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ABSTRACT

Seasonal-to-interannual predictions of Arctic sea ice may be important for Arctic communities and in-

dustries alike. Previous studies have suggested that Arctic sea ice is potentially predictable but that the skill of

predictions of the September extent minimum, initialized in early summer, may be low. The authors dem-

onstrate that a melt season ‘‘predictability barrier’’ and two predictability reemergence mechanisms, sug-

gested by a previous study, are robust features of five global climate models. Analysis of idealized predictions

with one of these models [Hadley Centre Global EnvironmentModel, version 1.2 (HadGEM1.2)], initialized

in January,May and July, demonstrates that this predictability barrier exists in initialized forecasts as well. As

a result, the skill of sea ice extent and volume forecasts are strongly start date dependent and those that are

initialized in May lose skill much faster than those initialized in January or July. Thus, in an operational

setting, initializing predictions of extent and volume in July has strong advantages for the prediction of the

September minimum when compared to predictions initialized in May.

Furthermore, a regional analysis of sea ice predictability indicates that extent is predictable for longer in the

seasonal ice zones of the North Atlantic and North Pacific than in the regions dominated by perennial ice in

the central Arctic and marginal seas. In a number of the Eurasian shelf seas, which are important for Arctic

shipping, only the forecasts initialized in July have continuous skill during the first summer. In contrast,

predictability of ice volume persists for over 2 yr in the central Arctic but less in other regions.

1. Introduction

The rapid reduction in Arctic summer sea ice has led

to a large increase in demand for forecasts of sea ice

conditions at seasonal to interannual time scales (Eicken

2013). This is important information for end users, in-

cluding those interested in marine accessibility for

routing ships (e.g., Stephenson et al. 2011). This interest

has led to the development of a number of operational

seasonal sea ice prediction systems (e.g., Sigmond et al.

2013; Chevallier et al. 2013; Wang et al. 2013), which are

initialized from observations.

These operational prediction systems show some skill

in predicting summer sea ice conditions, but diagnosing

the source of forecast errors is problematic. Such fore-

cast errors may be due to both inadequate representa-

tion of important physical processes in the model and

incomplete knowledge of the initial state of key vari-

ables such as sea ice thickness and subsurface ocean

properties, which are not well observed. There is also an

inherent limit to predictability in the Arctic climate sys-

tem due to chaotic atmospheric variability (e.g., Holland

et al. 2010; Blanchard-Wrigglesworth et al. 2011b). If

a given forecast system is close to this inherent limit, then

any attempt to improve sea ice predictionswouldbe futile.

To address the key question of whether there is the

potential to improve the operational prediction systems,

we consider a more idealized situation. Analysis of

‘‘perfect model’’ experiments with coupled global cli-

mate models (GCMs) provides a setting where perfect

knowledge of the initial model state exists and there

are no model biases. Such an approach has been used to

quantify and understand predictability of the ocean state,

especially in the Atlantic (e.g., Collins 2002; Pohlmann

et al. 2004), leading to the development of operational

decadal prediction systems (e.g., Smith et al. 2007).

This technique has also previously been adopted for

the Arctic region by Koenigk and Mikolajewicz (2008),

finding that Arctic sea ice thickness showed signs of high

predictability at interannual time scales. Using the

Community Climate SystemModel, version 4 (CCSM4),
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Blanchard-Wrigglesworth et al. (2011b) found that Arctic

sea ice area and volume are continuously potentially pre-

dictable for 1–2yr and 2–4yr, respectively. However, the

mean climate state is thought to affect the limit of sea ice

extent predictability, which is expected to be lower in

a future thinner sea ice environment (Holland et al. 2010).

A lagged correlation analysis performed with the

CCSM3 indicates that sea ice extent predictabilitymay be

dependent on the start month (Blanchard-Wrigglesworth

et al. 2011a, hereafter BW2011a). BW2011a found that

memory of sea ice area, indicated by lagged correlation,

is generally lost in the first 2–5 months for each start

month. After the initial decline in memory, reemergence

of significant correlations is found in later months.

BW2011a highlight two mechanisms for this. A melt-to-

freeze season reemergence occurs between pairs of

months where the ice edge is in the same position (e.g.,

May and December) and is due to persistence of SST

anomalies. A summer-to-summer reemergence mecha-

nism is due to the persistence of sea ice thickness

anomalies in the Arctic basin. Perhaps most impor-

tantly, observations of September sea ice extent are only

significantly correlated with sea ice extent from the

previous August and July (hence no evidence of summer-

to-summer reemergence). Anomaly correlations between

September extent and earlier months are not significant,

indicating that forecast skill may drop off rapidly. This

spring drop off in skill is thought to be caused by both

the rapid motion of the ice edge (hence persistence of

conditions at the ice edge in one particular month does

not lead to predictability at the ice edge the next month)

and because reemergence mechanisms that act to pro-

long skill during other months of the year are not ef-

fective in spring (BW2011a).

However, it is important to determine if this type of

lagged correlation is relevant for learning about the skill

of initialized predictions. The skill of the Canadian

Seasonal to Interannual Prediction System (CanSIPS) in

predicting sea ice extent seems to have start date de-

pendence consistent with BW2011a, where forecasts of

detrended September extent anomalies initialized be-

fore June show no significant skill (Sigmond et al. 2013),

but this is unlikely to be the limit of predictability be-

cause of the lack of sea ice thickness initialization in

these forecasts. Chevallier et al. (2013), who do include

thickness information in their initialization, predict de-

trended September extent from May initialization with

significant skill (anomaly correlation of 0.6). Perfect

model forecasts of September extent, initialized before

June, also retain significant amounts of skill in the MPI

model (e.g., Fig. 10 of Tietsche et al. 2013).

Open questions in this area which will be addressed in

this study include the following:

(i) Are the reemergence mechanisms discussed by

BW2011a consistent across models?

(ii) Are the predictability properties implied by the

lagged correlation reemergence, such as a strong

start date dependence, a feature of initialized

forecasts?

(iii) What month should forecasts of the September sea

ice extent minimum be initialized from?

In this study, a similar analysis to BW2011a is ex-

tended to five differentGCMs to assess the robustness of

the persistence properties and lagged correlation re-

emergencemechanisms. However, it is also important to

determine if these properties affect initialized pre-

dictions. To achieve this, several sets of idealized perfect

model forecasts with one of these GCMs, a version of

the Hadley Centre Global Environment Model, version

1.2 (HadGEM1.2), were initialized in January,May, and

July, which are before, during, and after this melt season

‘‘predictability barrier,’’ respectively. This set of en-

sembles includes more start months than previous po-

tential predictability studies, allowing the start month

dependence of the potential skill in pan-Arctic and re-

gional sea ice extent and volume to be investigated.

Although measures such as pan-Arctic sea ice extent

and volume are important, it is likely that predictions of

regional ice properties are most important to end users.

Few studies have looked at predictability of ice cover at the

basin scale. One exception is Koenigk and Mikolajewicz

(2008), who find that sea ice concentration predict-

ability is significantly higher in the basins adjacent to the

Atlantic (e.g., Barents and Labrador Seas) than those in

the central Arctic. We also explore regional sea ice

extent and volume predictability in this analysis.

This paper is structured as follows: In section 2, we

describe the GCMs utilized and the experimental design.

Section 3 considers diagnostic predictability of Arctic

conditions in a range of GCMs, and section 4 discusses

the prognostic predictability using perfect model simu-

lations. We conclude and discuss the implications of our

findings in section 5.

2. Global climate models used

a. Multimodel analysis

To examine sea ice predictability, multicentennial

simulations with five fully coupled atmosphere–ice–ocean

GCMs are used. The simulations with HadGEM1.2

(Shaffrey et al. 2009); Geophysical Fluid Dynamics

Laboratory Climate Model, version 3 (GFDL CM3;

Griffies et al. 2011); European Consortium Earth Sys-

tem Model version 2.3 (EC-Earth2.3; Hazeleger et al.

2012); and Max Planck Institute Earth System Model
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(MPI-ESM; Jungclaus et al. 2013) were run with green-

house gases and other radiative forcings fixed at ‘‘present

day’’ levels (1990 for CCSM3, HadGEM1.2, and GFDL

CM3; 2005 for MPI-ESM and EC-Earth2.3). Apart from

CCSM3, the other models are an ensemble of opportu-

nity, run as part of the Arctic Potential Predictability on

Seasonal to Interannual Time Scales (APPOSITE) pro-

ject (Tietsche et al. 2014; http://arp.arctic.ac.uk/projects/

arctic-predictability-and-prediction-seasonal-inte/). The

present-day control simulation of CCSM3 from phase 3

of the Coupled Model Intercomparison Project

(CMIP3) multimodel dataset is also included in a num-

ber of the multimodel comparison figures to facilitate

direct comparison with BW2011a. In the analysis of di-

agnostic predictability that follows (section 3), each of

the control runs were linearly detrended to remove any

model drift. For this analysis, 200 yr from each of the

control runs were used, apart from HadGEM1.2 and

CCSM3, from which 249 and 300 yr were used, re-

spectively. The models included in this analysis cover

a diversity of mean sea ice states (see Fig. S1 of Tietsche

et al. 2014).

b. HadGEM1.2

A more in-depth description of HadGEM1.2 is

provided here since the majority of this analysis, in-

cluding the perfect model study, is performed using

this model. HadGEM1.2 is similar to the CMIP3 ver-

sion of HadGEM1, which is fully described in Johns

et al. (2006). The atmosphere component has a res-

olution of 1.258 latitude by 1.8758 longitude with 38

layers in the vertical. The ocean component has a zonal

resolution of 18 and a meridional resolution of 18 be-
tween the poles and 308 latitude, increasing smoothly to
1/38 at the equator with 40 unevenly spaced levels in the

vertical.

A number of improvements toHadGEM1 are included

in HadGEM1.2, including changes to the snow-free sea

ice albedo, runoff into frozen soil, and the calculation of

surface fluxes. Each of these changes improved the

HadGEM1.2 mean state compared to HadGEM1 (for

full details, see Shaffrey et al. 2009).

The sea ice component of HadGEM1.2 is identical to

HadGEM1 and was fully described and evaluated by

McLaren et al. (2006). The sea ice component shares

much of its code with the CICE sea ice model (Hunke

and Lipscomb 2004). Mean sea ice extent in the refer-

ence simulation used in this study is higher than mean

observations during the satellite era (1979–2012) with

sea ice volume also significantly higher than observed

estimates (see Fig. S1 of Tietsche et al. 2014). This is in

part due to a cold bias in the North Pacific (McLaren

et al. 2006). However, predictability metrics indicate

that sea ice extent and volume predictability in this

model is fairly typical when compared to other GCMs

(see Fig. 1 of Tietsche et al. 2014). This and the strong

performance of this model in reproducing many other

climate indices (Johns et al. 2006) indicates that this is

a useful model with which to investigate sea ice pre-

dictability.

3. Analysis of present-day control simulations

a. Lagged correlations

One simple measure of potential predictability is

lagged correlation, which is a measure of the skill in

a system from this particular form of persistence. To

determine if the lagged correlation properties of monthly

mean pan-Arctic sea ice extent discussed by BW2011a

are robust, the analysis is repeated for the present-day

control simulations of four other GCMs. We calculate

lagged correlations of sea ice extent to examine whether

the same persistence/reemergence properties exist and

compare with observations. Further, we extend this

analysis to monthly mean sea ice volume in both the

GCMs and the Pan-Arctic Ice Ocean Modeling and

Assimilation System (PIOMAS) reanalysis (Zhang and

Rothrock 2003). We also perform correlations between

sea ice extent, SST, and sea ice thickness in theGCMs to

examine whether the reemergence mechanisms are

consistent with BW2011a.

In Fig. 1, the lagged correlation of sea ice extent in

observations and five climate models is shown for each

start month against lead time [i.e., in each panel, from

left to right, the top row shows January correlated with

January (lag 0), January correlated with February (lag

1), etc.]. The sea ice extent time series of each month of

the observations ([from the National Snow and Ice Data

Centre (NSIDC);Meier et al. 2012] and eachGCMwere

linearly detrended before the correlations were calcu-

lated. The exact correlation values obtained from the

observations depend on the detrending method used;

however, the shape of the contours in 1-month lead-time

space do not (not shown).

The patterns of lagged correlation in Fig. 1 are

similar to those described for the CCSM3 by

BW2011a: namely, there is evidence of the melt-to-

freeze season and September–September reemergence

of correlation in all the models, despite large differences

in the mean state of the sea ice (see Fig. 2). However,

there is large intermodel spread in both the relative

magnitude of the reemergence and the absolute mag-

nitude of correlations with, for example, GFDL CM3

having much higher correlations at all lead times than

MPI-ESM. Intermodel differences in sea ice extent
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year-to-year autocorrelation appear to correspond with

differences in sea ice volume variability in the models

(see Figs. 2a,b), rather than differences in the mean ice

volume (see Figs. 2c,d). This appears to contradict

Holland et al. (2010), who find that initial condition

predictability is lower in a low sea ice state (using the

same model in both climates). However, lagged corre-

lation only measures one type of predictability and this

is not a controlled experiment, since the models have

many differences other than just their mean sea ice

cover.

The lagged correlations from all the models indicate

that forecasts initialized in January and July will lose

skill slowly compared to other months, in part because

of the thickness and melt-to-freeze season reemergence

mechanism (see Fig. 5 of BW2011a). Correlations with

October–December as the target month are also high in

models and observations because of the melt-to-freeze

season reemergence. The latter also seems to be the case

in the initialized forecast system of Sigmond et al. (2013)

(see their Figs. 3 and S1), in which forecasts of October

sea ice extent are predicted skillfully at longer lead times

FIG. 1. Lagged correlation of NSIDC pan-Arctic sea ice extent derived from passive microwave observations

(Meier et al. 2012) and GCM control simulations, for each start month, against lead time [i.e., from left to right, the

top row shows January correlated with January (lag 0), January correlated with February (lag 1), etc.]. Black lines

indicate values for September andMarch target months. Red dots indicate months that have increased correlation as

a result of melt-to-freeze season reemergence. Similarly, orange dots indicate increased correlation as a result of the

thickness related summer-to-summer reemergence mechanism.
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than other months because of this mechanism. The lack

of sea ice thickness assimilation in this forecast system

may be the reason why there is a lack of summer-to-

summer reemergence in skill.

Lagged correlations in the GCMs are generally higher

than in the observations at all (except lag 0) lead times (as

also found by BW2011a). The reemergence of correla-

tions, ubiquitous among the models, is also far smaller in

the observations. This could be explained by the following:

(i) Sampling error: Only 34 yr of satellite observations

exist, compared to over 200 simulated years for

each model. It is possible that the observed period

is an outlier.

(ii) Detrending: By detrending the observations (to

remove the impact of anthropogenic climate

change) it is possible that some of the low fre-

quency internal variability is removed, therefore

reducing the autocorrelation of the time series. Day

et al. (2012) estimate that between 5% and 30% of

the observed decline since the 1970s could be caused

by internal variability related to the Atlantic multi-

decadal oscillation (AMO).

(iii) Autocorrelation: The models could have a greater

proportion of variability at low frequencies than

the real world.

(iv) Inadequate representation of processes in models:

It is possible that the processes associated with the

reemergence are different in these models com-

pared to the real system.

It is a challenge to distinguish between these potential

causes, especially as it could be a combination of all four.

For example, BW2011a show that lagged correlations

calculated from different 30-yr instances of the CCSM3,

exhibit a large spread, indicating the importance of point

i. Although the satellite-era sea ice concentration data

only cover the 34-yr period used in this study, one could

FIG. 2. Scatter diagrams of sea ice extent autocorrelation and volume standard deviation for (a) January and

(b) September and sea ice extent autocorrelation and mean volume for (c) January and (d) September.
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conceive of using additional historical observations of

the sea ice (e.g., Rayner et al. 2003; Divine and Dick

2006) to distinguish between points i, ii, and iii, and this

is planned further work.

b. Mechanisms for predictability

BW2011a argue that the melt-to-freeze season cor-

relation reemergence (between pairs of months indi-

cated by red dots in Fig. 1) is caused by the persistence of

SST anomalies in the vicinity of the ice edge. This re-

emergence acts between pairs of months, one month in

the melt season and one in the freeze season, when the

ice edge is in approximately the same position in both

months (e.g., May and December). They hypothesize

that in the melt season month, an anomaly in the ice

edge imparts an SST anomaly of the opposite sign. As

the ice edge retreats, the SST anomaly persists in its

original position but, when the ice edge returns to the

same position, the SST anomaly imparts an ice edge

anomaly of the same sign as the original sea ice anomaly.

When correlating May sea ice extent with both May

and December SSTs for each GCM control simulation

(Fig. 3), we find that significant correlations persist be-

tween May and December in the vicinity of the ice edge

and marginal ice zone (indicated by the purple line).

This supports the analysis of BW2011a by demonstrat-

ing that anomalies in May SST associated with sea ice

edge anomalies persist through to December in all four

models. This is a necessary condition for the melt-to-

freeze season reemergence mechanism to exist and is

ubiquitous across the models.

It is difficult to determine why some models have

stronger melt-to-freeze season reemergence than others.

It is likely that the duration of SST persistence in the

models is important, but Fig. 3 indicates that the areas

where SSTs cause reemergence differ between the

models (i.e., correlations between sea ice extent and

SST) are highest in the Bering Sea for HadGEM1.2 and

highest in the Barents Sea for GFDL CM3.

The summer-to-summer reemergence is thought to

be associated with persistence of thickness anomalies.

BW2011a suggest that an anomaly in sea ice extent im-

parts a sea ice thickness anomaly, of the same sign and in

the same region, adjacent to the ice edge. If this thickness

anomaly persists until the following September then, as

the ice edge returns to the position of the thickness

anomaly at the end of the following melt season, the

thickness anomaly imparts an ice edge/extent anomaly

of the same sign as the previous winter. Correlating

September sea ice extent and September thickness, it

is obvious that anomalies in thickness are associated

with anomalies in extent for eachmodel (see Fig. 4, left).

In each of the models this thickness anomaly persists

through to the September of the following year, acting as

a potential reemergence mechanism (see Fig. 4, right).

We hypothesize that the strength of the ice volume

related summer-to-summer reemergence is propor-

tional to the size of the standard deviation of sea ice

volume. Those models with larger sea ice volume and

thickness variability will have larger thickness anoma-

lies, which are more likely to persist through the year

and cause reemergence. This relationship appears to be

supported by Fig. 2b, but it is impossible to prove with

only five models.

Both mechanisms of reemergence discussed in

BW2011a therefore appear to be supported by analysis

with four additional models presented here. However,

extending this correlation analysis to a detrended obser-

vational sea ice concentration and SST dataset [Rayner

et al. 2003; Hadley Centre Sea Ice and Sea Surface

Temperature dataset (HadISST)] does not reveal such

high correlations (not shown). This is consistent with the

lack of reemergence in the lagged correlation in ob-

served sea ice extent (see Fig. 1a).

c. Sea ice volume predictability

Lagged correlations indicate that sea ice volume is

muchmore persistent than extent. They also show that sea

ice volume also has a melt-to-freeze season reemergence,

similar to sea ice extent (Fig. 5). This is a feature of

PIOMAS and all models apart from CCSM3. Again,

correlations between May sea ice volume and May SST

at the ice edge persist through until December (not

shown), indicating that the mechanism for melt-to-

freeze season sea ice volume reemergence is the same

as that of extent.

A summer-to-summer reemergence, such as that

exhibited by sea ice extent, is not exhibited by sea ice

volume. However, one would not necessarily expect

sea ice volume to have this property. For sea ice extent,

this reemergence is associated with the persistence of

thickness anomalies in the central Arctic that decouple

from extent when the ice edgemoves south and recouple

(and reemerge) when it moves back northward to the

location of this anomaly. No such decoupling would be

expected for volume.

d. Seasonal cycle of predictability

Importantly, Figs. 1 and 5 show that the lagged cor-

relation of both extent and volume decrease with time at

different rates, depending on the start month. This is

most pronounced for extent; the lag 1 correlation has

a strong seasonal cycle (see Fig. 6a) as a result of both

reemergence mechanisms, which increase the lag 1 cor-

relation in the late winter and late summer, respectively.

Start months in May–July and October–December have
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FIG. 3. Maps of the correlation betweenMayArctic sea ice extent and gridpoint SST for

(left) May and (right) December. Each row corresponds to a different GCM, as labeled.

Only correlations significant at the 99% level are plotted. The purple line is the 10%

contour of standard deviation of (left) May and (right) December monthly mean sea ice

concentration, indicating the approximate region of ice edge variability for each month.
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FIG. 4. Maps of the correlation between September Arctic sea ice extent and monthly

mean gridpoint September sea ice thickness at (left) zero lag and (right) 1-yr lag. Each row

corresponds to a different GCM as labeled. Only correlations significant at the 99% level

are plotted. The purple line is the 0.1 contour of standard deviation of September monthly

mean sea ice concentration; this indicates the approximate region of ice edge variability.
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low lag 1 correlation since the ice edge is moving most

rapidly (see Fig. 6c). The lag 1 correlation seasonal cycle

for volume is simpler than extent, having only one

minimum between May and July, corresponding to the

months with the largest change in volume (Figs. 6b,d).

Using sea ice extent from previous months as a predictor

for September sea ice extent, Fig. 6e indicates that the

skill of a September forecast will increase rapidly as the

predictor month approaches September. This is not

the case for volume, which does not have this sharp

drop off in skill as the predictor is moved away from

September (Fig. 6f).

These diagnostic analyses of control simulations in-

dicate that potential forecast skill might be very dependent

on start month. We next explore whether this is also the

case in perfect model predictions.

4. Perfect model predictability experiments

To investigate the start date dependence of initial

condition predictability, a set of perfect model ensemble

prediction experiments were run using HadGEM1.2.

These simulations were started from initial states of 1

January, 1 May, and 1 July in each of 10 yr chosen from

FIG. 5. Lagged correlation of pan-Arctic sea ice volume in PIOMAS (Zhang andRothrock 2003) andGCMcontrol

simulations is plotted, for each start month, against lead time [i.e., from left to right, the top row shows January

correlated with January (lag 0), January correlated with February (lag 1), etc.]. The diagonal black lines indicate

September and March values.
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the control simulation to sample a range of sea ice states.

Each ensemble contains 16 members with each member

having identical initial conditions to the reference run,

except for a tiny, spatially varying, Gaussian white noise

perturbation (with s 5 1024K) to the SST field. This is

similar to the methodology used to assess sea ice pre-

dictability in Koenigk and Mikolajewicz (2008) and

Blanchard-Wrigglesworth et al. (2011b).

Perfect model experiments such as those described

above do not suffer frommodel error because themodel is

being used to predict itself. Neither do they suffer from

a lack of information about the initial state, since the full

atmosphere–ice–ocean state of the reference simulation is

knownprecisely for each of the start times. For this reason,

the predictability estimates obtained give an upper bound

to the predictability obtainable with the HadGEM1.2

simulator (e.g., Collins 2002; Latif et al. 2006).

a. Predictability metrics

To define predictability in this study, we use two

predictability metrics as defined by Collins (2002). In

such a perfect model study, any ensemble member may

be chosen as the ‘‘truth’’ and the effective sample size

can be increased by taking each member in turn. The

ensemble RMSE is then defined as

RMSE(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
N

s

j51
�
N

m

i51
�
k6¼i

[xkj(t)2 xij(t)]
2

vuut , (1)

FIG. 6. Lag 1 autocorrelation for (a) extent and (b) volume; month-to-month change in (c) extent and (d) volume; and correlation

between monthly mean (predictor) and September mean (predictand) (e) extent and (f) volume.
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where xij(t) is the sea ice extent at lead time t for the ith

member of the jth ensemble andn5NsNm(Nm2 1)2 15
2399, where Ns(510) is the number of start dates and

Nm(516) is the number of ensemblemembers. The state

is predictable at lead time t when RMSE(t),ffiffiffi
2

p
RMSEctrl(t), where RMSEctrl(t) is the RMSE of a

climatological reference forecast [calculated by replac-

ing xijwith the climatology of the reference simulation in

Eq. (1)] and the significance of this inequality is calcu-

lated using an f test with 159(5NmNs 2 1) degrees of

freedom.

To compare the predictability of initialized forecasts

with the lagged correlation properties of the control

simulation, the anomaly correlation coefficient (ACC) is

used. This is defined as

ACC(t)5
h[xkj(t)2 x(t)][xij(t)2 x(t)]ii,j,k6¼i

h[xij(t)2 x(t)]2ii,j
, (2)

where h�ii denotes the expectation value, to be calcu-

lated by summing over the specified index, and x(t) is the

monthly mean climatology of x at lead time t (calculated

from the control simulation) and also treats each en-

semble member in turn as the truth (Collins 2002).

b. Lagged correlation compared to perfect model
skill in HadGEM1.2

The lagged correlation (a diagnostic measure of pre-

dictability) is compared with the ACC (a prognostic

forecast metric) of the initialized perfect model runs in

Fig. 7. Each of the lagged correlation time series (dashed

lines) consists of the values along a rowof theHadGEM1.2

panel of Fig. 1 for extent and Fig. 5 for volume.

Figure 7a clearly shows that the reemergence of extent

seen in the lagged correlation metric is also a feature of

the initialized runs (solid lines) for each start month.

Furthermore, even though the volume lagged correlation

time series does not show very strong reemergence, the

ACC of the initialized forecasts do (Fig. 7b). Peculiarly,

reemergence of the May ensembles’ ACC skill in pre-

dicting extent results in higher values of ACC the fol-

lowing winter than the July ensemble, even though the

July ensemble is initialized closer to the verification

time. This property is a feature of the lagged correlation

measure but is not seen in the RMSE score; thus, this

feature may be due to having a relatively small sample

size (see Fig. 11a). Surprisingly, the volume lagged

correlations in Fig. 7b are higher than the perfect model

ACC, indicating that lagged correlation statistical fore-

cast outperforms the perfect model forecast. We can

only assume that the particular start dates chosen for

initializing the GCM ensembles were relatively un-

predictable for volume.

Focusing on the first forecast year and lining up the time

series as a function of lead time, rather than verifica-

tion month, highlights the start date dependence of skill

(Figs. 8a,b). Skill in the May ensemble forecast of extent

declines much more rapidly over the first 4 months than

the January and July ensembles, before skill reemerges

over the next 5months. There is also a reemergence of skill

in the May and January forecasts, approximately mirror-

ing the timing of the lagged correlation reemergence.

Figure 8b shows that volume may also have some initial-

izationmonth dependence, with theMayACC and lagged

correlation declining faster than those for January and

July, out to a lead time of 5 months.

This comparison between lagged correlation in the

control run and anomaly correlation in the initialized

forecasts indicates that lagged correlation is an infor-

mative measure of sea ice extent and volume predict-

ability in HadGEM1.2. The intermodel similarity of the

lagged correlation properties and their reemergence

mechanisms gives confidence that these mechanisms are

not model dependent.

It is also possible to construct a simple statistical

forecast for extent and volume from the lagged corre-

lation for each start month,

x(t01 t)5b(t)x(t0) , (3)

where x is the extent/volume anomaly, t0 is the forecast

start month, t is the lead time in months, and b(t) is the

autocorrelation of x at a lag of t (e.g., Hawkins et al.

2011). Figure 9 shows the RMSE of the perfect model

ensemble and the RMSE of the lagged correlation

forecast, which was calculated by replacing the second

term in Eq. (1) with the lagged correlation statistical

forecast for each start year. It is noticeable that the

lagged correlation forecasts behave similarly to the

perfect ensembles in a number of ways: May and July

forecast error grows faster than January and volume is

much more predictable than extent.

Comparison of the lagged correlation forecast with the

initialized ensemble also indicates that, for extent, there is

much more skill in the initialized forecasts. This indicates

that, while understanding the mechanisms that cause the

lagged correlation patterns are important, there are

sources of skill that are not included in that measure. For

sea ice volume, this result is more intuitive than that

shown in Fig. 7, where overall skill (lagged correlation of

the whole control run) is compared with the skill of cer-

tain start dates. This also highlights the importance of

considering multiple predictability metrics.
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On the other hand, the lagged correlation volume

forecasts perform relatively well compared to the perfect

model ensemble, indicating that this type statistical fore-

cast may work well for predicting volume. The initialized

forecasts have significantly more skill than the lagged

correlation forecast in lead months 1–4 for forecasts ini-

tialized in January, 0–7 for forecasts initialized in May,

and 0–4 and 7–10 when initialized in July. Interestingly,

the lagged correlation forecast performs well at lead

times of over a year for all start months.

c. Potential skill in regional sea ice prediction

1) EXTENT

Analysis of the predictability properties of sea ice

extent and volume is next performed for the regional

FIG. 7. Ensemble ACC for HadGEM1.2 perfect model predictions (solid line) and

HadGEM1.2 control simulation lagged correlation (dashed line) for (a) extent and (b) volume.
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areas defined in Fig. 10. To quantify the predictability

we calculated the RMSE for each basin as shown in

Eq. (1). The Canadian Archipelago is excluded from the

analysis; one would not expect this bathymetrically

complex area to be well simulated by a GCM of this

spatial resolution.

The significant skill in pan-Arctic extent prediction,

as measured by RMSE, is continuous in the January

ensemble, out to the second June (see Figs. 9a, 11a). Ex-

tent is not significantly predictable during the subsequent

summer [July–November (JASON)], but skill returns

through thewinter until the subsequent JASON. TheMay

FIG. 8. Squared ensemble ACC for HadGEM1.2 perfect model predictions (full line) and

HadGEM1.2 control simulation lagged correlation (dashed line) for (a) extent and (b) volume.

These have been plotted as a function of lead time and squared to highlight the differences

between ensembles.
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ensemble is significantly more skilful than the January

ensemble for the first 3 months, after which the skill is

not significantly different from the January ensemble

through ASON. After this, significant skill returns for

4 months, after which time the ensembles are indistin-

guishable. The July ensemble is only significantly more

skilful thanMay ensemble for the first 4months (JASO),

after which point it is slightly less skilful than May,

presumably because of sampling issues.

In terms of predictability, the basins can be roughly

split into two groups: those in the central Arctic with

perennial sea ice cover and those in the peripheral ba-

sins with seasonal ice cover. The first of these groups

includes the central Arctic, Kara, Laptev and Siberian,

FIG. 9. Ensemble RMSE for HadGEM1.2 perfect model predictions (solid line) and the

RMSE of a lagged correlation statistical forecast, derived from control simulation lagged

correlations (dotted–dashed line) for (a) extent and (b) volume. The limit no predictability for

the January ensembles is shown by the dashed line ð ffiffiffi
2

p
3RMSErefÞ. Dots on the solid lines

indicate where the perfect model RMSE is less than that of the statistical forecast.
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Chukchi and Beaufort, Hudson, and Baffin regions

(Figs. 11b,e,f,h,j,k). Apart from the central Arctic, extent

in these regions is trivially predictable in the non-JJASON

months because of extremely low climate variability.

During the JJASON period, the January ensemble only

has skill for a very limited number of months in some of

the basins and none in others. Similarly, for the May

ensembles, only in the Chukchi and Beaufort region

does the May ensemble have skill for all of JJASON.

Only from the July ensemble are the summer conditions

in these basins simulated for this period with significant

skill.

The second set, the peripheral regions, including the

Greenland–Iceland–Norwegian (GIN), Barents, Bering,

Okhotsk, and Labrador Seas (Figs. 11c,d,g,i,l), have quite

different characteristics. The duration of predictive skill

is much higher in these basins, with the January ensemble

exhibiting continuous skill for 16 months in the GIN and

Barents Seas and longer in the Labrador Sea. In these

three basins, the May ensembles have smaller RMSE

than the January ensembles at all verification times and

so too the July ensembles with respect to May. The du-

ration of skill in the Bering and Okhotsk Seas is less than

the basins on the Atlantic side but still longer than the

central basins. The relatively long duration of skill in

the peripheral seas, compared to the central regions, is

the reason the pan-Arctic RMSE shows skill for longer in

winter than summer (see Figs. 11a,l). This is because

during the winter the ice edge is in the regions where

extent is predictable at long lead times.

The relatively long duration of skill in the peripheral

seas is likely to be caused, at least in part, by the interaction

of the sea ice with slowly evolving modes of climate

variability, such as the AMO (e.g., Mahajan et al. 2011;

Day et al. 2012). Such modes exhibit predictability on

interannual to decadal time scales (e.g., Meehl et al.

2009; Matei et al. 2012). Sea ice in the Labrador Sea,

which exhibits the longest duration of predictability, is

close to the subpolar gyre, an area where SSTs shows

high levels of potential predictability (e.g., Collins 2002;

Boer 2004).

2) VOLUME

Similarly to Blanchard-Wrigglesworth et al. (2011b),

pan-Arctic volume is continuously predictable for all

months of the 3-yr integrations (see Figs. 9b, 12a). The

May ensembles exhibit significantly more skill than the

January ensembles for over 1 yr, and the July ensembles

only more skill than the May ensembles for the first

8 months, after which the ensembles are statistically in-

distinguishable. At the regional scale a similar pattern is

observed with volume generally predictable for as long as

an extent or longer in the same region (see Fig. 12). In

contrast to sea ice extent, both May and January en-

sembles exhibit skill in predicting volume in the central

Arctic basins during the first summer (Figs. 12b,e,f,h,j,k).

It is clear from Fig. 12b that the May ensembles lose

skill in predicting central Arctic sea ice volume more

rapidly than the January and July ensembles. This is also

the case for the Kara, Laptev and east Siberian, Chukchi

FIG. 10. Map of the Arctic Ocean and basins.
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FIG. 11. RMSE of pan-Arctic and basin sea ice extent for January (black line), May (blue line), and July (red line) ensembles. The limit

of no predictability is indicated by the dashed line (
ffiffiffi
2

p
3RMSEref). Dots indicate times when the following relations are significant at the

99% level: RMSEJan , RMSEref, RMSEMay , RMSEJan, and RMSEJul , RMSEMay.
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FIG. 12. RMSE of pan-Arctic and basin sea ice volume for January (black line),May (blue line), and July (red line) ensembles. The limit

of no predictability is indicated by the dashed line (
ffiffiffi
2

p
3RMSEref). Dots indicate times when the following relations are significant at the

99% level: RMSEJan , RMSEref, RMSEMay , RMSEJan, and RMSEJul , RMSEMay.
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and Beaufort, Hudson, and Baffin regions. Ensemble

RMSE is affected by the seasonal cycle of variance (i.e.,

low variance in the reference simulation implies low

RMSE in the ensemble); in some regions that have low

September volume variance, such as the Sea of Okhotsk,

ensembles are indistinguishable during September. This

corresponds with low ice volumes in these regions during

September. In each of the regions (excluding Hudson

Bay), the May ensembles have additional skill over the

January ensembles for the first 5–9 months and the July

ensembles have additional skill over the May ensembles

for the first 4–7 months.

5. Summary and discussion

Information relevant to the development of seasonal-

to-interannual Arctic sea ice prediction systems has

been presented. In particular, the intermodel robustness

of sea ice cover persistence properties and mechanisms

has been investigated through diagnostic analysis of

control simulations with five different GCMs. The rel-

evance of these properties for initialized prediction was

then investigated through a series of idealized, ‘‘perfect

model’’ runs with HadGEM1.2.

a. Conclusions

The key conclusions regarding Arctic sea ice predic-

tions are as follows:

d The models considered exhibit similar sea ice extent

predictability properties (measured by lagged correla-

tion, as discussed in BW2011a), with all models ex-

hibiting correlation reemergence in certain months

because of the persistence of SST and sea ice thickness

anomalies; however, the strength of correlation varies

between the models.
d The lagged correlation of sea ice extent observations

and volume reanalysis are smaller than all models

considered in this study. However, the reasons for this

are not clear.
d The lagged correlation of sea ice volume is generally

higher than extent, with larger differences between the

models. However, some of the processes governing the

temporal patterns of lagged correlation appear to be

similar. For example, most of themodels exhibit a melt-

to-freeze season reemergence of lagged correlation

similar to that seen in extent, which our analysis in-

dicates is driven by the sameSSTpersistencemechanism

as extent reemergence and occurs in the same months.
d Lagged correlations with all models indicate that the

skill of predictions for both the extent and volume

summer minima improve sharply when the initializa-

tion time is after May for a September verification

time. This is also true for initialized perfect model

predictions, which show that forecasts initialized in

May lose skill more rapidly in the first 4 months of the

forecast than those initialized in January or July. This

is because reemergence mechanisms act in the months

after July and January to reduce the rate of decay in

correlation compared to May.
d Idealized forecasts of pan-Arctic extent during summer

months are not significantlymore skilful when initialized

fromMay compared to January. This is also indicated by

the lagged correlations which decay much more rapidly

during early summer than during winter months.
d Regionally, September extent in the central Arctic

and marginal basins is generally only predictable from

the ensembles initialized in July, but are trivially

predictable outside of summer as these regions are

entirely ice covered (in the model). Volume is pre-

dictable for longer than extent in all regions.
d Sea ice extent in the seasonal ice zone of the North

Atlantic regions considered are predictable 1.5–2.5 yr

ahead.

b. Discussion and implications

These conclusions are relatively consistent with the

analysis of the CanSIPS operational initialized forecast

system. Sigmond et al. (2013) find that July–October pan-

Arctic sea ice extent variability is not skillfully hindcast

in ensembles initialized in May or before. In their ana-

lysis, winter conditions are predictable from ensembles

initialized as much as 1 yr before the verification time.

Similar findings for the National Centers for Environ-

mental Prediction (NCEP) Climate Forecast System,

version 2 (CFSv2) are found by Wang et al. (2013). The

similarity of conclusions suggests that the spring time

rapid drop off in predictability reported in the opera-

tional systems is inherent to the model’s climate, rather

than due to uncertainty in the initial conditions. How-

ever, one would expect skill in these operational systems

will decrease more rapidly with lead time than in the

perfect model forecasts because of the imperfect ini-

tialization of key fields such as sea ice thickness.

It is also clear from studying the regional properties of

sea ice cover predictability, although perhaps trivial,

that the duration of skill in the pan-Arctic extent and

volume is derived from the properties of the basins that

make up the ice edge at a given month of year. For ex-

ample, the ensembles are only skilful in predicting pan-

Arctic extent for the first summer and the regions in the

Arctic basin. During winter months, however, when the

ice edge is in the peripheral seas, the extent in the pe-

ripheral seas and pan-Arctic is predictable for all winters

of the simulations. Conversely, because the largest volume
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of ice is in the central Arctic, the pan-Arctic volume pre-

dictability characteristics are inherited from this region.

The conclusion that summer extent in the central

Arctic and marginal seas, at least in HadGEM1.2, is

much less predictable from ensembles initialized on (or

before) 1 May than those after could be important for

operational forecast centers and end users such as for

Arctic shipping (Khon et al. 2009; Stephenson et al.

2013). This is particularly relevant as May is currently

widely used to initialize operational summer seasonal

forecasts. It is also important to note that the predict-

ability properties of sea ice cover may be lower in

a warmer climate with less sea ice (Holland et al. 2010).
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