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The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type 

CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using 

cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in 

tungsten carbide dies. The consolidation conditions have a marked influence on the electrical 

transport properties. In addition to the effect on sample density, altering the consolidation 

conditions results in changes to the sample composition, including the formation of impurity 

phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for 

NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to 

figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.  

Keywords Thermoelectric properties, transition metal sulphides, hot pressing, 

spark plasma sintering, consolidation methods 

 

Introduction 

Thermoelectric materials are of increasing interest for applications involving energy harvesting 

from waste heat. The efficiency of a thermoelectric device is dependent on the physical properties 

of the component materials. In particular, the thermoelectric performance of a material is 

dependent on an unusual combination of high electrical conductivity (σ), typically found in metals, 

together with a low thermal conductivity (κ) and high Seebeck coefficient (S), characteristics more 

usually associated with non-metallic systems, and is embodied in the dimensionless figure of 

merit, ZT = S2
σT/κ [1]. Recently, there has been renewed interest in sulphide-based 
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thermoelectrics and the potential they offer for low-cost alternatives to the current commercial 

material of choice, Bi2Te3.  

In the search for sulphide-based thermoelectrics, we have recently begun to investigate the 

potential of ordered-defect phases. These materials comprise two-dimensional dichalcogenide 

slabs of edge-sharing octahedra stacked in a direction perpendicular to the slab direction. The van 

der Waals’ gap between adjacent slabs consists of a network of vacant octahedral and tetrahedral 

sites. Partial occupancy of such sites by cations in phases, AxMS2, may occur in an ordered fashion 

giving rises to a range of two-dimensional superstructures [2], some of which are stable over a 

range of x. The nature of the cation ordering is also temperature dependent and order-disorder 

transitions are commonly observed at elevated temperatures [3,4,5]. Ordered-defect phases are 

attractive candidates for thermoelectrics as they combine low-dimensionality, intrinsic to the 

dichalcogenide slab, with the capacity to tune electron-transport properties through chemical 

substitution. For example, substitution of vanadium for chromium in NiCr2S4 (Ni0.5CrS2) effects a 

semiconductor to metal transition at a critical level of substitution, xc ≈ 0.4 [6,7].  

Here, we present a preliminary investigation of the thermoelectric properties of NiCr2S4 and 

CuCrS2 which each contain CrS2 slabs. The former adopts a monoclinic structure at room 

temperature [8] in which 50% of the octahedral sites between pairs of dichalcogenide slabs are 

occupied by cations (Fig 1(a)). At room temperature CuCrS2 adopts a trigonal structure [9] in 

which 50% of tetrahedral sites are occupied between pairs of CrS2 slabs (Fig 1(b)). Our previous 

measurements of the electrical transport properties of cold-pressed and sintered samples of 

NiCr2S4 reveal n-type semiconducting behavior and lead to determination of the thermoelectric 

power factor as ca. 0.1 mW m-1 K-2 at room temperature [10]. However, to the best of our 

knowledge, the thermal conductivity of this phase has not been determined. The thermoelectric 

properties of p-type CuCrS2 have been the subject of considerable recent interest following the 

report of a figure of merit as high as 2.0 at room temperature [11,12]. The performance of this 

material appears to be sensitive to the thermal history of the sample. Extended sintering at high 

temperatures (850 – 900 °C) followed by quenching in air appears to be required for optimum 

properties, as it promotes copper-ion disorder, thereby reducing the thermal conductivity, and 

leads to increased texture of the sample, which increases the electrical conductivity. However, 

recent work by another group has shown that SPS processed samples exhibit a much higher 

electrical resistivity than previously reported and the maximum figure of merit, ZT = 0.11, is 
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observed at 400 °C [13]. At higher temperatures volatilization of sulphur was observed leading to 

a reduced charge-carrier concentration and a transition from p- to n-type conductivity.  

In this work, we describe an investigation of the impact of the consolidation method on the 

thermoelectric properties of NiCr2S4 and CuCrS2. The results demonstrate that the consolidation 

method has a marked effect on materials’ properties through grain growth, which manifests itself 

in differences in the degree of densification and through changes in the chemical composition of 

the sample, including the formation of impurity phases, which can produce variations in the 

electrical transport properties by up to an order of magnitude and even induce a change in the 

dominant charge carriers from electrons to holes. 

a)

              

b)

     

Fig.1 Crystal structure of a) NiCr2S4 and b) CuCrS2 with Ni and Cu atoms (open circles) partially 

filling octahedral and tetrahedral gaps, respectively, between edge-sharing CrS6 octahedra (grey). 

Experimental 

Materials were synthesized by reaction of appropriate mixtures of the elements (Ni (Aldrich, 

99.9%), Cu (Aldrich, 99.5%), Cr (Aldrich, 99+%) and S (Aldrich, 99.99+%)) at high temperatures 

in evacuated (< 10-4 Torr) silica tubes. In the case of the nickel-containing phase, a reaction 

mixture slightly deficient in sulphur was used, corresponding to a composition, NiCr2S3.93, 

whereas that for the copper-containing materials the reaction mixture was stoichiometric. NiCr2S4 

was heated at 900 °C for 1 day before annealing at 500 °C for 5 hours whilst CuCrS2 was heated at 

500 °C for 12 hours. CuCrS2 was also synthesised by mechanical alloying (MA) in a PM100 

Retsch planetary ball mill, using a steel jar and grinding balls at 650 rpm for 24 hours. Powder X-

ray diffraction data for all materials were collected using a Bruker D8 Advance powder 

diffractometer, operating with Ge-monochromated Cu Kα1 radiation (λ = 1.5406 Å) and equipped 
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with a LynxEye linear detector. Rietveld refinements were performed using the GSAS software 

package [14]. 

With the exception of one batch of NiCr2S4 that was micronized by ball milling (1h at 400 rpm) 

and the sample of CuCrS2 made by mechanical alloying, all materials were ground to a fine 

powder in an agate mortar prior to consolidation. Powdered samples were consolidated by cold- 

pressing at 750 MPa in a stainless steel die followed by sintering for four days at 800 °C in an 

evacuated sealed silica; by hot-pressing (HP) in graphite die for 30 minutes under a N2 atmosphere 

at various temperatures and pressures; and by spark-plasma sintering (SPS) on an FCT instrument 

using tungsten carbide dies under 300 MPa and at various temperatures. Details of temperatures 

and pressures are provided in the results section. Sulphur analysis for selected samples was carried 

out by inductively coupled plasma–atomic emission spectroscopy (Exeter Analytical (UK)).  

Rectangular ingots with approximate dimensions of 2 × 2 × 10 mm3 were cut from the 

compacted pellets and polished with fine sandpaper. The electrical resistivity (4-probe DC) and 

Seebeck coefficient of the ingots were determined over the temperature range 40 ≤ T/°C ≤ 300 

under a static He atmosphere of 1.1 – 1.4 bar using a Linseis LSR-3 instrument. Corresponding 

data for NiCr2S4 consolidated by SPS were obtained over the temperature range 30 ≤ T/°C ≤ 300 

using an Ulvac ZEM-3 instrument. The thermal conductivity of NiCr2S4 at room temperature was 

measured using a TPS 2500s instrument, whereas that of CuCrS2 was determined using a Quantum 

Design Physical Property Measurement System.  

Results and Discussion 

Materials characterization  

Rietveld analysis of powder X-ray diffraction data confirms that all reaction products are phase 

pure materials. Powder diffraction data for NiCr2S4 are well described (Fig. 2) by a monoclinic 

structural model involving complete ordering of Ni and Cr over octahedral sites. It was not 

possible to refine the sulphur content, owing to the small deviation from stoichiometry. Rietveld 

refinement using powder X-ray diffraction data collected for CuCrS2 (Fig. 3), reveals that Cu and 

Cr atoms are fully ordered in tetrahedral and octahedral sites respectively. 

The density of the consolidated samples of NiCr2S4 increases with increasing consolidation 

temperature and pressure (Table 1), reaching ca. 99% of the crystallographic density when 
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processed by SPS (650 °C, 300 MPa). Notably, powder X-ray diffraction data for consolidated 

samples reveals ca. 5 wt% of NiS2 impurity in the samples consolidated by HP at 100 MPa and by 

SPS at 300 MPa. The presence of NiS2 is consistent with an increased sulphur content determined 

by elemental analysis of the sample processed by HP at 100 MPa. The absence of any chromium-

containing decomposition products in powder X-ray diffraction data suggests that this phase can 

tolerate a degree of non-stoichiometry on the nickel and sulphur sub-lattices. The sample 

processed by HP at 600 °C, 60 MPa exhibits a sulphur content slightly lower than that expected 

from the reaction stoichiometry, suggesting some volatilization may occur under these conditions. 

 

 

Fig. 2 Final observed (crosses), calculated (solid line) and difference (full lower line) profiles from 
Rietveld refinements for NiCr2S4 using powder X-ray diffraction data (Space group: I2/m, a = 

5.91128(8), b = 3.41042(5), c = 11.1094(1) Å, β = 91.163(1)º; Rwp = 4.90%, χ2 = 1.26) 
 

a) 

    

b)

   

Fig. 3 Final observed (crosses), calculated (solid line) and difference (full lower line) profiles from 
Rietveld refinements for (a) as-synthesized CuCrS2 using powder X-ray diffraction data. (Space 
Group: R3, a = 3.47962(2) Å, c = 18.6927(2) Å, Rwp = 8.63%, χ2 = 1.37) and (b) for cold-pressed 
and sintered CuCrS2 illustrating the change in reflection intensities due to texturing. (Space Group: 
R3, a = 3.48038(3) Å, c = 18.6969(2) Å, Rwp = 7.36%, χ2 = 1.63) 
 

The density of the consolidated samples of CuCrS2 ranges from 89% to 97% of the 

crystallographic value (Table 2). Under the same hot-pressing conditions, the density of the MA 

sample is slightly higher than for the sample obtained by conventional reaction. Powder X-ray 

diffraction indicates no sample decomposition occurs under any of the consolidation conditions 

investigated. However, powder X-ray diffraction data for the sample produced by cold-pressing 

exhibit a marked increase in the intensity of (00l) reflections (Fig. 3 (b)), suggesting preferred 
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orientation due to texturing. This is consistent with previous reports [11], which suggest that 

texturing occurs on prolonged high-temperature sintering followed by fast quenching of the 

polycrystalline solid. 

 Table 1. Consolidation conditions and bulk characteristics for NiCr2S4 samples.       
  Consolidation 

conditions 
Code 

Density[2]  
(g cm-3) 

S content[3] 
(wt%) 

Impurity phases 

HP at 600 °C / 60 MPa 1a 3.31 43.52 None detected 

HP at 600 °C / 110 MPa 2a 3.61 45.15 NiS2 

HP at 600 °C / 60 MPa[1] 3a 3.16 
___

 
None detected 

HP at 680 °C / 60 MPa 4a 3.68 
___

 
None detected 

HP at 800 °C / 60 MPa 5a 3.72 
___

 
None detected 

SPS at 600 °C / 300 MPa 6a 4.18 
___

 
NiS2 detected 

SPS at 650 °C / 300 MPa 7a 4.27 
___

 
NiS2 detected 

[1] Powder ball milling at 400 rpm for 1 hour prior to hot pressing 
[2] Crystallographic density: d = 4.31 g cm-3 

[3] 43.65 wt% S content expected for NiCr2S3.93 and 44.08 wt% for NiCr2S4 

 
Table 2. Consolidation conditions and density for CuCrS2 samples.  

  Consolidation conditions Code 
Density[2]  
(g cm-3) 

Cold pressing at 700 MPa, sintered  
4d at 850 °C quenched 

1b 4.06 

Hot pressing at 600 °C, 60 MPa 2b 4.15 

Hot pressing at 600 °C, 60 MPa[1] 3b 4.23 

Hot pressing at 650 °C, 100 MPa 4b 4.44 
[1] Obtained by mechanical alloying        
[2] Crystallographic density: d = 4.56 g cm-3 

Physical properties 

The electrical resistivity and Seebeck coefficient data for NiCr2S4 (Fig. 4) reveal a marked 

dependence of the electrical transport properties on the consolidation method. Whilst electrons are 

the dominant charge carriers in all consolidated materials, the resistivity of HP samples changes 

from a semiconducting to a metallic-like temperature dependence with increasing density, whereas 

the two SPS processed samples exhibit semiconducting behaviour. The Seebeck coefficient at 40 

°C ranges from -18 to -172 µV K-1 depending on the processing method. For the SPS processed 

samples, the absolute value of the Seebeck coefficient decreases with increasing temperature, 

whereas for most of the hot-pressed samples Seebeck coefficient increases in absolute value with 

increasing temperature. The temperature dependence of the electrical resistivity and the Seebeck 

coefficient of the hot-pressed samples is characteristic of conduction by extrinsic charge carriers, 

and indicate that these samples behave as degenerate semiconductors. The highest power factor of 

0.18 mW m-1 K-2 at room temperature is reached for the material processed by SPS at 650 °C, 300 
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MPa and is higher than that determined in our previous report on cold-pressed and sintered pellets 

[10]. The difference may be attributed to the lower relative density (ca. 75%) of the latter material, 

which leads to an increase in the electrical resistance (by a factor of 2) over the SPS processed 

sample. The thermal conductivity of NiCr2S4 processed by HP at 680 °C, 60 MPa was determined 

as 1.4 W m-1 K-1 at 40 °C, leading to a figure of merit, ZT ≈ 0.024.  

 

 
Fig. 4 Thermoelectric properties of NiCr2S4 over the temperature range 30 ≤ T / °C ≤ 300 (a) 
electrical resistivity in logarithmic scale (b) Seebeck coefficient and (c) power factor. 
 

All consolidated samples of CuCrS2 behave as p-type semiconductors (Fig. 5). The Seebeck 

coefficient of HP samples, show an almost linear increase with temperature whereas in the cold-

pressed and sintered sample the value is almost temperature independent. In the latter case, a 

power factor of 0.09 mW m-1 K-2 and thermal conductivity measured as κ(40 °C) ≈ 1.2 W m-1 K-1  

lead to ZT ≈ 0.023 at room temperature. This performance is much lower than that in the original 

report by Tewari et al (ρ = 6 mOhm cm, S = 445 µV K-1, κ = 0.48 W m-1 K-1 and ZT = 2 at room 

temperature) [11] but is in good agreement with a large number of literature reports on the 

thermoelectric properties of this phase [13,15,16,17]. The principal origin of the discrepancy is 

believed to be the strong anisotropy in the cold-pressed and sintered sample [9]. The bond strength 

between Cu cations in the van der Waals’ gap and S anions in the CrS2 slabs has a significant 

(a) 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
(c) 
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effect on the Cu+ ionic conductivity [18]. The increase in unit cell volume upon prolonged 

sintering, observed here [19] and in a previous study where the c parameter increases upon 

sintering at 900˚C for 8 days [9], may be indicative of a weakening of this bonding and increased 

mobility of Cu+ species. The formation on consolidation of point defects associated with the 

copper ion sub-lattice, may also influence the electrical properties [20], although if present, these 

are at too low a level to be detected in Rietveld refinement using powder X-ray diffraction data. 

 

 
Fig. 5 Thermoelectric properties of CuCrS2 over the temperature range 40 ≤ T / oC ≤ 300 (a) 
electrical resistivity in logarithmic scale (b) Seebeck coefficient and (c) power factor. 
 

 

Conclusions 

Both NiCr2S4 and CuCrS2 exhibit a modest thermoelectric response. The highest measured 

power factor of 0.27 mW m-1 K-2 at 267 °C for the SPS-processed sample of NiCr2S4 is 

considerably lower than for the best n-type materials such as the skutterudite Yb0.19Co4Sb12 [21, 

22], which exhibits a power factor of up to 4 mW m-1 K-2 at 300 °C. However, there is 

considerable scope for tuning the thermoelectric properties of ordered-defect phases through 

chemical substitution, to which such materials are particularly amenable. The work reported here 

(a) 
 
 
 
 
 

 
(b) 
 
 
 

 
 
 
 
(c) 
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also demonstrates that the consolidation process may have a marked effect on the thermoelectric 

properties of NiCr2S4 and CuCrS2. Variations in electron-transport properties of up to an order of 

magnitude are observed depending on the consolidation conditions used. In addition to changes in 

sample composition that are evidenced by powder X-ray diffraction, variations in sample density 

occur. These are likely to reflect changes in the microstructure of the materials involving 

differences in grain growth and grain boundary formation. Detailed examination by microscopy 

techniques are required to characterise such changes at the microstructural level.  
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