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a. 2-signal detection and attribution results9

Figure S1 shows the results of a 2-signal detection and attribution analysis for combi-10

nations of anthropogenic aerosol and natural forcings (AA&NAT) and greenhouse gas and11

natural forcing (GHG&NAT) as described in the main the paper.12

b. Spatial precipitation patterns in NHSM region13

Figure S2 shows spatial linear trend patterns for MJJAS precipitation for observations14

(GPCC) and the multi-model mean for each individual forcing. The spatial pattern of ALL15

and ANT are more consistent with the AA than the GHG multi-model mean. GHG multi-16

model mean shows increasing precipitation over most of the NHSM region, while the AA17

multi-model means shows mostly drying trends. The observed trends show an increase in18

precipitation over the whole period over South America and parts of Asia, while the ALL19

multi-model mean shows a decrease in precipitation in these regions. Conversely, in parts of20

Africa, the ALL multi-model mean has increasing precipitation while the observations show21

an overall decrease, though the models do not tend to show much consistency in the sign of22

the trends (less than 2/3 of simulations have trends of the same sign). However the timeseries23

for the observed mean precipitation in the NHSM region (Figs S3-S6) show that precipitation24
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decreases from 1951, reaches a minimum in the mid-1980s and then begins to recover, with25

the observed recovery greater in Asia than Africa, a behaviour not well captured by a linear26

trend. While ALL seems to capture the general decrease in precipitation from the 1950s to27

1980s, during the 1990s, it tends to underestimate the recovery over Asia and overestimate28

the recovery over Africa.29

The role of the indirect aerosol effect is investigated by plotting the multi-model mean30

trends and timeseries for the ALL forced models that included both the indirect and direct31

effects and the models that include the direct effect only (Figs. S2 and S3). The mean32

precipitation change for the whole region is largely the same for both ensembles. However33

the spatial trend patterns show interesting differences, particularly over Asia. The models34

that include the indirect effect tend to simulate drier conditions over India and central China35

than the models that include the direct effect only. These results suggest that the relative36

influence of the indirect and direct effects on precipitation in the models varies between37

regions.38

The spatial trend patterns are also plotted for 1951-1985 and 1985-2005 (Figure S7 and39

S8). The spatial trend pattern for 1951-1985 is similar for the ALL forced multi-model40

mean and observations, with both showing largely decreasing precipitation from the 1950s41

to mid-1980s. The ANT and AA multi-model means also show a similar pattern, suggesting42

that aerosols are at least in part responsible for this decrease. However the increase in43

precipitation in Africa from 1985-2005 is overestimated by the ALL forced multi-model,44

while the pattern of increasing precipitation over East Asia and decreasing precipitation45

over India is not reproduced by the ALL forced multi-model mean, though the AA forced46

multi-model mean does gives a similar pattern. There is, however, little consistency between47

ALL forced simulations on the sign of the trends from 1985-2005.48

To highlight the variability between simulated trends from 1951-2005, we calculate an49

error score, Sk, for each individual model simulation compared to observations using50
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Sk = rmse + N
err

(1)

where rmse is root mean square error of simulated trends with respect to the observations51

and N
err

is the number of grid boxes where the sign of the trend disagrees with observations.52

Both rmse and N
err

are calculated as a fraction of the mean of values for all simulations.53

Figures S9 and S10 show the 1951-2005 trends for the 6 simulations with the most and least54

agreement with the observations. Note this is not an assessment of model performance, rather55

the aim is to demonstrate the variability of the trend patterns between simulations, hence56

we use individual model simulations, not model ensembles. No single simulation perfectly57

reproduces the observed trends in all regions (shown in Figure S2), however the observed58

increase/decrease in precipitation in each region is simulated by more than one of the ’best’59

simulations. The ’worst’ simulations all fail to fully reproduce the decrease in precipitation60

over Africa, but do tend to capture the drying trends over east Asia. The multi-model mean61

trends for an ensemble of ALL forced models that uses only one simulation per modelling62

group (as opposed to all simulations available used in the main results), shows that the trend63

patterns do not appear to be biased to any one model or modelling centre (not shown).64

c. Sensitivity of detection and attribution results65

The inconsistency in the observed and model spatial trend patterns over the period 1951-66

2005 does not seem to affect the detection and attribution results for the mean temporal67

signal for the whole region. This may be due to a coincidental cancellation of the positive68

and negative changes in different regions. However, it is more likely that while the models69

capture most of the temporal variation over this period, the recent increase in precipitation70

over many regions is not captured correctly by the models. This may be because the observed71

changes are simply due to internal climate variability, because the forcings in the models72

are not consistent with reality, because of uncertainty in the observations or a combination73

3



of these factors. To check the sensitivity of the results to the exclusion of different regions,74

the analysis was also repeated excluding first South America (supplementary Figure S11(a)),75

then Africa (supplementary Figure S11(b)) and finally Asia (supplementary Figure S11(c)).76

In each case the results are broadly similar to those for the whole region. The analysis77

was also repeated to verify whether the results were sensitive to the inclusion of the mid-78

latitude NHSM region. The 3-signal analysis shows similar detection of AA forcing when79

the mid-latitudes NHSM regions are included (Figure S11(d)).80

The detection and attribution analysis was also repeated using the same model ensemble81

for each pair of forcings in the 2-signal analysis (Figs. S12(a)-(d)) and for the GHG, NAT82

and AA forcing in the 3-signal analysis (Figure S12(e)). The detection results for different83

forcings are identical to the results using all available models and are therefore not sensitive84

to the model ensemble (see Zhang et al. (2007)).85

Linearity of the individual forcings86

In the above the analysis, we assumed that the combined influence of all external forcings87

can be well approximated by a linear combination of individual forcings, and that by adding88

the contribution of GHG, AA and NAT, we can reproduce the changes in precipitation from89

the ALL forced simulations (i.e. ignoring the influence of other forcings such as land use90

change). To check if this is a reasonable assumption we compare the ALL multi-model mean91

to the sum of GHG, NAT and AA multi-model means (Figure S13(a)), using the method de-92

scribed in Schurer et al. (Schurer et al. 2014). Subtracting the sum of GHG+NAT+AA from93

ALL, gives the residual shown in Figure S13(b). If the forcings add linearly, then the residual94

and the internal variability should be consistent. The internal variability is calculated from95

the samples of noise derived from the ALL forcing ensemble as described in the methods96

section. The standard deviation is calculated for each member of the noise ensemble and97

as model simulations have different internal variability, we use the mean standard deviation98
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for the whole ensemble to check the consistency of the residual with internal variability. If99

the residual is within 2 standard deviations of the internal variability, then we can say that100

the assumption of linearity has not been disproven. The results show that the assumption101

of linearity has not been violated.102

d. Observational versus model variability103

To check that the variability in the models is consistent with the observed variability,104

the variance for MMJAS precipitation was calculated for South America, Africa and Asia,105

for each observational dataset and every simulation in the ALL ensemble. Figure S14 shows106

the range of the ratio of the variance between the observational datasets and each individual107

model simulation. The results for both the unsmoothed and 9-year smoothed precipitation,108

show that the models tend to underestimate the variance in the observations, though in109

most cases a variance ratio of 1 is within the 90% confidence interval. Only for Africa, for110

the 9-year smoothed data, does the 90% confidence interval exceed 1. However doubling the111

model variance, as done when calculating the noise samples for the detection and attribution112

analysis, gives a variance ratio of 1 within the 90% confidence interval. Note that the113

detection and attribution results remain valid if the African monsoon region is excluded114

(Figure S11).115

116
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Table 1. List of models and numbers of simulations used in this analysis (Taylor et al.

2011).

InstituteID ModelName ALL ANT GHG AA NAT IND + DIR DIR

BCC BCC-CSM1.1 4 1 4
CCCMA CanESM2 5 5 4 5 5
CMCC CMCC-CESM 1 1
CMCC CMCC-CMS 1 1
CMCC CMCC-CM 1 1

CNRM-CERFACS CNRM-CM5 5 5 5 5
EC-EARTH EC-EARTH 4

FIO FIO-ESM 1
NASA GISS GISS-E2-H 5 4 5 1 5 5
NASA GISS GISS-E2-H-CC 1 1
NASA GISS GISS-E2-R 5 2 5 1 5 5

MOHC HadGEM2-ES 4 4 4 4
MOHC HadGEM2-CC 1 1
MOHC HadCM3 5 5
INM INM-CM4 2
IPSL IPSL-CM5A-LR 4 3 5 1 4
IPSL IPSL-CM5A-MR 1 3 3 1
NCC NorESM1-M 3 1 1 1 3
NCC NorESM1-ME 1 1

CSIRO-QCCCE CSIRO-Mk3.6.0 5 5 5 5 5 5
CSIRO-BOM ACCESS1.0 1 1
NOAA GFDL GDFL-ESM2G 5 5
NOAA GFDL GDFL-ESM2M 2 1 1 2
NOAA GFDL GFDL-CM3 5 3 3 3 3 5

MIROC MIROC5 3 3
MIROC MIROC-ESM 3 1 1 3
MIROC MIROC-ESM-CHEM 1 1 1 1
MPI-M MPI-ESM-LR 3 3
MRI MRI-CGCM3 5 1 1 5

NCAR CCSM4 5 3 3 5
NSF-DOE-NCAR CESM1(BGC) 2 2
NSF-DOE-NCAR CESM1(CAM5) 3 3
NSF-DOE-NCAR CESM1(CAM5.1,FV2) 4 2 2 4
NSF-DOE-NCAR CESM1(FASTCHEM) 3 3
NSF-DOE-NCAR CESM1(WACCM) 1 1
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List of Figures127

S1 Detection and attribution results for observed changes in Northern Hemi-128

sphere Summer monsoon precipitation. (a), 2-signal regression for anthro-129

pogenic aerosol (AA) and natural (NAT) forcing. (b), 2-signal regression for130

greenhouse gas (GHG), and natural (NAT) forcing. Results are shown for131

four observational datasets, CRU (CRU), Zhang (ZHA), VasClimO (VAS)132

and GPCC (GPCC). Crosses show the best-guess scaling factor for the multi-133

model mean, thick lines are the 90% confidence interval based on the raw134

variance and thin lines are the 90% confidence intervals when model vari-135

ance has been doubled. The residual consistency test is passed for all cases.136

Stars (*) show where forcing is detected and two stars show where forcing is137

detected but inconsistent with a scaling factor of 1. 14138

S2 Observed and multi-model mean model MJJAS precipitation linear trends139

(mm/month/year) for 1951-2005. Shown are for all external forcings (ALL),140

observed (GPCC), all forced models that include both the indirect and direct141

effects (ALL(indirect+direct)), all forced models that only include the direct142

effect (ALL(direct)), greenhouse gas forcing (GHG), natural forcings (NAT),143

anthropogenic forcings (ANT) and anthropogenic aerosol forcing (AA). Hatch-144

ing shows were over 2/3 of individual simulations produce trends of the same145

sign. Information on whether the indirect effect is included was not avail-146

able for all models so the combined ensemble of ALL(indirect+direct) +147

ALL(direct) is less than ALL, explaining any inconsistencies in the hatch-148

ing. 15149
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S3 As Figure 1 but for ALL(indirect+direct) and ALL(direct) ensembles. Shown150

are the timeseries for the GPCC observational dataset and the multi-model151

mean for all external forcings (ALL), the all external forcing scaled by the152

GPCC total least squares scaling factor (ALL scaled), the multi-model mean153

all forced models that include the indirect and direct effects (ALL(indirect+direct))154

and models that include the direct effect only (ALL(direct)). Orange shading155

shows the 5%-95% range for the ALL ensemble. Models are masked to the156

GPCC dataset. 16157

S4 As Figure 1 for the South American NHSM region. Shown are for 4 ob-158

servations datasets, CRU, Zhang, VasClimO and GPCC and multi-model159

mean for all external forcings (ALL), greenhouse gas forcing (GHG), an-160

thropogenic aerosol forcing (AA), natural forcing (NAT) and anthropogenic161

forcings (ANT). Note multi-model means are plotted on a different scale to162

observations. Orange shading shows the 5%-95% range for the ALL ensemble,163

plotted on the same scale as observations. Models are masked to the GPCC164

dataset. 17165

S5 As Figure 1 for the African NHSM region. Shown are 4 observations datasets,166

CRU, Zhang, VasClimO and GPCC and multi-model mean for all external167

forcings (ALL), greenhouse gas only forcing (GHG), anthropogenic aerosol168

only forcing (AA), natural only forcing (NAT) and anthropogenic forcings169

(ANT). Note multi-model means are plotted on a different scale to observa-170

tions. Orange shading shows the 5%-95% range for the ALL ensemble, plotted171

on the same scale as observations. Models are masked to the GPCC dataset. 18172
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S6 As Figure 1 for the Asian NHSM region. Shown are 4 observations datasets,173

CRU, Zhang, VasClimO and GPCC and multi-model mean for all external174

forcings (ALL), greenhouse gas only forcing (GHG), anthropogenic aerosol175

only forcing (AA), natural only forcing (NAT) and anthropogenic forcings176

(ANT). Note multi-model means are plotted on a different scale to observa-177

tions. Orange shading shows the 5%-95% range for the ALL ensemble, plotted178

on the same scale as observations. Models are masked to the GPCC dataset. 19179

S7 Figure S2 except precipitation linear trends (mm/day/year) are for 1951-1985. 20180

S8 As Figure S2 except precipitation linear trends (mm/day/year) are for 1985-181

2005. 21182

S9 Linear trends for simulations that best agree with observations. ALL forced183

simulation MJJAS precipitation linear trends (mm/day/year) for 1951-2005184

for the 6 simulations that best agree with observations (lowest error score). 22185

S10 Linear trends for simulations with least agreement with observations. ALL186

forced simulation MJJAS precipitation linear trends (mm/day/year) for 1951-187

2005 for 6 simulations with least agreement with observations (highest error188

score). 23189
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S11 Detection and attribution results for observed changes in NHSM precipita-190

tion testing for overweighting of individual regions. Shown are the 3-signal191

analysis results for greenhouse gas (GHG), natural (NAT) and anthropogenic192

aerosol (AA) forcing for the NHSM region (a)-(c), excluding South American,193

African and Asian monsoon regions and (d), including the mid-latitude re-194

gions. Results are shown for four observational datasets, CRU (CRU), Zhang195

(ZHA), VasClimO (VAS) and GPCC (GPCC). Crosses show the best-guess196

scaling factor for the multi-model mean, thick lines are the 90% confidence197

interval based on the raw variance and thin lines are the 90% confidence in-198

tervals when model variance has been doubled. The residual consistency test199

is passed for all cases. Stars (*) show where forcing is detected and two stars200

show where forcing is detected but inconsistent with a scaling factor of 1. 24201

S12 Detection and attribution results for observed changes in NHSM precipitation202

where the same models are used to produce the fingerprint for each combina-203

tion of forcings. (a)-(d), 2-signal and (e), 3-signal detection and attribution204

analysis. (a), anthropogenic (ANT) and natural (NAT) forcing, (b), anthro-205

pogenic aerosol (AA) and natural (NAT) forcing, (c), anthropogenic aerosol206

(AA) and greenhouse gas (GHG) forcing, (d), greenhouse gas (GHG) and207

natural (NAT) forcing and (e), greenhouse gas (GHG), natural (NAT) and208

anthropogenic aerosol (AA) forcing. Results are shown for four observational209

datasets, CRU (CRU), Zhang (ZHA), VasClimO (VAS) and GPCC (GPCC).210

Crosses show the best-guess scaling factor for the multi-model mean, thick211

lines are the 90% confidence interval based on the raw variance and thin lines212

are the 90% confidence intervals when model variance has been doubled. The213

residual consistency test is passed for all cases. Stars (*) show where forcing214

is detected and two stars show where forcing is detected but inconsistent with215

a scaling factor of 1. 25216
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S13 Test of linearity assumption (a), The ALL multi-model mean and the sum217

of GHG+NAT+AA multi-model means for the NHSM region. (b), Residual218

(ALL multi-model mean minus the summed GHG+NAT+AA multi-model219

means). Dashed lines show 2 standard deviations of the internal variability220

from noise sample ensemble derived from the ALL forcing ensemble. 26221

S14 Comparison of observed and modelled variance. Ratio of observed and ALL222

forced model simulations mean MJJAS precipitation variance for each region,223

SA is South America, AF is Africa and AS is Asia) and each observational224

datasets (c is CRU, z is Zhang v is VasClimO and g is GPCC). (a) unsmoothed,225

(b) 9-year running mean. The crosses show the median value and the bars226

are the 90% confidence interval. Dashed lines shows ratio of 1 and dotted line227

shows ratio of 2. 27228
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Fig. S1. Detection and attribution results for observed changes in Northern Hemisphere
Summer monsoon precipitation. (a), 2-signal regression for anthropogenic aerosol (AA) and
natural (NAT) forcing. (b), 2-signal regression for greenhouse gas (GHG), and natural (NAT)
forcing. Results are shown for four observational datasets, CRU (CRU), Zhang (ZHA),
VasClimO (VAS) and GPCC (GPCC). Crosses show the best-guess scaling factor for the
multi-model mean, thick lines are the 90% confidence interval based on the raw variance
and thin lines are the 90% confidence intervals when model variance has been doubled. The
residual consistency test is passed for all cases. Stars (*) show where forcing is detected and
two stars show where forcing is detected but inconsistent with a scaling factor of 1.
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Fig. S2. Observed and multi-model mean model MJJAS precipitation linear trends
(mm/month/year) for 1951-2005. Shown are for all external forcings (ALL), ob-
served (GPCC), all forced models that include both the indirect and direct effects
(ALL(indirect+direct)), all forced models that only include the direct effect (ALL(direct)),
greenhouse gas forcing (GHG), natural forcings (NAT), anthropogenic forcings (ANT) and
anthropogenic aerosol forcing (AA). Hatching shows were over 2/3 of individual simulations
produce trends of the same sign. Information on whether the indirect effect is included was
not available for all models so the combined ensemble of ALL(indirect+direct) + ALL(direct)
is less than ALL, explaining any inconsistencies in the hatching.
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Fig. S3. As Figure 1 but for ALL(indirect+direct) and ALL(direct) ensembles. Shown are
the timeseries for the GPCC observational dataset and the multi-model mean for all external
forcings (ALL), the all external forcing scaled by the GPCC total least squares scaling factor
(ALL scaled), the multi-model mean all forced models that include the indirect and direct
effects (ALL(indirect+direct)) and models that include the direct effect only (ALL(direct)).
Orange shading shows the 5%-95% range for the ALL ensemble. Models are masked to the
GPCC dataset.
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Fig. S4. As Figure 1 for the South American NHSM region. Shown are for 4 observations
datasets, CRU, Zhang, VasClimO and GPCC and multi-model mean for all external forcings
(ALL), greenhouse gas forcing (GHG), anthropogenic aerosol forcing (AA), natural forcing
(NAT) and anthropogenic forcings (ANT). Note multi-model means are plotted on a different
scale to observations. Orange shading shows the 5%-95% range for the ALL ensemble, plotted
on the same scale as observations. Models are masked to the GPCC dataset.
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Fig. S5. As Figure 1 for the African NHSM region. Shown are 4 observations datasets,
CRU, Zhang, VasClimO and GPCC and multi-model mean for all external forcings (ALL),
greenhouse gas only forcing (GHG), anthropogenic aerosol only forcing (AA), natural only
forcing (NAT) and anthropogenic forcings (ANT). Note multi-model means are plotted on
a different scale to observations. Orange shading shows the 5%-95% range for the ALL
ensemble, plotted on the same scale as observations. Models are masked to the GPCC
dataset.
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Fig. S6. As Figure 1 for the Asian NHSM region. Shown are 4 observations datasets,
CRU, Zhang, VasClimO and GPCC and multi-model mean for all external forcings (ALL),
greenhouse gas only forcing (GHG), anthropogenic aerosol only forcing (AA), natural only
forcing (NAT) and anthropogenic forcings (ANT). Note multi-model means are plotted on
a different scale to observations. Orange shading shows the 5%-95% range for the ALL
ensemble, plotted on the same scale as observations. Models are masked to the GPCC
dataset.
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Fig. S7. Figure S2 except precipitation linear trends (mm/day/year) are for 1951-1985.
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Fig. S8. As Figure S2 except precipitation linear trends (mm/day/year) are for 1985-2005.
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Fig. S9. Linear trends for simulations that best agree with observations. ALL forced simu-
lation MJJAS precipitation linear trends (mm/day/year) for 1951-2005 for the 6 simulations
that best agree with observations (lowest error score).
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Fig. S10. Linear trends for simulations with least agreement with observations. ALL forced
simulation MJJAS precipitation linear trends (mm/day/year) for 1951-2005 for 6 simulations
with least agreement with observations (highest error score).
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Fig. S11. Detection and attribution results for observed changes in NHSM precipitation
testing for overweighting of individual regions. Shown are the 3-signal analysis results for
greenhouse gas (GHG), natural (NAT) and anthropogenic aerosol (AA) forcing for the NHSM
region (a)-(c), excluding South American, African and Asian monsoon regions and (d),
including the mid-latitude regions. Results are shown for four observational datasets, CRU
(CRU), Zhang (ZHA), VasClimO (VAS) and GPCC (GPCC). Crosses show the best-guess
scaling factor for the multi-model mean, thick lines are the 90% confidence interval based on
the raw variance and thin lines are the 90% confidence intervals when model variance has
been doubled. The residual consistency test is passed for all cases. Stars (*) show where
forcing is detected and two stars show where forcing is detected but inconsistent with a
scaling factor of 1.
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Fig. S12. Detection and attribution results for observed changes in NHSM precipitation
where the same models are used to produce the fingerprint for each combination of forcings.
(a)-(d), 2-signal and (e), 3-signal detection and attribution analysis. (a), anthropogenic
(ANT) and natural (NAT) forcing, (b), anthropogenic aerosol (AA) and natural (NAT)
forcing, (c), anthropogenic aerosol (AA) and greenhouse gas (GHG) forcing, (d), greenhouse
gas (GHG) and natural (NAT) forcing and (e), greenhouse gas (GHG), natural (NAT) and
anthropogenic aerosol (AA) forcing. Results are shown for four observational datasets, CRU
(CRU), Zhang (ZHA), VasClimO (VAS) and GPCC (GPCC). Crosses show the best-guess
scaling factor for the multi-model mean, thick lines are the 90% confidence interval based on
the raw variance and thin lines are the 90% confidence intervals when model variance has
been doubled. The residual consistency test is passed for all cases. Stars (*) show where
forcing is detected and two stars show where forcing is detected but inconsistent with a
scaling factor of 1.
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Fig. S13. Test of linearity assumption (a), The ALL multi-model mean and the sum of
GHG+NAT+AA multi-model means for the NHSM region. (b), Residual (ALL multi-model
mean minus the summed GHG+NAT+AA multi-model means). Dashed lines show 2 stan-
dard deviations of the internal variability from noise sample ensemble derived from the ALL
forcing ensemble.
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Fig. S14. Comparison of observed and modelled variance. Ratio of observed and ALL
forced model simulations mean MJJAS precipitation variance for each region, SA is South
America, AF is Africa and AS is Asia) and each observational datasets (c is CRU, z is Zhang
v is VasClimO and g is GPCC). (a) unsmoothed, (b) 9-year running mean. The crosses show
the median value and the bars are the 90% confidence interval. Dashed lines shows ratio of
1 and dotted line shows ratio of 2.
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