model and mag-167

nocellular channel model from the midget ganglion cells model and parasol168

ganglion cells model respectively. These are shown in Figure 2 in green. This169

transformed information then is presented to their V1 model of the visual170

cortex. The system concentrates on using grey level image processing as the171

authors state the cell actions at the retinal level are unknown and further172

investigation is required to produce a better model.173

2.3. Current Primate Vision Research174

Current neurobiology, visual neuroscience, physiology and psychology re-175

search provide descriptions of the input to the ventral and dorsal streams that176

have not been considered in computational vision systems modelling primate177

visual systems. Ganglion cell types other than midget and parasol cells also178

project to the LGN (Nieuwenhys et al., 2008; Dacey et al., 2000; Chatterjee179

and Callaway, 2003). (Dacey et al., 2000) provides a detailed description of180

these cell types, referred to as bistratified ganglion cells. They project their181

information to a further pathway in the lateral geniculate nucleus which is182

referred to as the koniocellular pathway (Nieuwenhys et al., 2008; Dacey183
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Figure 3: Model of recognised primate vision processes

et al., 2000; Chatterjee and Callaway, 2003; Hendry, 2000; Morand et al.,184

2000; Briggs and Usrey, 2011). A new illustration representing these recog-185

nised processes, including the bistratified ganglion cells and the koniocellular186

pathway is shown in Figure 3.187

The retinal ganglion cells function in a distinct manner. The received188

wavelength signals can be used in the course of perceiving form or motion,189

independent of their role in the subjective experience of colour. Contra-190

distinctively to the traditional accepted processes, the networked routing191

provides the midget cells with some contrast information (Kentridge et al.,192

2002), alongside the bistratified and parasol cells and therefore contrast in-193

formation is present within both the ventral and dorsal streams. In addition194

prominent computation has been found to occur in the retina: the detection195
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of object motion while rejecting background motion (resulting from subtle eye196

movements) (Baccus et al., 2008) through specific interactions of amacrine197

and bipolar cells and presented to the ganglion cells. The koniocellular layer198

has been found to project to both the ventral and dorsal streams (Hendry,199

2000). Finally recent primate vision research suggests there is communica-200

tion between the dorsal and ventral streams, contrary to the traditionally201

accepted definitions used by the computer vision community of independent202

luminance motion information and colour object information occurring in203

the dorsal and ventral streams respectively. (McKeefry et al., 2010) ascer-204

tain that both luminance and chromatically defined motion is analysed in205

the dorsal stream and (Farivar et al., 2009) provide evidence that the dorsal206

stream participates in object recognition and some dorsal-ventral integration207

may be considered. Furthermore the study by (Zanon et al., 2010) states that208

the continuous interchange of information between the two streams is nec-209

essary and provides evidence that interaction is present in order to produce210

adaptive behaviour, for example, in order to elaborate the position in space211

and the shape of a 3D object. In effect the individual streams of information212

are weaved back together.213

2.3.1. Ganglion Cells and the Lateral Geniculate Nucleus Pathways214

The current understanding of the individual behaviours of the three types215

of ganglion cells is described in detail in a vast array of vision research liter-216

ature. These components in turn project this information to their respective217

lateral geniculate nucleus (LGN) streams, and these three streams have been218

ascertained by the neuroscience vision research community to have distinct219

behaviours and output. In this section brief descriptions of these components220
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and their respective LGN streams and behaviours are presented.221

Parasol retinal ganglion cells receive many inputs and are responsively222

fast. They react to achromatic information and low contrast stimuli from223

the rods, and medium and long wavelength cones. They are unable to trans-224

mit information about wavelength independent of intensity and as such are225

not very sensitive to changes in colour. These cells are more sensitive to light226

since they are three times larger in diameter to the midget retinal ganglion227

cells. This information is relayed to the magnocellular pathway which is a228

fast system which contributes to the perception of luminance and motion229

derived from both achromatic and chromatic wavelengths, though it is un-230

able to transmit any chromatic wavelength signals (Nieuwenhys et al., 2008;231

Kentridge et al., 2002; Dacey et al., 2000; Chatterjee and Callaway, 2003;232

Briggs and Usrey, 2011).233

Midget retinal ganglion cells are involved in colour encoding. They react234

to chromatic information from the rods, and medium and long wavelength235

cones (green and red cones respectively) in the retina. They have low sen-236

sitivity because of their small receptive fields, but because of that they are237

densely packed and their resolution ability is higher. They respond weakly238

to changes in contrast unless that change is great. However, though these239

cells are found predominantly in the fovea of the retina, those located in the240

periphery show a non-opponent luminance response, indistinguishable from241

the parasol cells. The red/green colour opponent information and achromatic242

contrast detection information, provided by the synergy of the medium and243

long wavelength cones in the fovea, and those of the periphery able to dis-244

tinguish brightness only, are relayed through the slow parvocellular pathway.245
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This pathway transmits information about long and medium wavelengths246

and fine detail. Motion perception information is presented but is far weaker247

than that of the magnocellular pathway and is dependent on the available248

chromatic contrast (Nieuwenhys et al., 2008; Kentridge et al., 2002; Dacey249

et al., 2000; Chatterjee and Callaway, 2003; Briggs and Usrey, 2011).250

Bistratified retinal ganglion cells are involved in colour perception. They251

receive inputs from all rods and cone types but respond to rods and small252

wavelength cones (blue cones) 23 only. They have the lowest resolution abil-253

ity, their density is extremely low and they have very large receptive fields.254

They have moderate to low spatial resolution and react to moderate changes255

in contrast. This information is projected to the koniocellular pathway which256

contributes to colour perception dependant on the small wavelength cone out-257

put and contributes to motion perception (Nieuwenhys et al., 2008; Kentridge258

et al., 2002; Dacey et al., 2000; Chatterjee and Callaway, 2003; Morand et al.,259

2000; Briggs and Usrey, 2011). Table 1 summarises the functions of the Mag-260

nocellular, Parvocellular and Koniocellular streams in the Lateral Geniculate261

Nucleus.262

Magnocellular Parvocellular Koniocellular

Ganglion Cell Parasol Midget Bistratified

Colour No Yes (R, G cones) Yes (B cones)

Sensitivity to Contrast High Low Moderate

Spatial Resolution Low High Low

Temporal Resolution Fast Slow Slow

Table 1: Magnocellular, Parvocellular and Koniocellular Functions

13



2.4. Modelling the Lateral Geniculate Nucleus Pathways263

Recent research in (Zanon et al., 2010; Briggs and Usrey, 2011) have264

shown that the output of the magnocellular, koniocellular and parvocellular265

pathways provide mutual information to both ventral and dorsal streams, in266

order to supply the visual cortex with robust data about objects of interest267

and their location. Modelling this behaviour a form of multivariate mutual268

information is employed to enable the quantification of the amount of mu-269

tual information provided by the foreground segmentations of the modelling270

approaches described in this section. Background models may be seen to be271

analogous with the retinal suppression of global image motion as described272

by (Baccus et al., 2008). Using RGB colour space video sequences as input,273

the function of each of the parvocellular, magnocellular and koniocellular274

streams may each be modelled in a similar statistical manner. This sec-275

tion provides details of how these streams may be mapped to computational276

vision pixel-based background models.277

2.4.1. Parvocellular278

A background statistical model, which approximates behaviour of the279

parvocellular stream function (Kentridge et al., 2002), is able to distinguish280

between the brightness and its chromaticity of any one pixel, over time. This281

relates most closely to the method of (Horprasert et al., 1999). It is able to282

separate its wavelength (colour) information to include pixels with changes283

in luminance and contrast within its background model. The remaining284

pixels, with changes in colour and a limited amount of motion information.285

Figure 4 represents a graphical representation of the brightness distortion286

and chromaticity distortion in three dimensional RGB colour space. Ei is the287
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initial (background) colour value for pixel i, and Ii is the current colour value288

of the image. The line OE from the origin to Ei represents the chromaticity289

line. Brightness distortion is a scalar value α and scales the point along OE290

where the orthogonal line from Ii intersects OE. Chromaticity distortion CDi291

is the orthogonal distance between the observed colour and the line OE. The292

values for α and CD are calculated for each of N background frames293

αi =

(
IR(i)µR(i)

σ2
R(i)

+ IG(i)µG(i)

σ2
G(i)

+ IB(i)µB(i)

σ2
B(i)

)
(

[µR(i)
σR(i)

]2 + [µG(i)
σG(i)

]2 + [µB(i)
σB(i)

]2
)

where σR(i), σG(i) and σB(i) are the standard deviation and µR(i), µG(i)294

and µB(i) are the means of the ith pixel’s red green and blue values computed295

over N background frames296

CDi =

√(
IR(i)− αiµ(i)

σR(i)

)2

+

(
IG(i)− αiµ(i)

σG(i)

)2

+

(
IB(i)− αiµ(i)

σB(i)

)2

and then normalised to find a single threshold for all pixels297

ai =

√∑N
i=0 (αi − 1)2

N

α̂i =
αi − 1

ai

bi =

√∑N
i=0 (CDi)

2

N
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Figure 4: Graphical representation of the brightness distortion and chromaticity distortion

in 3D RGB colour space.

ĈDi =
CDi

bi

The method constructs histograms of the normalised α̂ and ĈD values298

and takes a detection rate as input to automatically select thresholds. For299

segmentation, incoming pixels are used to calculate α̂i and ĈDi values which300

are compared to those of the background model. The pixel classification for301

the ith pixel as defined by (Horprasert et al., 1999) is:302

1. Original background if both α̂i and ĈDi are within a threshold of those303

in the background model304

2. Shadows or shaded background if the chromaticity ĈDi is within the305

threshold, but the brightness α̂i is below306

3. Highlighted background if the chromaticity ĈDi is within the threshold,307

but the brightness α̂i is above308

16



Figure 5: PETS 2009 dataset frame - BC algorithm approximating Parvocellular be-

haviour.

4. Moving foreground object if the chromaticity ĈDi is outside of the309

threshold310

The resulting motion segmentation (Figure 5) from the original frame311

(Figure 1) show the model is able distinguish subtle differences in colour due312

to its motion sensitivity, but because of its motion sensitivity (due to both313

the temporal resolution and contrast sensitivity) parts of fluttering tape in314

the wind appear as foreground. Both the illumination and motion sensitivity315

provide the foreground segmentation with shadows.316

2.4.2. Magnocellular317

A statistical model that presents foreground segmentation approximating318

behaviour of the magnocellular stream function is one that is able to provide319

high contrast information but does not distinguish between colour and its320

intensity. It must be sensitive to changes in luminance and motion (Ken-321

tridge et al., 2002). This most closely relates to the mixture model approach322
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of Stauffer and Grimson (Stauffer et al., 1999). Gaussian mixture models323

(GMM)s are able to model each component distribution as a soft classifica-324

tion; that is they are able to produce a distribution without specifying exactly325

what each cluster must represent. Yet as a whole, the mixture model covers326

the entire set of features (colour, brightness, intensity and luminance) that327

the data represents. The clusters formed represent more than one feature328

of information, and in this way the model becomes sensitive to contrast and329

motion. The resulting motion segmentations show that the model is able330

distinguish subtle differences in colour due to its motion sensitivity. Both331

the illumination and motion sensitivity provide the foreground segmentation332

with shadows. The recent history of a pixel is modelled by a mixture of K333

Gaussians (K usually varies from 3 - 5). The mixture is weighted by the334

frequency with which each of the Gaussians explains the background. The335

probability of observing a foreground pixel x is:336

P (x) =
K∑
j=1

wjN(x, µj,Σj) (1)

where w is the weight of the Kth Gaussian distribution, µ is the mean, Σ337

is the covariance matrix and N is a multivariate Gaussian density function.338

The resulting motion segmentation (Figure 6) from the original frame339

(Figure 1) show the model is able distinguish subtle differences in colour due340

to its motion sensitivity, but because of its motion sensitivity (due to both341

the temporal resolution and contrast sensitivity) parts of fluttering tape in342

the wind appear as foreground. Both the illumination and motion sensitivity343

provide the foreground segmentation with shadows.344
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Figure 6: PETS 2009 dataset frame - GMM algorithm approximating Magnocellular be-

haviour.

2.4.3. Koniocellular345

Similar to that of the Gaussian Mixture Model, the Colour Mean and346

Variance (CMV) algorithm, described in (Wren et al., 1997) captures the347

brightness, motion and colour information but only for a single colour chan-348

nel. In this way the algorithm is able to provide foreground segmentation,349

similar to the behaviour of the koniocellular pathway (Kentridge et al., 2002).350

Encapsulating features in distinct distributions, using one independent chan-351

nel value, removes the ability to capture some of the colour contrast infor-352

mation in the model, enabling any subtle changes to appear as foreground.353

The changes in the objective luminance of a pixel provide additional nec-354

essary motion information, but it is not as precise a measure as perceived355

brightness change and as such the motion sensitivity is coarser. The result-356

ing motion segmentations show the model is able distinguish between some357

subtle differences in colour, however is of lower resolution and provides low358
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resolution shadow information from its motion sensitivity. CMV builds a359

statistical background model to represent an independent Gaussian distribu-360

tion for each normalised colour channel (R,G,B) and a Gaussian distribution361

of the luminance (A) of each normalised pixel colour:362

n(x, µ, σ) =
1√

2πσ2
exp−(x−µ)

2/2σ2

(2)

where x is the value of a single channel R, G, or B, or luminance (A),363

µ is the mean and σ is the standard deviation of that channel. A pixel is364

classified as foreground if it is found to be more than 3 standard deviations365

of the R, G, B or A distributions.366

The resulting motion segmentation (Figure 7) from the original frame367

(Figure 1) show the model is able to distinguish between some subtle differ-368

ences in colour, but is of lower resolution (shown by the merging of moving369

objects in close proximity in Figure 7 and provides low resolution shadow370

information from its motion sensitivity.371

3. Combining Algorithms372

A number of approaches have been adopted in the literature for com-373

bining or fusing the outputs of multiple motion segmentation algorithms.374

(Martin et al., 2006) exploit optimal algorithm selection and key parameters375

tuning. A library of segmentation algorithms are fine tuned against predeter-376

mined ground truth images. The features extracted, alongside the optimal377

algorithm parameters, are saved as a case. They are ranked by a number of378

criteria. For each image a new case is created composed of a vector of image379

features, the chosen algorithm, and its optimised parameters. A multilayer380
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Figure 7: PETS 2009 dataset frame - CMV algorithm approximating Koniocellular be-

haviour.

perceptron (MLP) neural network is trained with this stored knowledge for381

algorithm selection. As the technique relies on predetermined ground truth382

this rules out generality. A Support Vector Machine (SVM), used by (Avi-383

dan et al., 2004), views the feature information as two sets of vectors in384

an n-dimensional space. It constructs a separate hyper-plane in that space385

which maximizes the margin between the two data sets. (Farmer et al., 2006)386

employ Expectation Maximisation (EM) as a fusion engine. Principal Com-387

ponent Analysis (PCA) is first applied to perform dimensionality reduction388

to improve the performance of EM and reduce the computational load. It is389

claimed that the approach applied to fusion of three popular optical flow al-390

gorithms (where the U and V component images are treated as image planes391

and EM applied to them) reduces the percentage of missing target pixels by392

33%, although only one outdoor driving sequence has been used for evalua-393

tion. Boosting is an alternative. In (Zhou et al., 2004) each base classifier394
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must be trained, sequentially, using feature points that are weighted. The395

weight of a feature point is increased if a previous classifier misclassifies it.396

Once all of the classifiers are trained, their decisions can be combined through397

a weighted majority vote method or others. Popular boosting methods Ad-398

aboost and LogitBoost both have structural space, a cost function, and a399

selection algorithm. The AdaBoost algorithm minimises an upper bound of400

the target misclassification error, and LogitBoost minimises a negative bi-401

nomial log-likelihood, as cost functions. Serre, Wolf, Bileschi, Riensenhuber402

and Poggio model a neurobiological design of a primate cortex (Serre et al.,403

2007). It is designed using hierarchical alternating layers of simple units and404

complex units. Simple units (16 Gabor filters for each layer) combine their405

inputs with a (bell shaped) tuning function to increase selectivity. Complex406

units pool their inputs (from the output of the previous Simple unit layer)407

through a MAX function. The image (grey scale only) is propagated through408

the hierarchical architecture. Standard Model Features (SMFs) are extracted409

from the complex units and classified using SVM or boosting (Gentle boost-410

ing providing the best performance). It was discovered that because there411

are variations in the amount of clutter and in the 2D transformations, it412

is beneficial to allow the classifier to choose the optimal features extracted413

from either the high or low level SMFs at a point in time, to improve the414

performance. A major limitation of the system in the use of real world415

applications remains its processing speed which is typically tens of seconds416

per image. (Jodoin and Mignotte, 2005) fusion of motion segmentation ap-417

proach is based on a K-nearest-neighbour-based fusion procedure that mixes418

spatial and temporal data taken from two input label fields. The first one419
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is a spatial segmentation of a frame at time t which contains regions of uni-420

form brightness while the second label field is an estimated version of the421

motion partition. The two segmentation maps are estimated separately with422

an unsupervised Markovian segmentation routine. The fusion occurs with423

an iterative optimization algorithm called Iterative Conditional Mode whose424

maximum local energy for each site, at each iteration, is obtained with a425

K-nearest neighbour algorithm.426

Mazeed, Nixon and Gunn (Al-Mazeed et al., 2004), whose work is closest427

to the work described in ths paper, employ Bayes. Two background models428

are produced using a Mixture of Gaussians algorithm and a brightness and429

chromaticity algorithm referred to as Statistical Background Disturbance430

Technique (SBD). When the classifiers agree (pixel is foreground or back-431

ground) a decision is set accordingly. When classifiers disagree, conditional432

probability for the chosen class by each class is calculated. The product of433

each class of conditional probabilities provide the parameters for the final434

decision435

arg max
i∈{1,2}

p(x|wCLSFi
)P (wCLSFi

) (3)

where w is a class of either a background (BG) or a foreground (FG) for436

the classifier CLSFi. The maximum conditional probability for each classifier437

is used with the classifer’s confidence measure P (wCLSFi
) to find the decision438

for the algorithm. The main limitation of the approach is that it limited439

to combination of two classifiers and that the priors are calculated using an440

exhaustive search method based on the training data to obtain the optical441

values giving minimum classification errors.442
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While Bayesian inference, as well as other methods details above, have443

been exploited for classification in motion segmentation, application of mu-444

tual information to fuse multiple motion segmentation outputs has not been445

studied. The approach taken here in selecting mutual information as a446

method to combine multiple classifiers (the output from the LGN pathways)447

is threefold: Firstly, in the same way the recognised behaviours of the LGN448

pathways influenced the modelling of such, the identified interactions be-449

tween these channels of visual information that occur in the visual cortex450

influenced the choice of mathematical approach we use to model such find-451

ings. Recent neurophysiological and vision research highlight that the output452

of all three LGN pathways is shared within the visual cortex (McKeefry et453

al., 2010; Farivar et al., 2009; Zanon et al., 2010; Briggs and Usrey, 2011).454

Indeed (Clery et al., 2013) state that when considering the encoding of visual455

information in the brain, the statistical independence between luminance and456

chromatic edges in natural scenes vary depending on the dataset of natural457

images used and “mutual information” may be found. These findings rule458

out choosing methods of combining classifiers where the classifiers are com-459

peting and a single classifier is found to be the “expert” at each instance for460

example Behaviour Knowledge Space (Raudys et al., 2003) and those such461

as the majority vote and K-nearest neighbour algorithm. As the information462

theory principle of mutual information measures the amount of information463

one random variable contains about another it is seemingly a sensible map-464

ping to choose to model the neurophysiological and vision findings. Secondly,465

consideration is taken regarding the data used from a statistical view point.466

Multiple classifiers that produce probabilities as an output may be combined467
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using the product or average of the probabilities or the “Näıve Bayes” rule468

however these combiners require that the individual classifiers use mutually469

independent subsets of features (Kuncheva, 2001). This is not the case with470

the output from the LGN pathways as each pathway produces an interpreta-471

tion of identical data that each is presented with. Mutual information may472

also be described as a technique that measures the mutual dependency of473

one random variable with another and it is certainly the case with the LGN474

outputs that there will be some commonality. In addition mutual informa-475

tion classifiers have been found to provide an objective solution (Hu, 2012).476

Finally, as the LGN pathways are modelled using real-time computational vi-477

sion techniques, it is pertinent to choose a combining method such as mutual478

information which, unlike techniques such as boosting, requires no additional479

training on the data presented and may provide a fused result “on-the-fly”.480

3.1. Mutual Information481

In information theory the entropy of a discrete random variable X is482

the measure of the amount of uncertainty associated with the value of X.483

Shannon entropy, denoted by H, of a discrete random variable X, includes484

a probability measure. If p represents a probability mass function of X then485

Shannon entropy can be described in terms of a discrete set of probabilities486

H(X) = −
∑
i=1

p(xi) log p(xi) (4)

Mutual information I measures the amount of information that can be487

obtained about one random variable by observing another. Mutual informa-488

tion can be expressed as489
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I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X, Y )−H(X|Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y ) (5)

where H(X) and H(Y ) are the marginal entropies, H(X|Y ) and H(Y |X)490

are the conditional entropies, and H(Y |X) is a measure of what Y does not491

say about X. I(X;Y ) is non-negative. Mutual information is a well estab-492

lished technique for medical image registration of several modalities (Pluim493

et al., 2003; Cheah, 2012) due to its insensitivity to changes in lighting condi-494

itons ability to address a wide range of non-linear image transformations. It495

has also been shown to be well suited to registration of images of the same496

modality (Pluim et al., 2003).497

Trivariate mutual information is described in various ways by authors498

of research literature with reference to both the definition and in the use499

of notation. Figure 8 provides examples of the assorted ways that (Pluim,500

2003) discovered it had been defined and used in his survey of multivariate501

mutual information in terms of entropies. The darker shaded areas represent502

the mutual information in each case. (Pluim, 2003) asserts that a property503

of the definition of Figure 8a. is that it is not necessarily nonnegative. In504

Figure 8b. the deeper shaded middle section denotes that this area is counted505

twice.506

Figure 9 provides examples of how the notation varies between authors.507

The diagrams labelled Figure 9a., Figure 9b. and Figure 9c. depict a bi-508
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Figure 8: Different definitions of trivariate mutual information in terms of Shannon en-

tropies. Each circles denote the entropy of an image. *Definition from (Pluim, 2003)

text.

variate and two trivariate examples respectively and the notation to describe509

them given by (Studholme, 1996). He uses a ‘;’ to separate the arguments510

for mutual information, while a ‘,’ denotes a union of two variables. The511

notation used by (Pluim, 2003) differs in that to describe the same examples512

in the diagrams labelled Figure 9d., Figure 9e. and Figure 9f. ‘,’ is used513

as the separator between the arguments and is not a union. Further to the514

differences found in literature in the notation, (MacKay, 2003) states that515

the term I(X;Y ;Z) is illegal. For clarity in this work the notation used516

throughout is that of (MacKay, 2003) which is consistent with (Studholme,517

1996) and later authors (Escolano et al., 2009).518

In this work the variables X, Y and Z are the probability in each LGN519

stream (parvocellular, magnocellular, and koniocellular) that a pixel is fore-520

ground. Here mutual information is used as a measure of the information521

or interaction between any two or all three LGN streams. To this end,522

CMI (Combined Mutual Informations) is defined as a linear combination of523
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H(X) 

H(Y) H(Z) 

I(X,Y;Z) 

H(X) 

H(Y) H(Z) 

I(X;Y;Z) 

H(X) 

H(Y) H(Z) 

I(X⋃Y,Z) 

H(X) 

H(Y) H(Z) 

I(X,Y,Z) 

H(X) H(Y) 

I(X;Y) 

a. (Studholme, 1996) 

H(X) H(Y) 

I(X,Y) 

b. (Studholme, 1996) c. (Studholme, 1996) 

e. (Pluim, 2003) f. (Pluim, 2003) d. (Pluim, 2003) 

Figure 9: Differing notations describing the same mutual information examples
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Figure 10: Bivariate and trivariate mutual information in terms of Shannon entropies

trivariate mutual information for all three LGN streams and bivariate mutual524

information for each pair of LGN streams such that none of the constituent525

entropies are counted twice. To avoid the use of any terms which could be526

considered illegal, the only trivariate mutual information used here will be527

of the form I(X;Y |Z) which is the mutual information between X and (Y528

given Z) and is considered a legal term (MacKay, 2003).529

Bivariate mutual informations are I(X;Y ), I(X;Z) and I(Y ;Z) (Fig-530

ure 10 a., b. and c. respectively) and are expressed in terms of Shannon531

entropies as532

I(X;Y ) = H(X) +H(Y )−H(X, Y )

I(X;Z) = H(X) +H(Z)−H(X,Z)

I(Y ;Z) = H(Y ) +H(Z)−H(Y, Z)

(6)

Trivariate mutual informations are I(X;Y |Z), I(X;Z|Y ) and I(Y ;Z|X). In533
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terms of Shannon entropies I(X;Y |Z) is defined as534

I(X;Y |Z) = −H(Z) +H(X,Z) +H(Y, Z)−H(X, Y, Z)

(7)

The quantity I(X;Y )− I(X;Y/Z) is shown in Figure 10d. and may also be535

defined as536

I(X;Y )− I(X;Y/Z) = I(X;Z)− I(X;Z|Y )

= I(Y ;Z)− I(Y ;Z|X)

(8)

Therefore a consistent quantity CMI, with no overlapping entropies may be537

defined as538

CMI = I(X;Y ) + I(X;Z) + I(Y ;Z)

− 2[I(X;Y )− I(X;Y |Z)]

(9)

CMI can thus be expanded to give539

CMI = I(X;Y ) + I(X;Z) + I(Y ;Z)− 2[I(X;Y )]

+ 2[I(X;Y |Z)]

= −I(X;Y ) + I(X;Z) + I(Y ;Z)

+ 2[I(X;Y |Z)]

(10)
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which can be expressed in terms of Shannon entropies as540

CMI = −H(X)−H(Y ) +H(X, Y )

+ H(X) +H(Z)−H(X,Z)

+ H(Y ) +H(Z)−H(Y, Z)

+ 2[H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z)]

(11)

and can be simplified as541

CMI = H(X, Y ) +H(X,Z) +H(Y, Z)− 2H(X, Y, Z)

(12)

Since542

H(X) = −
∑
i=1

p(xi) log p(xi) (13)

CMI may be rewritten as543

CMI = −
∑
x,y

p(x, y) log p(x, y)−
∑
z,y

p(y, z) log p(y, z)

−
∑
x,z

p(x, z) log p(x, z) + 2
∑
x,y,z

p(x, y, z) log p(x, y, z) (14)

and yields an expected value over all possible instances of X,Y and Z.544

The quantities given below, that are summed to find CMI, exist at all545
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points x, y, z.546

p(x, y) log p(x, y)

p(x, z) log p(x, z)

p(y, z) log p(y, z)

p(x, y, z) log p(x, y, z)

(15)

The two variable quantities are each defined on a 2D grid and the three vari-547

able quantity is defined on the 3D space (x, y, z). Hence p(x, y, z) log p(x, y, z)548

may have a different value at all points (x, y, z) where as p(x, y) log p(x, y) is549

only defined on the x, y grid and values at any point (x, y) are the same for550

all z. It is therefore possible to define a quantity pV C at each point based551

on the point wise constituents of CMI.552

pV C = −p(x, y) log p(x, y)− p(y, z) log p(y, z)− p(x, z) log p(x, z)

+2p(x, y, z) log p(x, y, z) (16)

This provides a nonnegative result and is referred to as the Visual Cortex553

(VC) model in the following text.554

The approximated probability mass functions produced by respectively555

the GMM, Brightness and Chromaticity, and Colour, Mean and Variance556

algorithms provide the mutual information required to produce silhouettes557

of objects of interest. For Brightness and Chromaticity, the probability that a558

pixel is foreground (FP) may be computed as (see Section 2.4.1 for notation)559

FP =
p(1− p(ĈDi))p(α̂i)

p(α̂i)
(17)
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Figure 11: PETS 2009 dataset frame - resulting segmentation using the VC model

For Colour, Mean and Variance, the probability that a pixel is foreground560

(FP) may be computed as follows:561

FP = p(Ri ∪Gi ∪Bi ∪ Ai) (18)

The probability for the Gaussian Mixture Model may be computed as562

given in equation 1.563

Figure 7 represents the classification by the VC model of foreground pixels564

(white) from the original frame in Figure 1565

4. Experimental Results566

4.1. Ground Truth567

4.1.1. Sihouettes568

The binary silhouettes of both the MuHAVi and PAMELA datas were569

hand labelled for all frames. For MuHAVi, Manually Annotated Silhouette570

Data (MAS) consists of annotated footage of 5 action classes. They include571
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two different actors and two separate camera views. In this case the annota-572

tion consists of white silhouettes of the actors performing their actions on a573

black background.574

4.1.2. Objects575

Each of the PETS2009 seven independent 2D camera views (views 1,3,4,5,6,7,8)576

and CAVIAR“Walk” and “Walk 2” sequences were ground truthed frame577

by frame using the Video Performance Evaluation Resource (ViPER-GT)578

ground truth tool (Mariano et al., 2002). The ground truth consists of bound-579

ing boxes that are created around the objects and the coordinate positions580

of these boxes within the scene are given in a ground truth XML file.581

4.2. Background Learning582

Each of the three motion segmentation methods used to model the LGN583

pathways require an initial “learning” phase, where the algorithms produce584

a statistical interpretation of the initial scene. Visual surveillance scenes585

are frequently dynamic in nature and whilst lengthy “background learning”586

sequences may produce a better motion segmentation from each of the algo-587

rithms this is mostly not practical due to rapidly changing scenes. To capture588

a scene or “background” where there is little of interest happening it is pru-589

dent to use as short a number of frames as is possible when initialising each590

of the motion segmentation algorithms. With this in mind for all datasets591

and sequences the following initialisations to the algorithms were given. The592

BC algorithm was set to a “background run length” of 100 frames, the initial593

ai and bi calculations used 50 frames and the initial histograms were created594

with just 10 frames. The GMM in this case was set to three gaussians, had595
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a “background run length” of 100 frames and calculated Expected Maximi-596

sation (EM) from just 20 frames. The CMV algorithm initialised with 10597

background frames. For all algorithms a weight of 0.0001 was set for the598

learning rate.599

4.3. Datasets600

Four different datasets are used to test the performance of the proposed601

Visual Cortex model, the publicly available MuHAVi (Singh et al., 2010),602

CAVIAR, PETS2009 (Ferryman and Ellis, 2009), and the datasets produced603

for the Background Models Comparison (BMC) challenge (Vacavant et al.,604

2012).605

The first dataset, MuHAVi (Singh et al., 2010), introduces the challenge606

of real night-time street lighting, street paving (reflective) and real high street607

surveillance camera footage (with glare and lare prominet shadows) to the608

motion segmentation algorithms. There is also some camouflage of individ-609

uals present, where the clothing and the background are similar in colour.610

CAVIAR Walk 1 and Walk 2 indoor datasets include sunlight shining611

through large glass panels and producing variable lighting within an indoor612

scene, alongside intermittent and unpredictable shadows of the panel frames613

on the floor. Reflections appear intermittently on additional glass panels that614

reside inside the building, and sunlight reflects from these panels. Shadows615

are present when individuals walk through the scene and some camouflage is616

present with the clothing of certain individuals and the background.617

The third dataset, (Ferryman and Ellis, 2009), comprises multi-sensor se-618

quences containing crowd scenarios with increasing scene complexity. Dataset619

S2, used in this evaluation, addresses people detection and tracking. Spe-620
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cific challenges include occluding ,moving objects encompassing whole scenes;621

moving vegetation; vehicles; motion behind translucent windows; reflective622

surfaces; objects appearing both very large and close to the camera and small623

and in the far distance; lack of natural lighting to entire footage.624

Finally, the BMC dataset consists of both synthetic and real world videos.625

The synthetic videos present a variety of cloudy, sunny, foggy and windy626

scenes with and without acquisition noise. The real world videos contain627

challenges such as outdoor scenes, lengthy videos, varying ground types,628

presence of vegetation, casted shadows and the presence of continuous flow629

of objects.630

4.4. Evaluation Metrics631

Performance evaluation was based on Precision and F1 Score Metrics632

andthe framework by (Kasturi et al., 2009), a well established protocol for633

performance evaluation of object detection and tracking in video sequences.634

These metrics are formally used by the Video Analysis and Content Extrac-635

tion (VACE) programme and the CLassification of Events, Activities, and636

Relationships (CLEAR) consortium.(Vacavant et al., 2012) provides details637

for the F-score and SSIM metric used for the Background Model Challenge638

dataset.639

Notation.640

• Gt
i denotes ith ground-truth object in frame t; Gi denotes the ith ground-641

truth object at the sequence level; Nframes is the number of frames in642

the sequence643

36



Figure 12: Datasets used. Top row: Four views from MuHAVi which contains sequences

with realistic street scenes. Second row: Four example frames from CAVIAR Walk 1 (left

two images) and Walk 2 (right two images) sequences. Third row: Four example frames

from Background Model Challenge dataset which contains both synthetic and real videos.

Fourth row:Four views from the PETS2009 dataset which contains a range of crowd-based

scenarios.

• Dt
i denotes the ith detected object in frame t; Di denotes the ith de-644

tected object at the sequence level645

• N t
G and N t

D denote the number of ground-truth objects and the num-646

ber of detected objects in frame t, respectively; NG and ND denote647

the number of unique ground-truth objects and the number of unique648

detected objects in the given sequence, respectively649
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• N i
frames refers to the number of frames where either ground-truth object650

(Gi ) or the detected object (Di ) existed in the sequence651

• Nmapped refers to sequence level detected object and ground truth pairs,652

N t
mapped refers to frame t mapped ground truth and detected object653

pairs654

• mt represents the missed detection count, (fpt ) is the false positive655

count, cm and cf represent respectively the cost functions for missed656

detects and false positives, and cs = log10ID − SWITCHESt657

4.4.1. Precision and F1 Score658

Pixel based metrics are computed from pixel counts that may be classified659

as true positives (TP), false positives (FP), false negatives (FN), and true660

negatives (TN). FP and FN refer to those that are misclassified as pixels661

belonging to the objects of interest (FP) or the background (FN) while TP662

and TN account for accurately classified pixels.663

The precision of a silhouette is an important factor for the reasoning of664

behaviour using pose and gait techniques, and is found by:665

Precision = 100−
[(

FN + FP

TP + FN

)
× 100

]
(19)

The F1 score is a popular metric for evaluation of segmentation and666

represents a measure of the accuracy of an algorithm and is found by:667

F1Score =
2TP

((TP + FN) + (TP + FP ))
(20)

38



4.4.2. Sequence Frame Detection Accuracy (SFDA)668

SFDA uses the number of objects detected, the number of missed de-669

tections, the number of falsely identified objects, and the calculation of the670

spatial alignment between the algorithm’s output for detected objects and671

that of the ground truthed objects. It is derived from a Frame Detection672

Accuracy (FDA) measure. The FDA is calculated using a ratio of the spa-673

tial intersection and union of an output object and mapped ground truthed674

objects675

OverLapRatio =

Nt
mapped∑
i=1

|Gt
i ∩Dt

i |
|Gt

i ∪Dt
i |

(21)

FDA(t) =
OverlapRatio[

Nt
G+Nt

D

2

] (22)

SFDA =

∑Nframes

t=1 FDA(t)∑Nframes

t=1 ∃ (N t
G ∨N t

D)
(23)

For this study although the annotation of the ground truth was challeng-676

ing, an overlap threshold of 100 percent for the intersection over union scores,677

was used.678

For both detection and tracking metrics in the following descriptions the679

accuracy metrics provide a measure of the correctness of the detections or680

tracks. The precision metrics provide the measure of, in the instance where681

there has been a correct detection or track, how close to the ground truth682

that detection or track may be.683

39



4.4.3. Multiple Object Detection Accuracy (MODA)684

MODA is an accuracy measure that uses the number of missed detections685

and the number of falsely identified objects. Cost functions to allow weighting686

to either of these errors are included, however for the sake of both PETS 2009687

evaluations they were equally set to 1.688

MODA = 1− cm(mt) + cf (fpt)

N t
G

(24)

4.4.4. Multiple Object Detection Precision (MODP)689

MODP gives the precision of the detection in a given frame. Again, with690

this metric, an overlap ratio is calculated as previously defined in (1), and, in691

addition to a count of the number of mapped objects, the MODP is defined692

as:693

MODP (t) =
OverLapRatio

N t
mapped

(25)

4.5. Results694

4.5.1. MuHAVi695

The three individual segmentation algorithms and Visual Cortext algo-696

rithm were evaluated on the MuHAVi dataset against ground truth using697

the Precision and F1 Metrics. Comparisons are then made frame by frame698

between the algorithms resulting silhouette and the ground truth. True posi-699

tive, false positive, true negative and false negative pixels are counted for each700

frame. Figure 13 shows the robust nature of the Visual Cortex model, respec-701

tively for F1 score (14) and Precision (13), using the mutual information of702

the three LGN pathways, in comparison to their independent performances.703
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Figure 13: Accuracy (top) and precision (bottom) of the silhouettes produced by the inde-

pendent LGN pathways versus the mutual information of the VC model on the challenging

MuHAVi dataset.
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Figure 14: Performance of Visual Cortex and individual motion segmentation algorithms

for view one of PETS2009 dataset.

4.5.2. PETS2009704

The next set of evaluations show comparisons of the performance of in-705

dividual motion segmentation algorithms against the Visual Cortex model706

for the PETS2009 dataset. Figure 14 represents the evaluation results for707

sequence S2.L1, at time sequence 12.34, for the first camera view. and illus-708

trates the superior performance of the Visual Cortex model, in comparison to709

the established motion segmentation algorithms, for the detection of objects710

within the surveillance scene. Every object detection metric, SODA, SFDA,711

MODA and MODP evaluates the Visual Cortex model (VC) as the best in712
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performance for its criteria, with the detection precision (MODP) metric713

proving the performance of the CMV algorithm as equal to that of the Vi-714

sual Cortex model. Referring to the MOTA tracking metric, further analysis715

of Figure 14 demonstrates the increase in performance in tracking accuracy716

using the Visual Cortex model as the motion segmentation algorithm base717

for the tracker.718

Next, to assess robustness in real world scenarios the Kanade-Lucas-719

Tomasi (KLT) tracking algorithm (Tomasi and Kanade, 1991) was used with720

individual sets of motion segmentation silhouette results using the PETS2009721

dataset to produce tracking results, and in turn 2D bounding box coordi-722

nate positions and unique identifiers for each object for view one of the723

PETS2009 dataset. The performance evaluation results of the PETS 2009724

and PETS2010 workshops (Ellis et al., 2010) were used to enable the com-725

parisons. The SODA, SFDA, MODA and MODP metrics are relevant to the726

evaluation of the motion segmentation algorithms of the workshop’s partic-727

ipating authors systems in addition to that of the Visual Cortex model. A728

summary of their motion segmentation/object detection techniques follow in729

order that comparisons may be drawn:730

(Arsic et al., 2009) employ a multi-layer homography, which is capable731

of creating a three dimensional representation of the scene. Homography732

frameworks rely on the fusion of previously segmented foreground regions733

visible from multiple views. In the case of (Arsic et al., 2009) system, these734

foreground segmentations are produced by finding the median of pixel values735

and composing a reference image for simple background subtraction. Bright-736

ness invariance is achieved by normalised cross covariance when compared737
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with the reference image and contrast invariance is achieved using normalised738

cross-correlation. A graph cut optimisation algorithm is then optionally car-739

ried out to fill in small holes in foreground silhouettes.740

(Breitenstein et al., 2009) presents a HOG object detector producing the741

input for the observation model of a particle filter, which includes not only the742

objects detected, but their confidence density of that detection (rep-resented743

as a colour heat map). Each object has its own particle filter initialised which744

includes its position and velocity. Bounding boxes are created by a boosted745

ensemble of weak classifiers employing colour histograms.746

(Yang et al., 2009) utilises dynamic appearance models, using single Gaus-747

sians for foreground descriptions, and a Gaussian background model.748

(Alahi et al., 2009) creates degraded foreground silhouettes from some749

binary silhouette image and its approximation, using rectangular and ellipse750

shapes. These then help form the input to a Multi-Silhouette Dictionary751

which is made up of atoms modelling the presence of individuals at give752

locations on an occupancy grid. The atoms are generated using homogra-753

phies mapping points in a three dimensional scene to their two dimensional754

coordinates in the planar view.755

(Bolme et al., 2009) approaches the challenge with the object detection756

filtering method Average of Synthetic Exact Filters which considers the entire757

output of the filter un-der a full convolution operation. He also uses a Viola758

and Jones cascade classifier with both visual and motion features used for759

detection. The third detector he uses is based on the deformable parts model760

system.761

(Ge et al., 2009) regard people in a crowd scene as a realisation of a762
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Marked Point Process. Each person is associated with a random mark that763

specifies their location and size within the frame. A binary foreground mask764

is obtained by an adaptive background subtraction method and is subjected765

to further morphological processing. This then becomes the input to the766

detector.767

(Conte et al., 2010) utilise an adaptive background image difference al-768

gorithm to detect moving objects. In order to make the system robust in769

realistic environments this has been extended to included processes that han-770

dle illumination, camouflage detection, noise filtering, shadow filtering and771

reflection removal.772

(Berclaz et al., 2009) employ an object detector that produces a proba-773

bilistic occupancy grid, using a set of prob-abilities of the presence of objects,774

at a discrete set of locations, at each time step. These objects are represented775

as cylinders that project to rectangles in the frame sequences.776

Figure 15 shows that the Visual Cortex model outperforms the evaluation777

of the individual algorithms with respect to the accuracy of both the detection778

of the objects and the tracking, using view one of the PETS 2009 datasets779

and the SODA, SFDA, MODP and MODA metrics.780

It should be noted that the accuracy of the tracking algorithm used im-781

proves with the accuracy of the segmentation. The precision of any single782

detected object in this case refers to the precision of the location of its bound-783

ing box enclosing the object, that the tracker has produced, and not the pre-784

cision of the silhouettes previously measured. Note that the standard error785

of mean (SEM) error bars have been added to the performance evaluation786

results charts. These quantify how precisely the true mean is known, taking787

45



into account both the standard deviation and the sample size. Looking at788

whether the error bars overlap, therefore enables comparison of the difference789

between the mean with the precision of those means. It is very important to790

note that if two SEM error bars do overlap, and the sample sizes are equal791

the difference is not statistically significant, however if two SEM error bars792

do not overlap no conclusions may be made about statistical significance.793

It is clear that for this sequence, the systems described by (Breitenstein794

et al., 2009) performed strongly at multiple object detection and tracking,795

with (Yang et al., 2009) outperforming all others. However the Visual Cor-796

tex model provides a strong performance in object detection and outperforms797

Breitenstein’s system for detection accuracy (MODA) using the Visual Cor-798

tex model motion segmentation algorithm alone. Most detection and track-799

ing systems employ further processing filters after any initial segmentation800

to improve the motion segmentation quality. This is not the case with the801

Visual Cortex model. The tracking accuracy (MOTA) gained from using the802

Visual Cortex model is second only to the system produced by Yang. As803

both Breitenstein and Yang did not provide results for views 5,6, and 8 no804

further comparisons or analysis of robustness using these systems may be805

drawn. (Ge et al., 2009), (Berclaz et al., 2009) and (Conte et al., 2010) de-806

tection accuracy measures (MODA) also suggested a good performance for807

these particular areas, as do (Berclaz et al., 2009), (Conte et al., 2010), and808

AlahiOlasso (Alahi et al., 2009) for tracking accuracy (MOTA).809

4.5.3. CAVIAR810

Two “Walk” sequences from CAVIAR were evaluated against using the811

SODA, SFDA, MODP and MODA metrics. The Visual Cortex model again812
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Figure 15: Performance of participating authors’ systems, using CLEAR and VACE met-

rics for view one of PETS2009 dataset, mean SEM, N=109.

outperforms all three motion segmentation algorithms for each metric cate-813

gory despite the datasets being of a completely different nature to MuHAVi814

and PETS2009.815

4.5.4. BMC dataset816

Finally, the synthetic and real datasets provided for this BMC special817

issue were evaluated and are shown in Figure 17. You can see from these that818

the VC model generally performs more robustly to the variety of sequences819

than published algorithms BC, GMM and CMV, in both synthetic and real820

world scenarios. The results for the synthetic videos show improvement on821
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Figure 16: Comparing the Performance Evaluation of the Visual Cortex model with estab-

lished motion segmentation algorithms using the CAVIAR (top) “Walk 1” and (bottom)

“Walk 2” dataset, mean SEM, N=610.

48



the CMV, BC and GMM algorithms by employing the VC model, using both822

the F-Score and the SSIM metric as a measure, for all cases of videos tested.823

The individual algorithms however do not include any form of additional824

object recognition processing (and this is outside the scope of the biological825

model presented) that would distinguish between the cars travelling on the826

road and moving ground-truthed objects in the car park within the real827

world Video 1 scenario. In addition the VC model attempts to create a better828

silhouette of both the cars on the road and the ground-truthed cars in the car829

park than ones presented by the individual CMV, GMM and BC algorithms830

and as such is penalised by the pixel-based F Score metric for doing so. This831

is also the case for Video 8 where there is an additional flow of traffic to that832

which has been ground-truthed. It should be noted that pixel based metrics833

such as the F score can be heavily biased towards the larger moving objects834

within a frame when a video sequence contains more than one object and/or835

perspective plays a part. This bias is inherent in the results. The SSIM836

metric measures, for each real video sequence, highlight the visual structural837

(silhouettes) improvement gain made using the VC model, as opposed to the838

individual CMV, BC, and GMM algorithms.839

The performance evaluation results of the Background Models Challenge840

workshop (Vacavant et al., 2012) participating authors’ systems are shown in841

Figure 18. The VC model represents the results of motion segmentation only842

and does not include any additional processing techniques that may be added843

to assist in the elicitation of objects from the background. The VC model844

shows a noticeable comparison to all participating authors’ background model845

systems with regard to the SSIM metric. The F-score metric highlights the846
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difficulty in producing a robust background model system for all scenarios,847

where generally the performances of each individual system appears to vary848

depending on the scenario it is presented with. A summary of the workshop’s849

participating authors’ techniques follow:850

(Yoshinga et al., 2013) use illumination invariant local features and de-851

scribe their distribution by Gaussian Mixture Models. The local feature has852

the ability to tolerate the effects of illumination changes, and the GMM can853

learn the variety of motion changes. Radial distances control the local feature854

and the localized regions focused by each pixel.855

For (Shah et al., 2013) A Gaussian mixture model is used as a background856

basis and a new match function is used by computing separate variances for857

colour and intensity channels. For every foreground blob SURF features are858

matched and irrelevant features are removed using RANSAC sampling. The859

weight of winning Gaussian is increased a little for foreground blobs detected860

as paused objects. Automatic parameter adaptation is achieved using a fixed861

length sliding window to keep the most recent N frames in order to capture862

continuing statistical changes.863

(Glazer et al., 2013) use one-class SVM classifiers to model the distribu-864

tion of the background. Three levels of resolution are used: block, region and865

frame. Images are divided in to equal-sized blocks of pixels and the one-class866

SVMs are independently trained on each block to model its background dis-867

tribution. Inter block relationships are used to refine the classification results868

at region level and at frame level an adaptive background method is used to869

re-initialise the model with regions considered to be part of the background.870

(Tavakoli et al., 2013) introduce a method of estimating motion saliency871
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based on temporal cues obtained using frame de-correlation. Temporal salience872

maps are computed, presenting the amount of motion in a frame. Salient mo-873

tion is assumed steady and the focus is on the detection of firm movements.874

Principal components analysis is applied for reconstruction whilst suppress-875

ing background clutter and noise.876

(Guyon et al., 2013) use Robust Principal Components Analysis (RPCA)877

to separate moving objects from the background. The background sequence is878

then modelled by a low rank subspace, using a low-rank matrix factorization879

with iteratively reweighted least squares that can gradually change over time.880

The moving foreground objects constitute the correlated sparse outliers.881

5. Conclusions and Future Work882

This paper has presented a novel neuroscience inspired information the-883

oretic approach to motion segmentation. In applying current neurological884

and physiological research in primate vision, a system has been created to885

improve the robustness of a multidimensional motion segmentation system.886

The major result found in this investigation is in using the current under-887

standing of the primate visual system as inspiration and guidance for choos-888

ing both feature sets (the LGN pathways), and the means of fusing them889

(the Visual Cortex model), considerably improves the appearance of the ob-890

tained silhouettes, without the need for subjective parameter adjustments, or891

the use of arbitrary thresholds. This presents an advantage over established892

multidimensional models which frequently rely on decisions, based on some893

weighting, whether a feature set provides the correct segmentation. These894

techniques are burdened with adjusting parameters, which do not necessarily895
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Figure 17: Comparing the performance of the Visual Cortex model with established motion

segmentation algorithms using the BMC (top) synthetic and (bottom) real videos.
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Figure 18: Comparing the performance of the Visual Cortex model with those of the

participating authors’ systems in the BMC challenge with the real videos dataset and

F-Score(top) and SSIM (bottom) metrics.
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provide the correct decision for all cases. This work has presented the perfor-896

mance evaluation of the biologically inspired motion segmentation system in897

challenging and diverse scenarios using a variety of evaluation metrics. In ad-898

dition the evaluation results of state of the art automated visual surveillance899

systems have been presented to enable comparisons to be drawn. It shows900

that biologically inspired automated visual surveillance detection systems901

may be considered comparable to the current state of the art surveillance902

systems in detection and tracking. Existing real-time computational vision903

techniques have been exploited in the production of feature sets similar to904

that which the primate retina produces with a view towards real-time bio-905

logically inspired visual surveillance systems. The “reasoning” made within906

the visual cortex model employs a technique already well-established in the907

registration of medical images. It is envisaged that refining the LGN pathway908

approximations to closer representations of the biological system may result909

in robust performance beyond that of the current model. Further research910

into biologically guided object detection may provide a further processing911

model with a view to presenting robust object detection in addition to mo-912

tion segmentation.913
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