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Single-Carrier Frequency Domain Equalisation for
Hammerstein Communication Systems Using

Complex-Valued Neural Networks
Xia Hong, Senior Member, IEEE, Sheng Chen, Fellow, IEEE, Chris J. Harris and Emad Khalaf

Abstract—Single-carrier (SC) block transmission with
frequency-domain equalisation (FDE) offers a viable
transmission technology for combating the adverse effects
of long dispersive channels encountered in high-rate broadband
wireless communication systems. However, for high bandwidth-
efficiency and high power-efficiency systems, the channel can
generally be modelled by the Hammerstein system that includes
the nonlinear distortion effects of the high power amplifier
(HPA) at transmitter. For such nonlinear Hammerstein channels,
the standard SC-FDE scheme no longer works. This paper
advocates a complex-valued (CV) B-spline neural network
based nonlinear SC-FDE scheme for Hammerstein channels.
Specifically, We model the nonlinear HPA, which represents
the CV static nonlinearity of the Hammerstein channel, by
a CV B-spline neural network, and we develop two efficient
alternating least squares schemes for estimating the parameters
of the Hammerstein channel, including both the channel impulse
response coefficients and the parameters of the CV B-spline
model. We also use another CV B-spline neural network to
model the inversion of the nonlinear HPA, and the parameters
of this inverting B-spline model can easily be estimated using the
standard least squares algorithm based on the pseudo training
data obtained as a natural byproduct of the Hammerstein
channel identification. Equalisation of the SC Hammerstein
channel can then be accomplished by the usual one-tap linear
equalisation in frequency domain as well as the inverse B-spline
neural network model obtained in time domain. Extensive
simulation results are included to demonstrate the effectiveness
of our nonlinear SC-FDE scheme for Hammerstein channels.

Index Terms—Single-carrier frequency domain equalisation,
high power amplifier, Hammerstein channel, complex-valued B-
spline neural network

I. INTRODUCTION

It is well-known that for high-speed broadband communica-
tion applications with data rates in tens of Mbps or higher over
wireless channels of typical delay spread in microseconds,
the intersymbol interference (ISI) of wireless channels will
span over tens or even hundreds of symbols. This causes
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th nightmare senario for time-domain (TD) equalisation, as
an impractically long equaliser is required which suffers
from excessively slow convergence and has poor performance.
Orthogonal frequency-division multiplexing (OFDM) [1], [2]
provides a low-complexity high-performance solution for mit-
igating long ISI. Owing to its virtues of resilience to frequency
selective fading channels, OFDM has found its way into many
recent wireless network standards. However, OFDM signals
are notoriously known to have high peak-to-average power
ratio (PAPR), which requires the high power amplifier (HPA)
at the transmitter to have an extremely long linear dynamic
range. This requirement may not be met by practical HPAs
which exhibits nonlinear saturation characteristics [3]–[7].
Single-carrier (SC) block transmission with frequency-domain
equalisation (FDE) [8], [9] offers a viable alternative solution
for long ISI mitigation. Although the total complexity of a
SC-FDE based transceiver is the same as that of an OFDM
based transceiver, the SC-FDE transmitter does not require
the fast Fourier transform (FFT) operation, and therefore it is
better suited for uplink implementation. Therefore, the long
term evolution advanced (LTE-A) has specified the standard
for the uplink of the fourth generation (4G) systems based on
the SC-FDE solution [10].

SC based high-rate broadband systems typically employ
high-order quadrature amplitude modulation (QAM) signalling
[11] for the sake of further enhancing the achievable band-
width efficiency. The higher the order of QAM signalling,
the better the bandwidth efficiency but also the higher the
PAPR of the resulting transmit signal. This may drive the
HPA at the transmitter into the nonlinear saturation region,
which will significantly degrade the system’s achievable bit
error rate (BER) performance. Moreover, green communica-
tion [12] by emphasizing energy-efficiency aspect of commu-
nication favours high power-efficiency nonlinear HPAs, which
however could not accommodate high bandwidth-efficiency
transmission technologies. Furthermore, recently, millimeter-
wave (mmW) communications have been attracting extensive
attentions, owing to the huge amount of unlicensed bandwidth
offered by mmW systems [13]–[15]. SC transmission provides
a viable technology for mmW based beyond 4G (B4G) sys-
tems [15]. However, for mmW communications, the design of
HPA encounters severe nonlinearity [16], [17]. Therefore, it is
important to be able to effectively compensate the nonlinear
distortions of the HPA in the design of a SC-FDE based
B4G wireless system in order to achieve both high bandwidth
efficiency and high power efficiency.

An effective approach to compensate for the nonlinear
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distortions of HPA is to implement a digital predistorter
at the transmitter, which is capable of achieving excellent
performance, and various predistorter techniques have been
developed [18]–[24]. Implementing the predistorter is attrac-
tive for the downlink, where the base station (BS) trans-
mitter has the sufficient hardware and software capacities to
accommodate the hardware and computational requirements
for implementing digital predistorter. In the uplink, however,
implementing predistorter at transmitter is much more difficult,
because it is extremely challenging for a pocket-size handset to
absorb the additional hardware and computational complexity.
Therefore, the predistorter option is not viable for the SC-FDE
based uplink system. Alternatively, the nonlinear distortions
of the transmitter HPA can be dealt with at the BS receiver,
which has sufficient hardware and software resources. With
the nonlinear HPA at transmitter, the channel is a complex-
valued (CV) nonlinear Hammerstein system and, moreover,
the received signal is further impaired by the channel additive
white Gaussian noise (AWGN). Therefore, nonlinear inversion
or equalisation of the SC-FDE based CV Hammerstein channel
is a challenging task.

In this contribution, we propose an efficient nonlinear SC-
FDE scheme for Hammerstein channels based on the CV B-
spline neural network. Motivated by our previous works [24]–
[26], which demonstrate the effectiveness of the CV B-spline
neural network approach for identification and inversion of
CV Wiener systems, we adopt a CV B-spline neural network
to model the CV static nonlinearity of the Hammerstein
channel, and we develop two highly efficient alternating least
squares (ALS) identification algorithms for estimating the
channel impulse response (CIR) coefficients as well as the
parameters of the CV B-spline neural network that models
the HPA’s CV static nonlinearity. As linear equalisation is
naturally accomplished in SC-FDE based systems by a one-tap
equalisation in frequency domain (FD), nonlinear SC-FDE of
the Hammerstein channel additionally involves the inversion
of the estimated CV B-spline neural network that models
the HPA’s nonlinearity in TD. The previous works [24], [26]
considers the inversion of a B-spline model as the root finding
problem, and develop an iterative root finding procedure based
on the Gauss-Newton algorithm for inverting the estimated B-
spline neural network mode. This approach requires to carry
out the iterative root finding procedure for detecting every
data symbol. We propose a much faster and more efficient
alternative for inverting the HPA’s nonlinearity. Specifically,
we use another CV B-spline neural network to model the
inversion of the HPA’s CV nonlinearity. Although the HPA’s
output at the transmitter is unobservable at the receiver for
identifying this CV inverse model, the pseudo training data
obtained as a natural byproduct of the Hammerstein channel
identification can be used to estimate the parameters of the
inverting B-spline model using the standard least squares
(LS) algorithm. The effectiveness of our proposed CV B-
spline neural network based SC-FDE scheme for Hammerstein
channels is demonstrated in an extensive simulation study.

To the best of our knowledge, this is the first practical and
effective scheme proposed for compensating the transmitter
HPA’s nonlinearity at the receiver for SC-FDE based systems.

It should be emphasized that the scheme developed in a recent
paper [27] is not applicable to the SC-FDE based system, and
it can only be applied to a TD equalisation based system.
More specifically, for pure TD transmission systems, the work
[27] develops a highly-complicated, high-training-overhead
and high-complexity nonlinear TD based equalisation scheme
for the Hammerstein channel. Firstly, a specially designed
unity-PAPR training sequence has to be adopted to identify the
HPA biased CIR. Linear TD equalisation is carried out with
the equaliser order set to the data frame length, based on the
estimated biased CIR. Then a second training sequence with
the same data modulation scheme and same data frame length
has to be employed to identify the so-called the distortion
constellation set (DCS). Finally, the estimated DCS is used
for data detection based on the TD linearly equalised received
signal sequence, which has a much higher complexity then a
standard data detection. It is clearly that the scheme of [27] not
only suffers from the drawbacks of high-training-overhead and
high-complexity but also cannot be applied to SC-FDE based
systems. By contrast, the B-spline based approach adopted in
this manuscript for SC-FDE based systems can be applied to
the same pure TD transmission system considered in [27]. In
fact, we have applied our B-spline based nonlinear equalisation
scheme to a similar TD transmission system in [28], which
offers lower training overhead and lower complexity than the
scheme developed in [27].

The rest of this paper is organized as follows. Section II
presents the Hammerstein channel model and summarises
the requirements of nonlinear SC-FDE given the Hammer-
stein channel. Section III details our proposed CV B-spline
neural network based nonlinear SC-FDE scheme, while the
simulation study is presented in Section IV to demonstrate
the excellent performance of our proposed nonlinear SC-FDE
scheme. Our conclusions are offered in Section V.

Throughout this contribution, a CV number x ∈ C is
represented either by the rectangular form x = xR + j · xI ,
where j =

√
−1, while xR = ℜ[x] and xI = ℑ[x] denote

the real and imaginary parts of x, or alternatively by the
polar form x = |x| · ej∠x

with |x| denoting the amplitude
of x and ∠x its phase. The vector or matrix transpose and
conjugate transpose operators are denoted by ( )T and ( )H,
respectively, while ( )−1 stands for the inverse operation and
the expectation operator is denoted by E{ }. Furthermore,
I denotes the identity matrix with an appropriate dimen-
sion, and diag{x0, x1, · · · , xn−1} is the diagonal matrix with
x0, x1, · · · , xn−1 as its diagonal elements.

II. HAMMERSTEIN CHANNEL MODEL FOR SC-FDE

In our SC block based transmission system, each transmit
block consists of N data symbols expressed as

x[s] =
[
x0[s] x1[s] · · ·xN−1[s]

]T
, (1)

where [s] denotes the block index. We assume that xk[s], 0 ≤
k ≤ N − 1, take the values from the M -QAM symbol set

X={d(2l−
√

M − 1)+ j ·d(2q−
√

M − 1), 1 ≤ l, q ≤
√

M},
(2)



1053-587X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2014.2333555, IEEE Transactions on Signal Processing

3

where 2d is the minimum distance between symbol points.
For notational simplification, the block index [s] is dropped in
the sequel. Adding the cyclic prefix (CP) of length Ncp to x
yields

x̄ =
[
x−Ncp x−Ncp+1 · · ·x−1 | xT

]T
, (3)

in which x−k = xN−k for 1 ≤ k ≤ Ncp. The signal block
x̄ is amplified by the HPA to yield the actually transmitted
signal vector

w̄ =
[
w−Ncp w−Ncp+1 · · ·w−1 | w0 w1 · · ·wN−1

]T
=

[
w−Ncp w−Ncp+1 · · ·w−1 | wT

]T
(4)

where

wk =Ψ(xk) , −Ncp ≤ k ≤ N − 1, (5)

in which Ψ( ) represents the CV static nonlinearity of the
transmitter HPA, and w−k = wN−k for 1 ≤ k ≤ Ncp.
The most widely used HPA is the solid state power amplifier
[6], [7], whose nonlinearity Ψ( ) is constituted by the HPA’s
amplitude response A(r) and phase response Υ(r) given by

A(r) =
gar(

1 +
(

gar
Asat

)2βa
) 1

2βa

, (6)

Υ(r) =
αϕrq1

1 +
(

r
βϕ

)q2 , (7)

where r denotes the amplitude of the input to the HPA, ga

is the small gain signal, βa is the smoothness factor and
Asat is the saturation level, while the parameters of the phase
response, αϕ, βϕ, q1 and q2, are adjusted to match the specific
amplifier’s characteristics.

The NEC GaAs power amplifier used in the recent wireless
standards [6], [7] for example has the parameter set

ga = 19, βa = 0.81, Asat = 1.4;
αϕ = −48000, βϕ = 0.123, q1 = 3.8, q2 = 3.7.

(8)

Therefore, given the input xk = |xk| · ej·∠xk to the HPA, the
output of the HPA can be expressed as

wk = A(|xk|) · ej·
(
∠xk+Υ(|xk|)

)
. (9)

The operating status of the HPA may be specified by the output
back-off (OBO), which is defined as the ratio of the maximum
output power Pmax of the HPA to the average output power
Paop of the HPA output signal, given by

OBO = 10 · log10

Pmax

Paop
. (10)

The smaller OBO is, the more the HPA is operating into the
nonlinear saturation region.

The amplified signal w̄ is transmitted through the channel
whose CIR coefficient vector is expressed by

h =
[
h0 h1 · · ·hLcir

]T
. (11)

The CIR length satisfies Lcir ≤ Ncp. Without loss of gen-
erality, we assume that h0 = 1. This is because if this is

not the case, h0 can always be absorbed into the CV static
nonlinearity Ψ( ), and the CIR coefficients are re-scaled as
hi/h0 for 0 ≤ i ≤ Lcir. At the receiver, after the CP removal,
the channel-impaired received signals yk are given by

yk =
Lcir∑
i=0

hiwk−i + ek, 0 ≤ k ≤ N − 1, (12)

in which wk−i = wN+k−i for k < i, where ek = ekR +j·ekI is
the channel AWGN with E

{
e2
kR

}
= E

{
e2
kI

}
= σ2

e . Passing
y =

[
y0 y1 · · · yN−1

]T through the N -point FFT processor
yields the FD received signal vector

Y =
[
Y0 Y1 · · ·YN−1

]T = Fy, (13)

where

F =
1√
N


1 1 · · · 1
1 e−j2π/N · · · e−j2π(N−1)/N

...
...

...
...

1 e−j2π(N−1)/N · · · e−j2π(N−1)(N−1)/N

,

(14)
is the FFT matrix which has the orthogonal property of
F HF = FF H = I . The elements of Y are given by

Yn =HnWn + Ξn, 0 ≤ n ≤ N − 1, (15)

where Ξn = ΞnR
+ j · ΞnI

is the FD representation of
the channel AWGN with E

{
Ξ2

nR

}
= E

{
Ξ2

nI

}
= σ2

e , and
the frequency domain channel transfer function coefficients
(FDCTFCs) Hn for 0 ≤ n ≤ N − 1 are given by the N -point
FFT of h [

H0 H1 · · ·HN−1

]T =Fh, (16)

while
W =

[
W0 W1 · · ·WN−1

]T = Fw (17)

is the N -point FFT of w. Note that w is unobservable and,
therefore, neither w nor W is available at the receiver. If we
denote Ξ =

[
Ξ0 Ξ1 · · ·ΞN−1

]T, the FD received signal (15)
can be expressed concisely as

Y =diag{H0,H1, · · · ,HN−1}W + Ξ

=diag{H0,H1, · · · ,HN−1}Fw + Ξ. (18)

Given the FDCTFCs Hn for 0 ≤ n ≤ N−1, the FD one-tap
equalisation can be carried out. The zero-forcing equalisation,
for example, is given by

W̃n =
Yn

Hn
, 0 ≤ n ≤ N − 1. (19)

Performing the N -point inverse FFT (IFFT) on W̃ =[
W̃0 W̃1 · · · W̃N−1

]T
yields

w̃ =
[
w̃0 w̃1 · · · w̃N−1

]T = F HW̃ = Ψ(x) + F HΞ̃, (20)

where Ξ̃ = diag{H−1
0 ,H−1

1 , · · · ,H−1
N−1}Ξ , and

Ψ(x) =
[
Ψ(x0) Ψ(x1) · · ·Ψ(xN−1)

]T
=

[
w0 w1 · · ·wN−1

]T
. (21)
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If the HPA Ψ( ) at the transmitter were linear, w̃k would be
an estimate of the transmitted data symbol xk. But Ψ( ) is
nonlinear, and the linear equalisation (19) alone is no longer
sufficient for estimating x. If the nonlinearity Ψ( ) is known
and it is invertible, then the effects of Ψ( ) can be compensated
by inverting it. Specifically, an estimate of the transmitted data
vector x is given by

x̂ =Ψ−1
(
w̃

)
=

[
Ψ−1

(
w̃0

)
Ψ−1

(
w̃1

)
· · ·Ψ−1

(
w̃N−1

)]T
.

(22)

III. NONLINEAR SC-FDE OF HAMMERSTEIN SYSTEM

The reliable detection of the transmitted data symbols
depends on the ability of estimating the FDCTFCs Hn or the
CIR coefficients hi and the CV static nonlinearity Ψ( ) of the
transmitter HPA as well as the ability of inverting Ψ( ). We
adopt the CV B-spline neural network [25], [26] to represent
the mapping ŵ = Ψ̂(x) : C → C that is the estimate of the
CV nonlinear function Ψ( ). We then propose two efficient
algorithms for jointly estimating hi and Ψ( ) based on this CV
B-spline modelling of Ψ( ). Furthermore, we utilise another
CV B-spline neural network to model Ψ−1( ), the inversion of
the HPA’s CV nonlinearity. To estimate this inverting model
requires the “input-output” training data {w, x}, but w is
unobserved. Fortunately, as a byproduct of the Hammerstein
channel identification, we can construct the pseudo training
data w̃, and this allows us to estimate the inverting model.
Before we proceed, we point out that the HPA Ψ( ) of (6) and
(7) satisfies the following conditions.

1) Ψ( ) is a one to one mapping, i.e. it is an invertible and
continuous function.

2) xR and xI are upper and lower bounded by some finite
and known real values, where x = xR+ j·xI denotes the
input to the HPA Ψ( ). Furthermore, the distributions of
xR and xI are identical.

According to the property 2), we assume that Umin < xod <
Umax, where Umin and Umax are known finite real values,
while xod symbolically represents either xR or xI .

A. Complex-valued B-spline neural network

A set of univariate B-spline basis functions based on xod is
parametrised by the degree Po of a piecewise polynomial and a
knot sequence which is a set of values defined on the real line
that break it up into a number of intervals. To have Nod basis
functions, the knot sequence is specified by (Nod + Po + 1)
knot values, {U0, U1, · · · , UNod+Po}, with

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo < · · · <
UNod < UNod+1 = Umax < UNod+2 < · · · < UNod+Po . (23)

At each end, there are Po−1 “external” knots that are outside
the input region and one boundary knot. As a result, the
number of “internal” knots is Nod + 1 − Po. Given the set
of predetermined knots (23), the set of Nod B-spline basis
functions can be formed by using the De Boor recursion [29],
yielding for 1 ≤ l ≤ Nod + Po,

B
(od,0)
l (xod) =

{
1, if Ul−1 ≤ xod < Ul,
0, otherwise, (24)

as well as for l = 1, · · · , Nod + Po − p and p = 1, · · · , Po,

B
(od,p)
l (xod) =

xod − Ul−1

Up+l−1 − Ul−1
B

(od,p−1)
l (xod)

+
Up+l − xod

Up+l − Ul
B

(od,p−1)
l+1 (xod). (25)

Here again we have the superscript/subscript od = R or I .
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Fig. 1. Visualisation of the De Boor recursion for Po = 4 and Nod = 5,
where Umin = U3 and Umax = U6.

The De Boor recursion is illustrated in Fig. 1. Po = 3 to
4 is sufficient for most practical applications. The number of
B-spline basis functions should be chosen to be sufficiently
large to provide accurate approximation capability but not
too large as to cause overfitting and to impose unnecessary
computational complexity. The internal knots may be uni-
formly spaced in the interval

[
Umin, Umax

]
, where Umin

and Umax are known. The extrapolation capability of the
B-spline model is influenced by the choice of the external
knots. Note that there exist no data for xod < Umin and
xod > Umax in identification but it is desired that the B-spline
model has certain extrapolating capability outside the interval[
Umin, Umax

]
. The external knots can be set empirically to

meet the required extrapolation capability.
Using the tensor product between the two sets of univariate

B-spline basis functions [30], B
(R,Po)
l (xR) for 1 ≤ l ≤ NR

and B
(I,Po)
m (xI) for 1 ≤ m ≤ NI , a set of new B-spline

basis functions B
(Po)
l,m (x) can be formed and used in the CV

B-spline neural network, giving rise to

ŵ = Ψ̂(x) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (x)θl,m

=
NR∑
l=1

NI∑
m=1

B
(R,Po)
l (xR)B(I,Po)

m (xI)θl,m, (26)

where θl,m = θl,mR
+ j · θl,mI

∈ C, 1 ≤ l ≤ NR and 1 ≤
m ≤ NI , are the CV weights.

Consider now using the CV B-spline neural network (26) to
approximate the HPA nonlinearity Ψ( ) over one data symbol
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block x. Firstly, define the overall parameter vector θ ∈ CNB ,
where NB = NR ·NI , of the B-spline model (26) as

θ =
[
θ1,1 θ1,2 · · · θl,m · · · θNR,NI

]T
, (27)

and the B-spline basis function matrix B ∈ RN×NB as

B=


B

(Po)
1,1 (x0) B

(Po)
1,2 (x0) · · · B

(Po)
NR,NI

(x0)
B

(Po)
1,1 (x1) B

(Po)
1,2 (x1) · · · B

(Po)
NR,NI

(x1)
...

...
...

...
B

(Po)
1,1 (xN−1) B

(Po)
1,2 (xN−1) · · · B

(Po)
NR,NI

(xN−1)

.

(28)
Then the B-spline model (26) over x can be represented
concisely by

ŵ = Bθ (29)

where ŵ =
[
ŵ0 ŵ1 · · · ŵN−1]T with ŵk = Ψ̂(xk).

Because of the piecewise nature of B-spline functions, given
a value x ∈ C, there are only Po + 1 basis functions with
nonzero values at most for each of the real and imaginary
parts. This is advantageous as Po can be set to a quite low
value, e.g. Po = 4 is often sufficient. The complexity of the De
Boor recursion is, therefore, on the order of P 2

o , denoted by
O(P 2

o ). Thus the computational cost of evaluating (26) scales
up to about three times of the De Boor recursion, including
evaluation of both real and imaginary parts as well as the
tensor product calculation.

Remarks: B-splines have been widely studied in the subjects
of approximation theory and numerical analysis, owing to
their many excellent properties, including numerical stabil-
ity. B-spline basis functions as model basis have the best
approximation capability according to the Stone Weierstrass
Approximation Theorem. Although any polynomial function
can also be used to approximate a continuous function, the B-
spline functions are proven to be optimally stable bases [31]–
[33]. Specifically, a critical aspect to consider in the evaluation
of a model representation is the stability with respect to per-
turbation of the model parameters, and a significant advantage
of using the B-spline model with De Boor algorithm for
functional approximation over many other polynomial forms
is its superior numerical stability [31]–[33].

The excellent numerical stability of the B-spline model
is demonstrated using a simple example. Fig. 2 (a) plots a
quadratic polynomial function yR = 0.001x2

R − 0.02xR + 0.1
defined over xR ∈ [0, 20] in solid line. Based on the
knot sequence of {−5,−4, 0, 20, 24, 25}, this function is
estimated exactly as a quadratic B-spline model of ŷR =
0.14B

(R,2)
1 (xR) − 0.10B

(R,2)
2 (xR) + 0.14B

(R,2)
3 (xR), which

is depicted in Fig. 2 (b) in solid line. In any identification,
the data are inevitably noisy, which will perturb the model
parameters away from their true values. To simulate this
noise effect, we draw three uniformly distributed random
numbers from [−0.0001, 0.0001] and add them to the three
parameters in the two models, respectively. Fig. 2 depicts the
ten sets of the perturbed functions in dotted line generated by
perturbing the two models, respectively, in this manner. It can
be clearly seen from Fig. 2 (a) that the polynomial function
yR = 0.001x2

R−0.02xR +0.1 is seriously perturbed, but there

−5 0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x

polynomial basis

(a) Polynomial basis

−5 0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x

B−spline basis

(b) B-spline basis
Fig. 2. Illustration of the superior numerical stability of the B-spline model
over the polynomial model.

is no noticeable change in Fig. 2 (b) for the quadratic B-spline
model. Optimality of the B-spline model in terms of numerical
stability is due to the convexity of its model bases, i.e. they
are all positive and sum to one.

B. Identification of the SC-FDE Hammerstein channel
We present two identification schemes for the SC-FDE

Hammerstein channel, each involving the estimation of the
CIR coefficient vector h as well as the parameter vector θ
of the CV B-spline neural network (26). Consider the joint
estimation of θ and h based on a block of K training data,{
xk, yk

}K−1

k=0
, where K ≤ N . The identification task can be

formulated as the one that minimises the cost function

J(h, θ) =
1
K

K−1∑
k=0

∣∣êk

∣∣2 =
1
K

K−1∑
k=0

∣∣yk − ŷk

∣∣2, (30)

subject to the constraint of h0 = 1, in which the model
prediction ŷk is given by

ŷk =
Lcir∑
i=0

hiŵk−i =
Lcir∑
i=0

hi

NR∑
l=1

NI∑
m=1

B
(Po)
l,m (xk−i)θl,m, (31)
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where xk−i = xN+k−i if k < i.
Scheme 1: Note that (31) can be viewed as two different

linear regression models, namely, one is with respect to h
when fixing θ and the other is with respect to θ given a fixed
h, each problem having a closed-form solution. Specifically,
let y =

[
y0 y1 · · · yK−1

]T
and ê =

[
ê0 ê1 · · · êK−1]T. Then

over the training data set, the system can be represented as

y =Ph + ê = Qθ + ê, (32)

where the regression matrices P ∈ CK×(Lcir+1) and Q ∈
CK×NB are given respectively by

P =


ŵ0 ŵ−1 · · · ŵ−Lcir

...
...

...
...

ŵk ŵk−1 · · · ŵk−Lcir

...
...

...
...

ŵK−1 ŵK−2 · · · ŵK−1−Lcir

 , (33)

Q=


φ1,1(0) · · · φl,m(0) · · · φNR,NI

(0)
...

...
...

...
...

φ1,1(k) · · · φl,m(k) · · · φNR,NI (k)
...

...
...

...
...

φ1,1(K − 1) · · · φl,m(K − 1) · · · φNR,NI
(K − 1)

,

(34)
in which

ŵk =Ψ̂(xk) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (xk)θl,m, (35)

φl,m(k) =
Lcir∑
i=0

hiB
(Po)
l,m (xk−i), (36)

with xk = xN+k if k < 0. For the cost function (30) and the
model (32), according to [34], [35], the estimates of θ and h
are unbiased, irrespective to the optimization algorithm used.

We adopt the following ALS procedure to estimate h and
θ, which is a coordinate gradient descent algorithm [36],
[37]. However, unlike a generic coordinate gradient descent
algorithm, in our case we have the closed-form solutions for
both h and θ, and our ALS procedure guarantees to converge
fast to an unbiased estimate of h and θ jointly.
Initialisation. Initialise ŵk = xk in P of (33). Calculate h as
the LS estimate given by

ĥ(0) =
(
PHP

)−1
PHy. (37)

Then obtain ĥ(0) by normalising ĥ
(0)
i ← ĥ

(0)
i /ĥ

(0)
0 for 0 ≤

i ≤ Lcir.
TD ALS estimation. For 1 ≤ τ ≤ τmax, where τmax is the
maximum number of iterations, perform:
a) Fix h to ĥ(τ−1) in Q of (34). The LS estimate of θ̂(τ) is
readily given by

θ̂(τ) =
(
QHQ

)−1
QHy. (38)

b) For P of (33), fix ŵk according to (35) based on θ̂(τ).
Calculate

ĥ(τ) =
(
PHP

)−1
PHy. (39)

Then obtain ĥ(τ) by normalising ĥ
(τ)
i ← ĥ

(τ)
i /ĥ

(τ)
0 for 0 ≤

i ≤ Lcir.
A few iterations, i.e. a very small τmax, are sufficient for

the above ALS estimation procedure to converge to a joint
unbiased estimate of h and θ that is at least a local minimum
solution for minimising the cost function (30).

Scheme 2: Our second algorithm is based on the following
two linear regression models to represent the HPA and channel
respectively as

w̃ = Ψ̂(x) + ẽ = Bθ + F HΞ̂, (40)
y = Ph + ê, (41)

in which the real-valued B-spline basis function matrix B
is given in (28). This scheme therefore requires K = N .
Note that unlike the white Ξ̃ given in (20), Ξ̂ in (40) is
coloured. The joint estimation of h and θ can be carried out
by minimizing Ξ̂TΞ̂ and êTê using the coordinate descent
algorithm given in the following.
Initialisation. Initialise ŵk = xk in P of (33). Calculate h as
the LS estimate given by ĥ(0) of (37). Then obtain ĥ(0) by
normalising ĥ

(0)
i ← ĥ

(0)
i /ĥ

(0)
0 for 0 ≤ i ≤ Lcir. Also calculate

D =
(
BTB

)−1
BT.

TD-FD ALS estimation. For 1 ≤ τ ≤ τmax, where τmax is
the maximum number of iterations, perform:
a) Apply the N -point FFT to ĥ(τ−1) to yield the current
estimate of Hn for 0 ≤ n ≤ N − 1, and then apply the FD
one-tap equalisation using (19) to yield the current estimate
of W̃ . Next apply the N -point IFFT on the FD estimate of
W̃ to yield the TD estimate of w̃, and then compute

θ̂(τ) = Dw̃. (42)

b) For P of (33), fix ŵk according to (35) based on θ̂(τ).
Calculate ĥ(τ) of (39). Then obtain ĥ(τ) by normalising
ĥ

(τ)
i ← ĥ

(τ)
i /ĥ

(τ)
0 for 0 ≤ i ≤ Lcir.

A few iterations, i.e. a very small τmax, are sufficient for
the above ALS estimation procedure to converge.

Remarks: The two schemes differ in their step a). The
TD-FD ALS estimation scheme (Scheme 2) is more efficient
because there is no need of iterative matrix inversion to
calculate θ̂(τ).

Scheme 2 requires the training data in a full transmitting
block. This is because in step a) the FDE is performed based
on the full transmitting block. While the TD ALS estimation
(Scheme 1) does not have this restriction and K can be smaller
than N . However in step b) of Scheme 2, P can also be formed
in the same way as of Scheme 1 by only using K samples,
so that there can be the same computational costs for step
b) of the two schemes. Table I summarises the computational
complexity of these two ALS algorithms.

The solution θ̂(τ) of the proposed TD-FD ALS estimation
scheme given in (42) is a statistically suboptimal solution min-
imizing the equation error Ξ̂TΞ̂. Alternatively the maximum
likelihood (ML) estimator is given by

θ̂
(τ)
ML =

(
BTΣB

)−1
BTΣw̃ (43)

in which Σ = F Hdiag
{
HH

0 H0,H
H
1 H1, · · · ,HH

N−1HN−1

}
F

is the inverse of the covariance matrix of the coloured noise
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE TWO ALS ALGORITHMS.

Scheme 1 O
`

K2 · Lcir

´

+ O
`

L3
cir

´

+ τmax

“

O
`

NB · K
´

+ O
`

N2
B · K

´

+ O
`

N3
B

´

+ O
`

L2
cir · K

´

+ O
`

L3
cir

´

”

Scheme 2 O
`

K2 · Lcir

´

+ O
`

L3
cir

´

+ O
`

N2
B · N

´

+ O
`

N3
B

´

+ τmax

“

O
`

N · log2 N
´

+ O
`

N · NB

´

+ O
`

L2
cir · K

´

+ O
`

L3
cir

´

”

term F HΞ̂. Clearly, the optimal ML estimator θ̂
(τ)
ML (43) is

computationally more expensive than the proposed (42).
We now perform a simple analysis on the statistical proper-

ties of the estimator (42) based on an assumed “true” system
given by (20) in which w̃ is obtained from the “true” Hn and
Ψ(x) is parametrized by the B-spline neural network. Under
this idealised condition, we have

w̃ = Bθ + F Hdiag{H−1
0 ,H−1

1 , · · · ,H−1
N−1}Ξ, (44)

Substituting (44) into (42) leads to

θ̂(τ) = θ+
(
BTB

)−1
BTF Hdiag{H−1

0 ,H−1
1 , · · · ,H−1

N−1}Ξ.
(45)

We have E
{
θ̂(τ)

}
= θ owing to the facts that E{Ξ} = 0

and Ξ is uncorrelated with the regressors, i.e. B-spline basis
functions. Thus, no bias is introduced to the estimator (42).
Similarly, the covariance matrix of θ̂(τ) is given by

E
{(

θ̂(τ) − θ
)(

θ̂(τ) − θ
)H

}
= 2σ2

eE
{(

BTB
)−1

BTF H

× diag
{(

HH
0 H0

)−1
,
(
HH

1 H1

)−1
, · · · ,

(
HH

N−1HN−1

)−1}
× FB

(
BTB)−1

}
> E

{(
θ̂

(τ)
ML − θ

)(
θ̂

(τ)
ML − θ

)T
}

= 2σ2
eE

{(
BTΣB

)−1
}

. (46)

Provided that B is full rank and none of Hn is zero, the
covariance matrix of θ̂(τ) converges to 0 as N →∞.

C. Inversion of the Hammerstein channel’s static nonlinearity
Given the CV Hammerstein channel’s static nonlinear-

ity Ψ( ), we wish to compute its inverse defined by
xk = Ψ−1(wk) in order to complete the nonlinear SC-
FDE. We adopt the strategy of constructing a mapping xk =
Φ(wk; α) = Ψ−1(wk) also based on the CV B-spline neural
network of Section III-A, where α denotes the associated
parameter vector of this inverting B-spline model. In order
to learn the mapping xk = Φ(wk; α), however, a training data
set {wk, xk} would be needed but wk is unobservable and,
therefore, is not available. Fortunately, as a byproduct of the
Hammerstein channel identification presented in Section III-B,
we already obtain an estimate for w as ŵ = Bθ(τmax).
Therefore, we may construct the pseudo training data set{
ŵk, xk

}N−1

k=0
to estimate α.

More specifically, define two knots sequences similar to (23)
for wR and wI , respectively. Similar to (26), we have1

x̂ =Φ̂(w; α) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (w)αl,m

=
NR∑
l=1

NI∑
m=1

B
(R,Po)
l (wR)B(I,Po)

m (wI)αl,m, (47)

1In order to avoid repetitions, we keep the same B-spline notations of
Section III-A

where B
(R,Po)
l (wR) and B

(I,Po)
m (wI) are respectively calcu-

lated based on (24) and (25), while

α =
[
α1,1 α1,2 · · ·αl,m · · ·αNR,NI

]T
. (48)

Here again for notational simplicity, we assume that the same
number of basis functions and polynomial degree are used for
the two B-spline neural networks Ψ(xk) and Φ(wk). Over the
pseudo training data set

{
ŵk, xk

}N−1

k=0
, the regression matrix

B̃ ∈ RN×NB can be formed as

B̃=


B

(Po)
1,1 (ŵ0) B

(Po)
1,2 (ŵ0) · · · B

(Po)
NR,NI

(ŵ0)
B

(Po)
1,1 (ŵ1) B

(Po)
1,2 (ŵ1) · · · B

(Po)
NR,NI

(ŵ1)
...

...
...

...
B

(Po)
1,1 (ŵN−1) B

(Po)
1,2 (ŵN−1) · · · B

(Po)
NR,NI

(ŵN−1)

.

(49)
and the LS solution for α is readily given by α̃ =(
B̃TB̃

)−1
B̃Tx.

IV. SIMULATION STUDY

We considered a Hammerstein SC-FDE System in which
the HPA employed was described by (6) and (7) with the pa-
rameter set given in (8). The size of the transmitted data block
was set to N = 2048 and 64-QAM was used. We assumed a
quasi-static Rayleigh multipath channel with an exponentially
decreasing power delay profile, where the average gain for the
lth path was given by

E
{
|hl|

}
= e

−
l

η , 0 ≤ l ≤ Lcir, (50)

with η being the channel degradation factor. In the simulation
study, we set η = 3 and Lcir = 9. The CIR coefficients hl

for 0 ≤ l ≤ Lcir remained constant during the communication
session. Note that the effective system throughput is given by

Effective throughput =
N

N + Ncp
, (51)

where the CP length Ncp ≥ Lcir = 9. The larger the data
block length N is, the more bandwidth efficient the system is.
We also tested N = 1024, and the results obtained, not shown
here, are very similar to the results obtained for N = 2048.

We used a full data block with K = N = 2048 training
samples in the joint estimation of the CV CIR coefficient
vector h and the CV parameter vector θ of the B-spline
model for Ψ( ) as well as the estimation of the CV parameter
vector α of the B-spline model for Ψ−1( ). The piecewise
quartic polynomial of Po = 4 was chosen as the B-spline
basis function, since Po = 4 is sufficient for most practical
applications. The number of B-spline basis functions was set
to NR = NI = 8, because 8 basis functions is sufficient
to partitioning or covering the input interval

[
− d(

√
M −

1), d(
√

M − 1)
]
. As explained in Section III-A, the B-spline
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TABLE II
EMPIRICALLY DETERMINED KNOT SEQUENCES.

Knot sequence for xR and xI -10, -9, -0.3, -0.1, -0.05, -0.02, 0, 0.02, 0.05, 0.1, 0.3, 9, 10
Knot sequence for wR and wI -20, -10, -3.5, -2 -0.5, -0.2, 0, 0.2, 0.5, 2, 3.5, 10, 20

TABLE III
IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL.

True Estimated parameters by Scheme 1 Estimated parameters by Scheme 2
Parameters Eb

‹

No = 4 dB Eb

‹

No = 10 dB Eb

‹

No = 4 dB Eb

‹

No = 10 dB
OBO = 3 dB OBO = 2 dB OBO = 3 dB OBO = 2 dB

h0 1 1 1 1 1
h1 −0.2145 − j0.1867 −0.2180 − j0.1814 −0.2180 − j0.1814 −0.2139 − j0.1871 −0.2141 − j0.1869
h2 0.0399 + j0.3675 0.0395 + j0.3678 0.0395 + j0.3678 0.0405 + j0.3675 0.0403 + j0.3675
h3 −0.0900 + j0.4053 −0.0923 + j0.4049 −0.0923 + j0.4049 −0.0899 + j0.4058 −0.0899 + j0.4056
h4 −0.0893 + j0.1287 −0.0863 + j0.1269 −0.0862 + j0.1269 −0.0893 + j0.1285 −0.0893 + j0.1286
h5 −0.1117 + j0.3035 −0.1145 + j0.3033 −0.1145 + j0.3033 −0.1118 + j0.3033 −0.1117 + j0.3034
h6 −0.0766 − j0.0264 −0.0741 − j0.0295 −0.0741 − j0.0295 −0.0768 − j0.0265 −0.0767 − j0.0265
h7 0.0623 − j0.0668 0.0584 − j0.0596 0.0584 − j0.0596 0.0627 − j0.0666 0.0625 − j0.0667
h8 0.0282 + j0.0324 0.0346 + j0.0306 0.0346 + j0.0306 0.0273 + j0.0323 0.0276 + j0.0323
h9 −0.0395 − j0.0291 −0.0405 − j0.0237 −0.0405 − j0.0237 −0.0396 − j0.0287 −0.0396 − j0.0289

(a) (b)

(c) (d)

Fig. 3. Comparison of the HPA’s nonlinearity Ψ( ) and the estimated nonlinearity bΨ( ): (a) Scheme 1 under OBO= 3 dB, Eb

‹

No = 4 dB; (b) Scheme 2
under OBO= 3 dB, Eb

‹

No = 4 dB; (c) Scheme 1 under OBO= 2 dB, Eb

‹

No = 10 dB; and (d) Scheme 2 under OBO= 2 dB, Eb

‹

No = 10 dB.
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model has the desired optimal robustness property. We also
tested Po = 3 and Po = 5 as well as NR = NI = 6 and
NR = NI = 10, the corresponding results obtained, not shown
here, are very similar to the results presented here. Owing to
the symmetric distribution of xR and xI , the knot sequence
for xR was set to be identical to that for xI . Similarly, the
knot sequences for wR and wI were chosen to be identical.
The empirically determined knot sequences covering different
HPA operating conditions are listed in Table. II. The system’s
signal-to-noise ratio (SNR) was defined as SNR = Eb

/
No,

where Eb was the average power of the input signal xk to the
HPA and No = 2σ2

e was the channel AWGN’s power.
For both Schemes 1 and 2, the identification experiments

were conducted under two combinations of the HPA operating
region and the SNR condition, which were set as OBO = 3 dB
with SNR = 4 dB and OBO = 2 dB with SNR = 10 dB,
respectively. The identification results of the linear subsystem
in the Hammerstein channel under these two experimental
conditions obtained by the two schemes are summarised in
Table III, while the modelling results of the HPA static
nonlinearity Ψ( ) by the B-spline neural network Ψ̂( ) for
the given simulation conditions achieved by the two schemes
are illustrated in Fig. 3. It can be seen from Table III that
the CIR estimates obtained by the two schemes achieve high
accuracy for the both system operating conditions. The results
of Fig. 3 clearly demonstrate the capability of the proposed
CV B-spline neural network to accurately model the HPA’s
static nonlinearity, where it can be observed that the maximum
deviation of the estimated phase response from the HPA’s

(a) (b)

(c) (d)

Fig. 4. Combined response of the true HPA and its estimated inversion
obtained under OBO = 3 dB and Eb/No = 4 dB: (a) combined amplitude
response by Scheme 1; (b) combined amplitude response by Scheme 2;
(c) combined phase response by Scheme 1; and (d) combined phase response
by Scheme 2.

true phase response is less than 0.05 even under the adverse
condition of OBO = 3 dB and SNR = 4 dB.

The combined responses of the HPA’s true nonlinearity and
its estimated inversion obtained by the two schemes under
the operating condition of OBO = 3 dB and SNR = 4 dB
are depicted in Fig. 4. The results of Fig. 4 demonstrate the
capability of the CV B-spline neural network to accurately
model the inversion of the HPA’s nonlinearity based only
on the pseudo training data. More specifically, the results of
Fig. 4 clearly show that the combined response of the HPA’s
nonlinearity Ψ(·) and its estimated inversion Φ(·) satisfies

Φ
(
Ψ(x)

)
≈ x, (52)

where x denotes the input to the HPA. That is, the magnitude
of the combined response is

∣∣Φ(
Ψ(x)

)∣∣ ≈ |x| and the phase

(a)

(b)

Fig. 5. Effectiveness of the proposed nonlinear SC-FDE scheme based on the
estimated CIR bh and the estimated HPA’s CV static nonlinearity as well as the
estimated inverse mapping for the HPA’s CV nonlinearity under: (a) OBO =
3 dB, Eb/No = 4 dB; and (b) OBO = 2 dB, Eb/No = 10 dB. The top
three plots in the two sub-figures (a) and (b) depict one transmitted QAM
symbol block x, its received signal block y, and the corresponding estimated
bx obtained by the linear SC-FDE. The bottom three plots in (a) and (b) show
the estimated bx obtained by the previous 2RV NN based SC-FDE [38] and the
current CVNN based SC-FDE using the two proposed schemes, respectively.
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shift of the combined response is approximately zero. In other
words, Φ(·) is an accurate inversion of Ψ(·).

The effectiveness of the proposed nonlinear SC-FDE
scheme based on the CV B-spline neural network approach
is illustrated in Fig. 5, where the nonlinear SC-FDE was con-
structed based on the estimated CIR ĥ and the inverse mapping
Φ( ) = Ψ̂−1( ) obtained under the two operating conditions.
The standard linear SC-FDE scheme is also illustrated in Fig. 5
for comparison. As can be seen clearly in Fig. 5, the linear
SC-FDE cannot compensate the nonlinear distortions of the
Hammerstein channel. In the recent work [38], we developed
a nonlinear SC-FDE approach which uses two real-valued
(RV) B-spline neural networks to model the HPA’s amplitude
response A( ) and phase response Υ( ), respectively, as well as
uses another RV B-spline neural network to model the inverse
mapping of the HPA’s amplitude response A−1( ). The com-
putational complexity of this two RV B-spline neural networks
(2RV NN) based approach is similar to our CV B-spline neural
network (CVNN) based approach. The equalisation results
obtained by the 2RV NN based SC-FDE scheme [38] are also
depicted in Fig. 5 for the purpose of comparison. From Fig. 5,
we observe that the current CVNN approach attains slightly
better equalisation than this previous 2RV NN approach. This
is expected. The CVNN based estimator with the LS cost
function adopted in this paper is the ML estimator (MLE)
under the assumption of the CV Gaussian noise. The MLE
based on the amplitude and phase response (AM/PM) systems
is very complicated, involving nonlinear transformations, and
this MLE needs nonlinear optimisation. In this paper, we
solve this nonlinear optimisation with an ALS procedure.
The 2RV NN based scheme developed in [38] is simpler, in
which the two LS cost functions are defined based on the
AM/PM responses separately, but the resulting model residuals
no longer follow Gaussian distribution. Consequently, the
estimator or the optimisation of [38] is no longer statistically
optimal, rather the scheme of [38] is only an approximation for
the purpose of computational convenience, which can cause
errors at extreme points. For example, an input data point
at very low amplitude will not contribute much to the cost
function in the CVNN model. But the same data point will
influence the RV NN based cost function a lot more if there
is a high phase error caused by the channel AWGN.

The achievable BER performance of the proposed CVNN
based nonlinear SC-FDE are plotted in Fig. 6 under the three
different operating conditions of the HPA, in comparison to
the BER performance obtained by the standard linear SC-FDE
and the 2RV NN based nonlinear SC-FDE [38]. Clearly, the
standard linear SC-FDE is incapable of compensating the non-
linear distortions of the Hammerstein channel and its attainable
BER performance is very poor even under the HPA operating
condition of OBO = 5 dB, as can be seen from Fig. 6. By
contrast, the proposed two CVNN based nonlinear SC-FDEs
based on the estimated CIR and the inverse mapping of the
HPA are able to compensate most of the nonlinear distortions
and attain a much better BER performance. Observe that the
two proposed CVNN based SC-FDEs outperform the 2RV
NN based SC-FDE of [38] under the adverse conditions of
OBO = 2 dB and 3 dB.

Fig. 6. The bit error rate performance comparison of the proposed two
CVNN based nonlinear SC-FDE schemes with the standard linear SC-FDE
as well as the 2RV NN based nonlinear SC-FDE [38].

V. CONCLUSIONS

A novel nonlinear equalisation scheme has been developed
for the complex-valued Hammerstein SC-FDE system, where
the nonlinear distortion is caused by the high power amplifier
at transmitter. We have proposed to use a CV B-spline neural
network for modelling the HPA’s CV static nonlinearity as well
as to use another CV B-spline neural network for modelling
the inverse mapping of the HPA’s nonlinearity. Our novel
contribution includes deriving two highly efficient alternating
least squares algorithms for estimating the CIR coefficients
and the parameters of the CV B-spline neural network that
models the static nonlinearity of the Hammerstein channel.
Moreover, as a natural byproduct of this Hammerstein channel
identification, the pseudo training data can be constructed to
effectively estimate the inverse B-spline neural network that
models the inverse mapping of the CV HPA nonlinearity. All
the three estimates, the CIR coefficients, the parameters of
the B-spline model and the parameters of the inverse B-spline
model, have the closed-form LS solutions. Simulation results
obtained have demonstrated that our proposed identification
procedure is capable of accurately estimating the CV Hammer-
stein channel as well as the inverse mapping of the channel’s
CV static nonlinearity. The results obtained also confirm the
effectiveness of the proposed nonlinear equaliser constructed
based on the estimated CIR and inverse B-spline mapping.
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