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Abstract

There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical
products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported
that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth
media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that
biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the
toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are
able to grow normally in the presence of silver nitrate at .20-fold the minimum inhibitory concentration (MIC) if Ag+ and
thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with
cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings
Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia
coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in
environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the
development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for
the effective design and testing of antimicrobial silver coatings.
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Introduction

In recent years, the emergence and persistence of bacterial

strains with resistance to multiple classes of antibiotics has led to

renewed interest in the antimicrobial properties of silver. There

has been a surge in the number of products on the market, both

domestic and clinical, that contain antimicrobial silver compounds

or nanoparticles. These include anti-odor fabric coatings, deodor-

ants, washing machine filters, laptop coatings, topical burn creams,

wound dressings and medical devices [1–3]. The development of

improved antimicrobial silver coatings and silver nanoparticles

continues to receive significant research funding worldwide [4–6].

A key aim of this research is to ensure that silver ions are released

at a sufficient rate and concentration to be effective as an

antimicrobial at levels that are safe for use. This is particularly

important for the development of medical devices, such as wound

dressings, catheters, bone implants and cardiovascular stents,

which are typically tested first in vitro (antimicrobial assays and

human cell culture) and later in vivo (animal models and clinical

trials). Topical silver solutions (0.5% silver nitrate) and creams (1%

silver sulfadiazine) have been used in the prevention and treatment

of wound infections for several decades, but these preparations

need to be reapplied frequently in order to penetrate wound tissues

due to rapid complexation of silver with wound exudates [7].

Modern advances in silver delivery methods have seen the

introduction of sustained release dressings such as the nanocrystal-

line wound dressing Acticoat (Smith & Nephew) and the hydrogel

dressing Aquacel-Ag (Convatec). These dressings should release

sufficient Ag+ to prevent or reduce bacterial colonization of the

wound bed and support efficient healing. Silver coatings on

indwelling medical devices have also been developed, such as the

Bardex IC Foley catheter (Bard Medical). These coatings should

release sufficient silver to reduce or prevent bacterial attachment

and formation of biofilms whilst inducing minimal damage to

surrounding human cells and tissue [8]. However, differences in

experimental conditions and procedures can make comparisons of

antimicrobial efficacy and human toxicity from in vitro and in vivo

experiments difficult [9–11]. A recent study by Greulich et al. used

identical growth conditions for bacteria and human cells and this

revealed that the antibacterial and cytotoxic properties of both

silver ions (silver acetate) and silver nanoparticles are within the

same range [10].

Several studies have shown the antibacterial and cytotoxic

properties of silver are affected by the assay conditions, including

the type of growth media and growth supplements such as fetal calf

serum [12]. Only a few studies have explored the chemistry behind

these differences. Liau et al. showed that compounds containing

thiol groups reduce the toxicity of silver to Pseudomonas aeruginosa

[13]. Similarly, equimolar concentrations of the thiol containing

amino acid cysteine reduce the toxicity of silver to Staphylococcus
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epidermidis [14]. The major blood protein serum albumin reduces

both the antimicrobial and cytotoxic properties of silver nanopar-

ticles embedded in hydrogels, although the mechanism of

inactivation is not known [15].

Whilst the majority of the thiol groups in the proteins of human

cells are in the oxidized state (forming disulphide bridges between

cysteine residues in proteins), the thiol groups of bacterial

cytoplasmic proteins are mostly in the reduced state due to the

redox conditions in the prokaryotic cytoplasm [16]. Animals and

bacteria have a thiol based antioxidant system that protects

cellular components against oxidative damage from reactive

oxygen species (ROS) and free radicals. In humans and many

Gram-negative bacteria, such as Escherichia coli and P. aeruginosa,

the system utilizes the tripeptide glutathione as the predominant

antioxidant. Glutathione is synthesized by specific enzymes from

the amino acids glutamate, glycine and cysteine [17,18]. Following

oxidation by ROS, the oxidized glutathione (GSSG) is recycled

back to the reduced form (GSH) by the enzyme glutathione

reductase using NADPH as an electron donor. In other bacteria

such as S. aureus and Bacillus spp. that cannot synthesize

glutathione, the predominant cellular antioxidant is typically a

low molecular weight compound synthesized from cysteine

[19,20].

In this study we present the first detailed analysis of the extent to

which biologically relevant compounds such as glutathione,

cysteine and human blood components affect toxicity of silver

ions to clinically relevant pathogenic bacteria in comparison to

human dermal fibroblasts (skin cells). We used the notorious

nosocomial opportunistic pathogens S. aureus and P. aeruginosa in

these studies as they are frequently exposed to silver-coated

dressings and catheters in clinical settings. Our findings have

important implications for the future deployment of silver as an

antimicrobial agent in environments exposed to biological tissue or

secretions.

Materials and Methods

Chemicals and Reagents
Silver nitrate, sodium nitrate, GSH, GSSG, amino acids,

human serum albumin and human serum were purchased from

Sigma Aldrich and stock solutions were prepared fresh for each

assay in sterile Milli-Q water, filter sterilized at 0.22 mm (Millex-

GS, Millipore). Propidium iodide and NucBlue (a cell permeable

form of Hoechst 33347) were diluted to the recommended working

concentration in Dulbecco’s phosphate buffered saline (DPBS +
calcium, magnesium, glucose and pyruvate), all purchased from

Life Technologies.

Bacterial growth and microbiological assays
Escherichia coli K12, P. aeruginosa PA01 [21], S. aureus MSSA476

and MRSA252 [22] were recovered from frozen (280uC) glycerol

(15% v/v) stocks on Luria Bertani (LB) agar plates at 37uC for 24

hr. Single colonies were grown in 10 mL LB broth, 250 rpm, at

37uC for 16–18 hr. Bacteria were then sub-cultured (1:100) in

10 mL LB broth, 250 rpm, at 37uC for 2–5 hr to exponential

phase (OD600 0.4–0.6). Cultures were adjusted to OD600 = 0.3

and diluted in LB (1:50) prior to use in microbiological assays

unless otherwise stated.

Stock solutions of chemicals were diluted in sterile Milli-Q water

at 506 the concentration desired in the assay. These were then

diluted 1:25 in LB broth, human serum albumin 100 mg/mL

dissolved in LB, or 100% human serum where stated. 100 mL of

this 26 solution was aliquoted into the appropriate wells of a 96-

well flat-bottom transparent plate (Greiner) with 100 mL of

bacterial culture prepared as described above (equivalent to

,56105 bacteria/well) in technical duplicates, with three biolog-

ical replicates for each strain. Microplates were incubated in a

Fluostar Omega plate reader (BMG) for 24 hr, with continuous

orbital shaking at 300 rpm, and absorbance measurements taken

at 600 nm every 6 min (20 flashes/well/cycle). The optical density

of each individual culture at 16 hr or 24 hr was plotted in

OriginPro8 (OriginLab) and Sigmoidal curves fitted using the

Boltzman function. Fitted values for each individual curve were

used to calculate the mean minimum inhibitory concentration

(MIC).

To test the effect of R-SH on the antimicrobial activity of

wound dressings, 20 mL molten LB agar (42uC) was inoculated

with approximately 16105 bacterial cells and 200 uL of the

appropriate concentration of GSH, mixed well and poured into a

standard 90 mm Petri dish. For human serum tests, 2 mL molten

LB agar (42uC) was mixed with 2 mL human serum and

approximately 26104 bacterial cells and poured into wells in a

6-well tissue culture dish (Corning). Squares (1.25 cm61.25 cm) of

Aquacel (Convatec), Aquacel-Ag (Convatec) and Acticoat (Smith

& Nephew) dressings were applied to the surface of the solidified

agar. Plates were incubated for 24 hr at 37uC and the zones of

inhibition surrounding the dressings were measured (n = 3).

Statistical significance was calculated using Student’s t-test.

Human cell culture and cytotoxicity assays
Primary adult human dermal fibroblasts were purchased from

the American Type Culture Collection (PCS-201-012). All

incubations were at 37uC, 5% CO2/95% air in a humidified

incubator. Cells were cultured in 75 cm2 tissue culture flasks in

Medium 106 supplemented with low serum growth supplement

(Life Technologies) to a confluence of ,80% for up to 8 passages.

Cells were detached from tissue culture flasks using trypsin-EDTA

and trypsin neutralizer solution as per the manufacturer’s protocol

(Life Technologies).

For cytotoxicity tests, cells were seeded at 56103 cells/cm2 in

24-well dishes with 500 mL media per well and grown to a

confluence of ,80% with media replaced every 24 hr for 2–3

days. Stock solutions of silver nitrate and GSH were diluted 1:50 in

Medium 106 supplemented with low serum growth supplement

(NB. the pH of the culture medium was not affected). Plates were

incubated for 4 or 24 hr and media was replaced with 500 mL

propidium iodide solution and incubated for 20 min. This solution

was then replaced with 500 mL NucBlue solution and incubated

for 20 min. Micrograph images were captured using an EVOS fl

digital inverted microscope (Advanced Microscopy Group) with

the light microscope, DAPI light cube (excitation at 357 nm,

emission at 447 nm, to detect NucBlue stain) and RFP light cube

(excitation at 531 nm, emission at 593 nm, to detect propidium

iodide) at 620 magnification. Stained nuclei were counted in

captured images using ImageJ [23] with means and standard

errors of the mean calculated from two technical replicate images

per well and four biological replicates per condition. The

percentages of viable cells (ratio of cells stained with propidium

iodide vs. NucBlue) were plotted in OriginPro8 (OriginLab) and

Sigmoidal curves fitted using the Boltzman function. Fitted values

representing a 50% reduction in viability for each individual curve

were used to calculate the mean cytotoxic concentration (CC50).

Quantification of silver
Overnight cultures of S. aureus were sub-cultured in 50 mL LB

broth in sterile 250 mL Erlenmeyer flasks and grown for 2–3 hr at

Inactivation of Silver Toxicity: A Cautionary Tale
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37uC with aeration (250 rpm shaking), to OD600 0.5–0.8. 10 mL

aliquots of culture were diluted 1:2 into LB with or without

AgNO3 and with or without GSH to a final concentration of

1 mmol dm23. Cultures were incubated for 1 hr at 37uC, 250 rpm

and cells harvested by centrifugation at 4uC. The supernatant was

discarded, cell pellets were washed 36 in 1 mL PBS and re-

suspended in 200 mL 70% ethanol. Samples were boiled at 90uC
for 1 hr to lyse the cells and dry the pellets. Pellets were weighed,

re-suspended in 3 mL nH20 and transferred to digestion tubes.

10.5 mL concentrated hydrochloric acid and 3.5 mL concentrated

nitric acid was added to each sample to cold digest overnight.

Samples were heated to 140uC for 2.5 hr, allowed to cool, and

filtered through Cu impregnated filter papers (prepared by soaking

Whatman no. 540 filter paper in 0.1 M copper nitrate and rinsing

36 in nH2O). Samples were made to volume in 100 mL

volumetric flasks with 0.5 M nitric acid and diluted 1:2 with

nH20 prior to analysis by ICP-OES. Three blank samples were

prepared without cell pellets as negative controls to set the

detection limit.

Results

Antibacterial activity of silver nitrate in different
conditions

The pathogenic clinical isolates S. aureus MSSA476 and P.

aeruginosa PA01 were grown overnight in LB broth with a range of

concentrations of silver nitrate, which readily dissolves in culture

media to Ag+ and NO3
2. Each increase in the concentration of

silver nitrate below the minimum inhibitory concentration (MIC)

resulted in a prolonged lag phase (i.e. the time between the

inoculation of bacteria and the onset of exponential growth) for

both strains, but once growth had initiated the growth rate was

then comparable to that in LB (Fig. 1A and 2A). The MIC of silver

nitrate in LB broth was 33 mmol dm23 to S. aureus MSSA476,

13 mmol dm23 to P. aeruginosa PA01 and 37 mmol dm23 to E. coli

K12, at 16 hr (Table 1). A methicillin resistant S. aureus strain,

MRSA252, was also tested and the MIC was equivalent to that of

MSSA476. We found that the MIC was not affected by the

number of bacteria in the starting inoculum as 10-fold dilutions of

bacteria from 16106 to 16102 bacteria per well resulted in

comparable MIC values.

Figure 1. The effect of silver nitrate on the growth of Staphylococcus aureus MSSA476 in different media. AgNO3 was added to growth
media at the indicated concentrations (mmol dm23) in (A) LB; (B) LB + 50 mg/mL HSA; (C) LB + 50% human serum (v/v); (D) LB + 1 mmol dm23 GSH.
GSH, reduced glutathione; HSA, human serum albumin (the major blood protein). Error bars = SD, n = 3.
doi:10.1371/journal.pone.0094409.g001
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Coatings on medical devices such as bandages and catheters

contact human blood and tissue. To assess whether the

components of blood affect the antimicrobial efficacy of silver

ions, the MIC of silver was determined in LB supplemented with

human serum (blood depleted of cells and clotting factors) and

human serum albumin (HSA, the major blood protein present in

serum). Both of these blood components increased the MIC of

AgNO3 to S. aureus (Figure 1B and 1C) and P. aeruginosa (Figure 2B

and 2C), with serum being more potent than HSA alone indicating

the presence of additional components within serum that

inactivate Ag+ toxicity. Note that only 50% serum was used in

this experiment so the protective effect of whole blood is

Figure 2. The effect of silver nitrate on the growth of Pseudomonas aeruginosa PA01 in different media. AgNO3 was added to growth
media at the indicated concentrations (mmol dm23) in (A) LB; (B) LB + 50 mg/mL HSA; (C) LB + 50% human serum (v/v); (D) LB + 1 mmol dm23 GSH.
GSH, reduced glutathione; HSA, human serum albumin (the major blood protein). Error bars = SD, n = 3.
doi:10.1371/journal.pone.0094409.g002

Table 1. The effect of biologically relevant compounds on the minimum inhibitory concentration (MIC) and cytotoxic
concentration (CC50) of silver nitrate to bacteria and human cells.

Growth conditions P. aeruginosa mmol dm23 S. aureus mmol dm23 E. coli mmol dm23 Human Fibroblasts mmol dm23

Media only 1362 3363 3765 2361

Media + HSA 50 mg/ml 4462 158610 50610 ND

Media + human serum 50% v/v 8167 174617 ND ND

Media + 1 mmol dm23 GSH 112669 1121680 1020665 982672

The MIC of AgNO3 to P. aeruginosa, S. aureus and E. coli was determined in Luria-Bertani broth and the CC50 of AgNO3 to primary human dermal fibroblasts in Medium
106 supplemented with low serum growth supplement (6 SD, n$3). GSH, reduced glutathione; HSA, human serum albumin; ND, Not determined (conditions do not
support growth).
doi:10.1371/journal.pone.0094409.t001
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potentially greater in vivo. The inclusion of 1 mmol dm23 GSH in

LB enabled S. aureus, P. aeruginosa and E. coli to grow in the presence

of up to, but not in excess of, 1 mmol dm23 AgNO3 (Table 1). The

lag phase and growth rate in LB with 1 mmol dm23 AgNO3 +
1 mmol dm23 GSH was remarkably similar to that in LB with

1 mmol dm23 GSH alone (Figure 1 and 2) indicating GSH causes

complete loss of silver ion toxicity in a 1:1 molar ratio. The addition

of 1 mmol dm23 cysteine to LB showed the same protective effect as

GSH enabling normal growth up to, but not in excess of, 1 mmol

dm23 AgNO3 (data not shown). This suggests that silver ions bind to

glutathione and cysteine (which both contain one thiol group) in a

1:1 ratio and that these complexes are not toxic to bacteria. In

contrast, the addition of glutamate, glycine, methionine, histidine or

cystine (cysteine disulphide) at 1 mmol dm23 did not rescue growth

of either P. aeruginosa or S. aureus at 200 mmol dm23 AgNO3 in LB.

The addition of 1 mmol dm23 GSSG was toxic (data not shown).

We speculate that the addition of excess GSSG would lead to

depletion of the cellular pool of reductant as the bacteria attempt to

convert it back to GSH. The addition of 1 mmol dm23 sodium

nitrate to LB did not affect the growth of the bacterial strains

compared to LB alone, indicating NO3
2 does not influence the

toxicity of AgNO3.

After performing these assays, the surplus media was left on the

lab bench and we noted that the LB + AgNO3 solutions became

increasingly dark brown over time, but this was prevented by the

addition of 1 mmol dm23 GSH (Figure 3) or cysteine and these

solutions remained clear for over 3 months.

Antibacterial activity of silver-coated dressings in
different conditions

Silver coated wound dressings come into contact with biological

secretions within the wound bed. The antibacterial properties of

Figure 3. Photochemical reduction of Ag+ in LB medium. AgNO3 was added to (A) LB and (B) LB + 1 mmol dm3 GSH at (i) 0 mmol dm3, (ii)
0.75 mmol dm3, (iii) 1.0 mmol dm3, (iv) 1.25 mmol dm3. GSH, reduced glutathione.
doi:10.1371/journal.pone.0094409.g003

Table 2. The effect of biologically relevant compounds on the antimicrobial efficacy of Aquacel-Ag (Convatec) wound dressings.

Growth conditions P. aeruginosa mm S. aureus mm E. coli mm

LB agar only 8.760.6 3.060.0 4.360.6

LB agar + 0.1 mmol dm23 GSH 6.360.6 * 2.060.0 2.560.5

LB agar + 0.5 mmol dm23 GSH 5.260.3 * 0.260.3 * 0.360.3 *

LB agar + 1 mmol dm23 GSH 1.760.6 * 0.060.0 * 0.060.0 *

LB agar + human serum 50% v/v 2.360.6 * 0.860.3 * ND

The average zone of inhibition (mm) surrounding 1.2561.25 cm dressing samples applied to bacterial lawns. 6 SD, n = 3, * denotes a significant difference from LB agar
only control (Student’s t-test P,0.01). GSH, reduced glutathione; LB, Luria-Bertani; ND, Not determined (conditions do not support growth).
doi:10.1371/journal.pone.0094409.t002

Table 3. The effect of biologically relevant compounds on the antimicrobial efficacy of Acticoat (Smith & Nephew) wound
dressings.

Growth conditions P. aeruginosa mm S. aureus mm E. coli mm

LB agar only 9.061.0 3.060.0 4.360.6

LB agar + 0.1 mmol dm23 GSH 7.360.6 2.260.3 * 2.560.5

LB agar + 0.5 mmol dm23 GSH 5.860.3 * 0.360.3 * 0.860.3 *

LB agar + 1 mmol dm23 GSH 4.360.6 * 0.060.0 * 0.060.0 *

LB agar + human serum 50% v/v 2.360.6 * 1.760.3 * ND

The average zone of inhibition (mm) surrounding 1.2561.25 cm dressing samples applied to bacterial lawns. 6 SD, n = 3, * denotes a significant difference from LB agar
only control (Student’s t-test P,0.01). GSH, reduced glutathione; LB, Luria-Bertani; ND, Not determined (conditions do not support growth).
doi:10.1371/journal.pone.0094409.t003
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wound dressings can be tested in vitro by measuring the zone of

inhibition surrounding a test sample. Silver ions released from

dressings diffuse through the agar and prevent bacterial growth

where the concentration exceeds the MIC. Aquacel-Ag (Table 2)

and Acticoat (Table 3) dressings showed similar efficacies against

the test bacteria in LB agar, with P. aeruginosa displaying the largest

zone of inhibition as expected based on the greater sensitivity of

this species to silver ion toxicity (Table 1). No zones of inhibition

were observed for non-silver Aquacel dressings confirming Ag+

release is solely responsible for the inhibition of growth caused by

Aquacel-Ag and Acticoat. Increasing the concentration of GSH in

the LB agar caused a corresponding reduction in the size of the

zone of inhibition caused by both Aquacel-Ag and Acticoat. The

inclusion of human serum (50% v/v) in the agar significantly

reduced the size of the zone of inhibition to P. aeruginosa and S.

aureus (Student’s t-test P,0.001). Our results confirm that the

antimicrobial effectiveness of these dressings is significantly

reduced by the presence of extracellular R-SH and human serum

(Table 2 and 3).

Cytotoxicity of silver towards primary human fibroblasts
Fibroblasts within the dermal layer of the skin are one of the

most important cell types involved in wound healing. This is

therefore the cell line of choice for assessing cytotoxicity of silver in

wound dressings and medical devices. Primary cells are directly

acquired from donor tissue and have a limited lifespan in cell

Figure 4. Micrographs of primary adult human dermal fibroblasts exposed to silver nitrate. Cells were exposed to AgNO3 at the
indicated concentration for 24 hr: (A) 0 mmol dm23 AgNO3; (B) 10 mmol dm23 AgNO3; (C) 25 mmol dm23 AgNO3; (D) 750 mmol dm23 AgNO3 +
1 mmol dm23 GSH; (E) 1 mmol dm23 AgNO3 + 1 mmol dm23 GSH. Images were captured for the same cells stained with i) NucBlue (Hoechst 33347),
which stains all cell nuclei and ii) Propidium iodide, which stains nuclei of dead cells; (iii) Light microscope images show changes in cell morphology.
GSH, reduced glutathione. Scale bar = 200 mm
doi:10.1371/journal.pone.0094409.g004
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culture. These cells are therefore preferred for cytotoxicity studies

as they more closely reflect host responses in vitro than

immortalized cell lines that may have changed significantly during

routine culture in the laboratory.

The cytotoxic concentration (CC50) of AgNO3 to primary

human dermal fibroblasts was 23 mmol dm23, which is in the same

range as the MIC to the bacteria tested in this study (Table 1).

Exposure of cells to 10 mmol dm23 AgNO3 for 24 hours had no

visible effect on cell morphology (cells remained elongated) or

viability (cell nuclei stained with NucBlue, but not propidium

iodide) and cells maintained a confluent, adherent monolayer

(Figure 4B). In contrast, cells exposed to 25 mmol dm23 AgNO3

were rounded (as opposed to elongate) and had begun to detach

from the culture plate. The nuclei of the majority of these cells

stained with propidium iodide indicating compromised cell

membrane integrity (Fig 4Cii) equating to a 60% and 95%

reduction in viability at 4 hr and 24 hr respectively (Figure 5A).

Furthermore, the nuclei of the cells stained with propidium iodide

showed signs of nuclear condensation, which is indicative of

apoptosis or ‘‘programmed cell death’’ (Figure 6). The addition of

1 mmol dm23 GSH to the cell culture medium increased the

CC50 of AgNO3 to 982 mmol dm23 after 24 hr (Table 1,

Figure 5B). The addition of 1 mmol dm23 sodium nitrate to the

cell culture medium had no effect on cell morphology or viability

relative to controls after 24 hr, indicating nitrate does not

influence the cytotoxicity of AgNO3 (data not shown).

Mechanism of thiol protection
To determine how extracellular R-SH reduce the toxicity of

Ag+ we used ICP-OES to analyse the silver content of S. aureus

exposed to 1 mmol dm23 AgNO3 with and without the inclusion

of an equimolar concentration of GSH in LB broth. Ag was

detected in cells exposed to AgNO3 only at a concentration of

326662 fg Ag/cell and 62.865.5 mg Ag/mg cell dry weight (6

SEM, n = 4). In contrast, Ag was not detectable in cells exposed to

LB only and AgNO3 + GSH. We therefore conclude that

extracellular R-SH prevent Ag+ from binding to cells and this

inactivates Ag+ toxicity.

Discussion

Our findings prove that reduced thiol groups (R-SH) in the

extracellular environment markedly reduce the antimicrobial

efficacy and cytotoxicity of silver ions. When Ag+ and R-SH are

added in a 1:1 ratio the reaction of Ag+ with R-SH prevents Ag+

from interacting with cells thereby inactivating silver toxicity. GSH

is the predominant low molecular weight thiol in humans, present

in all cell types at a concentration of between 1 and 10 mmol

Figure 5. The cytotoxicity of silver nitrate to human skin cells. Viability of primary adult human dermal fibroblasts exposed to AgNO3 for 4 h
or 24 h in (A) Medium 106; (B) Medium 106+1 mmol dm23 GSH. Sigmoidal curves were fitted using the Boltzman function in OriginPro8 (OriginLab).
Error bars = SEM, n = 4. GSH, reduced glutathione.
doi:10.1371/journal.pone.0094409.g005

Figure 6. Nuclear condensation in human skin cells exposed to the minimum cytotoxic concentration of silver nitrate. Primary adult
human dermal fibroblasts were exposed to 20 mmol dm23 AgNO3 for 4 hr. Images were captured for the same cells: (A) Light microscope image
shows cellular morphology; (B) stained with NucBlue (Hoechst 33347), which stains all cell nuclei; (C) stained with propidium iodide, which stains
nuclei of dead cells (NB. areas of nuclear condensation are indicative of apoptosis); (D) Composite image of A, B and C. GSH, reduced glutathione.
Scale bar = 50 mm.
doi:10.1371/journal.pone.0094409.g006
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dm23 and in blood at approximately 1 mmol dm23 [24,25]. Our

results show the addition of 1 mmol dm23 GSH results in

complete loss of antibacterial activity of Aquacel-Ag (Convatec)

and Acticoat (Smith & Nephew) dressings to both S. aureus and E.

coli in vitro. Given recent evidence that the toxicity of silver

nanoparticles is dependent on the rate of dissolution of free Ag+

[6,26,27], extracellular R-SH will similarly reduce their antibac-

terial efficacy. The negative effect of complex-formation between

biological R-SH groups and Ag+ should be considered in the

future development of all novel silver coatings and nanoparticles.

In vitro testing of silver-coated dressings and medical devices should

be performed in biologically relevant media as the concentration

of R-SH in standard bacterial culture media is typically much

lower than in human blood and tissue. This is particularly relevant

to the testing of sustained-release devices as the presence of R-SH

in biological tissues could significantly affect the rate of dissolution

of Ag+ and the duration of antimicrobial efficacy. Another

consideration is that in vitro tests are typically performed in closed

systems, which could exaggerate the longevity of antimicrobial

action due to saturation of R-SH with Ag+. It seems likely that the

constant replenishment of biological fluids containing R-SH would

continue to limit the antimicrobial efficacy of Ag+ released from

dressings/devices in vivo. Furthermore, the concentration and rate

of Ag+ dissolution from antibacterial coatings on medical devices

and wound dressings should be carefully controlled to minimize

cytotoxicity towards dermal fibroblasts and other human cell types

because this could reduce the rate of wound healing, as suggested

elsewhere [28,29]. Indeed, a recent Cochrane systematic review of

the use of topical silver including silver sulphadiazine in the

treatment of burns suggested that there is insufficient clinical

evidence to support the hypothesis that such dressings do indeed

promote healing or prevent infection [30].

Whilst it was not possible to use identical culture conditions for

the bacterial and human cell assays in this study, we found that the

toxicity of AgNO3 to both bacteria and human cells was within the

same range, which is in agreement with the results of Greulich

et al. [10]. The toxicity of silver is attributed to multiple factors

including cell membrane damage, inhibition of respiratory

enzymes, perturbation of metal ion homeostasis and generation

of ROS that damage cellular components such as DNA and lipids.

Several studies have demonstrated that the major target site(s) of

Ag+ in Gram-negative bacteria are intracellular. Firstly, low-level

silver resistance by adaptation of E. coli to increasing concentra-

tions of AgNO3 was achieved by both decreased outer membrane

permeability (due to a decrease in porin proteins that form

membrane channels in the outer membrane) and active efflux of

Ag+ from the cell [31]. Secondly, all known high-level silver

resistance mechanisms in bacteria involve efflux pumps [32,33].

Only one silver efflux system has been characterised at the

molecular level to date and is encoded by the sil genes (silRSE

silCBA silP) on the pMG101 plasmid of Salmonella. This system

utilises a periplasmic Ag+-binding protein (SilE), which surprisingly

lacks cysteine residues and instead coordinates 10 silver ions per

polypeptide via 10 histidine residues [34]. The binding of silver

ions to exposed thiol groups within a cell would have two

complementary negative effects. Firstly, it might impair the

functionality of any biomolecules to which it became bound and

secondly it would reduce the cell’s ability to neutralize natural

ROS by depleting the effector molecules of the homeostatic

antioxidant system such as GSH and cysteine. This would explain

why silver ions often induce a measurable increase in intracellular

ROS in both bacterial [35] and human cells [36–38], but do not

directly generate ROS via Fenton-type reactions [35]. It should be

noted that bacterial cells are much smaller than human cells and

therefore contain less total GSH (or alternative low molecular

weight thiols) per cell. Human cells also produce several forms of

the cysteine-rich protein metallothionein (MT) that protect against

oxidative damage and metal-ion toxicity [39,40]. MT gene

expression is induced by treatment with sub-inhibitory concen-

trations of silver, suggesting a role in cytoprotection against this

specific stress [41,42]. Furthermore, the majority of cytoplasmic

proteins in a bacterium are maintained in the reduced state [16]

and should therefore be more susceptible to Ag+ binding. With this

in mind, it is surprising that bacterial cells are not much more

sensitive to Ag+ than human cells. One possible explanation is that

the most sensitive ‘‘targets’’ in bacteria and human cells lay in

common essential biological processes or pathways. Xu et al.

recently showed that silver specifically inhibits the activity of

several dehydratases in E. coli, leading to destruction of the

exposed 4Fe-4S clusters and the release of iron ions [43], which

would generate intracellular ROS via Fenton-type reactions. In

eukaryotic cells this would cause mitochondrial damage and

trigger apoptosis, as observed in response to silver treatment

[37,42,44,45]. Whilst the exact mechanisms of silver toxicity are

still unclear, this study has shown that extracellular thiols

inactivate Ag+ toxicity to both prokaryotic and eukaryotic cells.

By understanding the mechanisms of silver toxicity and the

inactivation of this by thiols, it may be possible to design silver-

based antibacterial coatings with improved efficacy and reduced

cytotoxicity in vivo.

Conclusions

In conclusion, we have demonstrated that biologically relevant

compounds that contain reduced thiol groups such as GSH and

cysteine, and other human blood components, significantly reduce

the toxicity of silver ions to clinically relevant bacteria and human

dermal fibroblasts (skin cells). These findings have important

implications for the development and testing of novel antimicro-

bial coatings, particularly those intended for use in environments

exposed to biological tissues or secretions such as wound dressings

and indwelling medical devices.
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