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Abstract 

Various complex oscillatory processes are involved in the generation of the motor 

command. The temporal dynamics of these processes were studied for movement 

detection from single trial electroencephalogram (EEG). Autocorrelation analysis was 

performed on the EEG signals to find robust markers of movement detection. The 

evolution of the autocorrelation function was characterised via the relaxation time of the 

autocorrelation by exponential curve fitting. It was observed that the decay constant of 

the exponential curve increased during movement, indicating that the autocorrelation 

function decays slowly during motor execution. Significant differences were observed 

between movement and no moment tasks. Additionally, a linear discriminant analysis 

(LDA) classifier was used to identify movement trials with a peak accuracy of 74%.  

1 Introduction 

Neural correlates of movement have been increasingly explored for applications in brain-computer 

interfacing (BCI) as they enable very intuitive control [1]. Previous studies have suggested the 

possibility of the involvement of various complex oscillatory processes in motor command generation 

[2]. Most research focuses on the spectral domain of the EEG for detecting movement [1]. This project 

takes a different approach on understanding the motor commands by studying the temporal dynamics 

of the EEG using novel features.  

The principle of Event Related (De)synchronization (ERD/S) corresponding to attenuation and 

increase predominantly in mu power and beta power [3] respectively is widely used for detecting 

movements. Single trial analysis is important for online BCI implementation. Although theses spectral 

features are able to reliably detect the motor command, they   may not completely describe all aspects 

of motor command generation available in the EEG and do not indicate how one part of the EEG 

depends on another. Moreover, it is challenging to compute accurate instantaneous frequency 

distributions without compromising the temporal resolution and inducing delays in the motor command 

detection. Utilizing EEG signals’ high temporal resolution, we have developed a novel method of 

detecting motor commands on a single trial basis by performing time domain analysis. Continuous 

autocorrelation analysis has been used for extracting temporal features from EEG.     

In this study, different correlation based time domain analysis methods were explored for 

understanding the neural basis of motor command generation. Previous studies report that the first zero-

crossing time, the time at which the autocorrelation function crosses 0, increases before and during 

voluntary movement [2]. Autocorrelation analysis was motivated by looking at temporal dependencies 

in the EEG This approach was expanded by considering the evolution of the autocorrelation function 

over time and studying changes in relaxation time of the decay of the autocorrelation.    



2 Methods 

2.1 Experimental Paradigm 

EEG was recorded from three participants. All the participants were males (2 right handed and 1 left 

handed) with ages 25, 23 and 29 years. An experimental paradigm was developed for recording self-

paced index finger tapping of the right and left hand using tools from the BioSig toolbox [4]. A fixation 

cross was displayed on the screen placed at eye level for 2 sec at the beginning of each trial and followed 

by a textual cue for right or left hand finger tapping or resting. Participants were asked to perform a 

self-paced single finger tap at a random time of their choice within the 10 sec window following the 

cue. Each trial was followed by a random break of 1 to 1.5 sec. The experiment was broken down into 

separate runs of 12 trials with 4 cues per class displayed in random order to avoid pattern learning by 

the participants. The experimental setup is illustrated in Figure 1. 

A special tapping device was developed using a programmable microcontroller to record the tapping 

signals from both each finger. In order to mark the exact onset of the movement in EEG, both EEG and 

finger tapping signals were recorded simultaneously and co-registered using tools developed as part of 

the TOBI framework [5]. EEG from 19 electrodes (impedances kept below 8kΩ) was recorded using a 

Deymed TruScan amplifier with a sampling frequency of 1024 Hz. Forty trials for each of the three 

conditions were recorded for each participant.  

2.2 EEG pre-processing and Artifacts removal 

Signal pre-processing was done using a fourth-order Butterworth filter. DC offset in the signal was 

removed using a high-pass filter with a cut-off frequency of 0.5Hz. Power line noise was filtered using 

a notch filter at 50Hz. Finally, high frequency noise was eliminated using a low-pass filter with a cut-

off frequency of 60Hz.  

Independent Component Analysis [6] was used to remove artefacts from the recorded signals. 

Independent components (ICs) with artefacts were identified manually. Artefact-free EEG was 

reconstructed by eliminating these ICs. EEG was then segmented into individual trials. Trials of length 

6 sec were obtained by extracting 3 sec before and 3 sec after the onset of movement.    

2.3 Autocorrelation analysis based on exponential decay 

In order to examine the time development of the relaxation time of brain activity before, during, and 

after the movement, the autocorrelation function was calculated to extract the relaxation. The 

autocorrelation function shows the degrees of un-correlation as a function of time from initial state.  

For a given signal A(t), the auto-correlation is defined by C(∆t) = <A(t)A(t-∆ t)>, where <…> 

represents the average over time. At the initial time, C(0) = <A2>, and after infinite time, the signal is 

completely uncorrelated, giving C(inf) = <A>2. How the signal becomes uncorrelated as a function of 

time may be described by C(t) =   <A2> e(-t/ τ)  to describe the general trend of the relaxation process 

when the average of the signal <A>=0. If the auto-correlation is normalized, C(t) =  e(-t/ τ)  where τ  

represents the relaxation time of the signal and is an indicator of the relaxation process.  

 Autocorrelation functions were derived for the 30Hz low-pass filtered EEG. A windowing approach 

was used for determining instantaneous autocorrelation. Windows of length 1s and shifted by 100ms 

were extracted. Normalised continuous autocorrelation was performed on each window at all lags with 

non-zero values.  

The exponential curve y=K.e(-t/τ) was fitted to the local maxima of the positive lags of the 

autocorrelation function obtained from each window of the trial and the decay constant τ  of the fitted 

curve was extracted as a feature (see Figure 2).The constant K was set to 1.  The τ values for all the 

windows for each trial were plotted (see Figure 3).  



 

2.4 EEG analysis and classification 

The 9 EEG channels around the motor cortex (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) were analysed. 

Before beginning further analysis and classification with the novel time domain method, to assess the 

quality of data, EEG was validated for the presence of ERD using event-related spectral perturbation. 

To observe ERD, average spectrograms of resting state trials were subtracted from average 

spectrograms of movement trials. Figure 4 shows the decrease in mu power around movement onset.  

To analyse the results obtained by plotting τ for single trials, element-wise 2 sample t-test were 

performed to identify statistically significant differences between right hand tapping vs. rest and left 

hand tapping vs. rest. A Linear discriminant analysis (LDA) classifier was used to classify the trials. 

LDA was applied in a sliding window (length 1s, step size 0.1s).  A 10x10 cross-fold validation scheme 

was used with binary classification of left tap vs. no tap and right tap vs. no tap.  

3 Results 

Increases in the value of τ around the onset of movement were clearly observed in most trials. The 

τ values of the resting state trials appeared stable throughout the trial (see Figure 3). Features around 

the onset of the movement showed statistically significant differences between tap vs. rest conditions 

(see Figure 5). The most responsive channels for right and left hand tap differed between participants. 

Using the autocorrelation function decay constant movement could be detected from single trials.  

 
LDA classification accuracies for all the participants were plotted for the classification of 

movement of right vs. rest and left vs. rest. The accuracy obtained was considered statistically 

significant at p<0.05. A peak accuracy of 74% was achieved for participant 3 (shown in Figure 6). Table 

 

Figure 1: Experimental Setup 

 
 

 

Figure 2: Curve Fitting 

 

 

Figure 3: Plot of changes in 

τ. Time is reported relative to 

movement onset. 

 

 

Figure 4: ERD on channel 

C3 for each participant 

 

 

Figure 5: T-Test for left 

hand trials, participant 3. The 

horizontal line indicates 

statistical significance (p<0.05). 

 

 

Figure 6: Classification 

accuracy for left hand, subject 

3. The horizontal line indicates 

statistical significance (p<0.05). 



1 shows classification accuracies for all the participants. Significant accuracies were obtained for all the 

participants, except for participant 1 right hand tapping condition. It’s interesting to note that participant 

3, who exhibited the smallest ERD response, gave the best results using this temporal method.  

Participant Right hand tapping 

classification accuracy (%) 

Left hand tapping 

classification accuracy (%) 

1 58.0 68.4 

2 66.0 69.0 

3 68.0 74.0 
  Table 1: Movement classification accuracies. Statistical significance (p<0.05) is indicated in bold. 

4 Conclusions and future work  

A novel approach to extract features from the temporal dynamics of brain oscillations on a single 

trial basis was used to study the neural mechanisms of movement. This time domain single trial analysis 

has great potential for online BCI. Oscillations of a wide frequency range were taken into account 

without limiting the feature search into pre-determined frequency bands. This has led to the novel 

discovery of the behaviour of the autocorrelation function during voluntary movement. The 

autocorrelation function decays slower during movement as compared to rest. When there is no 

movement, decreases in the autocorrelation function are sharp. This suggests that during rest, the 

oscillatory processes and relaxation process of the autocorrelation function are distinct. However, 

during movement, coupling occurs between relaxation and oscillatory processes. Thus, the relaxation 

time of autocorrelation is a measure of temporal dependency in EEG.  

Since the study performed was very novel, initial analysis was done on only three participants to 

validate the proposed hypothesis. There is large scope for further work. To validate and confirm the 

robustness of this method, EEG analysis will be done on more participants and a comparison will be 

made to ERD based classification of movement. The system will be then adapted for use in online BCI.  
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